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Evolution-aware VAriance (EVA) Coreset Selection for Medical
Image Classification
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ABSTRACT

In the medical field, managing high-dimensional massive medi-

cal imaging data and performing reliable medical analysis from

it is a critical challenge, especially in resource-limited environ-

ments such as remote medical facilities and mobile devices. This

necessitates effective dataset compression techniques to reduce

storage, transmission, and computational cost. However, existing

coreset selection methods are primarily designed for natural image

datasets, and exhibit doubtful effectiveness when applied to medi-

cal image datasets due to challenges such as intra-class variation

and inter-class similarity. In this paper, we propose a novel coreset

selection strategy termed as Evolution-aware VAriance (EVA),
which captures the evolutionary process of model training through

a dual-window approach and reflects the fluctuation of sample im-

portance more precisely through variance measurement. Extensive

experiments on medical image datasets demonstrate the effective-

ness of our strategy over previous SOTA methods, especially at

high compression rates. EVA achieves 98.27% accuracy with only

10% training data, compared to 97.20% for the full training set. None

of the compared baseline methods can exceed Random at 5% selec-

tion rate, while EVA outperforms Random by 5.61%, showcasing its

potential for efficient medical image analysis.

KEYWORDS

Coreset Selection, Medical Image Classification, Evolution-aware

Variance

1 INTRODUCTION

In the medical field, data collection and processing are essential

for delivering accurate and reliable diagnoses and treatment plans.

Medical imaging data, typically characterized by high dimensional-

ity and large volumes, necessitates substantial resources for stor-

age and transmission. Moreover, training deep learning models

on large-scale medical image datasets requires extensive compu-

tational resources and time. This presents challenges in resource-

limited settings, such as remote medical facilities where effective

medical image analysis is crucial, or on mobile devices where real-

time monitoring and analysis are needed. Therefore, efficient data

compression and processing techniques become imperative. In this
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Figure 1: Existing single-timeframe/window snapshots meth-

ods fail to capture the fluctuations of sample importance

across epochs. Different samples are denoted in different col-

ors.Here,wemeasure importance score using the error vector

score, a snapshot-based criterion defined in [39], which con-

siders only the first 10 epochs as indicated by the dashed box.

These scores are obtained by training ResNet-18 on dataset

OrganAMNIST.

context, coreset selection, or dataset pruning, emerges as a promis-

ing approach to mitigate these challenges. Coreset selection con-

denses a given large-scale dataset into a significantly smaller subset,

known as the coreset. The coreset is expected to preserving the

essential knowledge of the original full dataset such that the former

yields a similar performance as the latter.

Numerous coreset selection works [19, 31, 33, 37, 40, 51, 56] have

explored various criteria for identifying important data samples,

including geometry distance [44, 50], uncertainty [11], loss [39, 48],

decision boundary [13, 32], and gradient matching [35]. However,

most of these methods have been validated mainly on natural image

datasets, such as CIFAR-10, CIFAR-100 [28], and not extensively on

medical datasets. The applicability of those methods for medical

image datasets are under exploration, given the unique character-

istics of medical images. Compared to natural image datasets, the

intra-class variation and inter-class similarity of medical image

datasets [46] pose specific challenges to coreset selection. On the

one hand, in medical imaging, samples within the same category

can exhibit significant differences, making it difficult to capture

consistent features for each class. This variation largely comes from

the diversity in disease manifestation across patients and discrep-

ancies in imaging conditions. On the other hand, the challenge

of inter-class similarity arises when images representing different

diseases exhibit similar visual characteristics. Fig. 6 provides a more

straightforward demonstration of this characteristic. These factors

contribute to the complexity of medical image analysis and under-

score the need for sophisticated coreset selection methods that can

effectively address these challenges.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To enable the coreset to effectively approximate the model’s per-

formance on the full training set with fewer samples, it is essential

to consider the training process on the original dataset. This ne-

cessitates that the selection methods should effectively capture the

varying importance of samples at different training stages. Yosinski

et al. [58] highlighted that shallow layers of the network learn gen-

eral features, while deeper layers learn task-specific features. Han et

al. [17] observed that deep models tend to memorize easy instances

initially and adapt to harder instances as training progresses. These

studies confirm the evolutionary nature of deep learning from sim-

pler to more complex stages. Given these observations[17, 58], we

posit that in the domain of medical imaging, the training process of

deep learning models exhibits similar characteristics. For instance,

in kidney images, the model initially learns the general kidney

shape and gradually distinguishes more detailed features of dif-

ferent kidneys. Moreover, as shown in Fig. 1, the significance of

samples in enhancing the model performance varies across differ-

ent training stages [7, 20, 48, 60]. Specifically, certain samples may

be crucial for the model’s initial learning phase, while others gain

importance in the later stages of training.

Most of the existing methods evaluate sample importance using

a snapshot of training progress. For example, Xia et al. [51] calculate

the distribution distances of features at the end of training. Zhang

et al. [60] have proved that the importance scores of samples varies

with epochs during training, resulting in significant variations in

the constructed coresets at different snapshots. Therefore, methods

reliant on single-timeframe snapshots might be inadequate for cap-

turing the comprehensive evolution of model training, overlooking

the dynamic characteristics of learning process.

Expanding the scope of the considered training dynamics is a

straightforward approach to address this limitation. Previous stud-

ies have attempted to incorporate training dynamics using various

methods. For example, Pleiss et al. [41] measures the probability

gap between the target class and the second-largest class in each

epoch; Paul et al. [39] utilize the expected value of error vector

scores generated by a few epochs in early training (the first 10

epochs). While this approach partially expands the scope of the

considered training dynamics, it overlooks the potential effective-

ness of later stages of training, and more importantly, it focuses

on samples with high expected error values, indicating that these

samples are consistently predicted incorrectly over many training

iterations. Such samples may just be too difficult/noisy and may

degrade the model performance [7]. Toneva et al. [48] count the

number of forgetting events during training, which occur when

samples, previously classified correctly, are subsequently predicted

incorrectly. However, this counting approach only provides the

discrete probability of an event, lacking the granularity needed

to reflect the variations of sample contributions throughout the

training process.

To address these limitations, in this paper, we propose a novel

sample importance scoring strategy called Evolution-aware VAri-

ance (EVA), aiming at achieving reasonable and effective compres-

sion of medical image datasets. Firstly, to mitigate the biases from

focusing solely on a snapshot or single segment of the training

process, we introduce a dual-window approach that considers train-

ing dynamics at different stages. This strategy provides a more

holistic understanding of the model’s learning evolution, enabling

nuanced assessment of sample importance as the model evolves

from learning general to specific features. Secondly, within each

window, to reflect the fluctuation of sample importance during the

model training process in a more precise way, we propose to mea-

sure the variance of samples’ error vector. The combination of these

two strategies provides a more refined and accurate evaluation of

sample importance, enabling a more effective coreset selection that

aligns with the dynamic nature of neural network training. This ap-

proach is particularly beneficial in high compression scenarios for

medical image datasets, where maintaining accuracy and reliability

is challenging but crucial.

In a nutshell, our contributions can be summarized as follows.

• We identify the limitations of existing coreset selection methods

in capturing the evolutionary nature of model training and the

fluctuations in sample importance within medical image datasets.

• We thereby propose a novel coreset selection strategy called

Evolution-aware VAriance (EVA), which features two key com-

ponents. The first is a dual-window approach that captures the

training dynamics by considering distinct stages of the learning

process. The second is the employment of variance measurement

on samples’ error vectors, offering a granular and more precise

evaluation of each sample’s contribution to the model training.

• Extensive evaluations on the OrganAMNIST and OrganSMNIST

datasets demonstrate that our EVA strategy outperforms SOTA

methods at challenging low selection rates while achieving com-

parable accuracy at high selection rates, showcasing its potential

for efficient medical image analysis.

2 PRELIMINARIES

In this paper, vectors and matrices are denoted by bold-faced let-

ters. Given a large-scale dataset, we denote the full training set

contains N samples as T = {(𝒙𝑛,𝒚𝑛)}𝑁𝑛=1, where 𝒙𝑛 ∈ R𝐷 repre-

sents the input feature vector and the corresponding ground-truth

label is 𝒚𝑛 ∈ R1×𝐶 , 𝐶 is the number of classes. All samples are

drawn i.i.d. from a underlying distribution P. We define the neural

network as 𝑓𝜽 , parameterized by the weight vector 𝜽 . The model

output 𝑓𝜽 (𝒙𝑛) ∈ R1×𝐶 represents the predicted probabilities of

each class. Coreset selection aims to construct a subset (or coreset)

S = {(𝒙𝑚,𝒚𝑚)}𝑀𝑚=1 (S ⊂ T) that captures the essential characteris-
tics of the full dataset, enabling model 𝑓𝜽S trained on S to achieve

comparable or even superior performance compared to model 𝑓𝜽T

trained on the entire training set T. The data selection rate 𝛼 in con-

structing the coreset is then
𝑀
𝑁
. Under these definitions, following

previous work [44], we formulate the objective of coreset selection

as,

E
(𝒙,𝒚 )∼P
𝜽0∼G

[
ℓ (𝒙,𝒚; 𝑓 S𝜽0 )

]
≃ E

(𝒙,𝒚 )∼P
𝜽0∼G

[
ℓ (𝒙,𝒚; 𝑓 T𝜽0 )

]
(1)

where 𝑓 S𝜽0
and 𝑓 T𝜽0

represent the neural networks trained on S and

T with weight 𝜽0 initialized from distribution G.

3 METHODOLOGY

To construct a coreset that satisfies Eq. 1, the error/loss-based ap-

proaches propose to measure the contribution of each sample by

considering factors such as the loss, gradient, or its influence on
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Figure 2: The pipeline of our proposed EVA . First, we record individual predicted probabilities 𝑓
(𝑖 )
𝑡 = 𝑓𝜽𝒕 (𝒙𝑖 ) of samples during

training. Then, we measure a score S (𝑖 )
𝑡 for each sample, i.e. the L2 norm of error vector. Next, the variance of scores within a

window of epochs are calculated to reflect the fluctuation of each sample’s contribution. Samples that fluctuate the most are

considered important in this stage. Finally, we identify samples that exhibit high importance in dual-window.

other samples’ prediction during model training [16]. In this con-

text, samples that contribute more to the error or loss are considered

more important and are thus selected as part of the coreset.

In this section, we delve into the specifics of our proposed

Evolution-aware VAriance (EVA) strategy, which comprises two

key components. Firstly, we describe how EVA reflects the epoch-

level fluctuation by calculating the variance of error-based scores

in Sec. 3.1. Following that, we elaborate on how EVA captures the

training evolution through a dual-window approach in Sec. 3.2.

3.1 Reflecting Epoch-Level Fluctuation via

Variance

To approximate the individual contribution of each sample to the

reduction in model loss, we initially calculate the variance of error-

based scores over a segment of epochs. This process can be further

divided into the following steps.

Step 1. Single Epoch Scoring. In this step, we concentrate on

calculating the error score for each sample at a specific epoch across

multiple independent runs. Specifically, for each sample (𝒙𝑖 ,𝒚𝑖 ) in
the training set, we first consider a single epoch 𝑡 and compute

the total mean square error (MSE) across all categories using the

equation below:

MSE
(𝑖 )
𝑡 =

𝐶∑︁
𝑗=1

(𝑦𝑖 𝑗 − 𝑦𝑖 𝑗 )2, (2)

where �̂�𝑖 = 𝑓𝜽 (𝒙𝑖 ), therefore 𝑦𝑖 𝑗 denotes the model output of the

𝑖-th sample for the 𝑗-th category, and 𝑦𝑖 𝑗 is the one-hot encoding

of the ground-truth label for the 𝑖-th sample in the 𝑗-th category.

Then, we take the square root of the total MSE for each sample.

Thus, for each sample (𝒙𝑖 ,𝒚𝑖 ) at epoch 𝑡 , we have the L2 norm
of the error vector, representing the discrepancy between model

predictions and ground-truth labels:

S (𝑖 )
𝑡 = ∥ 𝑓𝜽 (𝒙𝑖 ) −𝒚𝑖 ∥2 , (3)

This process yields a sequence of error scores, providing insights

into the prediction performance of the model across different train-

ing iterations.

Step 2. Variance Across Multiple Epochs. Having obtained

the error scores for each sample at individual epochs, in this step,

we proceed to assess the variability of scores across multiple epochs

by calculating the variance over a segment of epochs. Specifically,

for each sample (𝒙𝑖 ,𝒚𝑖 ), we analyze the training dynamics over

a span of 𝐾 epochs, from 𝑡 to 𝑡 + 𝐾 − 1. The error-based scores

for this period are represented as

{
S (𝑖 )
𝑡 ,S (𝑖 )

𝑡+1, ...,S
(𝑖 )
𝑡+𝐾−1

}
. We then

compute the variance of these scores within the 𝐾-epoch window

using the following equation:

V (𝑖 )
𝑡 =

1

𝐾

𝑡+𝐾−1∑︁
𝑘=𝑡

(
S (𝑖 )
𝑘

− E (𝑖 )
𝑡

)
2

, (4)

where E (𝑖 )
𝑡 = 1

𝐾

∑S (𝑖 )
𝑘

denotes the mean value within the𝐾-epoch

window. This calculation provides insight into the consistency or

variability of the error-based scores for each sample over a specified

segment of training epochs, enabling a more precise understanding

of the subtle fluctuations in a sample’s impact on model perfor-

mance over time.
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3.2 Capturing Training Evolution with

Dual-Window

As mentioned in Sec. 1, snapshot-based methodologies often fall

short in capturing the comprehensive evolution of model training,

thus warranting an expansion in the scope of considered train-

ing dynamics. One approach to broaden the scope is to sample

some epochs during the training dynamics. However, random or

probabilistic sampling of epochs may not effectively capture the

dynamic changes in sample importance throughout the entire train-

ing process. Another method is to consider epochs within a certain

window, as we did in Eq. 4. Nevertheless, this approach carries the

risk of excessive bias towards specific training phases.

Therefore, we introduce a dual-window approach to capture the

evolution of the training process more comprehensively. The first

window focuses on the early stages of training, during which the

model primarily learns general features. Samples that significantly

impact the overall model performance are likely to exhibit high

importance during this stage. The second window targets the later

stages of training, where the model gradually learns more specific

task-related features. The importance of samples that have a sig-

nificant impact on the overall model performance may increase or

decrease during this stage. By integrating information from dual

windows, we aim to identify samples that exhibit high importance

in both early and late stages. This implies that these samples contain

both general features and specific task-related features. Addition-

ally, the continuous sequence of epochs provides more temporal

information, allowing for a more comprehensive assessment of

sample importance throughout the entire training process. Overall,

the use of two windows provides a more nuanced understanding

of training dynamics and sample importance, enhancing the effec-

tiveness of the selection process for constructing a coreset. This

effectiveness has been proved in Sec. 4.3.

To maintain consistency with Sec. 3.1, in the dual-window sce-

nario, we also consider windows spanning 𝐾 epochs. We define

the total number of training epochs as 𝑇 , the first window ranges

from 𝑡𝑒 to 𝑡𝐸 = 𝑡𝑒 + 𝐾 − 1, and the second window ranges from 𝑡𝑙
to 𝑡𝐿 = 𝑡𝑙 + 𝐾 − 1. These windows are non-overlapping (𝑡𝐸 < 𝑡𝑙 ).

Specifically, for each sample (𝒙𝑖 ,𝒚𝑖 ), we compute the scores within

each window of epochs, denoted as

{
S (𝑖 )
𝑘

}𝑡𝐸
𝑘=𝑡𝑒

and

{
S (𝑖 )
𝑘

}𝑡𝐿
𝑘=𝑡𝑙

. The

variance of these scores in Eq. 4 can be formulated as:

V (𝑖 )
𝑒 =

1

𝐾

𝑡𝐸∑︁
𝑘=𝑡𝑒

(
S (𝑖 )
𝑘

− E (𝑖 )
𝑒

)
2

,

V (𝑖 )
𝑙

=
1

𝐾

𝑡𝐿∑︁
𝑘=𝑡𝑙

(
S (𝑖 )
𝑘

− E (𝑖 )
𝑙

)
2

,

(5)

Here, E (𝑖 )
𝑒 and E (𝑖 )

𝑙
denote the average score of sample (𝒙𝑖 ,𝒚𝑖 ) in

two windows, respectively.

Finally, we aggregate the variances from both windows to iden-

tify samples that demonstrate high importance in two stages. Thus

the EVA score of each sample can be represented as:

V (𝑖 ) = V (𝑖 )
𝑒 + V (𝑖 )

𝑙
(6)

We then sort samples in the full training set T by their EVA

score V (𝑖 )
. Samples with higher scores are deemed more effective

at reducing training loss. Given a selection rate 𝛼 , we select the

top-ranked M samples to form the coreset, where𝑀 = ⌈𝛼𝑁 ⌉.
Algorithm 1 provides a detailed explanation of the procedure for

the EVA scoring strategy.

Algorithm 1 Evolution-aware VAriance (EVA) Scoring Strategy

Inputs: Full training set T = {(𝒙𝑛,𝒚𝑛)}𝑁𝑛=1; Selection rate 𝛼 ;

Network 𝑓𝜽 with weight 𝜽 ; Epochs 𝑇 ; Iteration 𝐼 pre epoch;

Early window (𝑡𝑒 , 𝑡𝐸 ); Late window (𝑡𝑙 , 𝑡𝐿).

1: for 𝑡 = 1 to 𝑇 do

2: for 𝑖 = 1 to 𝐼 , sample a mini-batch B𝑖 ⊂ T do
3: Obtain predicted probabilities 𝑓𝜽𝑡 (𝒙𝑛), 𝒙𝑛 ∈ B𝑖
4: Calculate S (𝑛)

𝑖
by defined Eq. 3 for each 𝒙𝑛

5: Update S (𝑛)
𝑡 + = S (𝑛)

𝑖

6: end for

7: if 𝑡𝑒 ≤ 𝑡 < 𝑡𝐸 then

8: CalculateV (𝑛)
𝑒 by defined Eq. 5 of early window, 𝒙𝑛 ∈ T

9: else if 𝑡𝑙 ≤ 𝑡 < 𝑡𝐿 then

10: Calculate V (𝑛)
𝑙

by defined Eq. 5 of late window, 𝒙𝑛 ∈ T
11: else if 𝑡 = 𝑡𝐿 then

12: Update V (𝑛)
by defined Eq. 6 as the EVA score of 𝒙𝑛

13: end if

14: end for

15: Sort samples byV (𝑛)
in descending order, 𝒙𝑛 ∈ T

Output: Top-M samples as the coreset S = {(𝒙𝑚,𝒚𝑚)}𝑀𝑚=1

4 EXPERIMENTS

In this section, we provide a comprehensive set of experiments and

analyses to showcase the effectiveness of our proposed Evolution-

aware VAriance scoring strategy in diverse scenarios. We start

by empirically evaluating the performance of our EVA method

by comparing it with other baselines (Sec. 4.2). Subsequently, we

conduct a series of ablation studies to investigate the effectiveness

of the proposed two main components: variance measurement and

dual-window strategy (Sec. 4.3). Additionally, we perform cross-

architecture experiments to evaluate the robustness of our coresets,

assessing their performance when selected on one architecture and

tested on others.

4.1 Experiment Setup

Datasets. MedMNIST is a large-scale collection of medical images

comprising 10 datasets, covering multi-modal, diverse data scales

(from 100 to 100,000) and classification tasks. The classification

performance of this public large-scale datasets has been validated

as effective in [54]. More details about MedMNIST are included

in Sec. 5.1. In this work, considering the time-consuming training,

the effectiveness of the proposed method is primarily evaluated on

two 2D datasets from MedMNIST: OrganAMNIST and OrganSM-

NIST [3, 52], both derived from 3D computed tomography (CT)

images from the Liver Tumor Segmentation Benchmark (LiTS).

These datasets are designed for multi-class classification tasks, in-

volving 11 body organs with labels including the bladder, femur
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Table 1: Performances of ResNet-18 using various coreset selection methods on MedMNIST medical datasets. All training is

repeated 3 times with different random seeds to calculate mean accuracy with standard deviation. The first and second best

results in each column are marked in red and blue, respectively.

OrganAMNIST OrganSMNIST

𝛼 2% 5% 10% 20% 30% 2% 5% 10% 20% 30%

Full dataset
98.39
±0.02

91.76
±0.55

Random
87.63
±0.76

93.43
±0.65

95.68
±0.45

97.30
±0.13

98.14
±0.13

58.74
±0.76

73.10
±1.84

80.95
±0.66

85.77
±1.14

87.64
±0.72

Forgetting [48]
15.58
±0.47

38.53
±2.78

75.85
±1.69

97.22
±0.38

98.11
±0.04

4.33
±0.22

22.33
±0.31

33.15
±0.60

64.43
±1.23

81.28
±2.31

Entropy [11]
41.46
±3.46

55.37
±1.4

69.04
±1.16

77.07
±1.29

91.98
±0.83

27.93
±2.08

41.69
±0.73

59.86
±1.84

78.69
±2.13

86.20
±0.54

EL2N [39]
14.16
±1.14

40.68
±3.36

81.25
±3.22

97.25
±0.24

98.16
±0.30

17.63
±1.59

23.24
±1.88

28.24
±1.44

37.58
±1.53

60.06
±2.14

AUM [41]
12.81
±2.62

35.10
±3.46

68.44
±0.95

93.76
±1.89

98.12
±0.14

4.56
±0.18

7.01
±1.24

22.13
±1.86

39.87
±2.19

65.93
±1.61

CCS [61]
88.05
±0.62

93.51
±0.10

95.58
±0.32

96.86
±0.25

97.18
±0.08

58.43
±0.25

71.73
±0.83

78.46
±0.18

83.64
±0.55

84.94
±0.22

EVA (Ours)
88.83
±0.88

94.43
±1.32

97.20
±0.34

98.27
±0.57

98.63
±0.34

61.23
±0.75

78.71
±0.93

83.11
±0.72

86.38
±1.02

88.77
±0.43

(left and right), heart, kidney (left and right), liver, lung (left and

right), pancreas, and spleen. OrganAMNIST, previously known as

OrganMNIST-Axial in MedMNIST v1 [53], consists of 58,830 axial

view slices of abdominal CT images, distributed into 34,561 training,

6,491 validation, and 17,778 testing images. OrganSMNIST, formerly

OrganMNIST-Sagittal, includes 25,211 abdominal CT images split

into 13,932 training, 2,452 validation, and 8,827 testing images.

Baselines and Networks. We compare our method against six

representative baselines, the latter five of which are state-of-the-art

(SOTA) methods: 1) Random; 2) Forgetting score [48]; 3) En-

tropy [11]; 4) EL2N [39]; 5) Area under the margin AUM) [41];

6) Coverage-Centric Coreset Selection (CCS) [61]. Details of

these baselines are provided in the Supplementary material due to

space limitations. The effectiveness of these strategies is evaluated

based on their ability to select representative samples for coreset

construction using various criteria. For all baselines except CCS,

coresets are formed by pruning less important examples according

to the respective importance metric.

The effectiveness of our method is primarily evaluated using

ResNet-18 [18]. We also conduct cross-architecture generalization

experiments with ResNet-50 [18], MobileNet [42] and VGGNet [45]

to validate its robustness across different models. Further details

are available in the Supplementary material.

Implementation details. To ensure fairness in our compar-

isons, we adhere to the experimental setup outlined in [61]. Our

method is implemented using PyTorch [38] and all models are

trained on an NVIDIA 3090 GPU. Unless specified otherwise, we

utilize the same network architecture, ResNet-18, for both the core-

set and the surrogate network on the full dataset. We maintain

consistency in all hyperparameters and experimental settings be-

fore and after coreset selection. The surrogate network is trained for

200 epochs across all datasets. Initially, we train a network on the

complete dataset to establish baseline performance. Subsequently,

we calculate the importance scores by assessing the variance of

each sample’s error vector across multiple epochs within a dual-

window. As to the start epoch and end epoch of each window, we

employ a grid search with a 10-step size (𝐾 = 10). This process

helps us identify the most effective window combinations, denote

as (𝑡𝑒 , 𝑡𝐸 )+(𝑡𝑙 , 𝑡𝐿) for different datasets and selecting rate 𝛼 .

4.2 Benchmark Evaluation Results

Our systematic comparison of EVA against other baselines, as de-

tailed in Sec. 4.1, reveals its superior performance on the OrganSM-

NIST and OrganAMNIST medical datasets, particularly at more

challenging selection rates. As shown in Tab. 1, our Evolution-aware

VArianceapproach consistently achieves top-ranking performance,

underscoring its robustness in coreset selection. In addition, on the

OrganAMNIST dataset, EVAnearlymatches the full dataset’s perfor-

mance at a 20% selection rate and surpasses it at 30%, highlighting

its efficiency in utilizing smaller datasets. Notably, at extremely

low selection rate of 2% and 5% on the OrganSMNIST dataset, EVA

surpasses the Random baseline by a margin of 2.49% and 5.61%,

respectively, illustrating its effectiveness even with severely limited

data, establishing the method’s capability to discern and retain the

most influential samples for model training.

The baselines, including well-established SOTA methods, do not

exhibit the same level of performance at these lower selection rates,

often failing to exceed the benchmark set by random selection.

This trend highlights the limitations of traditional coreset selection

methods when dealing with the complexities of medical datasets.

Here, our experiments focus on low selection rates scenarios,

but EVA also maintains competitive performance at high selection

rates. Moreover, our methodology’s effectiveness is not confined to

medical imaging datasets alone. Preliminary experiments on widely

recognized natural image datasets, such as CIFAR, corroborate

that EVA stands out by surpassing most SOTA methods. Detailed
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results from these additional experiments are documented in the

Supplementary materials due to space constraints.

4.3 Ablation Study and Analysis

We delve into ablation studies to dissect the contributions of the

variance and dual-window components in our method. By system-

atically removing each component and evaluating their impact on

performance, we elucidate their individual roles in enhancing core-

set selection accuracy. In this context, we partition our experiments

into four conditions: Var-S, Exp-S, Var-D, and Exp-D. Here, Var-S

denotes calculating variance in a single window, Exp-S represents

computing expectation in a single window; Var-D indicates vari-

ance calculation in dual-window, and Exp-D signifies expectation

computation in dual-window.

Effectiveness of Variance. In this section, to demonstrate

the effectiveness of variance measurement, we display the test

accuracy results of calculating the expectation and variance of the

samples’ error vectors within a single window or dual windows on

different datasets. As shown in Fig. 3, these results were obtained

under varied selection rates from 2% to 30%.
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Figure 3: Ablation study on the summary statistics. We val-

idated the effectiveness of variance measurement under

single-window and dual-window settings on OrganAMNIST

(a)(b) and OrganSMNIST (c)(d). In (a) and (c), we contrast the

Exp-S and Var-S strategies within an early 10-epoch window.

(b) and (d) explore the Exp-D and Var-D strategies in dual-

window setting.

The first thing we notice is that, on both datasets, as the selection

rate increases, the effectiveness of themodels trained on the samples

selected by both statistics tends to increase on the test set. This

is intuitive because as the number of samples selected increases,

the information richness of the selected samples are effectively

preserved.

Besides, we can observe that at each selection rate, the variance

measurement has better performance in coreset selection compared

to the expectation measurement, and this advantage is especially

significant at low selection rates. For example, in Fig. 3c, the test

accuracy under Var-S is at least 20% higher than under Exp-S for

all compared selection rates. The consistent superiority of variance

(Var-S and Var-D) suggests its robustness as a measure, further

proving our previous points that (1) Expectationmaymask variabil-

ity within the data by averaging contributions, thereby potentially

underrepresenting the underlying fluctuations. Samples with large

expectation values may be consistently predicted incorrectly over

many training iterations, indicating them too noisy/difficult and

detrimental to the model’s performance; (2) Variance captures the
degree to which sample contributions fluctuate over training itera-

tions. High variance in sample errors suggests that their influence

on the model is not consistent but varies significantly, potentially

due to their informative nature or because they are challenging for

the model to learn. At low selection rates, samples with higher vari-

ance are indicative of a greater potential to contribute to themodel’s

generalization ability, as they embody the critical challenges within

the learning task.

Effectiveness of dual-window. In this section, we demon-

strate the effectiveness of the dual window setting and analyze the

results for different window combinations. First, we compare the

performance of using single-window and dual-window on different

datasets (as shown in Fig. 4). Similar to the former part, we uti-

lized the variance and expectation of errors within single and dual

windows as importance metrics. The results consistently demon-

strate the advantage of dual windows over single window across

all selection rates. This advantage, akin to the findings from the

variance ablation experiments, is more pronounced at lower selec-

tion rates. For instance, on dataset OrganSMNIST, at selection rates

of 2%, the variance calculated within dual windows exhibited an

improvement of 2.29%, compared to the single-window approach,

suggesting that employing dual-window calculation for scores en-

ables more effective capturing of the diversity and variability of

sample importance.
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Figure 4: Ablation study on the window setting. The results

are obtained on OrganAMNIST (top row) and OrganSMNIST

(bottom row). Performance of the Var-S versus Var-D strate-

gies is illustrated in (a) and (c), while (b) and (d) show com-

parisons between Exp-S and Exp-D strategies.
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Figure 5: Comparison of different window combinations. These windows represent different training phases. (a)-(d) show

experimental results for OrganSMNIST, and (e)-(h) for OrganAMNIST, with each line depicting a unique window combination

(single or dual windows).

Moreover, in the dual-window setting, we further explore the

effect of the combination of windows at different periods on model

performance. Fig. 5 reveals two critical insights: (1) At a high com-

pression rate of 2%, dual-window combinations show a definitive

advantage over single-window ones on both datasets. This can be

attributed to the dual-window’s ability to encapsulate more diverse

information from different stages of the training process, providing

a broader perspective for coreset selection. (2) As the selection rate

increases, allowing for larger data budgets, corresponding to the

need of capturing a wider range of training dynamics. The implica-

tion here is that the windows selected for the dual-window setting

should ideally come from a later stage in the training process, when

the model has begun to stabilize and the samples are more reflective

of the generalization capabilities required for the test. The results

on OrganAMNIST suggests that the early dual-window stage may

not be sufficient for selecting a more representative coreset.

5 RELATEDWORKS

5.1 Medical Imaging

Challenges in Medical Imaging with Deep Learning.

Medical imaging technology has brought transformative advance-

ments to the diagnosis of a variety of diseases in the past few

decades, enabling earlier detection and the development of more

personalized treatment plans. Deep learning (DL), in particular,

has been widely used in various medical imaging tasks and has

achieved remarkable success in many medical imaging applications

[8, 36, 43, 62, 63], enhancing the accuracy of diagnoses through the

innovative use of historical data [29].

Despite the substantial progress, integrating deep learning into

medical imaging is fraught with challenges [22]. The effectiveness

of DL in this context is largely dependent on the availability of large,

well-annotated datasets tailored for specific tasks and reliant on

advances in high-performance computing. The necessity for vast

complex datasets introduces complications such as inconsistencies

in data quality, arising from variations in imaging equipment and

protocols. Moreover, the extensive volume of medical data demands

significant computational resources, posing logistical challenges

for efficient processing [62]. Additionally, the inherent heterogene-

ity of medical images, characterized by a multimodal probability

distribution, complicates the model training process by requiring

algorithms capable of handling diverse visual features and patterns

within the data. Another issue is the inter-class similarity and intra-

class variation, as depicted in Fig. 6, where different diseases may

appear similar, and the same disease may present differently across

patients.

MedMNIST: A Standardized Dataset for Biomedical

Imaging. To address some of these challenges, MedMNIST, a

large-scale MNIST-like collection of standardized biomedical im-

ages, provides a comprehensive dataset for research and application.

This dataset includes 12 datasets for 2D imaging and 6 for 3D, all

pre-processed into 28x28 or 28x28x28 pixels with corresponding

classification labels. MedMNIST encompasses primary data modali-

ties in biomedical imaging, including abdominal CT, chest X-ray,

breast ultrasound, and blood cell microscopy, making it an ideal

choice for multi-modal machine learning in medical image anal-

ysis. Additionally, it supports various classification tasks such as

binary/multi-class, ordinal regression, and multi-label classifica-

tion, further establishing its utility for developing and testing deep

learning models in medical imaging.

5.2 Dataset Compression

The proliferation of large-scale datasets in deep learning necessi-

tates the compression of data size to meet specific requirements,

such as computational efficiency and storage constraints. Therefore,

the identification of key samples serves a fundamental role not only

in dataset pruning but also across a spectrum of machine learning

tasks, such as active learning [1, 4, 14], where the model is trained

iteratively on a subset of the dataset, and only the most informative
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Figure 6: Examples of the intra-class variation and inter-

class similarity in medical image classification. These axial

brain tumor images come from the public dataset provided

by Jun Cheng et al.[9]. Each column respectively represents

a brain tumor category: meningioma (a)(d), pituitary (b)(e),

and glioma (c)(f). The variation within the same category can

be noticed by observing the two instances in each column.

Furthermore, the similarity between different classes is il-

lustrated by comparing (a)(b), (c)(e), and (d)(f).

samples are selected for inclusion in subsequent training rounds.

Techniques such as uncertainty sampling and query-by-committee

have been proposed to select data samples that are most beneficial

for model improvement. Continual learning [57], where a memory

buffer is maintained to store informative training samples from

previous tasks for rehearsal in future tasks. And other problems

like noisy learning [35], clustering [2], semi-supervised learning

[5], and unsupervised learning [10].

Dataset pruning, also known as coreset selection, can gener-

ally be categorized into several groups: Score-based techniques

[11, 15, 34, 39, 47, 48], methods driven by coverage or diversity

considerations [44, 50, 51], and strategies grounded in optimization

[21, 23–25, 27, 35, 49, 55]. Specifically, score-based techniques first

assign an importance score to each training sample based on its

influence over a specific permanence metric during model training.

The samples are then sorted by their scores, and those within a

certain range are selected to construct the coreset.

Besides, in the sphere of data-efficient deep learning, associ-

ated topics include techniques like data distillation [6, 30] and

data condensation [12, 26, 30], which seeks to condense the knowl-

edge contained in a large dataset into a smaller, distilled dataset.

This technique often involves training a smaller "student" model to

mimic the behavior of a larger "teacher" model, effectively trans-

ferring the knowledge from the larger dataset to the distilled one.

Similarly, most distillation methods are evaluated on natural image

datasets and their effectiveness lack comprehensive verification on

medical datasets. To the best of our knowledge, a recent work [59]

propose a comprehensive benchmark to evaluate the medical image

dataset distillation.

6 LIMITATION & FUTUREWORK

While our EVA coreset selection strategy demonstrates superior

performance in high compression scenarios, as evidenced by the

comparative analysis presented in Tab. 1, it’s important to acknowl-

edge the limitations that the level of accuracy achieved in scenarios

demanding extreme compression may not fully meet the rigorous

standards necessary for medical diagnostics. Medical imaging tasks

often require the highest degree of precision due to their direct

impact on patient care, and there remains room for improvement

in ensuring that the selected coresets are not only statistically rep-

resentative but also clinically relevant.

Additionally, our current approach does not incorporate data

from different modalities, which is essential in smart healthcare

diagnostic systems. Such systems typically combine various types

of data, including medical images, electronic health records (EHRs),

patient interview descriptions, and pathology reports, for holistic

analysis to enhance diagnostic accuracy.

Future research could focus on exploring different compression

limits for various datasets to find the optimal balance between accu-

racy and efficiency. This would involve systematically determining

how much data can be pruned while still maintaining sufficient

performance levels for clinical applications. Moreover, there is a

promising avenue to extend our work by integrating multimodal

data, which would align well with the ongoing trends in applying

large language models (LLMs) and other advanced AI techniques in

healthcare. Such integration could enhance the robustness and ap-

plicability of our coreset selection strategy, particularly in systems

where diverse types of data need to be synthesized for effective

decision-making.

7 CONCLUSION

In this paper, we identify the limitations of existing coreset selection

methods in capturing the evolutionary nature of model training

and the fluctuations in sample importance within medical image

datasets. To address this challenge, we introduced a novel sample

scoring strategy, Evolution-aware VAriance (EVA), which incorpo-

rates a dual-window method to consider the training dynamics at

different stages and employs a variance measurement of samples’

error vectors for a more precise evaluation of sample importance.

Extensive evaluations on various datasets and networks demon-

strate the superior performance of our proposed EVA strategy.
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