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Figure 1. A scene created by our method on the left compared to baseline ProlificDreamer [57] on the right. RealmDreamer generates
3D scenes from text prompts (as above), achieving state-of-the-art results with parallax, detailed appearance, and realistic geometry.

Abstract

We introduce RealmDreamer, a technique for generat-
ing forward-facing 3D scenes from text descriptions. Our
method optimizes a 3D Gaussian Splatting representation
to match complex text prompts using pretrained diffusion
models. Our key insight is to leverage 2D inpainting diffu-
sion models conditioned on an initial scene estimate to pro-
vide low variance and high-fidelity estimates of unknown
regions during 3D distillation. In conjunction, we imbue
correct geometry with geometric distillation from a depth
diffusion model, conditioned on samples from the inpainting
model. We find that the initialization of the optimization is
crucial, and provide a principled methodology for doing so.
Notably, our technique doesn’t require video or multi-view
data and can synthesize various high-quality 3D scenes in
different styles with complex layouts. Further, the general-
ity of our method allows 3D synthesis from a single image.
As measured by a comprehensive user study, our method
outperforms all existing approaches, preferred by 88-95%.
Project page: realmdreamer.github.io

1. Introduction

Text-based 3D scene generation has the potential to revo-
lutionize 3D content creation, with broad applications in
virtual reality, game development, and even robotic simu-
lation. However, unlike text-based 2D generative models,
3D data is scarce and lacks diversity, which greatly limits
the development of generative 3D techniques. Ideally, one
can mitigate this by leveraging rich 2D priors for 3D gen-
eration instead. Indeed, object-generation techniques such
as DreamFusion [37] and ProlificDreamer [57] do just this,
by distilling 2D diffusion priors into a 3D representation,
with the latter even demonstrating early abilities to gener-
ate scenes. Unfortunately, such distillation approaches can
often have saturated results, poor geometry, and lack detail,
which become very apparent in the more challenging set-
ting of scene generation (Fig. 2). This leaves the question:
How to design a distillation technique for high-quality 3D
scene generation from pretrained 2D priors?

A common observation from distillation based object-
generation techniques is that greater 3D consistency in 2D
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Figure 2. Our method, compared to state-of-the-art ProlificDreamer [57] and concurrent work LucidDreamer [9], shows significant im-
provements. ProlificDreamer yields unsatisfactory geometry and oversaturated renders. LucidDreamer, receiving the same input as our
method and an updated depth model [24], displays degeneracy in disoccluded regions, such as the right side of the bed. In contrast, our
approach produces visually appealing 3D scenes with realistic geometry.

diffusion models results in higher-quality distillation, as
they provide lower-variance supervision during optimiza-
tion. As a result, many methods use 2D diffusion models
fine-tuned on 3D data [11], such as for novel-view synthe-
sis [16, 31, 38]. Equivalent 3D scene datasets are scarce
however, which limits the generalization of such techniques
to scenes. Alternatively, ProlificDreamer [57] fine-tuned
a diffusion model during distillation to be more 3D consis-
tent, producing more highly-detailed textures than before.
In this work, we introduce a technique to achieve these
strengths without requiring 3D training data or fine-tuning
existing 2D diffusion models.

We introduce RealmDreamer, a technique for high-
fidelity generation of 3D scenes from text prompts (Fig. 1).
Our key insight is that we can obtain a 3D scene-aware dif-
fusion model for free, by simply re-appropriating 2D in-
painting diffusion models. Typically, 2D inpainting models
condition on a partial image to fill in the rest. Instead, we
demonstrate that such models can also condition on a 3D
scene and fill in unknown regions for novel view synthesis
through our proposed inpainting distillation process. As a
result, we obtain high-quality 3D scenes with considerably
improved detail and appearance over prior distillation tech-
niques. Further, we propose a simple initialization strategy
that provides a 3D scene to use as conditioning for this dis-
tillation and serves as an initial point cloud for the 3DGS
model. We evaluate our technique on several quantitative
metrics and obtain significantly higher quality results than
prior work, as notably shown by a user study where we
are preferred over state-of-the-art ProlificDreamer [57] by
95.5%. Concretely, our contributions are the following:

1. An occlusion-aware scene initialization for 3DGS, es-
sential for obtaining high-quality scenes (Sec. 4.1).

2. A framework for distillation from 2D inpainting diffu-
sion models which conditions on the existing scene, pro-
viding lower variance supervision (Sec. 4.2).

3. A method for geometry distillation from diffusion-based

depth estimators for higher-fidelity geometry. (Sec. 4.3).
4. State-of-the-art results in text-based generation of 3D

scenes, as confirmed by several quantitative metrics and
a user study (see Fig. 6, Tab. 1, Tab. 2).

2. Related Work
Text-to-3D. The first methods for text-to-3D generation
were based on retrieval from large databases of 3D as-
sets [4, 5, 10]. Subsequently, learning-based methods have
dominated [1, 6, 30]. However, due to the dearth of di-
verse paired text and 3D data, many recent methods lever-
age 2D priors, such as CLIP [21, 46] or text-to-image diffu-
sion models [8, 27, 37, 56, 57, 60]. These distill knowledge
from 2D priors into a 3D representation, through variations
on Dreamfusion’s score distillation sampling (SDS) [37].
However, these techniques have primarily been limited to
object synthesis. In contrast, there are iterative techniques
that incrementally build 3D scenes [9, 20] or 3D-consistent
perpetual views [13], but can struggle with high parallax.
Our proposed technique builds on strengths from distillation
and iterative techniques to produce large scale 3D scenes
with high parallax using pretrained 2D priors.

View Synthesis with Diffusion and 3D inpainting. Mo-
tivated by the success of SDS, several techniques generate
3D objects from a single image by leveraging image-guided
diffusion models to generate novel views and distill to
3D [12, 63]. When trained on larger datasets [11], with bet-
ter conditioning architectures, these approaches [31, 32, 47–
49] can produce higher quality novel view renders with
sharper texture. Some methods also condition denoising di-
rectly on renderings from 3D consistent models [3, 16] for
view synthesis in a multi-view consistent manner. Unfor-
tunately, most techniques rely on object-level data, limiting
their use for text-based scene synthesis. 3D inpainting tech-
niques [35, 36] also leverage image-guided diffusion mod-
els to remove small objects in scenes. Other works focus on
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Figure 3. Overview of our technique. Our technique first uses a text prompt and an image to build a point cloud (Sec. 4.1), which is then
completed during the inpainting stage (Sec. 4.2) with an additional depth diffusion prior (Sec. 4.3), and finally a refinement stage (Sec. 4.4)
to improve the scene’s coherence.

training custom inpainting models for indoor scenes [26] or
objects [22] to generate novel views. In contrast to these, we
leverage pre-trained text-guided inpainting priors and focus
on generating large missing regions of diverse scenes with
our novel inpainting distillation loss.

Concurrent work. In the rapidly evolving text-to-3D
field, we focus on the most relevant concurrent works,
highlighting our key differences. LucidDreamer [9] and
Text2NeRF [61] uses an iterative approach similar to Pix-
elSynth [42] and Text2Room [20] to generate 3D scenes
but displays limited parallax. Considering LucidDreamer
as the most relevant concurrent baseline, we compare it in
the fairest setting possible, by using newer depth estima-
tors [24, 58], and surpass it by 88.5% in our user study.
Most recently, in follow-up work, CAT3D [15], utilizes a
diffusion model finetuned on multiview datasets to generate
multiple views from a single image. In contrast, our entire
pipeline does not use multiview images.

3. Preliminaries
3.1. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [25] has recently emerged as
an explicit alternative to NeRF [34], offering extremely fast
rendering speeds and a memory-efficient backwards pass.
In 3DGS, a set of splats are optimized from a set of posed
images. The soft geometry of each splat is represented by a
mean µ ∈ R3, scale vector s ∈ R3, and rotation R parame-
terized by quaternion q ∈ R4, so that the covariance of the
Gaussian is given by Σ = RSSTRT where S = Diag(s).
Additionally, each splat has a corresponding opacity σ ∈ R

and color c ∈ R3.
The splats {Θi}Ni=1 = {µi, si, qi, σi, ci}Ni=1 are pro-

jected to the image plane where their contribution αi is
computed from the projected Gaussian (see [65]) and σi.
A pixel’s color is obtained by α-blending Gaussians sorted
by depth:

C =

N∑
i=1

αici

i−1∏
j=1

(1− αj). (1)

A significant drawback of 3DGS-based approaches is the
necessity of a good initialization. State-of-the-art results are
only achieved with means µi initialized by the sparse depth
of Structure-from-Motion [50], which is not applicable for
scene generation. To address this challenge, we generate a
prototype of our 3D scene using a text prompt, which we
then optimize (Sec. 4.1).

3.2. Conditional Diffusion Models

Diffusion models [19, 23, 51–54] are generative models
which learn to map noise xT ∼ N (0, I) to data by itera-
tively denoising a set of latents xt corresponding to decreas-
ing noise levels t using non-deterministic DDPM [19] or de-
terministic DDIM sampling [52], among others [23, 53, 54].

Given t, a diffusion model ϵθ is trained to predict the
noise ϵ added to the image such that we obtain ϵθ(xt, t),
which approximates the direction to a higher probability
density. Often, the data distribution is conditional on quan-
tities such as text T and images I , so the denoiser takes
the form ϵθ(xt, I, T ). In the conditional case, classifier-free



Figure 4. Progression of 3D Model after each stage. We show how the 3D model changes after each stage in our pipeline. As shown in a)
Stage 1 (Sec. 4.1) creates a point cloud with many empty regions. In b), we show the subsequent inpainted model from Stage 2 (Sec. 4.2).
Finally, the fine-tuning stage (Sec. 4.4) refines b) to produce the final model, with greater cohesion and sharper detail.

guidance is often used to obtain the predicted noise [2, 18]:

ẽθ(xt, I, T ) = eθ(xt, ∅, ∅)
+ SI · (eθ(xt, I, ∅)− eθ(xt, ∅, ∅))
+ ST · (eθ(xt, I, T )− eθ(zt, I, ∅))

(2)

where ∅ indicates no conditioning, and the values SI and
ST are the guidance weights for image and text, dictating
fidelity towards the respective conditions. In the case of la-
tent diffusion models like Stable Diffusion [43], denoising
happens in a compressed latent space by encoding and de-
coding images with an encoder E and decoder D.

Score Distillation Sampling. Distilling text-to-image
diffusion models for text-to-3D generation of object-level
data has enjoyed great success since the introduction of
Score Distillation Sampling (SDS) [37, 56]. Given a
text prompt T and a text-conditioned denoiser ϵθ(xt, T ),
SDS optimizes a 3D model by denoising noised render-
ings. Given a rendering from a 3D model x, we sam-
ple a timestep and corresponding xt. Considering x̂ =
1
αt
(xt − σtϵθ(xt, T )) as the detached one-step prediction

of the denoiser, SDS is equivalent to minimizing [64]:

Lsds = Et,ϵ

[
w(t) ∥x− x̂∥22

]
(3)

where w(t) is a time-dependent weight over all cameras
with respect to the parameters of the 3D representation,
and the distribution of t determines the strength of added
noise. In this work, we use a variation of SDS to distill
from pretrained-inpainting models (Sec. 4.2)

4. Method
We now describe our technique in detail, which broadly
consists of three stages: initialization (left of Fig. 3,
Sec. 4.1); inpainting (middle of Fig. 3, Sec. 4.2) with depth
distillation (middle of Fig. 3, Sec. 4.3); and finetuning
(right of Fig. 3, Sec. 4.4). Given a text-prompt Tref and

camera poses, we initialize the scene-level 3DGS represen-
tation {Θi}Ni=1 leveraging 2D diffusion models and monoc-
ular depth priors, along with the computed occlusion vol-
ume (Sec. 4.1). With this robust initialization, we use 2D
inpainting models to predict novel views, distilling to 3D
to create a complete 3D scene (Sec. 4.2). In this stage, we
also incorporate depth distillation for higher-quality geome-
try (Sec. 4.3). Finally, we refine the model with a sharpness
filter on sampled images to obtain high-quality 3D samples
(Sec. 4.4). The result from these stages are shown in Fig. 4.

4.1. Initializing a Scene-level 3D Representation

Our technique utilizes 3DGS for text-conditioned optimiza-
tion, making a good initialization essential. A common
strategy in this setting is to initialize with a sphere [28, 37]
but the density of a scene is more complex and distributed.
Hence, we leverage pretrained 2D priors to synthesize a ro-
bust initialization (left of Fig. 3).

Concretely, we first generate a reference image of the
scene Iref from the text prompt Tref with a state-of-the-art
text-to-image-model. We then employ a monocular depth
model [24] D to lift this image to a pointcloud P from cor-
responding camera pose Pref . Depending on the generated
image, the extent of the pointcloud can vary widely. To
make the initialization more robust, we outpaint Iref by
moving the camera left and right of Pref to poses Paux.
We use an inpainting diffusion model [43] to fill in the un-
seen regions which are lifted to 3D using D. The union of
all generated points thus becomes P .

Determining Incomplete Regions. Given the initial
point cloud P , we then precompute the undetermined 3D
region, or the occlusion volume O, which is the set of voxel
centers within the scene’s occupancy grid which are oc-
cluded by the existing points in P from Pref . We use O
when computing inpainting masks later and define the ini-
tialization of our 3DGS means as

{µi}Ni=1 = P ∪ O. (4)



Figure 5. Qualitative Results. In the left column, we show the input prompt for our technique. In the next two columns, we show the
renderings from our 3D model from different viewpoints. In the fourth column, we show the level of agreement between rendering and
geometry by a split view of the rendering and depth. Finally, in the last column, we show the depth map.

More details can be found in the supplementary.

4.2. Inpainting Diffusion for 3D-Conditioned Dis-
tillation

Since our initialization is generated from sparse poses,
viewing it from novel viewpoints exposes large holes in
disoccluded regions (Fig. 4). We resolve this with a novel
inpainting distillation technique, that conditions a 2D in-
painting diffusion model ϵinpaint [43] on the existing scene
to complete missing regions. The model takes as input a
noisy rendering xt of {Θi}Ni=1, and is conditioned by the
text prompt Tref, an occlusion mask Moccl, and the point
cloud render Ipc. Sampling from this model results in novel
views x̂ which plausibly fill in the holes in the renderings
while preserving the structure of the 3D scene (Fig. 3).

Conditioning the inpainting model. To compute the
conditioning mask Moccl for ϵinpaint, we render the point
cloud P and the precomputed occlusion volume O. We set
all components of Moccl for which the occlusion volume is
visible from the target to 0, and 1 otherwise. Note that this
handles cases such as the point cloud occluding itself (see
the supplement for a visualization).

Computing the inpainting loss. Our 2D inpainting dif-
fusion model ϵinpaint [43] operates in latent space, thus addi-
tionally parametrized by its encoder E and decoder D. We
render an image x with the initialized 3DGS model, and en-
code it to obtain a latent z, where z = E(x). We then add
noise to this latent, yielding zt, corresponding to a randomly
sampled timestep t from the diffusion model’s noise sched-
ule. Using these quantities, we take multiple DDIM [52]
steps from zt to compute a clean latent ẑ corresponding to

the inpainted image.
We define our inpainting loss in both latent space and

image space, by additionally decoding the predicted latent
to obtain x̂ = D(ẑ). We compute the L2 loss between the
latents of the render and sample, as well as an L2 and LPIPS
perceptual [62] loss between the rendered image and the
decoded sample. To prevent edits outside of the inpainted
region, we also add an anchor loss on the unmasked region
of x, as the L2 difference between x and original point cloud
render Ipc. Our final inpainting loss is

Linpaint = λlatent||z − ẑ||22 + λimage||x− x̂||22
+ λlpipsLPIPS(x, x̂) + λanchor||Moccl(x− Ipc)||22

(5)

with λ weighting the different terms. We discuss the simi-
larity of this loss with SDS in the supplemetary.

Discussion. In contrast to existing iterative methods
which utilize inpainting (such as Text2Room and Lucid-
Dreamer), our framework does not iteratively construct a
scene with inpainting. In practice, sampling from inpaint-
ing models often produces artifacts (such as due to out-of-
distribution masks), which iterative approaches can amplify
when generating from new poses. In contrast, due to scene-
conditioned multiview optimization, we obtain cohesive 3D
scenes and do not progressively accumulate errors. More-
over, in contrast to DreamFusion and ProlificDreamer, our
method utilizes a scene-conditional diffusion model, pro-
viding lower variance updates for effective optimization
(see row 2 of Fig. 7). This avoids the high-saturation and
blurry results that are typically found (Fig. 6).



Figure 6. Qualitative Comparisons. Our technique shows superior quality in appearance and geometry than all baselines. Please see the
supplementary for more comparisons. Prompt: “A boy sitting in a boat in the middle of the ocean, under the milkyway, anime style”.

4.3. Depth Diffusion for Geometry Distillation

To improve the quality of generated geometry, we incorpo-
rate a pretrained geometric prior to avoid degenerate solu-
tions. Here, we leverage monocular depth diffusion models
and propose an additional depth distillation loss (middle of
Fig. 3). Crucially, we integrate this with our inpainting dis-
tillation by conditioning the depth model ϵdepth on the afore-
mentioned samples x̂ from ϵinpaint.

Our insight is that these samples x̂ act as suitable,
in-domain, conditioning for the depth diffusion model
throughout optimization, while renders x can be incoherent
before convergence. Further, this ensures that predictions
from ϵdepth are aligned with ϵinpaint despite not using a RGBD
prior. Starting from pure noise d1 ∼ N (0, I), we predict
the normalized depth using DDIM sampling [52]. We then
compute the (negated) Pearson Correlation between the ren-
dered depth and sampled depth:

Ldepth = −
∑

(di − 1
n

∑
dk)(d̂i − 1

n

∑
d̂k)√∑

(di − 1
n

∑
dk)2

∑
(d̂i − 1

n

∑
d̂k)2

(6)

where d is the rendered depth and n is the number of pixels.

4.4. Optimization and Refinement

The final loss for the first training stage of our pipeline is
thus:

Linit = Linpaint + Ldepth. (7)

After training with this loss, we have a 3D scene that
roughly corresponds to the text prompt, but which may
lack cohesiveness between the reference image Iref and
the inpainted regions (see Fig. 4). To remedy this, we in-
corporate an additional lightweight refinement phase. In
this phase, we utilize a vanilla text-to-image diffusion
model ϵtext personalized for the input image with Dream-
booth [12, 33, 40, 44]. We compute x̂ using the same pro-
cedure as in Sec. 4.2, except with ϵtext. The loss Ltext is the
same as Eq. (5), except with the ẑ and x̂ sampled with this
finetuned diffusion model ϵtext. Note that the noise added to
the renderings at this stage is smaller to combat the higher
variance samples from the lack of image conditioning.

We also propose a novel sharpening procedure: instead
of using x̂ to compute the image-space diffusion loss intro-
duced earlier, we use S(x̂), where S is a sharpening filter
applied on samples from the diffusion model. Finally, to
encourage high opacity points in our 3DGS model, we in-
corporate an opacity loss Lopacity per point that encourages a
point’s opacity to reach either 0 or 1, inspired by the trans-
mittance regularizer used in Plenoxels [14]. The combined



loss for the fine-tuning stage is:

Lrefine = Ltext + λopacityLopacity, (8)

where λopacity controls the effect of the opacity loss.

4.5. Implementation Details

Point Cloud Initialization. We implement this stage
(Sec. 4.1) in Pytorch3D [41], with Stable Diffusion [43]
for outpainting. To lift the generated images to 3D, we use
Marigold [24], a monocular depth estimation model. Since
it predicts relative depth, we align its predictions with the
metric depth predicted by DepthAnything [58].
Inpainting and Refinement Stage. Our inpainting
(Sec. 4.2) and refinement stages (Sec. 4.4) are implemented
in NeRFStudio [55] using the official implementation of
Gaussian Splatting [25]. We use Stable Diffusion 2.0 as
ϵtext and its inpainting variant as ϵinpaint, building on three-
studio [17] to define our diffusion-guided losses. Further,
we use Marigold [24] as our depth diffusion model. During
the inpainting stage, we set the guidance weight for image
and text conditioning of ϵinpaint as 1.8 and 7.5 respectively,
and sample the timestep t from U(0.1, 0.95). We find that a
high image guidance weight produces samples with greater
overall cohesion. We also use a guidance weight of 7.5 for
the text-to-image diffusion model ϵtext during the refinement
stage, sampling noise from U(0.1, 0.3).
Timing. The first stage, currently unoptimized, takes 2.5
hours. The inpainting stage, trained for 15,000 iterations,
runs for 8 hours on a 24GB Nvidia A10 GPU. The refine-
ment stage, at 3,000 iterations, completes in 2.5 hours on
the same GPU.

5. Results

We evaluate our technique on a custom dataset of 20
prompts, and associated camera poses Pi, selected to show-
case parallax and disocclusion. We built this dataset by
creating a set of 20 prompts, and having a human expert
manually choose camera poses using a web-viewer [55], by
displaying a scene prototype obtained as in Sec. 4.1. No
such dataset already exists for this problem, as existing text-
to-3D techniques [37, 57] typically operate with spherical
camera priors.

5.1. Qualitative Results

We show some qualitative results in Fig. 5 with additional
results in the supplementary, demonstrating effective 3D
scene synthesis across various settings (indoor, outdoor)
and image styles (realistic, fantasy, illustration). We would
like to highlight the rendering quality and the consistency
of rendering and geometry, underscoring our method’s use
of inpainting and depth priors.

Figure 7. Ablation Results. We show the qualitative results of
our model and its ablations. Arrows indicate failures in the ablated
models. Please see Sec. 5.5 for a detailed discussion of the ablated
components and their respective importance.

5.2. Comparisons

We compare our technique with state-of-the-art for text-
to-3D that use either distillation or iterative approaches:
DreamFusion [37], ProlificDreamer [57], Text2Room [20],
and concurrent work LucidDreamer [9] (Fig. 6). Both
ProlificDreamer and DreamFusion generate oversaturated
scenes with incorrect geometry and scene structure. On the
other hand, Text2Room fails to construct non-room scenes,
as it deviates from the input prompt during generation. Sim-
ilarly, LucidDreamer’s [9] scenes lack cohesion, with noisy
results in occluded regions.

5.3. User Study

To validate the quality of our generated 3D scenes, we con-
duct a user study (Tab. 1), similar to prior work [7, 29, 57].



Participants overwhelmingly prefer results from our tech-
nique over baselines.

Table 1. Results of user study. We show the percentage of
comparisons where our technique was preferred over baselines:
PD [57], DF [37], T2R [20], and LD [9].

Ours vs. PD Ours vs. DF Ours vs. T2R Ours vs. LD
95.5% 94.5% 88% 88.5%

Table 2. CLIP alignment scores and additional metrics for
scene renderings of our method and the baselines. CLIP scores
are scaled by 100. Higher is better for all metrics.

Method CLIP Depth Pearson IS
Ours 31.69 0.89 6.99
Text2Room [20] 28.11 0.77 5.10
DreamFusion [37] 29.48 0.09 6.80
ProlificDreamer [57] 29.39 0.16 6.89
LucidDreamer [9] 29.97 0.80 5.73

5.4. Quantitative Metrics

We provide quantitative comparisons using CLIP [39] for
text alignment, Inception Score [45] for render quality, and
depth correlation with DepthAnythingV2 [59] for geometry.
Since ground truth data isn’t available, metrics like PSNR or
LPIPS [62] can’t be used. We evaluate renders from match-
ing trajectories and prompts. For Text2Room, we use initial
pose renders for CLIP as quality degrades significantly far-
ther away. As Tab. 2 shows, our method outperforms all
baselines across metrics.

5.5. Ablations

We verify the proposed contributions of our method by ab-
lating the key components in Fig. 7 with the specified
prompt (Tab. 3). In the first row, we show our method. In
the second row, we show the importance of the low variance
samples from the inpainting diffusion model (Sec. 4.2).
Distillation with a vanilla text-to-image model as in the
final stage, results in high-variance samples causing the
3DGS representation to diverge. In the third row, we re-
move Ldepth; this results in incorrect geometry and incoher-
ent renderings. Note in particular the discrepancy in the
background when viewing from left versus right. In the
fourth row, we initialize our method using only the refer-
ence image Iref without outpainting at the neighbouring
poses Paux. This results in poor results in the correspond-
ing regions, as they lack a good initialization. Finally, in
the last row, we show our result without using the µ initial-
ization from Eq. (4), which results in divergence.

Table 3. Ablation Study Results showing the impact of different
components on Depth Pearson correlation and CLIP score. CLIP
scores are scaled by 100. Higher is better for both metrics.

Ablation Depth CLIP
No Depth Loss 0.86 31.55
No Initialization 0.42 20.31
No Inpainting 0.50 21.14
No Outpainting 0.79 31.00
Ours 0.90 33.10

Figure 8. Result for single-image to 3D. Using a provided image
and a prompt obtained via an image captioning model, our tech-
nique can generate a 3D scene and fill in occluded regions.

5.6. Application: Single image to 3D

Our technique extends to creating 3D scenes from a single
image, as shown in Fig. 8, by using a user’s image as Iref
and a text-prompt Tref obtained using an image-captioning
model. Our pipeline can effectively fill in occluded areas
and generate realistic geometry for unseen regions.

6. Conclusion

We have proposed RealmDreamer, a method for gener-
ation of forward-facing 3DGS scenes leveraging inpaint-
ing and depth diffusion. Our key insight was to leverage
the lower variance of image conditioned (inpainting) dif-
fusion models for synthesis of 3D scenes, providing much
higher quality results than existing baselines as measured by
a comprehensive user study. Still, limitations remain; our
method takes several hours, and produces blurry results for
complex scenes with significant disocclusion. Future work
may explore efficient diffusion models for faster training,
and conditioning for 360-degree generations.
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