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Abstract

Temporal reasoning remains a challenging task
for Large Language Models (LLMs), partic-
ularly when confronted with nonlinear narra-
tives and mixed time systems, where events are
presented out of chronological order. While
human cognition effortlessly reconstructs tem-
poral sequences in such narratives, LLMs often
exhibit inconsistent reasoning and fail to infer
the correct event order. In this paper, we present
a comprehensive study on sentence-level event
ordering to evaluate emerging frontier LLMs
in temporal reasoning tasks. We contribute (i)
a novel dataset derived from historical records,
blending absolute and relative time expressions
across varied granularities; (ii) a benchmark
covering emerging frontier LLMs including
GPT family, DeepSeek series, Qwen models,
and open-source models; and (iii) an absolute-
relative time conversion table to support future
research on mixed time systems. ! Our experi-
ments reveal substantial limitations across cur-
rent models, with a consistent performance de-
cline when relative time disrupts chronological
signals. We further provide a detailed bench-
mark analysis across multiple dimensions, in-
cluding model types, sentence length, temporal
granularity, and format violations. Our findings
offer key insights and valuable resources to ad-
vance temporal reasoning research in LLMs.

1 Introduction

Temporal reasoning is a fundamental component
of natural language understanding, underpinning
applications such as question answering, narrative
comprehension, and timeline construction. Despite
rapid progress in Large Language Models (LLMs),
reasoning over temporal sequences—especially
within nonlinear narratives—remains a persistent
challenge. Unlike humans, who can effortlessly
reconstruct event orders from fragmented or non-
chronological inputs, LLMs often struggle when
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faced with mixed time systems involving both ab-
solute and relative time expressions.

Nonlinear narratives, characterized by disrupted
temporal flow and interleaved time references, are
common in historical texts, biographies, and story-
telling. These contexts require models not only to
interpret explicit time expressions but also to infer
implicit event dependencies across varying tempo-
ral granularities (e.g., year, month, day). While
existing benchmarks have explored temporal rea-
soning through question answering or multi-task
datasets(Jia et al., 2018; Qin et al., 2021; Chu et al.,
2023; Wang and Zhao, 2023; Tan et al., 2023), they
often underrepresent event ordering as a standalone
capability. As LLMs continue to advance, dedi-
cated benchmarks for this fundamental yet frag-
ile skill—particularly under naturalistic and tem-
porally ambiguous conditions—are increasingly
needed.

In this work, we address this gap by formulating
sentence-level event ordering as a core temporal
reasoning task under nonlinear narrative settings.
We construct a benchmark derived from historical
records sourced from Wikidata, where each sen-
tence is temporally anchored and spans a range of
granularities. To simulate realistic narrative com-
plexity, we include both absolute and relative time
expressions, capturing scenarios where temporal
cues are implicit, vague, or mixed.

We evaluate a suite of leading frontiers LLMs,
including models from the GPT, DeepSeek, Qwen,
and LLaMA families, along with Mistral-7B, fo-
cusing on their ability to recover event order, recog-
nize temporal dependencies, and reason effectively
under disrupted chronological signals.

To support future research, we also release a
curated table of over 6,000 absolute-to-relative time
expression that links structured time expressions
(e.g., “1945”) with natural references (e.g., “the
end of World War II”), offering a reusable resource
for investigating mixed-time systems.



Our work makes the following contributions: we
propose sentence-level event ordering as a bench-
mark task for evaluating temporal reasoning in
nonlinear narratives; we construct a novel dataset
based on historical texts, enriched with both ab-
solute and relative time annotations across varied
temporal granularities; we present a comprehen-
sive benchmark study involving both leading fron-
tier models (e.g., GPT-4, Deepseek, QWQ) and
strong open-source baselines (e.g., LLaMA 3.3,
Mistral, LLaMA 2-13B), systematically evaluating
their ability to reason over mixed time systems;
and we release an absolute-relative time conver-
sion table to support further research in temporal
inference.

Guided by these contributions, we investigate
the following research questions:

* How do different model architectures perform
in temporal reasoning tasks?

* How do temporal granularity and event se-
quence length influence reasoning accuracy?

e [s there an interaction between time type and
reasoning complexity?

* To what extent do relative time expressions
affect model performance?

2 Related Work

Temporal Question Answering Temporal reason-
ing (TR) has long been recognized as a core chal-
lenge in natural language processing, essential for
tasks involving event sequencing, duration infer-
ence, and causal understanding. Early QA-style
benchmarks, such as TempQuestions(Jia et al.,
2018) and TimeDial(Qin et al., 2021), focus on
reasoning under explicit, implicit, and ordinal tem-
poral constraints. Other datasets, like that of Chen
et al. (Chen et al., 2021), explore temporal drift
through Wikipedia—Wikidata alignment, revealing
the sensitivity of language models to subtle time-
based context changes. TempReason (Tan et al.,
2023) expands the temporal QA paradigm to a
multi-level framework, encompassing time-time,
time-event, and event-event reasoning. This line
of work demonstrates the increasing complexity of
temporal understanding required by modern QA
systems.

However, while these QA datasets reflect diverse
forms of temporal reasoning, they often embed

event ordering as a latent step within broader rea-
soning chains, making it difficult to isolate and
evaluate this capability directly. In contrast, our
work treats event ordering as a standalone task, en-
abling focused assessment of model performance
under temporally ambiguous and nonlinear narra-
tive conditions.

Comprehensive Temporal Benchmarks Recent
benchmarks such as TimeBench(Chu et al., 2023)
and TRAM(Wang and Zhao, 2023) evaluate a
broad spectrum of temporal reasoning skills by
combining multiple tasks—such as duration esti-
mation, temporal arithmetic, frequency detection,
and causal inference—into large-scale evaluation
suites. TempReason (Tan et al., 2023) adopts a
more structured design with three reasoning levels,
but remains grounded in the question answering
paradigm.

In contrast, we focus on sentence-level event
ordering—an underexplored yet challenging sub-
task—under hybrid time conditions that mix abso-
lute and relative expressions. This design enables
a finer-grained evaluation of LLMs’ ability to re-
cover global temporal structure from fragmented,
nonlinear narratives.

While existing work has addressed absolute or

relative temporal reasoning in isolation, the dis-
tinct challenges of mixed time—such as implicit
anchoring, granularity mismatch, and nonlinear-
ity—remain underexplored. We outline these is-
sues and their implications for benchmark construc-
tion in Section 3.2.
Instruction Sensitivity and Model Coverage Re-
cent work has shown that instruction tuning alone
may not ensure reliable execution of structured or
temporally grounded tasks (Lou et al., 2024), espe-
cially in scenarios requiring compositional reason-
ing or strict output format adherence (Chia et al.,
2023; Wang et al., 2022; Xu et al., 2023). Although
instruction-tuned models demonstrate strong per-
formance in QA and classification, they often strug-
gle in tasks demanding sequence-level reasoning or
alignment with latent structural constraints (Peng
et al., 2023; Min et al., 2023).

Our benchmark contributes to this line of re-
search by providing a comparative analysis of
instruction-following behaviors across model fami-
lies—including underexplored but high-performing
models such as DeepSeek and Qwen—under tem-
porally sensitive, zero-/one-shot prompting settings.
While many prior studies focus on GPT-family
models or open-domain QA tasks (Kimura et al.,



2021; Chen et al., 2021; Saxena et al., 2021; Dhin-
gra et al., 2022; Tan et al., 2023; Gupta et al., 2023;
Jia et al., 2024; Xiong et al., 2024; Fatemi et al.,
2024; Deroy and Maity, 2024; Su et al., 2024; Yuan
et al., 2024; Zhang et al., 2024; Deng et al., 2024;
Ruiz et al., 2025), recent open-source models like
DeepSeek and Qwen—despite their strong reason-
ing capabilities—remain underexplored in tempo-
ral settings. Our benchmark fills this gap by provid-
ing targeted evaluations of instruction-following
behavior across both frontier and open models un-
der mixed-time conditions.

3 Benchmark Setup

3.1 Task Overview

We formulate temporal reasoning in nonlinear nar-
ratives as a sentence-level event ordering task.
Given a short passage composed of n unordered
sentences P = {s1, s2, ..., Sy}, where each s; de-
scribes an event associated with a time expression
t;, the model is tasked with inferring the correct
chronological order of the events. The time expres-
sions can be absolute (e.g., “in 1923”) or relative
(e.g., “three years later”), or a combination of both.
The expected output is a permutation 7 over
the indices {1, ...,n} such that the reordered se-
quence {5x(1), Sx(2), -+ Sx(n) } Tespects the under-
lying temporal timeline implied by the input. This
task requires interpreting time expressions, resolv-
ing references, and aligning events across possibly
fragmented or non-chronological inputs.

3.2 Challenges of Mixed Temporal Reasoning

Temporal reasoning in mixed time systems intro-
duces challenges beyond standard timeline infer-
ence. First, relative expressions (e.g., “the follow-
ing year”) require anchoring to implicit reference
points, which are often unstated. Second, absolute
and relative expressions may co-occur, requiring
joint interpretation and temporal alignment. Third,
varying temporal granularity—some events given
as years, others as full dates—creates ambiguity
in sequencing. Finally, nonlinear narratives fre-
quently present events out of order, demanding
global integration of dispersed time cues.

3.3 Experimental Factors

To systematically investigate how different aspects
of temporal structure affect model performance,
we design benchmark settings along the following
dimensions:

Mixed time expressions: introducing temporal
ambiguity by randomly replacing a subset of
absolute time expressions with relative references
using an LLM-based rewriting strategy. We allow
minor imprecision or implicit temporal
references—such as GPT-4 occasionally
grounding expressions like "this year" as 2023
irrespective of narrative context—as long as they
do not alter the overall event order. This design
choice reflects the inherent ambiguity in
mixed-time narratives and evaluates whether
models can still recover global chronological
structure under such conditions.
Temporal granularity: comparing passages with
coarse-grained (year-only) versus fine-grained
(month or day included) time annotations.
Event sequence length: varying the number of
events from 4 to 40 to examine how model
performance scales with narrative length, and
whether reasoning abilities degrade as the
temporal chain becomes longer.

These experimental factors enable a fine-grained
analysis of model sensitivity to temporal complex-
ity under diverse and naturalistic conditions.

3.4 Dataset Construction

We construct our dataset from Wikidata (Vrandecié¢
and Krotzsch, 2014) by extracting 15,000 historical
and contemporary figures born after 1900, focus-
ing on occupations such as scientists, historians,
and politicians to ensure temporal and professional
diversity. For each entity, we retrieve the English
Wikipedia page and extract time-anchored event
sentences using regex-based patterns. Sentences
are filtered for grammaticality, relevance, and valid
absolute dates, then chronologically sorted to form
gold-standard event sequences. We retain passages
containing 4 to 40 events to balance sequence com-
plexity and data coverage.

To simulate mixed-time narratives, we randomly
convert a subset of absolute expressions into rel-
ative or descriptive forms using GPT-40. A con-
trolled prompt ensures the rewrites are semantically
faithful and logically consistent with surrounding
context. To assess the quality of these rewrites,
two NLP expert annotators—also co-authors of
this work—independently evaluate 200 randomly
sampled passages on three dimensions: (i) Info
Accuracy, (i) Context Logic, and (iii) Natural-
ness. Agreement scores are high for accuracy
(79.5%) and contextual coherence (71.5%), while
naturalness exhibits moderate variance (quadratic
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Replacement Info
sentence No. 2: 19381942 > the late 1930s to early 1940s
sentence No. 3: 1953 -> about seven years after the founding
of the People's Republic of China
sentence No. 4: 1983 -> the carly 1980s
sentence No. 6: 1995 -> the mid-1990s
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Modified Context
Born in 1921, ...
..., during the late 1930s to early 1940s.
..., about seven years after the founding of the People's Republic
of China.
Since the early 1980s, ...
In 1990, ...
..., in the mid-1990s.

2. Dataset Construction

Figure 1: Overview of our benchmark construction pipeline. (1) We collect and clean biographical content from
Wikidata and Wikipedia, extracting temporally anchored sentences to construct a gold-standard chronological
sequence. (2) To simulate mixed-time scenarios, we use GPT-4o to rewrite a subset of absolute time expressions
into natural relative expressions, producing both a modified context and a replacement mapping. Annotators then
evaluate the quality of rewritten passages. (3) Multiple LLMs are benchmarked on sentence-level event ordering
under both absolute-time (AT) and mixed-time (MT) settings. Models are required to output a comma-separated list
of sentence indices (e.g., 2,1,4,3) to indicate the predicted event order.

weighted Cohen’s k£ = 0.19). These results con-
firm that most rewritten expressions are reliable for
constructing mixed-time inputs.

The final dataset comprises 4,824 passages with
an average of 8 events each. In the mixed-time set-
ting, 56.7% of expressions are rewritten as relative
forms. Distributions by event count and tempo-
ral granularity are shown in Table 2 and Table 3.
We also release a time expression conversion ta-
ble (e.g., “1945” — “the end of World War II”’) to
support future work on temporal paraphrasing and
normalization (see Appendix C).

3.5 Benchmark Settings and Models

We evaluate LLMs on a sentence-level tempo-
ral ordering task. Given a passage with shuffled
event sentences, the model must predict the correct
chronological order as a permutation of sentence
indices. We define two task variants:

Absolute-Time Task (AT): Passages contain only
absolute time expressions (e.g., “in 1945™).

Mixed-Time Task (MT): Some absolute expres-
sions are rewritten as natural relative references
(e.g., “the end of World War II”’) using a GPT-based
strategy. See Table 1 for the formal definition of
time expression types.

All models are evaluated using a one-shot
instruction-style prompt with a single illustrative
example. We include both closed-source and
open-source models spanning a range of training
paradigms:

Closed-source Frontier Models: Including
GPT-4, GPT-3.5, Deepseek-v3(Liu et al., 2024),
Deepseek-r1(Guo et al., 2025),
Qwen2.5-7B(Qianwen et al., 2024), and
QwQ-32B(Team, 2025).

Open-source Models: Including LLaMA3.3-
70B(Grattafiori et al., 2024), LLaMA2-
13B(Touvron et al., 2023), and Mistral-7B(Jiang
et al., 2023).

All models are tested using a consistent one-
shot prompt setup that includes a single illustrative
example and a standardized instruction format (see



Expression Type Example

Absolute Time
Relative Time
Event-Anchored Time

“in 1945”, “in March 2007, “on July 20, 1969~
“three years later
“the end of World War II”, “during the Great Depression”

CEINT3

, “shortly after the war”

Table 1: Time expression types used in our benchmark. The latter two categories are treated as relative for MT

setting.

Appendix A) for details.
Statistic Value
Total passages 4,824
Avg. events per passage 7.99
Temporal granularity — year 70.72%
Temporal granularity — month | 23.46%
Temporal granularity — day 5.82%

(a) Absolute-time dataset before conversion.

Statistic Value
Total passages 4,824
Avg. relative per passage 4.53
Avg. absolute per passage 3.46
Relative time ratio (relative / all) | 56.73%

(b) Mixed-time dataset after relative replacement.

Table 2: Comparison of dataset statistics before and
after the conversion from absolute-only to mixed-time
representations.

3.6 Evaluation Metrics

We report the following evaluation metrics:

Exact Match (EM): The percentage of outputs
that exactly match the gold-standard permutation,
reflecting the model’s ability to recover the global
temporal structure of the passage. We additionally
report the error rate, defined as 1 - EM, which
captures the proportion of incorrect predictions.
Kendall’s 7: Rank correlation between predicted
and gold orders. This captures the local temporal
consistency between event pairs.

Pairwise Accuracy: Fraction of correctly ordered
sentence pairs.

We further apply:

McNemar’s Test: For EM significance across AT
and MT conditions.

Wilcoxon Signed-Rank Test: For Kendall’s 7 sig-
nificance across AT and MT.

Malformed outputs are excluded. We also ana-
lyze EM and Kendall’s 7 scores by passage length
and model family in Section 4.

Appendix E provides dataset visualizations, in-
cluding event count distributions (Figure 8) and the

Event Count | Number of Percentage

Range Passages

4-9 3,817 79.13%
10-14 593 12.29%
15-19 184 3.81%
20-29 133 2.76%
30-39 56 1.16%

> 40 41 0.85%

Table 3: Distribution of passages by event count inter-
vals. The majority of passages include no more than 10
events, aligning with the practical reasoning capacity
of current LLMs. Longer passages are also retained to
assess their ability to handle extended event sequences.

temporal granularity of time expressions (Figure 7).

4 Results and Analysis

We analyze model performance on sentence-level
event ordering under AT and MT conditions, cover-
ing nine models across proprietary and open-source
families. Evaluation uses EM, Kendall’s 7, and sig-
nificance testing to assess sensitivity to temporal
ambiguity. We further analyze model performance
from three key perspectives—temporal granularity,
event sequence length, and the presence of relative
time expressions—to systematically address our
four research questions.

4.1 Overall Model Performance

To address our first research question concerning
the performance of different model architectures in
temporal reasoning tasks, we begin by comparing
overall accuracy across all evaluated models.

Significant Performance Gaps Between
Frontier and Lightweight Models

The strongest overall performance is achieved
by QwQ-32B and DeepSeek-R1, with EM scores
of 0.54 and 0.52 in the AT setting, respectively,
and high Kendall’s 7 values above 0.70. Notably,
both models outperform GPT-4, which achieves an



Model EM (AT) | EM (MT) | Kendall’s 7 (AT) | Kendall’s 7 (MT)
QwQ-32B 0.54 0.33 (139%) 0.73 0.53 (127%)
Deepseek-rl 0.52 0.32 (138%) 0.70 0.53 (124%)
Deepseek-v3 0.33 0.21 (136%) 0.51 0.38 (125%)
GPT-4 0.31 0.15 (152%) 0.50 0.34 (132%)
LLaMA3.3-70B 0.21 0.13 (138%) 0.40 0.30 ({25%)
GPT-3.5 turbo 0.12 0.07 (142%) 0.21 0.17 (L19%)
Qwen2.5-7B 0.07 0.05 ({29%) 0.20 0.14 ({30%)
LLaMA2-13B 0.01 0.01 (L0%) 0.00 0.05 (1-)
Mistral-7B 0.00 0.01 (1-) 0.05 0.06 (120%)

Table 4: Performance comparison across models under absolute-time (AT) and mixed-time (MT) conditions.

MT—AT

Percentage change is calculated as: =~
for performance drops, green for gains.

EM score of 0.50 and 7 below 0.70 under the same
setting.

High EM scores indicate strong reconstruction of
the global event sequence, while high Kendall’s 7
reflects consistent pairwise ordering. These results
align with prior findings from TimeBench (Chu
et al., 2023), where GPT-family models excelled in
structured temporal reasoning, while smaller mod-
els like Mistral-7B struggled with commonsense
and relative time. This supports our observation
that frontier models better preserve both global and
local temporal structure. Table 4 reports EM and
Kendall’s 7 under AT and MT settings, along with
relative performance drops to assess robustness un-
der temporal ambiguity.

Deeper Reasoning Comes at the Cost of
Instruction Following

While both the Qwen and Deepseek model fami-
lies achieve superior performance in temporal rea-
soning tasks compared to other models, we ob-
serve a notable divergence in output format adher-
ence within each family. As shown in Figure 2,
the stronger reasoning variants—QwQ-32B and
Deepseek-r1—exhibit significantly higher rates of
invalid format outputs than their smaller counter-
parts. This pattern is consistent with findings from
instruction-following literature(Lou et al., 2024),
which highlight that larger models, despite superior
reasoning abilities, are more likely to deviate from
strict output constraints—particularly in settings
without strongly grounded demonstrations. An il-
lustrative example of such a violation is provided
in Appendix F.1.
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Figure 2: Invalid output rate (%) for Qwen and
DeepSeek models under AT and MT. DeepSeek-rl
shows notably higher error rates, especially in MT, indi-
cating reduced stability when processing relative time
inputs.

These results reveal a trade-off between deep
reasoning and strict instruction adherence. As mod-
els develop more complex inference capabilities,
they may favor semantic interpretation over rigid
output formatting, particularly under ambiguous
prompts. This tension between interpretive depth
and structural control is further evidenced by in-
creased format violations, detailed in Appendix F.1.

4.2 Temporal Granularity Analysis

To address part of our second research question
regarding the effect of temporal granularity on rea-
soning performance, we analyze how the granular-
ity of time expressions influences model accuracy
under both AT and MT conditions. Passages are
grouped into two levels: those with only year-level
expressions (coarse-grained) and those that include
month or day annotations (fine-grained).

Fine-grained timestamps lead to more sta-
ble reasoning




Models perform more robustly on fine-grained
passages, where temporal cues are more precise.
These timestamps help disambiguate events that
occur in the same year but at different times, en-
abling better alignment and control over sentence
reordering.

To quantify this effect, we compare error rates
between AT and MT across both granularity lev-
els. As shown in Figure 10, the performance gap
between AT and MT is consistently larger under
coarse-grained inputs. For example, GPT-4 and
QwQ-32B both show over 25% error rate increase
when relative time replaces coarse absolute times-
tamps.

Stronger Models Within Families Are
More Affected by Coarse-Grained Time
Inputs

All models show performance degradation when
temporal inputs are coarsened from day/month
to year-level granularity. Notably, the strongest
models—QwQ-32B and DeepSeek-r1—exhibit
the largest MT—AT error increases under coarse-
grained conditions (Figure 3), suggesting a reliance
on fine-grained temporal cues. As specificity de-
clines, these models may resort to overgeneralized
reasoning, increasing deviation from the gold stan-
dard. This aligns with Yang et al.(Yang et al.,
2024), who show that temporally aware embed-
dings enhance reasoning but amplify sensitivity to
time granularity. In contrast, weaker models appear
less affected, likely due to simpler, more conser-
vative reasoning. Detailed results are in Appendix
F2.

Relative time expressions are less harmful
when granularity is high

The negative impact of switching to relative time
is most severe under vague or underspecified tem-
poral conditions. When time granularity is higher,
relative expressions carry more specific temporal
meaning—mitigating ambiguity and supporting
more stable reasoning.

These findings highlight the interaction between
surface-level time granularity and deeper temporal
reasoning ability. Improving model robustness to
coarse-grained relative time may require explicit
training on relational semantics and underspecified
narratives.

Qwen & QwQ

Deepseek-r1 & v3

0.

MT - AT Error Rate
°
s &

0.05
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Figure 3: MT-AT error rate increase under different time
granularities for Qwen and DeepSeek models. Both
show greater degradation with coarse-grained inputs,
with QwQ-32B and DeepSeek-r1 most affected, sug-
gesting reduced robustness to underspecified temporal
cues.

4.3 Event Sequence Length Analysis

To address our third research question regarding
the interaction between time type and reasoning
complexity, we now examine how event sequence
length influences temporal reasoning performance.

Longer sequences sharply degrade model
performance

Figure 4 visualizes error rates for all evaluated
models under both the AT and MT settings. We
observe a clear trend: as the number of events rises,
nearly all models experience a steady and often
steep increase in error rate.

Most models begin with reasonably low error
rates (e.g., 0.2-0.4) on short passages (4—6 events),
particularly under the AT setting. However, accu-
racy degrades quickly, and by 12 events, even the
best-performing models (e.g., GPT-4, Deepseek-
R1, Qwen-32B) approach near-complete failure in
the MT setting.

Relative time increases vulnerability to
sequence length

The contrast between AT and MT is particularly
striking: while AT error rates often increase more
gradually, MT error rates rise faster and reach 1.0
earlier. This pattern reveals that relative time rea-
soning is disproportionately affected by sequence
length—Tlikely because models must track more im-
plied temporal links without the support of explicit
anchors.

Among all models, Qwen-32B and DeepSeek-
R1 stand out for maintaining lower MT error rates
in the 4-8 event range, while others such as Mistral
and LLaMA variants fail almost immediately. The
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Figure 4: Comparison of AT and MT error rates across different models and event numbers. Error rate is defined as
1 - Exact Match (EM), representing the proportion of outputs that fail to exactly match the gold permutation.

robustness of these models may stem from better
generalization over temporal language, or implicit
pretraining biases favoring temporal coherence.

By 15-20 events, nearly all models saturate at
an error rate of 1.0 in both AT and MT conditions.
These results indicate that existing models struggle
to maintain coherence in long event chains, and
relative-time reasoning becomes brittle under in-
creased temporal complexity.

4.4 Absolute vs. Mixed Time Comparison

To directly address our last research question, we
compare model performance between passages
with AT and MT.

Mixed-Time Settings Introduce Substan-
tial Difficulty

All models exhibit performance drops under the
MT setting, though the magnitude varies. GPT-4
and GPT-3.5 Turbo experience steep EM reduc-
tions of over 50%, suggesting a strong reliance on
explicit absolute-time cues. In contrast, frontier
models like QwQ-32B and Deep see k-R1 show
more graceful degradation, with EM drops around
20%, and Kendall’s T remaining above 0.50.

Reliance on explicit timestamps amplifies
degradation

Models like GPT-4 perform well under AT con-
ditions but degrade sharply in MT, suggesting
strong reliance on explicit date cues. In contrast,
DeepSeek-R1 and QwQ maintain more stable per-
formance, indicating better generalization to natu-
ral temporal variation. As shown in Table 4, color-
coded drops in EM and Kendall’s 7 highlight that
smaller models (e.g., Mistral, LLaMA2-13B) not

only perform poorly overall, but also show mini-
mal AT-MT difference—suggesting weak tempo-
ral sensitivity. These findings underscore the need
to evaluate LL.Ms under both controlled and realis-
tic temporal settings to fully assess their reasoning
capabilities.

5 Conclusion

In this work, we present a novel benchmark for
evaluating LLMs’ temporal reasoning in complex
narratives that combine absolute and relative time
expressions across varied granularities. Unlike
prior datasets limited to a single time type or sim-
plified task settings, our sentence-level benchmark
captures the hybrid temporal structures found in
real-world biographies.

Through extensive analysis across time condi-
tions, granularity levels, and sequence lengths, we
find that even the strongest models (e.g., QwQ-32B,
DeepSeek-R1) struggle to maintain temporal co-
herence under mixed-time settings—particularly
with coarse-grained or long-range dependencies.
These results highlight LLMs’ reliance on surface-
level cues and their limited capacity for relational
temporal reasoning.

To support broader research on temporal mod-
eling, we additionally release a large-scale con-
version table of aligned absolute-to-relative time
expressions—a novel resource for studying time
normalization and contextual rewriting.

‘We hope our benchmark and accompanying re-
sources encourage future work on time-aware in-
ference, instruction-following under temporal am-
biguity, and constraint-driven model alignment.

Future work will aim to improve model gener-
alization in relative time settings and enhance in-
struction adherence through better prompting and
constraint-aware training.



Limitations

While our benchmark offers a robust platform for
evaluating temporal reasoning in LLMs, several
limitations remain.

First, the dataset is built from Wikipedia-style
biographies, which—though rich in timestamped
events—do not cover all narrative types. Domains
such as scientific writing or fiction may exhibit
different temporal patterns.

Second, we adopt a sentence-level event abstrac-
tion, omitting finer discourse phenomena like si-
multaneity or intra-sentential shifts. Time expres-
sions are automatically extracted and occasionally
noisy, which may affect alignment.

Third, relative expressions are generated via
GPT-40 rewrites. While this improves lexical di-
versity, it introduces ambiguity—e.g., “2004” may
become “the following year,” requiring prior con-
text. Annotators observed occasional grounding
errors (e.g., “this year” interpreted as 2023), but
such cases are accepted if event order is preserved.

Fourth, our evaluation focuses on global metrics
(EM, Kendall’s 7), which may overlook partial cor-
rectness in passages with underspecified temporal
cues.

Fifth, we evaluate models under zero- and one-
shot prompting only, without fine-tuning or ar-
chitectural changes (e.g., temporal embeddings),
which may further improve performance.

We also observe frequent instruction-following
failures in open-source models. Despite format
constraints, models like Mistral-7B often produce
verbose outputs. One-shot prompting improves
compliance, but we do not compare prompting
strategies systematically due to budget constraints.

Finally, performance collapses on very long pas-
sages (e.g., >30 events), likely due to compounded
reasoning and context-length challenges. These
cases are excluded from analysis and underscore
the need for better long-context temporal reason-
ing.
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A Prompt Templates

We provide below the two prompt templates used
in our study: one for rewriting absolute time ex-
pressions into relative ones, and another for evalu-
ating temporal reasoning via event ordering. Both
prompts follow a standardized instruction style to
ensure consistency across model families.

(1) Relative Time Conversion Prompt


https://aclanthology.org/2024.ccl-3.33/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

Time Replacement Prompt

You are a time conversion assistant. Your task is to
replace exactly {num_to_keep} absolute time expres-
sions with relative time expressions.

» Absolute time refers to any date in year, month-
year, or full-date format.

¢ Retain {num_to_keep} absolute times, convert
the rest into natural relative references.

* Avoid repeating the same phrasing.

* Do not simply compute or state time differences.
Return:

* Modified Context: the rewritten passage.

* Replacement Information: lines showing origi-
nal — relative expressions.

(2) Event Ordering Prompt (Benchmark)

One-Shot Benchmark Prompt

The following is a set of shuffled sentences. Please
infer the correct order and return the sentence order
as a sequence of numbers.

Instructions: - Only return a comma-separated
sequence of numbers.

- Do not include any explanations, additional text, or
line breaks.

- The sequence should reflect the correct order of the
given sentences.

Example:

Input:

1. The sun rises in the east.

2. It is early morning.

3. The birds are singing.

Correct output:

2,13

Now, process the following sentences:
{context}

Please output only the sequence of numbers.

B Example of Relative Time Conversion

Below are three representative examples showing
how absolute time expressions are converted into
relative expressions using our prompt-based gener-
ation pipeline.

We acknowledge that certain time replacements
(e.g., replacing “2015” with “a few years after join-
ing MIT”) may introduce implicit event dependen-
cies, such as the need to infer the timing of the
prior event (i.e., joining MIT). However, our task
primarily evaluates whether models can recover the
correct chronological order of events rather than
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verifying precise temporal anchoring of each indi-
vidual expression.

Therefore, as long as the replacement does not
alter the relative order of events in the passage, such
substitutions are considered acceptable within our
task framework. These more ambiguous or indirect
expressions are intentionally included to simulate
the diversity and complexity of naturally occurring
narratives with mixed temporal expressions.

Example 1

Original Passage (Gold Sequence)

(1) His father, Babalyk, born in 1860, was
the only child in the family.

(2) He studied at a Kazakh school, then in
the Tatar language school, then in 1941
1943 he graduated from the gymnasium in
the city of Tacheng.

(3) In 1943-1947, while studying at the uni-
versity in Uriimqi, he was arrested for na-
tionalist actions and imprisoned.

(4) After the founding of the Communist
State, he became governor of Ili Kazakh
Autonomous Prefecture in June 1955, and
held that office until 1958.

Converted Passage (Mixed Time Expres-
sions)

(1) His father, Babalyk, born in 1860, was
the only child in the family.

(2) He studied at a Kazakh school, then in
the Tatar language school, then during the
early 1940s he graduated from the gymna-
sium in the city of Tacheng.

(3) Around the mid-1940s, while studying
at the university in Uriimqi, he was arrested
for nationalist actions and imprisoned.

(4) After the founding of the Communist
State, he became governor of Ili Kazakh
Autonomous Prefecture in June 1955, and
held that office until 1958.

\.

Replacement Mapping

1. Sentence 2: 1941-1943 — during the
early 1940s

2. Sentence 3: 1943-1947 — around the
mid-1940s




Example 2

Original Passage (Gold Sequence)

(1) Zaharia was a gold medalist at the In-
ternational Collegiate Programming Con-
test, where his team University of Waterloo
placed fourth in the world and first in North
America in 2005.

(2) While at University of California, Berke-
ley’s AMPLab in 2009, he created Apache
Spark as a faster alternative to MapReduce.
(3) In 2013 Zaharia was one of the co-
founders of Databricks where he is chief
technology officer.

(4) He joined the faculty of MIT in 2015,
and then became an assistant professor of
computer science at Stanford University in
2016.

(5) In 2019 he was spearheading MLflow at
Databricks, while still teaching.

Converted Passage (Mixed Time Expres-
sions)

(1) Zaharia was a gold medalist at the In-
ternational Collegiate Programming Con-
test, where his team University of Waterloo
placed fourth in the world and first in North
America in 2005.

(2) While at University of California, Berke-
ley’s AMPLab several years later, he cre-
ated Apache Spark as a faster alternative to
MapReduce.

(3) In 2013 Zaharia was one of the co-
founders of Databricks where he is chief
technology officer.

(4) A few years after joining MIT, he
became an assistant professor of computer
science at Stanford University in 2016.

(5) In 2019 he was spearheading MLflow at
Databricks, while still teaching.

Replacement Mapping

1. Sentence 2: 2009 — several years later
2. Sentence 4: 2015 — a few years after
joining MIT
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Example 3

(1) In 1937, Schulze moved to Peenemiinde
Army Research Center; in 1939, he was
appointed chief of the Propulsion Unit, a
position he held until 1945.

(2) Classified as wards of the state, the seven
men landed at Fort Strong on September
29, 1945; all but von Braun, Schulze in-
cluded, were then transferred to Aberdeen
Proving Ground to translate and catalog 14
tons of V-2 documents taken from Germany.
(3) By 1946, Schulze was among the Oper-
ation Paperclip scientists employed at Fort
Bliss.

(4) He moved to Alabama, where he was
naturalized in Birmingham on November
11, 1954.

\

Converted Passage (Mixed Time Expres-
sions)

(1) In 1937, Schulze moved to Peenemiinde
Army Research Center; in 1939, he was
appointed chief of the Propulsion Unit, a
position he held until the end of World
War I1.

(2) Classified as wards of the state, the seven
men landed at Fort Strong during the late
1940s; all but von Braun, Schulze included,
were then transferred to Aberdeen Proving
Ground to translate and catalog 14 tons of
V-2 documents taken from Germany.

(3) By the year after World War II ended,
Schulze was among the Operation Paperclip
scientists employed at Fort Bliss.

(4) He moved to Alabama, where he was
naturalized in Birmingham on November
11, 1954.

Replacement Mapping

1. Sentence 1: 1945 — the end of World
War 11

2. Sentence 2: September 29,
during the late 1940s

1945 —

C Time Expression Conversion Table

To support future research on temporal rewriting
and normalization, we release a conversion table



that records all absolute-to-relative time expression
rewrites applied during the construction of the our
dataset. Each entry in the table represents a sin-
gle replacement performed by GPT-40 during the
mixed-time generation process.

Table 5 presents representative examples. The
rewrites range from grounded historical interpreta-
tions (e.g., “1945” — “the end of World War II"’) to
relative references that depend on the surrounding
narrative timeline (e.g., “2004” — “the following
year”).

Original Time  Rewritten Time

1970 early 1970s
1979 late 1970s
2000 the turn of the millennium
2004 the following year
1967 several decades ago
1976 a little over four decades ago
1993 Approximately three decades back
2009 Fourteen years ago
2012 eight years ago
1948 a little over 75 years ago
1949 about 74 years back
1951 early 1950s
1956 approximately mid-1950s
1989 the last decade of the 1980s
October 2, 2003  early October 2003
January 23,2004 late January 2004
January 23,2004  Soon after

January 28, 2004
February 1, 2004

at the end of January 2004
shortly after

Table 5: Sample entries from the time expression conver-
sion table, covering grounded historical, approximate,
and relative rewrites.

We caution that not all rewritten expressions are
context-independent. While some rewrites refer to
widely understood historical periods (e.g., “1945”
— “the end of World War II”’), others depend on the
internal narrative timeline. For example, “2004” is
sometimes rewritten as “the following year”, which
is contextually appropriate only if the previous sen-
tence refers to “2003”. Such replacements, though
semantically coherent in context, may not be suit-
able for standalone use.

Moreover, during our double-annotation process
(see Section 3.4 and Section D for details), we
adopt a practical criterion: a rewritten time expres-
sion is considered valid as long as it preserves the
overall temporal order of the passage, even if the
substitution is not lexically precise. This design
choice reflects our focus on evaluating temporal rea-
soning rather than surface-level rewriting fidelity.

We therefore encourage users to consult the con-
text when applying this conversion table in down-
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stream tasks such as generation, normalization, or
rule extraction. The conversion table is best viewed
as a supporting resource rather than a standalone
ground truth.

D Annotation Protocol and Analysis

To evaluate the quality of GPT-generated relative
time expressions, we conducted a double annota-
tion study on 200 sampled passages. Each annota-
tor was presented with the original passage (Gold
Sequence), the GPT-modified passage (Gpt Mod-
ified Context), and a detailed list of substitutions
(Replacement Info).

Although some relative expressions are not ex-
act translations of the original absolute timestamps,
we consider the replacement acceptable as long
as the temporal sequence of events remains un-
affected. This evaluation criterion was reflected
in the annotation guidelines for the “Info Accu-
racy” dimension. This decision aligns with our task
definition, where the primary goal is to evaluate
models’ ability to reconstruct the correct temporal
order, rather than the surface accuracy of individual
time expressions.

For each passage, annotators were instructed to
evaluate the following three dimensions:

1. Info Accuracy (Y/N): Whether the relative
expression generated by GPT-4 accurately re-
flects the semantics of the original absolute
timestamp.

* Y: The relative time correctly corre-
sponds to the absolute time and aligns
with the provided substitution info.

* N: The expression is semantically incor-
rect, overly vague, or omits critical tem-
poral details.

2. Context Logic (Y/N): Whether the modified
relative expression fits logically and tempo-
rally within the surrounding passage.

* Y: The expression is coherent in context
and does not break the narrative or event
sequence.

* N: The expression introduces chronolog-
ical contradictions or disrupts temporal
flow.

3. Naturalness Score (1-5): Fluency and read-
ability of the modified sentence, regardless of
correctness.



Field

Example Annotation

Original Passage

In March 2007 she was elected to the fellowship of the Royal Society of Edinburgh.

In 2018 she was appointed Head of the School of Informatics at Edinburgh, taking over
from Johanna Moore, until succeeded by Helen Hastie in 2023.

In 2018, Hillston was elected the membership of the Academia Europaea.

Hillston was elected a Fellow of the Royal Society in May 2022.

Since January 1st 2023 Hillston has been Editor-in-Chief of Proceedings of the Royal
Society A (the first female Editor-in-Chief in the journal’s history).

Rewritten Passage

In March 2007 she was elected to the fellowship of the Royal Society of Edinburgh.

In 2018 she was appointed Head of the School of Informatics at Edinburgh, taking over
from Johanna Moore, until succeeded by Helen Hastie

In 2018, Hillston was elected the membership of the Academia Europaea

Hillston was elected a Fellow of the Royal Society in

Since January 1st 2023 Hillston has been Editor-in-Chief of Proceedlngs of the Royal
Society A (the first female Editor-in-Chief in the journal’s history).

Replacement Mapping Sentence 2: 2023 —
Sentence 4: May 2022 —

Accuracy(Y/N) Y

Coherence(Y/N) N

Naturalness Score(1-5) 3

Error Type InfoLoss

Free-form Comment

The current year is assumed to be 2023, causing a disruption in contextual
coherence.

Table 6: Full annotation example including rewritten passage and free-form comment.

e 5: Fully natural and indistinguishable To ensure consistency, annotators jointly re-
from human-written text. viewed 5-10 initial examples and were encouraged
* 4: Mostly fluent with only minor disflu-  to leave free-form comments for both high-quality

ency.

¢ 3: Somewhat awkward but understand-

able.

¢ 2: Clearly unnatural with evident phras-

ing issues.

* 1: Machine-like and syntactically poor.

and problematic samples. The estimated annotation
time per passage ranged from 1-3 minutes.

Here, “free-form” refers to an open comment
field in the annotation interface, where annotators
could optionally write their reflections on the qual-
ity of time expression rewriting, such as natural-
ness, contextual alignment, or specific GPT-related
issues.

Annotators were also encouraged to optionally
tag common issues using a predefined label set:

Y/N Agreement Distribution for Binary Dimensions

. . . . . 160 157
e infoless: Key temporal information is miss- — 'C":zt‘;‘;:”L':;’;
140
ing. o
42 100
. . . ‘6 c
« vague: Time span is ambiguous (e.g., “many 5
@)

years later”).

e inconsistent: Logical contradiction in 20

event ordering.

34
|

Annotatorl - Annotator2 Labels

31 31
N-N

¢ HardUnderstand: Converted sentence is se-

mantically unclear.

Figure 5: Absolute counts of issue types labeled by
Annotator A and Annotator B.

* Other: Additional problems not captured by

the above categories.
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Annotation Results and Agreement

Figure 6 summarizes inter-annotator agreement pat-
terns. For naturalness, Annotator 1 was generally
more lenient, assigning the highest score (5) in 126
instances, while Annotator 2 gave more conserva-
tive, mid-range ratings. For binary categories, most
passages received consistent “Y-Y” judgments, al-
though moderate disagreement (e.g., “Y-N) re-
mained, particularly in Contextual Coherence.

Overall, raw agreement reached 79.5% for Re-
placement Accuracy and 71.5% for Contextual Co-
herence. For naturalness, the quadratic-weighted
Cohen’s x score was 0.19, indicating moderate
agreement and highlighting the inherent subjec-
tivity in fluency assessment.

These results confirm that the majority of GPT-
generated relative time expressions are accurate,
contextually appropriate, and linguistically natural
to human readers. Despite some disagreements, the
double-annotation protocol validates the reliability
of our rewriting strategy and supports its use in
constructing temporally ambiguous test sets for
evaluating LLMs.

Y/N Agreement Distribution for Binary Dimensions

157 B Info Accuracy

mmm Context Logic

112

+ 100
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>
O 80
O
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40 34
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7 2
o ——
Yy NY YN N-N
Annotatorl - Annotator2 Labels
(a) Binary agreement (Y/N)
Y/N Agreement Distribution for Binary Dimensions

160 157 = Info Accuracy

140 mmm Context Logic

120 112
4+ 100
e
>
O 80
O

31

2 .

N-N

34
. - 31
m_
——
YyY NY Y-N
Annotatorl - Annotator2 Labels

(b) Naturalness score distribution

Figure 6: Annotation agreement patterns across evalua-
tion dimensions.
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Error Type Distribution

To better understand annotator preferences and ten-
dencies in error labeling, we compare the absolute
count of common issue types annotated by each
annotator. As shown in Figure 5, Annotator A
overwhelmingly labeled vague expressions (62 in-
stances), while Annotator B distributed their anno-
tations more evenly across multiple categories.

Specifically, Annotator B marked 27 instances
each of InfolLoss and Incosistent, as well as 18
instances of HardUnderstand, compared to Anno-
tator A’s respective counts of 6, 11, and 1. These
differences suggest that Annotator A is particularly
sensitive to ambiguity and imprecision in temporal
phrasing, whereas Annotator B applies stricter stan-
dards in identifying information loss and logical
inconsistency.

Despite these differences in emphasis, both anno-
tators consistently identified problematic passages,
reinforcing the value of error-type labels in guiding
future improvements. The complementary nature
of these annotation styles also offers useful insights
into the diverse aspects of failure in GPT-based
time rewriting.

Due to limited computational budget, we did
not conduct adjudication to resolve annotation dis-
agreements, which may leave some borderline
cases open to interpretation.

Distribution of Temporal Granularity in Time Expressions

Temporal Granularity
Year only

mmm Year + Month
Full Date

70.7%

Figure 7: Distribution of temporal granularity among
all absolute time expressions.

E Dataset Distribution Visualizations

To better illustrate the internal structure of our
dataset, we present a set of visualizations that high-
light the distribution of event counts and temporal
granularity across all passages.
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Figure 8: Event count distribution across passages in
the dataset.

Figure 7 shows the distribution of temporal gran-
ularity for all absolute time expressions in the
dataset. The majority (70.7%) of expressions spec-
ify only the year (e.g., “in 1987”), while 23.5% in-
clude both year and month (e.g., “July 1987”), and
only 5.8% provide a full date (e.g., “July 15, 1987”).
This skew toward coarse-grained time references
reflects common patterns in Wikipedia-style bio-
graphical writing and suggests that many temporal
relations must be inferred from sparse cues.

Figure 8 presents the distribution of event counts
across passages. Figure 8a displays a histogram
showing that most passages contain fewer than 10
events, with a peak in the 4-9 range. Figure 8b
provides a proportional breakdown, confirming that
79.1% of passages fall into the 4-9 event range.
Passages with more than 20 events are relatively
rare, accounting for less than 5% of the dataset.

This distribution suggests that the dataset is cen-
tered around passages with fewer than 10 events,
maintaining a manageable level of complexity for
most temporal reasoning tasks. At the same time, a
small number of long-sequence passages (with 20
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or more events) are included to support long-tail
evaluation and stress-test models under extended
temporal contexts.

F All model result

F.1 Format Violation Analysis

We first provide a representative example of a for-
mat violation. As shown in the box below, instead
of returning a comma-separated list of sentence
indices as instructed, the model outputs a verbose
sequence of full event descriptions. This behavior
constitutes a clear deviation from the expected for-
mat and illustrates a common failure mode among
instruction-sensitive models. Such violations not
only complicate automated evaluation but also in-
dicate potential weaknesses in instruction compre-
hension, particularly when temporal reasoning is
embedded in ambiguous inputs.

Example of Invalid Output Format

Gold Order: [5,4,1,3,2]

Expected Format: A comma-separated list
of indices, e.g., 5,2,1,4,3

Model Output:

1970, She was established what
was for nearly a decade the only
protein crystallography labora-
tory in Israel., In 1970, Her par-
ents ... Then, from 1979 to 1984
she was a group leader ... On
Saturday, 18 October 2014, Pro-
fessor Yonath ... She was visit-
ing professor at the University of
Chicago ...

Violation Type: Verbose explanation
instead of index list

Figure 9 shows format violation rates under AT
and MT settings. Violations include missing in-
dices, extraneous text, or malformed outputs.

While most models perform well (violation
<1%), Mistral-7B (51.3% AT, 34.0% MT) and
LLaMA2-13B (14.7% AT, 12.7% MT) show
significant instability. In contrast, models like
Qwen2.5-7B, Deepseek-v3, and GPT-3.5-turbo
maintain consistently low violation rates.

MT settings generally increase format errors,
highlighting the destabilizing effect of relative
expressions on instruction-following. Notably,



Setting

. AT

o
3

S
S

34.0

w
S

N
S

14.7

12.7
5.4
30 42 3.3
o I 0305 05 0.4 5,10

N o° €
Ve N B
& 0 M

% [ W

Invalid Format Rate (%)
5

A
¢ O
o &
o< W
o

Figure 9: Prompt format violation rates across models
in both AT and MT settings.
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Figure 10: EM error rate increase (MT - AT) across time
granularity levels. Coarse-grained (year-only) passages
lead to stronger degradation under mixed-time input,
especially for models like Deepseek-r1 and Qwen-32B.

Mistral-7B and LLaMA?2-13B often generate ver-
bose explanations instead of plain index lists.

These findings suggest that instruction adher-
ence is not solely determined by model size or
reasoning ability, and remains fragile under am-
biguous temporal input.

F.2 Granularity Analysis

Figure 10 reveals that when only year-level times-
tamps are present, models rely heavily on numer-
ical comparison (e.g., 1995 vs. 2000) under AT.
Once these cues are replaced with vague relative
phrases like “a few years later,” performance de-
grades sharply. The absence of fine-grained res-
olution compounds the difficulty of interpreting
relative time.

Interestingly, under fine-grained conditions, the
performance gap between AT and MT narrows.
While absolute timestamps are more complex (e.g.,
full dates), the corresponding relative phrases (e.g.,
“early that year,” “a few months earlier”) are of-
ten more informative. These naturalistic expres-
sions provide additional linguistic cues that par-
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tially compensate for the loss of exact time, helping
models maintain ordering accuracy.

G Full Error Rate Curves Across Event
Numbers

Figure 11 provide a comprehensive view of model
scalability when handling increasing event chains.
While the main text focuses on results with up
to 15 events (where most meaningful distinctions
occur), we include these extended plots to show
that beyond this point, most models saturate to
an error rate of 1.0, suggesting a consistent upper
bound on current models’ capacity for temporal
reasoning in complex narratives.
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(a) Error Rate (AT) vs. Event Number for all evaluated models.
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(b) Error Rate (MT) vs. Event Number for all evaluated
models.

Figure 11: Full error rate trends under AT and MT,;
most models saturate at 1.0 beyond 15 events, indicating
scalability limits.
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