Under review as a conference paper at ICLR 2026

UNDERSTANDING EFFICIENCY: QUANTIZATION,
BATCHING, AND SERVING STRATEGIES IN LLM
ENERGY USE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are increasingly deployed in production, contribut-
ing towards shifting the burden in terms of computational resources and energy
demands from training to inference. While prior work has examined the energy
cost of inference per prompt or per token, we highlight how system-level design
choices - such as numerical precision, batching strategy, and request scheduling -
can lead to orders-of-magnitude differences in energy consumption for the same
model. We perform a detailed empirical study of LLM inference energy and la-
tency on NVIDIA H100 GPUs, analyzing the impact of quantization, batch size,
and serving configuration (e.g., with Hugging Face’s Text Generation Inference
server). Our results reveal that lower-precision formats only yield energy gains in
compute-bound regimes; that batching improves energy efficiency, especially in
memory-bound phases like decoding; and that structured request timing (arrival
shaping) can reduce per-request energy by up to 100 x. We argue that sustainable
LLM deployment depends not only on model internals, but also on the orchestra-
tion of the serving stack. Our findings motivate phase-aware energy profiling and
system-level optimizations for greener Al services.

1 INTRODUCTION

As large language models (LLMs) transition from research prototypes to real-world services, the
energy consumed during inference has become a growing concern (Wu et al., 2021 |Luccioni et al.|
2024b; [Everman et al.,[2023)). While training once dominated the environmental cost of Al (Strubell
et al.} 2019; |Patterson et al., 2021)), the widespread deployment of LL.Ms in user-facing applications -
chatbots, assistants, code generators - has shifted the spotlight toward inference efficiency. Studies
have called for improved energy reporting (Henderson et al.l 2020; |[Luccioni et al., 2024b)), quantified
the energy per query (Samsi et al.| 2023)), and highlighted the role of verbosity (Poddar et al., 2025}
Gao et al.|,|2024; Jin et al., |2025)) and prompt length (Wilkins et al., 2024a) in power consumption.
However, inference efficiency remains underexplored in dynamic serving conditions (Fernandez et al.
2025).

In this paper, we explore these systemic factors in detail. Building on prior work measuring the energy
footprint of specific prompts or models (Luccioni et al.||2024b; Samsi et al.||2023; |[Everman et al.|
2023)), we shift focus from the “what” of user inputs to the “how” of inference delivery. Through
extensive experiments on NVIDIA H100 GPUs, we analyze how quantization (Dettmers et al., [2022}
2023)), batching (Liu et al.,|2024} |/Agrawal et al.| 2023), and dynamic serving (Facel [2022;|Daol [2023];
Yu et al., |2022)) affect both latency and energy consumption, phase by phase.

Our key contributions are:

* A detailed evaluation of five numerical precisions across multiple models, revealing when
quantization helps - and when it backfires - in memory-bound regimes.

* A systematic study of batch size effects, including normalized energy per useful token and
the trade-offs introduced by input/output padding.

Under review as a conference paper at ICLR 2026

* An empirical benchmark of Hugging Face’s Text Generation Inference (TGI) server under
varying traffic patterns, showing that arrival shaping can drastically improve batching quality
and reduce per-request energy up to 100 x.

* A practical synthesis of system-level insights for building energy-efficient LLM inference
pipelines.

All scripts, configurations, and measurement tools used in this study are available open-source.
results.

Our findings suggest that inference efficiency is not just a function of model internals, but of the entire
serving stack - from GPU kernels to traffic scheduling. Optimizing this stack can yield substantial
sustainability gains, even without modifying the underlying model.

2 EXPERIMENTAL SETUP

We benchmarked a selection of some of the most downloaded instruction-tuned open-source LLMs
on Hugging Face as of July 2025, focusing on standard model sizes in the range of a few billion
parameters. Our benchmark includes:

* Qwen 2.5: 0.5B, 1.5B, 3B, 7B, 14B
¢ Mistral-7B-Instruct-v(.3
 LLaMA 3.1-8B-Instruct

Each model was evaluated under five numerical formats:

* float32,bfloatlé, float16 (native support via PyTorch)

* int8, int4 using bitsandbytes (2020) quantization (via the LLM.int8() and
LLM.int4() formats).

For int8 and int4, we applied post-training quantization using bitsandbytes, which com-
presses the feed-forward and attention projection weights using vector-wise quantization. For int8,
LLM.int8 performs 8-bit matrix multiplications with outlier-aware mixed precision, isolating rows or
columns with large activation features and computing them in 16-bit to preserve accuracy |Dettmers
et al.[(2022). For int 4, weights are packed two per byte and stored in a NormalFloat4 (NF4) format;
custom CUDA kernels perform on-the-fly dequantization before matmuls (Dettmers et al., [2023)).

All models were loaded and executed using the Transformers library (Wolf et al., 2020), which
by default leverages optimized kernels such as FlashAttention and fused operations provided by
recent PyTorch releases.

All runs were conducted on a dedicated NVIDIA H100 SXM GPU (80GB) and 8 AMD EPYC
7R13 CPU cores, with no co-scheduled jobs. GPU and CPU energy were measured using the
CodeCarbon library (Courty et al.l 2024), which leverages NVML and pyRAPL for real-time
energy monitoring, while RAM energy was estimated via a CodeCarbon heuristic[ﬂbased on CPU
count and usage duration. Latency was recorded at the CUDA kernel level.

Each request was preceded by a warmup phase of 5 iterations to stabilize memory and kernel behavior.
For each configuration, we repeated the same request 10 times and report the average energy and
latency to reduce variability.

We reused the a subset of the dataset proposed by (Anonymous & Anonymous)} [2025) (under review),
which studies the energy impact of polite interactions with LLMs. This dataset provides a controlled
and reproducible input distribution while preserving real-world relevance. Specifically, we used
10,000 polite prompts (ending in “thank you”) sampled from a custom subset of the UltraChat-200k
dataset (Ding et al.| 2023)), available at ult rachat 10k. Prompts ranged from 200 to 4000 tokens,
and outputs were relatively short - typically between 10 and 300 tokens - due to the nature of the
dataset, which consists of chats between a human user and an LLM. Prompts were adapted to match
the input format expected by each model.

'"https://mlco2.github.io/codecarbon/methodology.html#ram

https://huggingface.co/Anon152425
https://huggingface.co/datasets/jdelavande/ultrachat_200k-Llama-3-8B-Instruct-with-thanks
https://mlco2.github.io/codecarbon/methodology.html#ram

Under review as a conference paper at ICLR 2026

To analyze energy and latency independently for prefill and decode, we split the inference into two
steps:

* Prefill: Forward pass over the full prompt (with generation stopped at the first token).

* Decode: Autoregressive generation of the remaining tokens, attending to cached context.

The full generate phase corresponds to the sum of prefill and decode. In practice, we isolate prefill
by generating a single token, and obtain decode as the difference between the full generation and the
prefill run. This decomposition enables us to capture the distinct compute regimes that characterize
each phase:

The prefill phase is not uniformly compute-bound: for very small input sizes, most operations are
memory-bound due to limited arithmetic intensity. (Memory-bound operations are limited by data
movement rather than computation; although memory and compute can be executed asynchronously
on GPUs, one or the other often becomes the bottleneck, depending on the workload.) As the input
length (s) increases, compute-heavy operations - such as feedforward layers and QKV (query, key,
and value) projections - begin to dominate, especially in large models with wider hidden dimensions.
Compute-bound operations, by contrast, are limited by the rate at which arithmetic can be performed.
The transition point from memory-bound to compute-bound depends primarily on the model’s hidden
size, with larger models entering the compute-bound regime earlier. Increasing the batch size also
accelerates this transition by increasing the FLOP-to-memory ratio.

In contrast, the decode phase remains fully memory-bound for small batch size, regardless of model
size. This is due to the autoregressive nature of generation: each token is produced sequentially and
involves computing attention over cached prompt representations at each decoding step, leading to
small, fragmented memory operations. Only by increasing the batch size does the decode phase start
to exhibit compute-bound characteristics.

Idle time. GPU utilization can be impacted by idle times between kernels. When the CPU thread
issuing kernels is slower than the GPU execution, the GPU may stall despite its asynchronous
capabilities - leading to gaps where no work is scheduled. This underutilization becomes more
pronounced in workloads with small or irregular kernel launches.

3 IMPACT OF NUMERICAL PRECISION ON LATENCY AND ENERGY
CONSUMPTION

As LLMs grow in size, the adoption of lower-precision numerical formats - such as bfloat16,
int8, or int4-has become a widespread strategy to reduce memory footprint and enable inference
for larger models on constrained hardware. While these formats can also improve throughput and
hardware utilization, their actual benefits are often phase-dependent and not always straightforward.
In this section, we dissect how numerical precision impacts both latency and energy consumption
across the two main phases of inference: prefill and decode. We show that precision reduction yields
significant gains primarily in compute-bound regimes, whereas in memory-bound settings, aggressive
quantization may introduce dequantization overheads or bandwidth saturation that offset the expected
improvements.

3.1 PREFILL PHASE: ACCELERATION WITHOUT PROPORTIONAL ENERGY SAVINGS

In the prefill phase, we observe up to 4x reduction in GPU energy when switching from f1oat32
to lower-precision formats such as float16,bfloat16, or int8 - particularly for larger models
(e.g., LLaMA 8B or Qwen 14B) - see Figure[Ta] These models are predominantly compute-bound at
the input lengths seen in our dataset (typically s,,eqn =~ 1200), and benefit fully from the activation
of Tensor Cores, which enable fused matrix multiplications with up to 15x higher throughput.

Smaller models, in contrast (e.g., Qwen-0.5B and 1.5B), remain memory-bound across most of the
prompt lengths we tested, as their hidden sizes are smaller and their compute intensity lower. As a
result, they gain little to no advantage from Tensor Core acceleration. In some cases, we even observe
a slight increase in energy consumption for f1loat16/bfloat16, likely due to the activation of

Under review as a conference paper at ICLR 2026

Mean GPU Energy by Model and Dtype (Prefill Phase) Mean GPU Energy by Model and Dtype per Token (Decode Phase)
e foat32 mes foatle mEm bfioatls mmm Sbit mmm 4bit mm foat32 s foatle mmm bfoatle mmm sbit mmm dbit
Qwen/Qwen2.5-0.5B-Instruct Quen/Qwen2.5-1.5B-Instruct Quen/Qwen2.5-0.58-Instruct Qwen/Qwen2.5-1.5B-Instruct
0030 0025 00040
00030
0025 00035
0020
_ _ 00025 o003
z 2 £ 0.0020
& oot £ oo015 H
2 2 2 00015
s G S 00010 s
0005 00010
200 00005 00005
0000
00000 00000
foatsz foatls bﬂaauﬁ sbit foatsz foatls bfloatls sbit abit foats2 foatls bfloatls &bt dbit foat32 floatle bfloatls bt 4bit
Diype

OWen/Qwenz 5 14B-Instruct Qwen/Qwen2.5-3B-Instruct Qwen/Qwen2.5-14B-Instruct Qwen/Qwen2.5-3B-Instruct

0200
004
0175
2 0150
g 003
Zons
g g
£ 0100 2 oo
2 oors
0050 001
0025
0000 000

floatsz float1s moms sbit abit float32 floatl6 bloatl6 8bit it
Diype

0007 0.005

0008 0004
0005

0,003

004

0,003 0.002

GPU Energy (Wh)
GPU Energy (Wh)
GPU Energy (Wh)

0.002
0.001
0.001

0,000 0.000

foatsz floatle bfioatls bt 4bit foat32 floatle bioatls bt 4bit
Diype otype

Owen/owenz 5 7B-Instruct meta-llamayLlama-3.1-8B-Instruct Qwen/Qwen2.5-7B-Instruct meta-llama/Llama-3.1-8B-Instruct

010
010
008
z 008
B
= 006
g 2 oos
2 004
z 004
0.02 0.02
0.00 000

floats2 float16 m atls 8bit

0.004

0003 0,003

0.002 002

GPU Energy (Wh)
GPU Energy (Wh)
GPU Energy (Wh)

0.001 0.001

0.000 0.000

float32 floatls bfloatls 8bit dbit
e
mustralau/Mustra\ 78 Instruct-v0.3 mistralai/Mistral-7B-Instruct-v0.3

float32 floatls bfloatls 8bit abit

GPU Energy (Wh)
GPU Energy (Wh)

—

o1z 0005
010

0004
008

0003
006

0002
004
002 0001
000 0000

floatsz floal16 waaua abit abit floats2 float1s bfloatls 8bit abit
Diype

(a) Mean GPU energy consumption by model and dtype (b) Mean GPU energy consumption per token by model
during the prefill phase. and dtype during the decode phase.

Figure 1: Impact of model size and numerical precision (dtype) on GPU energy consumption during
(a) prefill and (b) decode phases.

specialized compute kernels (Tensor Core paths) that add overhead without enough computations to
amortize it (Figure [Ta)).

For quantized models (int 8 and int4), performance is further impacted by on-the-fly dequantiza-
tion: during inference, weights stored in compressed integer formats are unpacked and converted to
higher-precision tensors (typically float16/bfloatl16 or float32) before computation. This
unpacking adds extra kernel launches and memory movement, which can partially negate the benefits
of quantization, especially when the operations are memory-bound or irregular.

While latency does decrease significantly in many of these configurations - up to 10 in large models
(Figure[d) - the energy savings are smaller. This is due to a higher average power consumption
when using Tensor Cores: they complete the computation faster, but at a higher instantaneous power
draw. As a result, the time is shorter but the power is higher, limiting the total energy saved.

3.2 DECODE PHASE: QUANTIZATION PITFALLS IN MEMORY-BOUND REGIMES

In contrast to prefill, the decode phase is fully memory-bound for all model sizes and sequence
lengths considered. Each generated token reuses cached activations (KV caching) and performs
attention over the accumulated context, with little opportunity for parallel compute acceleration.

As a result, energy per generated token remains largely invariant across float32, float16, and bfloat16,
with minor improvements (or slight degradations) in both energy (Figure [Ib) and latency (Figure [5).
This suggests that lower-precision Tensor Cores do not provide significant benefits in this memory-
bound regime. Theoretically, in a bandwidth-limited regime, - and thus latency and energy per
token - should scale inversely with the memory word size b,,: reducing from £1oat 32 (32 bits) to

Under review as a conference paper at ICLR 2026

float16 (16 bits) or int 8 (8 bits) should yield ideal 2x or 4x gains, respectively. However, such
improvements are not observed in practice.

The reason lies in the energy profile of memory-bound workloads: while kernels may run slightly
faster with lower precision, the GPU spends a disproportionate amount of time idle between kernel
launches, waiting for synchronization, scheduling, or small fragmented memory operations. Since
GPU idle power remains non-negligible - typically around 120 W even when no kernel is running
- reducing kernel duration has little effect on total energy per token. The energy saved from faster
compute is offset by the energy burned during idle time.

Quantized formats like int8 and int4 further exacerbate this issue: they introduce additional
dequantization kernels that are small, memory-bound, and irregular, increasing the number of launches
and stream fragmentation. As a result, we observe higher energy consumption with int 8-often
2-3x more than float32-despite moving fewer bytes (Figure[Tb).

Modern GPUs also transfer memory in fixed-width chunks (e.g., 32—-64 bytes), so 4-bit formats do
not reduce memory bandwidth proportionally. Combined with memory misalignment and suboptimal
coalescing, this results in negligible or even negative energy gains from quantization in the decode
phase. In fact, we find that int4 performs similarly to float32, reinforcing the notion that in
memory-bound phases with high kernel fragmentation, reducing numerical precision is insufficient to
meaningfully reduce energy use.

In summary: numerical precision reduction yields the most benefit in the prefill phase of large
models, where compute dominates. In contrast, the decode phase remains memory-limited, and
aggressive quantization (e.g., int8 or int4) may incur overheads that outweigh theoretical savings.

4 BATCH SI1ZE EFFECTS ON ENERGY EFFICIENCY

Input Energy Cost — Liama 3.1-88 — H100
Left: Effective Tokens » Right: Computed (with Padding)

GPU Energy per Effective Input Token GPU Energy per Computed Input Token GPU Energy per Output Token — Llama 3.1-66 — H100,

= el
= oecode
= cnerate

J per Output Token (mwh)

Eneray (miwh)
Eneray (muwh)

(a) GPU energy per input token. Left: Effective tokens (excluding (b) GPU energy per output token
padding); Right: Computed tokens (including padding). (effective = computed).

Figure 2: GPU energy consumption per token on LLaMA 3.1-8B. (a) Input-side energy depends on
token type and padding; (b) Output-side energy remains consistent across requests.

Batching is one of the most effective levers for improving throughput and reducing per-request
overhead in LLM inference. By processing multiple sequences in parallel, batching amortizes
fixed costs such as memory transfers and kernel launch overheads. However, its impact on energy
consumption depends on the inference phase (prefill vs decode), the compute regime (compute- vs
memory-bound), and the presence of padding. In this section, we analyze how GPU energy scales
with batch size for LLaMA 3.1-8B (float32), using the t ransformers library in static batching
mode.

We separate the analysis into two perspectives:

* Energy per input token, distinguishing between effective (excluding padding) and computed
(including padding) tokens;

 Energy per output token, where effective = computed since completed sequences are dropped
automatically.

Under review as a conference paper at ICLR 2026

Input token normalization: trade-offs between padding and parallelism. To understand how
batch size affects different phases of inference, we first normalize energy by the number of input
tokens.

On the left of Figure[2a] the energy per effective input token in the prefill phase increases steadily with
batch size due to padding. As sequences are padded to match the longest one, the compute-bound
prefill phase performs extra work on padded tokens, leading to inflated energy per effective token.

In the decode phase, we observe a U-shaped curve: batching improves memory reuse and reduces
launch overheads, but larger batches increase the number of prompt tokens per sequence, which in
turn increases the cost of each attention step. The optimal batch size for decode is reached at b = 4
in our setup. This U-shape carries over to the total generate phase, which sees minimal energy per
effective input token at b = 2, a compromise between prefill waste and decode gains. At b = 16,
energy per token increases by nearly 25% compared to this optimal point.

When energy is normalized by computed input tokens (right of Figure[2a)), a different picture emerges.
Prefill energy per token remains constant, as expected for a compute-bound workload where energy
scales linearly with FLOPs. Decode energy per computed token decreases with batch size, but the
gains plateau around b = 4 as the marginal benefits of parallelizing attention computations diminish
for the sequence lengths considered. The generate phase follows the same trend, reaching about 65%
of the energy per token observed at b = 1.

Output token normalization: efficient batching across all phases. In Figure [2b, we normalize
energy by the number of output tokens. Here, all tokens are effective because transformers
automatically drop completed sequences from the batch, avoiding padding overheads.

We observe consistent improvements across all phases. Energy per output token decreases rapidly
with batch size and follows a roughly logarithmic trend. The memory-bound decode phase benefits
the most: matrix multiplications over cached keys and values dominate its cost, and batching enables
better amortization of memory transfers. Prefill, though compute-bound, also appears more efficient
in this metric, since its fixed cost is shared across a larger number of generated tokens. Lastly, full
generation shows the same trend, confirming that larger batches lead to longer kernels and reduced
idle times, further improving energy efficiency.

Conclusion. Batching improves energy efficiency across all inference phases, but through different
mechanisms. In the prefill phase, gains are limited by padding, which inflates compute without
contributing useful work. In the decode phase, batching brings strong benefits up to b = 4, after
which parallelism yields diminishing returns. Normalizing by output tokens confirms consistent
efficiency gains due to reduced overheads and longer, better-amortized kernels. Overall, optimal
batch size depends on the chosen normalization and reflects a trade-off between parallelism and
padding waste, with efficiency gains driven by improved compute saturation.

5 ENERGY EFFICIENCY WITH TGI AND ARRIVAL SHAPING

To simulate production-like deployment scenarios, we ran LLaMA 3.1-8B and 70B in bf1oat16
using Hugging Face’s text-generation-inference (TGI) server (v3.3.4). TGI enables
continous batching and integrates multiple inference optimizations such as more kernel fusion. This
section investigates how usage patterns and in particular, request arrival timing affect - batching
quality and energy efficiency.

5.1 METHODOLOGY
We evaluated the per-request energy consumption under different inter-arrival patterns:

* Random delays: each request 4 is sent at t; = i - A, with A ~ U(k,).

* Fixed intervals: regular delays between requests (e.g., every 50ms, 300ms, or 500ms).

In both cases, we sent 10,000 generation requests to the TGI server. Energy consumption was tracked
via nvml on the GPU host, and averaged over all requests.

Under review as a conference paper at ICLR 2026

5.2 LLAMA 8B: ARRIVAL SHAPING UNLOCKS LARGE GAINS

inter-arrival delays

on TGI with Different Random Waits Energy Consumption per Generation on TGl with Different Random Waits Energy per request under fixed vs. random i
1-88 - 1°H100 Liama-3.1-708 - 4*H100 Llama-3.1-88 - 1+H100

Liama3. 1.8 6F16 bascline (0.12 Wh) - 025 Liama3.1.85 bF16 baseline (0.12 Wh) = Random Wait
U U

= = 9 Fixed Wait
= U = o 005
o1 = =

020
7 015
0.06 g

005
q —l—v
oo e L | o WL ’ ‘
00 0005 00503 0305 o0 0005 00503 0305 o0
> - o > . 0s 00 0005 03 005035 055 0305

(a) LLaMA 8B: mean energy per (b) LLaMA 70B: same setup asin (c) LLaMA 8B: energy per request
request (GPU, CPU, RAM) under (a), scaled up to larger model size. under fixed vs. random inter-arrival
random arrival. delays.

tion (Wh)

Energy per generation (Wh)
9y per g

E

Figure 3: Impact of inter-arrival delay and model size on energy per request. (a) and (b): Mean
energy for LLaMA 8B and 70B under random delays. (c): Comparison of fixed vs. random delays at
8B scale.

For LLaMA 3.1-8B, switching from the standard t ransformers library (with sequential request
handling) to Hugging Face’s text-generation-inference (TGI) server (with burst-mode
batching) reduces the mean energy per request from 1.2 x 10~ Wh to 9.6 x 103 Wh. This
12.5x improvement highlights the impact of continuous batching and backend optimizations in TGI

(Figure [3a)).

Further improvements are possible with fixed inter-arrival delays. As shown in Figure [3c| using a
constant spacing of 500 ms reduces energy to as low as 1.1 x 10~2 Wh per request, corresponding
to a 100x energy reduction relative to the naive baseline (LLaMA 8B-BF16 using the standard
transformers backend) - achieved purely via improved batch consistency and GPU utilization.

5.3 LLAMA 70B: SCALING BENEFITS HOLD AT LARGE SCALE

We repeated the experiment on LLaMA 3.1-70B (4 xH100s), keeping the same generation settings.
Despite the 10 x increase in model size and the multi-GPU context, TGI achieved a per-request energy
consumption as low as 2.4 x 10~2 Wh - significantly lower than the naive baseline for 8B-BF16
(1.2 x 10~! Wh). This confirms that dynamic batching and traffic shaping scale effectively to large
models and hardware setups (Figure [3b).

5.4 INTERPRETATION AND MECHANISMS

Two main mechanisms explain TGI’s strong performance:

* Continuous batching: Incoming requests are incrementally batched at the token level as
they arrive. Feedforward operations (e.g., MLP, QKV projections) are executed jointly
across all active sequences, while attention is batched via paged mechanisms that group
memory accesses efficiently across requests. This allows dynamic, low-latency batching
without waiting for full prompts.

* Kernel fusion and caching: Fused operations (e.g., QKV projections, FFN layers) reduce
intermediate memory writes and improve cache locality, further lowering DRAM usage and
power draw.

Arrival shaping directly affects both mechanisms. Regular spacing ensures a steady stream of aligned
requests, minimizing idle GPU time and improving the average batch size. Random delays still help
by introducing jitter, but fixed spacing offers the most consistent utilization.

Summary. TGI combines efficient kernel execution with continuous batching strategies that adapt
to incoming traffic. By shaping request arrivals - even with lightweight delay patterns - one can
drastically improve batching quality and reduce energy consumption. These results suggest that

Under review as a conference paper at ICLR 2026

user-side scheduling and backend inference optimizations are jointly critical to making LLM
deployment more sustainable.

6 MACRO IMPACT ESTIMATE

To contextualize our results, we estimate the energy footprint of serving the LLaMA 8B model at scale.
In our baseline setup (£ 1oat 32, no batching), the mean GPU energy per request is 1.2 x 10~ Wh
(Figure . At 10° requests per day, this yields:

Total_energy = 10° x 1.2 x 10~* Wh = 1.2 x 10? kWh/day

This is equivalent to the daily electricity use of over 10 French household

With optimized serving - using bfloat16, TGI, and regular arrival intervals - the mean energy
drops to 1.1 x 1073 Wh/request, yielding:

Total_energy = 10° x 1.1 x 1073 Wh = 1.1 x 10° kWh/day

This corresponds to a > 100 reduction, achieved solely through system-level improvements. These
results emphasize that sustainable LLM deployment depends not only on model size or architecture,
but also on scheduling and infrastructure.

7 RELATED WORK

Environmental Impact of Inference. While early works on Al sustainability focused on train-
ing (Luccioni et al., 2022} |Strubell et al., |2019; [Schwartz et al., [2019; Henderson et al., [2020;
Patterson et al., 2021)), inference has recently drawn attention due to its increasing share in real-
world deployments (Wu et al.| 2021} [Luccioni et al, [2024a). Studies have quantified the energy
per query (Samsi et al., [2023)), compared hardware efficiency across CPUs and GPUs (Everman
et al., [2023), highlighted the role of prompt length and verbosity (Gao et al., 2024} Poddar et al.,
2025 Wilkins et al.,[2024a)), advocated for standardized reporting (Luccioni et al., 2024b; Tschand
et al.,|2025) and improved cost indicators (Dehghani et al., |2021). However, most focus on static
benchmarks; few (Fernandez et al.,[2025)) address dynamic settings or system-level optimizations.

Quantization and Precision. Low-precision formats (floatl16, bfloatl6, int8, int4)
reduce memory and compute costs via techniques such as weight-only quantization (Dettmers et al.,
2022; Frantar et al., 2023 |Dettmers et al., 2023)), activation-aware quantization (Lin et al., [2024),
FP8 (Micikevicius et al.}[2022), or post-training smoothing (Xiao et al.| 2024). While some studies
address energy impacts (Rajput & Sharma, 2024; Husom et al.,|2025), real-world gains can vanish due
to memory bottlenecks, dequantization overheads, or poor scaling (Lin et al., 2025). Energy-accuracy
trade-offs are explored (Moons et al., 2017), but most analyses lack kernel- or phase-level granularity.

Batching and Padding. Batching improves throughput by amortizing overheads, but can introduce
padding inefficiencies (Liu et al.,|2024). The effectiveness depends on phase characteristics: decode
benefits from batching due to shared memory access, while prefill may suffer from variable sequence
lengths (Fernandez et al., 2025 Wilkins et al.| [2024bj |Patel et al., 2024)). Dynamic batch shaping
strategies (Agrawal et al., 2023} [Spector & Rel 2023)) are often necessary.

Serving Infrastructure and Scheduling. Modern inference engines like TGI (Facel 2022) and
vLLM (Kwon et al.|[2023) implement continuous batching (Yu et al.,2022), kernel fusion (Dao|[2023}
Hsu et al., 2025), and paged attention (Kwon et al.,|2023)), greatly improving utilization. TensorRT-
LLM and Triton Inference Server (NVIDIAL[2023;2019) offer complementary low- and high-level
optimizations for efficient LLM inference. Scheduling techniques such as query routing (Ding et al.|
2024) and speculative decoding (Leviathan et al.| 2023) further optimize latency and throughput.

*Based on an average of 4,255 kWh/year per household in France, i.e., ~11.7 kWh/day. Source: https: //
www.fournisseurs—electricite.com/compteur/consommation—electrique/moyenne

https://www.fournisseurs-electricite.com/compteur/consommation-electrique/moyenne
https://www.fournisseurs-electricite.com/compteur/consommation-electrique/moyenne

Under review as a conference paper at ICLR 2026

However, these techniques can have mixed effects on energy (Shi et al.,|2025)), highlighting the need
for joint energy-aware design.

Energy measurement frameworks. Tools such as CodeCarbon (Courty et al., [2024)),
pyYRAPL (pyRAPL contributors, |2020), and NVIDIA’s NVML enable reliable tracking of energy
consumption during model execution.

Summary. While prior work provides building blocks - quantization, batching, dynamic serving-
few studies jointly evaluate their impact on energy efficiency in real deployment conditions. We
bridge this gap by dissecting LLM inference into phases and analyzing how system-level choices
affect energy use across a wide operational range.

8 LIMITATIONS AND FUTURE WORK

While our analysis offers fine-grained insights into the energy and latency behavior of LLMs, several
limitations remain:

Prompt and output diversity. Our experiments use relatively short prompts, keeping us within
the linear scaling regime. Real-world usage may involve longer multi-turn dialogues or structured
instructions, requiring non-linear models of compute cost and more diverse benchmarks.

Transferability to other hardware. Our results are based on NVIDIA H100 GPUs. While we
expect qualitative trends (e.g., batching benefits, memory vs compute regimes) to hold, detailed
power and latency behavior will differ on other accelerators (e.g., AMD, AWS Inferentia, TPU).
Extending this analysis to other platforms is crucial for generalization.

System-level effects. Our energy measurements focus on GPU consumption only. CPU usage,
memory transfers, and network I/O may contribute significantly to the system-level footprint, espe-
cially in multi-GPU or multi-node setups. Future work could account for these factors to provide a
holistic view of inference efficiency.

9 CONCLUSION AND TAKEAWAYS

Energy efficiency in LLM inference is not solely dictated by model architecture or size. Instead, our
experiments reveal a complex interplay between numerical precision, batch shaping, and serving
configuration - each of which can dramatically affect latency and power draw.

* Precision matters - but only in compute-bound regimes. Lower-precision formats (e.g.,
bfloatlé, int8)yield significant speedups and energy savings during prefill, particularly
for large models. However, in memory-bound phases like decoding, quantization often fails
to improve - and may even worsen - efficiency due to overheads like dequantization.

* Batching is critical to efficiency. Both static and dynamic batching reduce energy per token
by improving hardware utilization and amortizing overheads. However, prefill is sensitive to
padding inefficiencies, requiring careful shaping (e.g., bucketing) to avoid regressions.

* Serving infrastructure shapes sustainability. Our experiments with TGI demonstrate that
the how of inference - i.e., the scheduling of requests - can impact energy consumption by
up to two orders of magnitude, even with the same model and hardware.

* Energy profiling should be phase-aware. Decode and prefill exhibit fundamentally differ-
ent compute characteristics, and should be measured and optimized separately. Reporting
aggregate energy alone may obscure key bottlenecks or inefficiencies.

Taken together, our findings argue for a more holistic view of inference efficiency - one that includes
not just model optimization, but also system design and traffic shaping. As LLMs continue to scale and
proliferate, such systemic improvements will be critical to making their deployment environmentally
sustainable.

Under review as a conference paper at ICLR 2026

REFERENCES

Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gulavani, and Ra-
machandran Ramjee. Sarathi: Efficient llm inference by piggybacking decodes with chunked
prefills, 2023. URL https://arxiv.org/abs/2308.16369.

A. Anonymous and B. Anonymous. Saying thank you to a llm isn’t free: Measuring the energy cost
of politeness, 2025. Under review. See supplementary material for full paper.

bitsandbytes contributors. bitsandbytes: Accessible large language models via k-bit quantization
for pytorch. https://github.com/bitsandbytes—-foundation/bitsandbytes)
2020.

Benoit Courty, Victor Schmidt, Sasha Luccioni, Goyal-Kamal, MarionCoutarel, Boris Feld, Jérémy
Lecourt, LiamConnell, Amine Saboni, Inimaz, supatomic, Mathilde Léval, Luis Blanche, Alexis
Cruveiller, ouminasara, Franklin Zhao, Aditya Joshi, Alexis Bogroff, Hugues de Lavoreille, Niko
Laskaris, Edoardo Abati, Douglas Blank, Ziyao Wang, Armin Catovic, Marc Alencon, Michat
Stechty, Christian Bauer, Lucas Otavio N. de Araujo, JPW, and MinervaBooks. mlco2/codecarbon:
v2.4.1, May 2024. URL https://doi.org/10.5281/zenodo.11171501.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish Vaswani, and Yi Tay. The efficiency
misnomer. CoRR, abs/2110.12894, 2021. URL |https://arxiv.org/abs/2110.12894.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LIm.int8(): 8-bit matrix multi-
plication for transformers at scale, 2022. URL https://arxiv.org/abs/2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized 1lms, 2023. URL https://arxiv.org/abs/2305.14314|

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks V. S.
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid 1lm: Cost-efficient and quality-aware query
routing, 2024. URL https://arxiv.org/abs/2404.14618,

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations, 2023.

Brad Everman, Trevor Villwock, Dayuan Chen, Noe Soto, Oliver Zhang, and Ziliang Zong. Evaluating
the carbon impact of large language models at the inference stage. pp. 150-157, 11 2023. doi:
10.1109/TPCCC59175.2023.10253886.

Hugging Face. Text generation inference. https://github.com/huggingface/
text-generation—-inference, 2022. Version consulted: v3.3.4.

Jared Fernandez, Clara Na, Vashisth Tiwari, Yonatan Bisk, Sasha Luccioni, and Emma Strubell.
Energy considerations of large language model inference and efficiency optimizations, 2025. URL
https://arxiv.orqg/abs/2504.17674.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/abs/
2210.17323.

Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip Torr, Zhifeng Li, and Wei Liu. Inducing
high energy-latency of large vision-language models with verbose images, 2024. URL https:
//arxiv.org/abs/2401.11170.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau.
Towards the systematic reporting of the energy and carbon footprints of machine learning. CoRR,
abs/2002.05651, 2020. URL https://arxiv.org/abs/2002.05651.

10

https://arxiv.org/abs/2308.16369
https://github.com/bitsandbytes-foundation/bitsandbytes
https://doi.org/10.5281/zenodo.11171501
https://arxiv.org/abs/2110.12894
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2404.14618
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://arxiv.org/abs/2504.17674
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2401.11170
https://arxiv.org/abs/2401.11170
https://arxiv.org/abs/2002.05651

Under review as a conference paper at ICLR 2026

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu,
Shivam Sahni, Haowen Ning, and Yanning Chen. Liger kernel: Efficient triton kernels for llm
training, 2025. URL https://arxiv.org/abs/2410.10989,

Erik Johannes Husom, Arda Goknil, Merve Astekin, Lwin Khin Shar, Andre Kasen, Sagar Sen,
Benedikt Andreas Mithassel, and Ahmet Soylu. Sustainable 1lm inference for edge ai: Evaluating
quantized llms for energy efficiency, output accuracy, and inference latency, 2025. URL https:
//arxiv.orqg/abs/2504.03360.

Yunho Jin, Gu-Yeon Wei, and David Brooks. The energy cost of reasoning: Analyzing energy usage
in llms with test-time compute, 2025. URL https://arxiv.org/abs/2505.14733|

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023. URL https://arxiv.org/abs/2211.17192,

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
Ilm compression and acceleration, 2024. URL https://arxiv.org/abs/2306.00978.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient 1lm serving, 2025. URL
https://arxiv.org/abs/2405.04532.

Jiayi Liu, Tinghan Yang, and Jennifer Neville. Cliqueparcel: An approach for batching llm prompts
that jointly optimizes efficiency and faithfulness, 2024. URL https://arxiv.org/abs/
2402.14833.

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon footprint
of bloom, a 176b parameter language model, 2022. URL https://arxiv.org/abs/2211,
02001.

Sasha Luccioni, Boris Gamazaychikov, Sara Hooker, Regis Pierrard, Emma Strubell, Yacine Jernite,
and Carole-Jean Wu. Light bulbs have energy ratings—so why can’t ai chatbots? Nature, 632
(8026):736-738, 2024a.

Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry processing: Watts driving
the cost of ai deployment? In The 2024 ACM Conference on Fairness, Accountability, and
Transparency, FAccT *24, pp. 85-99. ACM, June 2024b. doi: 10.1145/3630106.3658542. URL
http://dx.doi.org/10.1145/3630106.3658542]

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisenth-
waite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellempudi, Stuart
Oberman, Mohammad Shoeybi, Michael Siu, and Hao Wu. Fp8 formats for deep learning, 2022.
URL https://arxiv.org/abs/2209.05433.

Bert Moons, Koen Goetschalckx, Nick Van Berckelaer, and Marian Verhelst. Minimum energy
quantized neural networks. In 2017 51st Asilomar Conference on Signals, Systems, and Computers,
pp- 1921-1925, 2017. doi: 10.1109/ACSSC.2017.8335699.

NVIDIA. Nvidia triton-inference-server. https://github.com/
triton-inference-server/server, 2019. https://github.com/triton-inference-
server/server.

NVIDIA. Nvidia tensorrt-llm. https://github.com/NVIDIA/TensorRT-LLM, 2023.
https://github.com/NVIDIA/TensorRT-LLM.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, ffii go Goiri, Saeed Maleki, and Ricardo
Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA), pp. 118-132, 2024. doi:
10.1109/ISCA59077.2024.00019.

11

https://arxiv.org/abs/2410.10989
https://arxiv.org/abs/2504.03360
https://arxiv.org/abs/2504.03360
https://arxiv.org/abs/2505.14733
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2402.14833
https://arxiv.org/abs/2402.14833
https://arxiv.org/abs/2211.02001
https://arxiv.org/abs/2211.02001
http://dx.doi.org/10.1145/3630106.3658542
https://arxiv.org/abs/2209.05433
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server
https://github.com/NVIDIA/TensorRT-LLM

Under review as a conference paper at ICLR 2026

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training, 2021.
URLhttps://arxiv.org/abs/2104.10350.

Soham Poddar, Paramita Koley, Janardan Misra, Sanjay Podder, Navveen Balani, Niloy Ganguly, and
Saptarshi Ghosh. Brevity is the soul of sustainability: Characterizing 1lm response lengths, 2025.
URL https://arxiv.org/abs/2506.08686.

pYRAPL contributors. pyrapl: Energy profiling for cpu for python. https://github.com/
powerapi-ng/pyRAPL, 2020.

Saurabhsingh Rajput and Tushar Sharma. Benchmarking emerging deep learning quantization meth-
ods for energy efficiency. In 2024 IEEE 21st International Conference on Software Architecture
Companion (ICSA-C), pp. 238-242, 2024. doi: 10.1109/ICSA-C63560.2024.00049.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to
watts: Benchmarking the energy costs of large language model inference, 2023. URL https:
//arxiv.org/abs/2310.03003.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai, 2019. URL https:
//arxiv.org/abs/1907.10597.

Xiaoxiang Shi, Colin Cai, and Junjia Du. Proactive intra-gpu disaggregation of prefill and decode in
IIm serving, 2025. URL https://arxiv.org/abs/2507.06608,

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding, 2023.
URLhttps://arxiv.org/abs/2308.04623.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
deep learning in NLP. CoRR, abs/1906.02243, 2019. URL http://arxiv.org/abs/1906,
02243,

Arya Tschand, Arun Tejusve Raghunath Rajan, Sachin Idgunji, Anirban Ghosh, Jeremy Holleman,
Csaba Kiraly, Pawan Ambalkar, Ritika Borkar, Ramesh Chukka, Trevor Cockrell, Oliver Curtis,
Grigori Fursin, Miro Hodak, Hiwot Kassa, Anton Lokhmotov, Dejan Miskovic, Yuechao Pan,
Manu Prasad Manmathan, Liz Raymond, Tom St. John, Arjun Suresh, Rowan Taubitz, Sean Zhan,
Scott Wasson, David Kanter, and Vijay Janapa Reddi. Mlperf power: Benchmarking the energy
efficiency of machine learning systems from microwatts to megawatts for sustainable ai, 2025.
URL https://arxiv.org/abs/2410.12032.

Grant Wilkins, Srinivasan Keshav, and Richard Mortier. Offline energy-optimal 1lm serving:
Workload-based energy models for llm inference on heterogeneous systems, 2024a. URL
https://arxiv.org/abs/2407.04014.

Grant Wilkins, Srinivasan Keshav, and Richard Mortier. Offline energy-optimal llm serving:
Workload-based energy models for 1lm inference on heterogeneous systems, 2024b. URL
https://arxiv.orqg/abs/2407.04014.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38—45, 2020.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta,
Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee,
Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, and
Kim M. Hazelwood. Sustainable Al: environmental implications, challenges and opportunities.
CoRR, abs/2111.00364, 2021. URL https://arxiv.org/abs/2111.00364.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024. URL https:
//arxiv.org/abs/2211.10438.

12

https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2506.08686
https://github.com/powerapi-ng/pyRAPL
https://github.com/powerapi-ng/pyRAPL
https://arxiv.org/abs/2310.03003
https://arxiv.org/abs/2310.03003
https://arxiv.org/abs/1907.10597
https://arxiv.org/abs/1907.10597
https://arxiv.org/abs/2507.06608
https://arxiv.org/abs/2308.04623
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243
https://arxiv.org/abs/2410.12032
https://arxiv.org/abs/2407.04014
https://arxiv.org/abs/2407.04014
https://arxiv.org/abs/2111.00364
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438

Under review as a conference paper at ICLR 2026

oae Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
649 distributed serving system for Transformer-Based generative models. In 16th USENIX Symposium
650 on Operating Systems Design and Implementation (OSDI 22), pp. 521-538, Carlsbad, CA, July
651 2022. USENIX Association. ISBN 978-1-939133-28-1. URL https://www.usenix.org/
652 lconference/osdi22/presentation/vyu.

653

654

655 A LATENCY COMPARISON BY NUMERICAL PRECISION

656
657 Mean Duration by Model and Dtype (Prefill Phase)

658 mmm foat32 mem foatlé mmm bfoatlé W 8bit e 4bit
6 59 Qwen/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-1.5B-Instruct Qwen/Qwen2.5-14B-Instruct
660 010 012 1o
661 0.08 010 08
662
663 0.04 04
664

Duration (s)
°
s
s
Duration (s)
Duration (s)
°
>

0.00 0.00 0.0

665 float32 floatl6 bfloatls 8bit 4bit float32 floatl6 bfloatls 8bit 4bit float32 floatl6 bfloatl6 8bit 4bit
Diype Dtype Dtype

666 Qwen/Qwen2.5-3B-Instruct Qwen/Qwen2.5-7B-Instruct meta-llama/Llama-3.1-8B-Instruct

667 o 0s
668 020 04
669
670
671 00s

672 000
float32 float16 bfloat16 8bit 4bit fioat32 float16 bfloat16 8bit 4bit float32 float16 bfloat16 8bit 4bit
673 Diype Diype Diype
mistralai/Mistral-7B-Instruct-v0.3

675
676
677
678
679

°
W

Duration (s)
Duration (s)
Duration (s)
o
&

°
o

°
°

°
°

Duration (s)

float32 floatl6 bfloatls 8bit apit.

680 otype

681

682 Figure 4: Mean latency per request (with variance across runs) for different models and data types
683 during the prefill phase. Lower-precision formats generally reduce latency, with diminishing returns
684 for already small models.

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

13

https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu

Under review as a conference paper at ICLR 2026

702 Mean Duration by Model and Dtype (Decode Phase)
703 Dype

mmm float32 wem floatl6 mmm bfioatlc — mmmm sbit mmm 4bit
704 Qwen/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-1.5B-Instruct Qwen/Qwen2.5-14B-Instruct
705 o . 17.5
706 30
707
708
709

710 j ﬁii

.0
711 floats2 floatle bfloatle 8bit abit floats2 floatle bfloatl6 8bit foats2 floatl6 bfloatls 8bit abit
Diype Dtype Diype

712 Qwen/Qwen2.5-3B-Instruct Qwen/Qwen2.5-7B-Instruct meta-llama/Llama-3.1-8B-Instruct
713
714 8
715
716

SO T T s [

718

float32 float16 bfloat16 8bit. 4bit float32 float16 bfloat16 8bit 4bit. float32 float16 bfloat16 8bit 4pit
719 Dtype Diype Diype

mistralai/Mistral-7B-Instruct-v0.3
720

15.0

125

NN

o

10.0

Duration (s)
Duration (s)
Duration (s)

o v &
G o

°
°

Duration (s)
ok N W & Lo N o®

Duration (s)
-
Duration (s)

~

£

«

721
722
723
724
725

6 float32 floatl6 bfloatl6 8bit apit

727 oee

o8 Figure 5: Mean latency per generated token (with variance across runs) for different models and
729 data types during the decode phase. Memory-bound regimes lead to latency plateaus despite lower

730 precision.
731

732
733 B LATENCY COMPARISON BY BATCH SIZE
734

735 Input Latency Cost — Llama 3.1-8B — H100
736 Left: Effective Tokens ¢ Right: Computed (with Padding)

Duration (s)
~ w s

Latency per Effective Input Token Latency per Computed Input Token

737 mm Prefill mm Prefill
0.0030 [Decode 0.0030 [Decode
738 [Generate [Generate

739 0.0025 0.0025
740
741
742

0.0015
743
0.0010 0.0010 4
744 i
745 0.0005 0.0005 4
746 0.0000 0.0000 4

747 Batch 1 Batch 2 Batch 4 Batch 8 Batch 16 Batch 1 Batch 2 Batch 4 Batch 8 Batch 16
Batch Size Batch Size

749 Figure 6: Latency per input token on LLaMA 3.1 8B across batch sizes. Left: Effective tokens only
750 (excluding padding). Right: Computed tokens including padding overhead. Increasing batch size
751 improves compute amortization but introduces padding-induced inefficiencies.

752

753
754
755

0.0020 0.0020 4

Latency (s)
Latency (s)

14

Under review as a conference paper at ICLR 2026

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774 40000 1
m Prefill

775 3 Decode
776 35000 4 [Generate

777
778
779
780
781
782
783
784
785
786
787
788
789 Batch 1 Batch 2
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Latency per Output Token — Llama 3.1-8B — H100

Latency per Output Token (s)

Batch 4 Batch 8 Batch 16
Batch Size

Figure 7: Latency per output token (effective = computed) across batch sizes. Gains plateau at
moderate batch sizes due to limits in parallelism and autoregressive nature of decoding.

15

	Introduction
	Experimental Setup
	Impact of Numerical Precision on Latency and Energy Consumption
	Prefill Phase: Acceleration without Proportional Energy Savings
	Decode Phase: Quantization Pitfalls in Memory-Bound Regimes

	Batch Size Effects on Energy Efficiency
	Energy Efficiency with TGI and Arrival Shaping
	Methodology
	LLaMA 8B: Arrival Shaping Unlocks Large Gains
	LLaMA 70B: Scaling Benefits Hold at Large Scale
	Interpretation and Mechanisms

	Macro Impact Estimate
	Related Work
	Limitations and Future Work
	Conclusion and Takeaways
	Latency Comparison by Numerical Precision
	Latency Comparison by Batch Size

