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ABSTRACT

Large Language Models (LLMs) are increasingly deployed in production, contribut-
ing towards shifting the burden in terms of computational resources and energy
demands from training to inference. While prior work has examined the energy
cost of inference per prompt or per token, we highlight how system-level design
choices - such as numerical precision, batching strategy, and request scheduling -
can lead to orders-of-magnitude differences in energy consumption for the same
model. We perform a detailed empirical study of LLM inference energy and la-
tency on NVIDIA H100 GPUs, analyzing the impact of quantization, batch size,
and serving configuration (e.g., with Hugging Face’s Text Generation Inference
server). Our results reveal that lower-precision formats only yield energy gains in
compute-bound regimes; that batching improves energy efficiency, especially in
memory-bound phases like decoding; and that structured request timing (arrival
shaping) can reduce per-request energy by up to 100 x. We argue that sustainable
LLM deployment depends not only on model internals, but also on the orchestra-
tion of the serving stack. Our findings motivate phase-aware energy profiling and
system-level optimizations for greener Al services.

1 INTRODUCTION

As large language models (LLMs) transition from research prototypes to real-world services, the
energy consumed during inference has become a growing concern (Wu et al., 2021 |Luccioni et al.|
2024b; [Everman et al.,[2023)). While training once dominated the environmental cost of Al (Strubell
et al.} 2019; |Patterson et al., 2021)), the widespread deployment of LL.Ms in user-facing applications -
chatbots, assistants, code generators - has shifted the spotlight toward inference efficiency. Studies
have called for improved energy reporting (Henderson et al.l 2020; |[Luccioni et al., 2024b)), quantified
the energy per query (Samsi et al.| 2023)), and highlighted the role of verbosity (Poddar et al., 2025}
Gao et al.|,|2024; Jin et al., |2025)) and prompt length (Wilkins et al., 2024a) in power consumption.
However, inference efficiency remains underexplored in dynamic serving conditions (Fernandez et al.
2025).

In this paper, we explore these systemic factors in detail. Building on prior work measuring the energy
footprint of specific prompts or models (Luccioni et al.||2024b; Samsi et al.||2023; |[Everman et al.|
2023)), we shift focus from the “what” of user inputs to the “how” of inference delivery. Through
extensive experiments on NVIDIA H100 GPUs, we analyze how quantization (Dettmers et al., [2022}
2023)), batching (Liu et al.,|2024} |/Agrawal et al.| 2023), and dynamic serving (Facel [2022;|Daol [2023];
Yu et al., |2022)) affect both latency and energy consumption, phase by phase.

Our key contributions are:

* A detailed evaluation of five numerical precisions across multiple models, revealing when
quantization helps - and when it backfires - in memory-bound regimes.

* A systematic study of batch size effects, including normalized energy per useful token and
the trade-offs introduced by input/output padding.
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* An empirical benchmark of Hugging Face’s Text Generation Inference (TGI) server under
varying traffic patterns, showing that arrival shaping can drastically improve batching quality
and reduce per-request energy up to 100 x.

* A practical synthesis of system-level insights for building energy-efficient LLM inference
pipelines.

All scripts, configurations, and measurement tools used in this study are available open-source.
results.

Our findings suggest that inference efficiency is not just a function of model internals, but of the entire
serving stack - from GPU kernels to traffic scheduling. Optimizing this stack can yield substantial
sustainability gains, even without modifying the underlying model.

2 EXPERIMENTAL SETUP

We benchmarked a selection of some of the most downloaded instruction-tuned open-source LLMs
on Hugging Face as of July 2025, focusing on standard model sizes in the range of a few billion
parameters. Our benchmark includes:

* Qwen 2.5: 0.5B, 1.5B, 3B, 7B, 14B
¢ Mistral-7B-Instruct-v(.3
 LLaMA 3.1-8B-Instruct

Each model was evaluated under five numerical formats:

* float32,bfloatlé, float16 (native support via PyTorch)

* int8, int4 using bitsandbytes (2020) quantization (via the LLM.int8() and
LLM.int4() formats).

For int8 and int4, we applied post-training quantization using bitsandbytes, which com-
presses the feed-forward and attention projection weights using vector-wise quantization. For int8,
LLM.int8 performs 8-bit matrix multiplications with outlier-aware mixed precision, isolating rows or
columns with large activation features and computing them in 16-bit to preserve accuracy |Dettmers
et al.[(2022). For int 4, weights are packed two per byte and stored in a NormalFloat4 (NF4) format;
custom CUDA kernels perform on-the-fly dequantization before matmuls (Dettmers et al., [2023)).

All models were loaded and executed using the Transformers library (Wolf et al., 2020), which
by default leverages optimized kernels such as FlashAttention and fused operations provided by
recent PyTorch releases.

All runs were conducted on a dedicated NVIDIA H100 SXM GPU (80GB) and 8 AMD EPYC
7R13 CPU cores, with no co-scheduled jobs. GPU and CPU energy were measured using the
CodeCarbon library (Courty et al.l 2024), which leverages NVML and pyRAPL for real-time
energy monitoring, while RAM energy was estimated via a CodeCarbon heuristic[ﬂbased on CPU
count and usage duration. Latency was recorded at the CUDA kernel level.

Each request was preceded by a warmup phase of 5 iterations to stabilize memory and kernel behavior.
For each configuration, we repeated the same request 10 times and report the average energy and
latency to reduce variability.

We reused the a subset of the dataset proposed by (Anonymous & Anonymous)} [2025) (under review),
which studies the energy impact of polite interactions with LLMs. This dataset provides a controlled
and reproducible input distribution while preserving real-world relevance. Specifically, we used
10,000 polite prompts (ending in “thank you”) sampled from a custom subset of the UltraChat-200k
dataset (Ding et al.| 2023)), available at ult rachat 10k. Prompts ranged from 200 to 4000 tokens,
and outputs were relatively short - typically between 10 and 300 tokens - due to the nature of the
dataset, which consists of chats between a human user and an LLM. Prompts were adapted to match
the input format expected by each model.

'"https://mlco2.github.io/codecarbon/methodology.html#ram


https://huggingface.co/Anon152425
https://huggingface.co/datasets/jdelavande/ultrachat_200k-Llama-3-8B-Instruct-with-thanks
https://mlco2.github.io/codecarbon/methodology.html#ram
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To analyze energy and latency independently for prefill and decode, we split the inference into two
steps:

* Prefill: Forward pass over the full prompt (with generation stopped at the first token).

* Decode: Autoregressive generation of the remaining tokens, attending to cached context.

The full generate phase corresponds to the sum of prefill and decode. In practice, we isolate prefill
by generating a single token, and obtain decode as the difference between the full generation and the
prefill run. This decomposition enables us to capture the distinct compute regimes that characterize
each phase:

The prefill phase is not uniformly compute-bound: for very small input sizes, most operations are
memory-bound due to limited arithmetic intensity. (Memory-bound operations are limited by data
movement rather than computation; although memory and compute can be executed asynchronously
on GPUs, one or the other often becomes the bottleneck, depending on the workload.) As the input
length (s) increases, compute-heavy operations - such as feedforward layers and QKV (query, key,
and value) projections - begin to dominate, especially in large models with wider hidden dimensions.
Compute-bound operations, by contrast, are limited by the rate at which arithmetic can be performed.
The transition point from memory-bound to compute-bound depends primarily on the model’s hidden
size, with larger models entering the compute-bound regime earlier. Increasing the batch size also
accelerates this transition by increasing the FLOP-to-memory ratio.

In contrast, the decode phase remains fully memory-bound for small batch size, regardless of model
size. This is due to the autoregressive nature of generation: each token is produced sequentially and
involves computing attention over cached prompt representations at each decoding step, leading to
small, fragmented memory operations. Only by increasing the batch size does the decode phase start
to exhibit compute-bound characteristics.

Idle time. GPU utilization can be impacted by idle times between kernels. When the CPU thread
issuing kernels is slower than the GPU execution, the GPU may stall despite its asynchronous
capabilities - leading to gaps where no work is scheduled. This underutilization becomes more
pronounced in workloads with small or irregular kernel launches.

3 IMPACT OF NUMERICAL PRECISION ON LATENCY AND ENERGY
CONSUMPTION

As LLMs grow in size, the adoption of lower-precision numerical formats - such as bfloat16,
int8, or int4-has become a widespread strategy to reduce memory footprint and enable inference
for larger models on constrained hardware. While these formats can also improve throughput and
hardware utilization, their actual benefits are often phase-dependent and not always straightforward.
In this section, we dissect how numerical precision impacts both latency and energy consumption
across the two main phases of inference: prefill and decode. We show that precision reduction yields
significant gains primarily in compute-bound regimes, whereas in memory-bound settings, aggressive
quantization may introduce dequantization overheads or bandwidth saturation that offset the expected
improvements.

3.1 PREFILL PHASE: ACCELERATION WITHOUT PROPORTIONAL ENERGY SAVINGS

In the prefill phase, we observe up to 4x reduction in GPU energy when switching from f1oat32
to lower-precision formats such as float16,bfloat16, or int8 - particularly for larger models
(e.g., LLaMA 8B or Qwen 14B) - see Figure[Ta] These models are predominantly compute-bound at
the input lengths seen in our dataset (typically s,,eqn =~ 1200), and benefit fully from the activation
of Tensor Cores, which enable fused matrix multiplications with up to 15x higher throughput.

Smaller models, in contrast (e.g., Qwen-0.5B and 1.5B), remain memory-bound across most of the
prompt lengths we tested, as their hidden sizes are smaller and their compute intensity lower. As a
result, they gain little to no advantage from Tensor Core acceleration. In some cases, we even observe
a slight increase in energy consumption for f1loat16/bfloat16, likely due to the activation of



Under review as a conference paper at ICLR 2026

Mean GPU Energy by Model and Dtype (Prefill Phase) Mean GPU Energy by Model and Dtype per Token (Decode Phase)
e foat32 mes foatle mEm bfioatls mmm Sbit mmm 4bit mm foat32 s foatle mmm bfoatle mmm sbit mmm dbit
Qwen/Qwen2.5-0.5B-Instruct Quen/Qwen2.5-1.5B-Instruct Quen/Qwen2.5-0.58-Instruct Qwen/Qwen2.5-1.5B-Instruct
0030 0025 00040
00030
0025 00035
0020
_ _ 00025 o003
z 2 £ 0.0020
& oot £ oo015 H
2 2 2 00015
s G S 00010 s
0005 00010
200 00005 00005
0000
00000 00000
foatsz  foatls bﬂaauﬁ sbit foatsz foatls bfloatls  sbit  abit foats2 foatls bfloatls &bt dbit foat32 floatle bfloatls bt 4bit
Diype

OWen/Qwenz 5 14B-Instruct Qwen/Qwen2.5-3B-Instruct Qwen/Qwen2.5-14B-Instruct Qwen/Qwen2.5-3B-Instruct

0200
004
0175
2 0150
g 003
Zons
g g
£ 0100 2 oo
2 oors
0050 001
0025
0000 000

floatsz  float1s moms sbit abit float32  floatl6 bloatl6  8bit it
Diype

0007 0.005

0008 0004
0005

0,003

004

0,003 0.002

GPU Energy (Wh)
GPU Energy (Wh)
GPU Energy (Wh)

0.002
0.001
0.001

0,000 0.000

foatsz floatle bfioatls bt 4bit foat32 floatle bioatls bt 4bit
Diype otype

Owen/owenz 5 7B-Instruct meta-llamayLlama-3.1-8B-Instruct Qwen/Qwen2.5-7B-Instruct meta-llama/Llama-3.1-8B-Instruct

010
010
008
z 008
B
= 006
g 2 oos
2 004
z 004
0.02 0.02
0.00 000

floats2  float16 m atls  8bit

0.004

0003 0,003

0.002 002

GPU Energy (Wh)
GPU Energy (Wh)
GPU Energy (Wh)

0.001 0.001

0.000 0.000

float32  floatls bfloatls  8bit  dbit
e
mustralau/Mustra\ 78 Instruct-v0.3 mistralai/Mistral-7B-Instruct-v0.3

float32  floatls bfloatls  8bit abit

GPU Energy (Wh)
GPU Energy (Wh)

—

o1z 0005
010

0004
008

0003
006

0002
004
002 0001
000 0000

floatsz  floal16 waaua abit abit floats2  float1s bfloatls  8bit abit
Diype

(a) Mean GPU energy consumption by model and dtype (b) Mean GPU energy consumption per token by model
during the prefill phase. and dtype during the decode phase.

Figure 1: Impact of model size and numerical precision (dtype) on GPU energy consumption during
(a) prefill and (b) decode phases.

specialized compute kernels (Tensor Core paths) that add overhead without enough computations to
amortize it (Figure [Ta)).

For quantized models (int 8 and int4), performance is further impacted by on-the-fly dequantiza-
tion: during inference, weights stored in compressed integer formats are unpacked and converted to
higher-precision tensors (typically float16/bfloatl16 or float32) before computation. This
unpacking adds extra kernel launches and memory movement, which can partially negate the benefits
of quantization, especially when the operations are memory-bound or irregular.

While latency does decrease significantly in many of these configurations - up to 10 in large models
(Figure[d) - the energy savings are smaller. This is due to a higher average power consumption
when using Tensor Cores: they complete the computation faster, but at a higher instantaneous power
draw. As a result, the time is shorter but the power is higher, limiting the total energy saved.

3.2 DECODE PHASE: QUANTIZATION PITFALLS IN MEMORY-BOUND REGIMES

In contrast to prefill, the decode phase is fully memory-bound for all model sizes and sequence
lengths considered. Each generated token reuses cached activations (KV caching) and performs
attention over the accumulated context, with little opportunity for parallel compute acceleration.

As a result, energy per generated token remains largely invariant across float32, float16, and bfloat16,
with minor improvements (or slight degradations) in both energy (Figure [Ib) and latency (Figure [5).
This suggests that lower-precision Tensor Cores do not provide significant benefits in this memory-
bound regime. Theoretically, in a bandwidth-limited regime, - and thus latency and energy per
token - should scale inversely with the memory word size b,,: reducing from £1oat 32 (32 bits) to
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float16 (16 bits) or int 8 (8 bits) should yield ideal 2x or 4x gains, respectively. However, such
improvements are not observed in practice.

The reason lies in the energy profile of memory-bound workloads: while kernels may run slightly
faster with lower precision, the GPU spends a disproportionate amount of time idle between kernel
launches, waiting for synchronization, scheduling, or small fragmented memory operations. Since
GPU idle power remains non-negligible - typically around 120 W even when no kernel is running
- reducing kernel duration has little effect on total energy per token. The energy saved from faster
compute is offset by the energy burned during idle time.

Quantized formats like int8 and int4 further exacerbate this issue: they introduce additional
dequantization kernels that are small, memory-bound, and irregular, increasing the number of launches
and stream fragmentation. As a result, we observe higher energy consumption with int 8-often
2-3x more than float32-despite moving fewer bytes (Figure[Tb).

Modern GPUs also transfer memory in fixed-width chunks (e.g., 32—-64 bytes), so 4-bit formats do
not reduce memory bandwidth proportionally. Combined with memory misalignment and suboptimal
coalescing, this results in negligible or even negative energy gains from quantization in the decode
phase. In fact, we find that int4 performs similarly to float32, reinforcing the notion that in
memory-bound phases with high kernel fragmentation, reducing numerical precision is insufficient to
meaningfully reduce energy use.

In summary: numerical precision reduction yields the most benefit in the prefill phase of large
models, where compute dominates. In contrast, the decode phase remains memory-limited, and
aggressive quantization (e.g., int8 or int4) may incur overheads that outweigh theoretical savings.

4 BATCH SI1ZE EFFECTS ON ENERGY EFFICIENCY

Input Energy Cost — Liama 3.1-88 — H100
Left: Effective Tokens » Right: Computed (with Padding)
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(a) GPU energy per input token. Left: Effective tokens (excluding (b) GPU energy per output token
padding); Right: Computed tokens (including padding). (effective = computed).

Figure 2: GPU energy consumption per token on LLaMA 3.1-8B. (a) Input-side energy depends on
token type and padding; (b) Output-side energy remains consistent across requests.

Batching is one of the most effective levers for improving throughput and reducing per-request
overhead in LLM inference. By processing multiple sequences in parallel, batching amortizes
fixed costs such as memory transfers and kernel launch overheads. However, its impact on energy
consumption depends on the inference phase (prefill vs decode), the compute regime (compute- vs
memory-bound), and the presence of padding. In this section, we analyze how GPU energy scales
with batch size for LLaMA 3.1-8B (float32), using the t ransformers library in static batching
mode.

We separate the analysis into two perspectives:

* Energy per input token, distinguishing between effective (excluding padding) and computed
(including padding) tokens;

 Energy per output token, where effective = computed since completed sequences are dropped
automatically.
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Input token normalization: trade-offs between padding and parallelism. To understand how
batch size affects different phases of inference, we first normalize energy by the number of input
tokens.

On the left of Figure[2a] the energy per effective input token in the prefill phase increases steadily with
batch size due to padding. As sequences are padded to match the longest one, the compute-bound
prefill phase performs extra work on padded tokens, leading to inflated energy per effective token.

In the decode phase, we observe a U-shaped curve: batching improves memory reuse and reduces
launch overheads, but larger batches increase the number of prompt tokens per sequence, which in
turn increases the cost of each attention step. The optimal batch size for decode is reached at b = 4
in our setup. This U-shape carries over to the total generate phase, which sees minimal energy per
effective input token at b = 2, a compromise between prefill waste and decode gains. At b = 16,
energy per token increases by nearly 25% compared to this optimal point.

When energy is normalized by computed input tokens (right of Figure[2a)), a different picture emerges.
Prefill energy per token remains constant, as expected for a compute-bound workload where energy
scales linearly with FLOPs. Decode energy per computed token decreases with batch size, but the
gains plateau around b = 4 as the marginal benefits of parallelizing attention computations diminish
for the sequence lengths considered. The generate phase follows the same trend, reaching about 65%
of the energy per token observed at b = 1.

Output token normalization: efficient batching across all phases. In Figure [2b, we normalize
energy by the number of output tokens. Here, all tokens are effective because transformers
automatically drop completed sequences from the batch, avoiding padding overheads.

We observe consistent improvements across all phases. Energy per output token decreases rapidly
with batch size and follows a roughly logarithmic trend. The memory-bound decode phase benefits
the most: matrix multiplications over cached keys and values dominate its cost, and batching enables
better amortization of memory transfers. Prefill, though compute-bound, also appears more efficient
in this metric, since its fixed cost is shared across a larger number of generated tokens. Lastly, full
generation shows the same trend, confirming that larger batches lead to longer kernels and reduced
idle times, further improving energy efficiency.

Conclusion. Batching improves energy efficiency across all inference phases, but through different
mechanisms. In the prefill phase, gains are limited by padding, which inflates compute without
contributing useful work. In the decode phase, batching brings strong benefits up to b = 4, after
which parallelism yields diminishing returns. Normalizing by output tokens confirms consistent
efficiency gains due to reduced overheads and longer, better-amortized kernels. Overall, optimal
batch size depends on the chosen normalization and reflects a trade-off between parallelism and
padding waste, with efficiency gains driven by improved compute saturation.

5 ENERGY EFFICIENCY WITH TGI AND ARRIVAL SHAPING

To simulate production-like deployment scenarios, we ran LLaMA 3.1-8B and 70B in bf1oat16
using Hugging Face’s text-generation-inference (TGI) server (v3.3.4). TGI enables
continous batching and integrates multiple inference optimizations such as more kernel fusion. This
section investigates how usage patterns and in particular, request arrival timing affect - batching
quality and energy efficiency.

5.1 METHODOLOGY
We evaluated the per-request energy consumption under different inter-arrival patterns:

* Random delays: each request 4 is sent at t; = i - A, with A ~ U(k, ).

* Fixed intervals: regular delays between requests (e.g., every 50ms, 300ms, or 500ms).

In both cases, we sent 10,000 generation requests to the TGI server. Energy consumption was tracked
via nvml on the GPU host, and averaged over all requests.
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5.2 LLAMA 8B: ARRIVAL SHAPING UNLOCKS LARGE GAINS
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Figure 3: Impact of inter-arrival delay and model size on energy per request. (a) and (b): Mean
energy for LLaMA 8B and 70B under random delays. (c): Comparison of fixed vs. random delays at
8B scale.

For LLaMA 3.1-8B, switching from the standard t ransformers library (with sequential request
handling) to Hugging Face’s text-generation-inference (TGI) server (with burst-mode
batching) reduces the mean energy per request from 1.2 x 10~ Wh to 9.6 x 103 Wh. This
12.5x improvement highlights the impact of continuous batching and backend optimizations in TGI

(Figure [3a)).

Further improvements are possible with fixed inter-arrival delays. As shown in Figure [3c| using a
constant spacing of 500 ms reduces energy to as low as 1.1 x 10~2 Wh per request, corresponding
to a 100x energy reduction relative to the naive baseline (LLaMA 8B-BF16 using the standard
transformers backend) - achieved purely via improved batch consistency and GPU utilization.

5.3 LLAMA 70B: SCALING BENEFITS HOLD AT LARGE SCALE

We repeated the experiment on LLaMA 3.1-70B (4 xH100s), keeping the same generation settings.
Despite the 10 x increase in model size and the multi-GPU context, TGI achieved a per-request energy
consumption as low as 2.4 x 10~2 Wh - significantly lower than the naive baseline for 8B-BF16
(1.2 x 10~! Wh). This confirms that dynamic batching and traffic shaping scale effectively to large
models and hardware setups (Figure [3b).

5.4 INTERPRETATION AND MECHANISMS

Two main mechanisms explain TGI’s strong performance:

* Continuous batching: Incoming requests are incrementally batched at the token level as
they arrive. Feedforward operations (e.g., MLP, QKV projections) are executed jointly
across all active sequences, while attention is batched via paged mechanisms that group
memory accesses efficiently across requests. This allows dynamic, low-latency batching
without waiting for full prompts.

* Kernel fusion and caching: Fused operations (e.g., QKV projections, FFN layers) reduce
intermediate memory writes and improve cache locality, further lowering DRAM usage and
power draw.

Arrival shaping directly affects both mechanisms. Regular spacing ensures a steady stream of aligned
requests, minimizing idle GPU time and improving the average batch size. Random delays still help
by introducing jitter, but fixed spacing offers the most consistent utilization.

Summary. TGI combines efficient kernel execution with continuous batching strategies that adapt
to incoming traffic. By shaping request arrivals - even with lightweight delay patterns - one can
drastically improve batching quality and reduce energy consumption. These results suggest that
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user-side scheduling and backend inference optimizations are jointly critical to making LLM
deployment more sustainable.

6 MACRO IMPACT ESTIMATE

To contextualize our results, we estimate the energy footprint of serving the LLaMA 8B model at scale.
In our baseline setup (£ 1oat 32, no batching), the mean GPU energy per request is 1.2 x 10~ Wh
(Figure . At 10° requests per day, this yields:

Total_energy = 10° x 1.2 x 10~* Wh = 1.2 x 10? kWh/day

This is equivalent to the daily electricity use of over 10 French household

With optimized serving - using bfloat16, TGI, and regular arrival intervals - the mean energy
drops to 1.1 x 1073 Wh/request, yielding:

Total_energy = 10° x 1.1 x 1073 Wh = 1.1 x 10° kWh/day

This corresponds to a > 100 reduction, achieved solely through system-level improvements. These
results emphasize that sustainable LLM deployment depends not only on model size or architecture,
but also on scheduling and infrastructure.

7 RELATED WORK

Environmental Impact of Inference. While early works on Al sustainability focused on train-
ing (Luccioni et al., 2022} |Strubell et al., |2019; [Schwartz et al., [2019; Henderson et al., [2020;
Patterson et al., 2021)), inference has recently drawn attention due to its increasing share in real-
world deployments (Wu et al.| 2021} [Luccioni et al, [2024a). Studies have quantified the energy
per query (Samsi et al., [2023)), compared hardware efficiency across CPUs and GPUs (Everman
et al., [2023), highlighted the role of prompt length and verbosity (Gao et al., 2024} Poddar et al.,
2025 Wilkins et al.,[2024a)), advocated for standardized reporting (Luccioni et al., 2024b; Tschand
et al.,|2025) and improved cost indicators (Dehghani et al., |2021). However, most focus on static
benchmarks; few (Fernandez et al.,[2025)) address dynamic settings or system-level optimizations.

Quantization and Precision. Low-precision formats (floatl16, bfloatl6, int8, int4)
reduce memory and compute costs via techniques such as weight-only quantization (Dettmers et al.,
2022; Frantar et al., 2023 |Dettmers et al., 2023)), activation-aware quantization (Lin et al., [2024),
FP8 (Micikevicius et al.}[2022), or post-training smoothing (Xiao et al.| 2024). While some studies
address energy impacts (Rajput & Sharma, 2024; Husom et al.,|2025), real-world gains can vanish due
to memory bottlenecks, dequantization overheads, or poor scaling (Lin et al., 2025). Energy-accuracy
trade-offs are explored (Moons et al., 2017), but most analyses lack kernel- or phase-level granularity.

Batching and Padding. Batching improves throughput by amortizing overheads, but can introduce
padding inefficiencies (Liu et al.,|2024). The effectiveness depends on phase characteristics: decode
benefits from batching due to shared memory access, while prefill may suffer from variable sequence
lengths (Fernandez et al., 2025 Wilkins et al.| [2024bj |Patel et al., 2024)). Dynamic batch shaping
strategies (Agrawal et al., 2023} [Spector & Rel 2023)) are often necessary.

Serving Infrastructure and Scheduling. Modern inference engines like TGI (Facel 2022) and
vLLM (Kwon et al.|[2023) implement continuous batching (Yu et al.,2022), kernel fusion (Dao|[2023}
Hsu et al., 2025), and paged attention (Kwon et al.,|2023)), greatly improving utilization. TensorRT-
LLM and Triton Inference Server (NVIDIAL[2023;2019) offer complementary low- and high-level
optimizations for efficient LLM inference. Scheduling techniques such as query routing (Ding et al.|
2024) and speculative decoding (Leviathan et al.| 2023) further optimize latency and throughput.

*Based on an average of 4,255 kWh/year per household in France, i.e., ~11.7 kWh/day. Source: https: //
www.fournisseurs—electricite.com/compteur/consommation—electrique/moyenne
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However, these techniques can have mixed effects on energy (Shi et al.,|2025)), highlighting the need
for joint energy-aware design.

Energy measurement frameworks. Tools such as CodeCarbon (Courty et al., [2024)),
pyYRAPL (pyRAPL contributors, |2020), and NVIDIA’s NVML enable reliable tracking of energy
consumption during model execution.

Summary. While prior work provides building blocks - quantization, batching, dynamic serving-
few studies jointly evaluate their impact on energy efficiency in real deployment conditions. We
bridge this gap by dissecting LLM inference into phases and analyzing how system-level choices
affect energy use across a wide operational range.

8 LIMITATIONS AND FUTURE WORK

While our analysis offers fine-grained insights into the energy and latency behavior of LLMs, several
limitations remain:

Prompt and output diversity. Our experiments use relatively short prompts, keeping us within
the linear scaling regime. Real-world usage may involve longer multi-turn dialogues or structured
instructions, requiring non-linear models of compute cost and more diverse benchmarks.

Transferability to other hardware. Our results are based on NVIDIA H100 GPUs. While we
expect qualitative trends (e.g., batching benefits, memory vs compute regimes) to hold, detailed
power and latency behavior will differ on other accelerators (e.g., AMD, AWS Inferentia, TPU).
Extending this analysis to other platforms is crucial for generalization.

System-level effects. Our energy measurements focus on GPU consumption only. CPU usage,
memory transfers, and network I/O may contribute significantly to the system-level footprint, espe-
cially in multi-GPU or multi-node setups. Future work could account for these factors to provide a
holistic view of inference efficiency.

9 CONCLUSION AND TAKEAWAYS

Energy efficiency in LLM inference is not solely dictated by model architecture or size. Instead, our
experiments reveal a complex interplay between numerical precision, batch shaping, and serving
configuration - each of which can dramatically affect latency and power draw.

* Precision matters - but only in compute-bound regimes. Lower-precision formats (e.g.,
bfloatlé, int8)yield significant speedups and energy savings during prefill, particularly
for large models. However, in memory-bound phases like decoding, quantization often fails
to improve - and may even worsen - efficiency due to overheads like dequantization.

* Batching is critical to efficiency. Both static and dynamic batching reduce energy per token
by improving hardware utilization and amortizing overheads. However, prefill is sensitive to
padding inefficiencies, requiring careful shaping (e.g., bucketing) to avoid regressions.

* Serving infrastructure shapes sustainability. Our experiments with TGI demonstrate that
the how of inference - i.e., the scheduling of requests - can impact energy consumption by
up to two orders of magnitude, even with the same model and hardware.

* Energy profiling should be phase-aware. Decode and prefill exhibit fundamentally differ-
ent compute characteristics, and should be measured and optimized separately. Reporting
aggregate energy alone may obscure key bottlenecks or inefficiencies.

Taken together, our findings argue for a more holistic view of inference efficiency - one that includes
not just model optimization, but also system design and traffic shaping. As LLMs continue to scale and
proliferate, such systemic improvements will be critical to making their deployment environmentally
sustainable.
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