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Abstract
Temporal reasoning remains a challenging task001
for Large Language Models (LLMs), partic-002
ularly when confronted with nonlinear narra-003
tives and mixed time systems, where events are004
presented out of chronological order. While005
human cognition effortlessly reconstructs tem-006
poral sequences in such narratives, LLMs often007
exhibit inconsistent reasoning and fail to infer008
the correct event order. In this paper, we present009
a comprehensive study on sentence-level event010
ordering to evaluate emerging frontier LLMs011
in temporal reasoning tasks. We contribute (i)012
a novel dataset derived from historical records,013
blending absolute and relative time expressions014
across varied granularities; (ii) a benchmark015
covering emerging frontier LLMs including016
GPT family, DeepSeek series, Qwen models,017
and open-source models; and (iii) an absolute-018
relative time conversion table to support future019
research on mixed time systems. 1 Our experi-020
ments reveal substantial limitations across cur-021
rent models, with a consistent performance de-022
cline when relative time disrupts chronological023
signals. We further provide a detailed bench-024
mark analysis across multiple dimensions, in-025
cluding model types, sentence length, temporal026
granularity, and format violations. Our findings027
offer key insights and valuable resources to ad-028
vance temporal reasoning research in LLMs.029

1 Introduction030

Temporal reasoning is a fundamental component031

of natural language understanding, underpinning032

applications such as question answering, narrative033

comprehension, and timeline construction. Despite034

rapid progress in Large Language Models (LLMs),035

reasoning over temporal sequences—especially036

within nonlinear narratives—remains a persistent037

challenge. Unlike humans, who can effortlessly038

reconstruct event orders from fragmented or non-039

chronological inputs, LLMs often struggle when040

1Anonymous Github:
https://anonymous.4open.science/r/MTS-benchmark-3035/

faced with mixed time systems involving both ab- 041

solute and relative time expressions. 042

Nonlinear narratives, characterized by disrupted 043

temporal flow and interleaved time references, are 044

common in historical texts, biographies, and story- 045

telling. These contexts require models not only to 046

interpret explicit time expressions but also to infer 047

implicit event dependencies across varying tempo- 048

ral granularities (e.g., year, month, day). While 049

existing benchmarks have explored temporal rea- 050

soning through question answering or multi-task 051

datasets(Jia et al., 2018; Qin et al., 2021; Chu et al., 052

2023; Wang and Zhao, 2023; Tan et al., 2023), they 053

often underrepresent event ordering as a standalone 054

capability. As LLMs continue to advance, dedi- 055

cated benchmarks for this fundamental yet frag- 056

ile skill—particularly under naturalistic and tem- 057

porally ambiguous conditions—are increasingly 058

needed. 059

In this work, we address this gap by formulating 060

sentence-level event ordering as a core temporal 061

reasoning task under nonlinear narrative settings. 062

We construct a benchmark derived from historical 063

records sourced from Wikidata, where each sen- 064

tence is temporally anchored and spans a range of 065

granularities. To simulate realistic narrative com- 066

plexity, we include both absolute and relative time 067

expressions, capturing scenarios where temporal 068

cues are implicit, vague, or mixed. 069

We evaluate a suite of leading frontiers LLMs, 070

including models from the GPT, DeepSeek, Qwen, 071

and LLaMA families, along with Mistral-7B, fo- 072

cusing on their ability to recover event order, recog- 073

nize temporal dependencies, and reason effectively 074

under disrupted chronological signals. 075

To support future research, we also release a 076

curated table of over 6,000 absolute-to-relative time 077

expression that links structured time expressions 078

(e.g., “1945”) with natural references (e.g., “the 079

end of World War II”), offering a reusable resource 080

for investigating mixed-time systems. 081
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Our work makes the following contributions: we082

propose sentence-level event ordering as a bench-083

mark task for evaluating temporal reasoning in084

nonlinear narratives; we construct a novel dataset085

based on historical texts, enriched with both ab-086

solute and relative time annotations across varied087

temporal granularities; we present a comprehen-088

sive benchmark study involving both leading fron-089

tier models (e.g., GPT-4, Deepseek, QWQ) and090

strong open-source baselines (e.g., LLaMA 3.3,091

Mistral, LLaMA 2-13B), systematically evaluating092

their ability to reason over mixed time systems;093

and we release an absolute-relative time conver-094

sion table to support further research in temporal095

inference.096

Guided by these contributions, we investigate097

the following research questions:098

• How do different model architectures perform099

in temporal reasoning tasks?100

• How do temporal granularity and event se-101

quence length influence reasoning accuracy?102

• Is there an interaction between time type and103

reasoning complexity?104

• To what extent do relative time expressions105

affect model performance?106

2 Related Work107

Temporal Question Answering Temporal reason-108

ing (TR) has long been recognized as a core chal-109

lenge in natural language processing, essential for110

tasks involving event sequencing, duration infer-111

ence, and causal understanding. Early QA-style112

benchmarks, such as TempQuestions(Jia et al.,113

2018) and TimeDial(Qin et al., 2021), focus on114

reasoning under explicit, implicit, and ordinal tem-115

poral constraints. Other datasets, like that of Chen116

et al. (Chen et al., 2021), explore temporal drift117

through Wikipedia–Wikidata alignment, revealing118

the sensitivity of language models to subtle time-119

based context changes. TempReason (Tan et al.,120

2023) expands the temporal QA paradigm to a121

multi-level framework, encompassing time-time,122

time-event, and event-event reasoning. This line123

of work demonstrates the increasing complexity of124

temporal understanding required by modern QA125

systems.126

However, while these QA datasets reflect diverse127

forms of temporal reasoning, they often embed128

event ordering as a latent step within broader rea- 129

soning chains, making it difficult to isolate and 130

evaluate this capability directly. In contrast, our 131

work treats event ordering as a standalone task, en- 132

abling focused assessment of model performance 133

under temporally ambiguous and nonlinear narra- 134

tive conditions. 135

Comprehensive Temporal Benchmarks Recent 136

benchmarks such as TimeBench(Chu et al., 2023) 137

and TRAM(Wang and Zhao, 2023) evaluate a 138

broad spectrum of temporal reasoning skills by 139

combining multiple tasks—such as duration esti- 140

mation, temporal arithmetic, frequency detection, 141

and causal inference—into large-scale evaluation 142

suites. TempReason (Tan et al., 2023) adopts a 143

more structured design with three reasoning levels, 144

but remains grounded in the question answering 145

paradigm. 146

In contrast, we focus on sentence-level event 147

ordering—an underexplored yet challenging sub- 148

task—under hybrid time conditions that mix abso- 149

lute and relative expressions. This design enables 150

a finer-grained evaluation of LLMs’ ability to re- 151

cover global temporal structure from fragmented, 152

nonlinear narratives. 153

While existing work has addressed absolute or 154

relative temporal reasoning in isolation, the dis- 155

tinct challenges of mixed time—such as implicit 156

anchoring, granularity mismatch, and nonlinear- 157

ity—remain underexplored. We outline these is- 158

sues and their implications for benchmark construc- 159

tion in Section 3.2. 160

Instruction Sensitivity and Model Coverage Re- 161

cent work has shown that instruction tuning alone 162

may not ensure reliable execution of structured or 163

temporally grounded tasks (Lou et al., 2024), espe- 164

cially in scenarios requiring compositional reason- 165

ing or strict output format adherence (Chia et al., 166

2023; Wang et al., 2022; Xu et al., 2023). Although 167

instruction-tuned models demonstrate strong per- 168

formance in QA and classification, they often strug- 169

gle in tasks demanding sequence-level reasoning or 170

alignment with latent structural constraints (Peng 171

et al., 2023; Min et al., 2023). 172

Our benchmark contributes to this line of re- 173

search by providing a comparative analysis of 174

instruction-following behaviors across model fami- 175

lies—including underexplored but high-performing 176

models such as DeepSeek and Qwen—under tem- 177

porally sensitive, zero-/one-shot prompting settings. 178

While many prior studies focus on GPT-family 179

models or open-domain QA tasks (Kimura et al., 180
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2021; Chen et al., 2021; Saxena et al., 2021; Dhin-181

gra et al., 2022; Tan et al., 2023; Gupta et al., 2023;182

Jia et al., 2024; Xiong et al., 2024; Fatemi et al.,183

2024; Deroy and Maity, 2024; Su et al., 2024; Yuan184

et al., 2024; Zhang et al., 2024; Deng et al., 2024;185

Ruiz et al., 2025), recent open-source models like186

DeepSeek and Qwen—despite their strong reason-187

ing capabilities—remain underexplored in tempo-188

ral settings. Our benchmark fills this gap by provid-189

ing targeted evaluations of instruction-following190

behavior across both frontier and open models un-191

der mixed-time conditions.192

3 Benchmark Setup193

3.1 Task Overview194

We formulate temporal reasoning in nonlinear nar-195

ratives as a sentence-level event ordering task.196

Given a short passage composed of n unordered197

sentences P = {s1, s2, . . . , sn}, where each si de-198

scribes an event associated with a time expression199

ti, the model is tasked with inferring the correct200

chronological order of the events. The time expres-201

sions can be absolute (e.g., “in 1923”) or relative202

(e.g., “three years later”), or a combination of both.203

The expected output is a permutation π over204

the indices {1, ..., n} such that the reordered se-205

quence {sπ(1), sπ(2), ..., sπ(n)} respects the under-206

lying temporal timeline implied by the input. This207

task requires interpreting time expressions, resolv-208

ing references, and aligning events across possibly209

fragmented or non-chronological inputs.210

3.2 Challenges of Mixed Temporal Reasoning211

Temporal reasoning in mixed time systems intro-212

duces challenges beyond standard timeline infer-213

ence. First, relative expressions (e.g., “the follow-214

ing year”) require anchoring to implicit reference215

points, which are often unstated. Second, absolute216

and relative expressions may co-occur, requiring217

joint interpretation and temporal alignment. Third,218

varying temporal granularity—some events given219

as years, others as full dates—creates ambiguity220

in sequencing. Finally, nonlinear narratives fre-221

quently present events out of order, demanding222

global integration of dispersed time cues.223

3.3 Experimental Factors224

To systematically investigate how different aspects225

of temporal structure affect model performance,226

we design benchmark settings along the following227

dimensions:228

Mixed time expressions: introducing temporal 229

ambiguity by randomly replacing a subset of 230

absolute time expressions with relative references 231

using an LLM-based rewriting strategy. We allow 232

minor imprecision or implicit temporal 233

references—such as GPT-4 occasionally 234

grounding expressions like "this year" as 2023 235

irrespective of narrative context—as long as they 236

do not alter the overall event order. This design 237

choice reflects the inherent ambiguity in 238

mixed-time narratives and evaluates whether 239

models can still recover global chronological 240

structure under such conditions. 241

Temporal granularity: comparing passages with 242

coarse-grained (year-only) versus fine-grained 243

(month or day included) time annotations. 244

Event sequence length: varying the number of 245

events from 4 to 40 to examine how model 246

performance scales with narrative length, and 247

whether reasoning abilities degrade as the 248

temporal chain becomes longer. 249

These experimental factors enable a fine-grained 250

analysis of model sensitivity to temporal complex- 251

ity under diverse and naturalistic conditions. 252

3.4 Dataset Construction 253

We construct our dataset from Wikidata (Vrandečić 254

and Krötzsch, 2014) by extracting 15,000 historical 255

and contemporary figures born after 1900, focus- 256

ing on occupations such as scientists, historians, 257

and politicians to ensure temporal and professional 258

diversity. For each entity, we retrieve the English 259

Wikipedia page and extract time-anchored event 260

sentences using regex-based patterns. Sentences 261

are filtered for grammaticality, relevance, and valid 262

absolute dates, then chronologically sorted to form 263

gold-standard event sequences. We retain passages 264

containing 4 to 40 events to balance sequence com- 265

plexity and data coverage. 266

To simulate mixed-time narratives, we randomly 267

convert a subset of absolute expressions into rel- 268

ative or descriptive forms using GPT-4o. A con- 269

trolled prompt ensures the rewrites are semantically 270

faithful and logically consistent with surrounding 271

context. To assess the quality of these rewrites, 272

two NLP expert annotators—also co-authors of 273

this work—independently evaluate 200 randomly 274

sampled passages on three dimensions: (i) Info 275

Accuracy, (ii) Context Logic, and (iii) Natural- 276

ness. Agreement scores are high for accuracy 277

(79.5%) and contextual coherence (71.5%), while 278

naturalness exhibits moderate variance (quadratic 279
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1. Data Collection & Preprocessing

Gold Sequence
Born in 1921, ...

..., during 1938–1942.
..., in 1953.

Since 1983,...
In 1990, ...
..., in 1995.

chronological 
order

Replacement Info
    sentence No. 2: 1938–1942 -> the late 1930s to early 1940s
    sentence No. 3: 1953 -> about seven years after the founding
                                           of the People's Republic of China
    sentence No. 4: 1983 -> the early 1980s
    sentence No. 6: 1995 -> the mid-1990s

replace
AT > MT

gold 
sequence

Modified Context
Born in 1921, ...

..., during the late 1930s to early 1940s.
..., about seven years after the founding of the People's Republic 

of China.
Since the early 1980s, ...

In 1990, ...
..., in the mid-1990s.

PROMPT
Randomly 

replace absolute time 
expressions with relative 

time expressions.

2. Dataset Construction

Inter
Annotator

output
sequence order

3. Benchmark LLMs

MT

Shuffle

Wikidata Page Content
Dong Sun (simplified Chinese: 孙东; 

traditional Chinese: 孫東; born 1921) is a 
Chinese scientist.

GPT 4GPT 4

Gold Sequence

Evaluation

cleaned
data

cleaned
dataraw dataraw data

4,1,2,3
1,2,3,4
4,1,2,3
1,2,3,4

4,1,2,3
1,2,3,4
4,1,2,3
1,2,3,4

AT

Modified 
Context
Modified 
Context

Figure 1: Overview of our benchmark construction pipeline. (1) We collect and clean biographical content from
Wikidata and Wikipedia, extracting temporally anchored sentences to construct a gold-standard chronological
sequence. (2) To simulate mixed-time scenarios, we use GPT-4o to rewrite a subset of absolute time expressions
into natural relative expressions, producing both a modified context and a replacement mapping. Annotators then
evaluate the quality of rewritten passages. (3) Multiple LLMs are benchmarked on sentence-level event ordering
under both absolute-time (AT) and mixed-time (MT) settings. Models are required to output a comma-separated list
of sentence indices (e.g., 2,1,4,3) to indicate the predicted event order.

weighted Cohen’s κ = 0.19). These results con-280

firm that most rewritten expressions are reliable for281

constructing mixed-time inputs.282

The final dataset comprises 4,824 passages with283

an average of 8 events each. In the mixed-time set-284

ting, 56.7% of expressions are rewritten as relative285

forms. Distributions by event count and tempo-286

ral granularity are shown in Table 2 and Table 3.287

We also release a time expression conversion ta-288

ble (e.g., “1945” → “the end of World War II”) to289

support future work on temporal paraphrasing and290

normalization (see Appendix C).291

3.5 Benchmark Settings and Models292

We evaluate LLMs on a sentence-level tempo-293

ral ordering task. Given a passage with shuffled294

event sentences, the model must predict the correct295

chronological order as a permutation of sentence296

indices. We define two task variants:297

Absolute-Time Task (AT): Passages contain only298

absolute time expressions (e.g., “in 1945”).299

Mixed-Time Task (MT): Some absolute expres- 300

sions are rewritten as natural relative references 301

(e.g., “the end of World War II”) using a GPT-based 302

strategy. See Table 1 for the formal definition of 303

time expression types. 304

All models are evaluated using a one-shot 305

instruction-style prompt with a single illustrative 306

example. We include both closed-source and 307

open-source models spanning a range of training 308

paradigms: 309

Closed-source Frontier Models: Including 310

GPT-4, GPT-3.5, Deepseek-v3(Liu et al., 2024), 311

Deepseek-r1(Guo et al., 2025), 312

Qwen2.5-7B(Qianwen et al., 2024), and 313

QwQ-32B(Team, 2025). 314

Open-source Models: Including LLaMA3.3- 315

70B(Grattafiori et al., 2024), LLaMA2- 316

13B(Touvron et al., 2023), and Mistral-7B(Jiang 317

et al., 2023). 318

All models are tested using a consistent one- 319

shot prompt setup that includes a single illustrative 320

example and a standardized instruction format (see 321
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Expression Type Example
Absolute Time “in 1945”, “in March 2007”, “on July 20, 1969”
Relative Time “three years later”, “shortly after the war”

Event-Anchored Time “the end of World War II”, “during the Great Depression”

Table 1: Time expression types used in our benchmark. The latter two categories are treated as relative for MT
setting.

Appendix A) for details.322

Statistic Value
Total passages 4,824
Avg. events per passage 7.99
Temporal granularity — year 70.72%
Temporal granularity — month 23.46%
Temporal granularity — day 5.82%

(a) Absolute-time dataset before conversion.

Statistic Value
Total passages 4,824
Avg. relative per passage 4.53
Avg. absolute per passage 3.46
Relative time ratio (relative / all) 56.73%

(b) Mixed-time dataset after relative replacement.

Table 2: Comparison of dataset statistics before and
after the conversion from absolute-only to mixed-time
representations.

3.6 Evaluation Metrics323

We report the following evaluation metrics:324

Exact Match (EM): The percentage of outputs325

that exactly match the gold-standard permutation,326

reflecting the model’s ability to recover the global327

temporal structure of the passage. We additionally328

report the error rate, defined as 1 - EM, which329

captures the proportion of incorrect predictions.330

Kendall’s τ : Rank correlation between predicted331

and gold orders. This captures the local temporal332

consistency between event pairs.333

Pairwise Accuracy: Fraction of correctly ordered334

sentence pairs.335

We further apply:336

McNemar’s Test: For EM significance across AT337

and MT conditions.338

Wilcoxon Signed-Rank Test: For Kendall’s τ sig-339

nificance across AT and MT.340

Malformed outputs are excluded. We also ana-341

lyze EM and Kendall’s τ scores by passage length342

and model family in Section 4.343

Appendix E provides dataset visualizations, in-344

cluding event count distributions (Figure 8) and the345

Event Count
Range

Number of
Passages

Percentage

4 – 9 3,817 79.13%
10 – 14 593 12.29%
15 – 19 184 3.81%
20 – 29 133 2.76%
30 – 39 56 1.16%
≥ 40 41 0.85%

Table 3: Distribution of passages by event count inter-
vals. The majority of passages include no more than 10
events, aligning with the practical reasoning capacity
of current LLMs. Longer passages are also retained to
assess their ability to handle extended event sequences.

temporal granularity of time expressions (Figure 7). 346

4 Results and Analysis 347

We analyze model performance on sentence-level 348

event ordering under AT and MT conditions, cover- 349

ing nine models across proprietary and open-source 350

families. Evaluation uses EM, Kendall’s τ , and sig- 351

nificance testing to assess sensitivity to temporal 352

ambiguity. We further analyze model performance 353

from three key perspectives—temporal granularity, 354

event sequence length, and the presence of relative 355

time expressions—to systematically address our 356

four research questions. 357

4.1 Overall Model Performance 358

To address our first research question concerning 359

the performance of different model architectures in 360

temporal reasoning tasks, we begin by comparing 361

overall accuracy across all evaluated models. 362

Significant Performance Gaps Between
Frontier and Lightweight Models

363

The strongest overall performance is achieved 364

by QwQ-32B and DeepSeek-R1, with EM scores 365

of 0.54 and 0.52 in the AT setting, respectively, 366

and high Kendall’s τ values above 0.70. Notably, 367

both models outperform GPT-4, which achieves an 368
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Model EM (AT) EM (MT) Kendall’s τ (AT) Kendall’s τ (MT)
QwQ-32B 0.54 0.33 (↓39%) 0.73 0.53 (↓27%)
Deepseek-r1 0.52 0.32 (↓38%) 0.70 0.53 (↓24%)
Deepseek-v3 0.33 0.21 (↓36%) 0.51 0.38 (↓25%)
GPT-4 0.31 0.15 (↓52%) 0.50 0.34 (↓32%)
LLaMA3.3-70B 0.21 0.13 (↓38%) 0.40 0.30 (↓25%)
GPT-3.5 turbo 0.12 0.07 (↓42%) 0.21 0.17 (↓19%)
Qwen2.5-7B 0.07 0.05 (↓29%) 0.20 0.14 (↓30%)
LLaMA2-13B 0.01 0.01 (↓0%) 0.00 0.05 (↑–)
Mistral-7B 0.00 0.01 (↑–) 0.05 0.06 (↑20%)

Table 4: Performance comparison across models under absolute-time (AT) and mixed-time (MT) conditions.
Percentage change is calculated as: MT−AT

AT × 100%. Percentage changes from AT to MT are highlighted with color:
red for performance drops, green for gains.

EM score of 0.50 and τ below 0.70 under the same369

setting.370

High EM scores indicate strong reconstruction of371

the global event sequence, while high Kendall’s τ372

reflects consistent pairwise ordering. These results373

align with prior findings from TimeBench (Chu374

et al., 2023), where GPT-family models excelled in375

structured temporal reasoning, while smaller mod-376

els like Mistral-7B struggled with commonsense377

and relative time. This supports our observation378

that frontier models better preserve both global and379

local temporal structure. Table 4 reports EM and380

Kendall’s τ under AT and MT settings, along with381

relative performance drops to assess robustness un-382

der temporal ambiguity.383

Deeper Reasoning Comes at the Cost of
Instruction Following

384

While both the Qwen and Deepseek model fami-385

lies achieve superior performance in temporal rea-386

soning tasks compared to other models, we ob-387

serve a notable divergence in output format adher-388

ence within each family. As shown in Figure 2,389

the stronger reasoning variants—QwQ-32B and390

Deepseek-r1—exhibit significantly higher rates of391

invalid format outputs than their smaller counter-392

parts. This pattern is consistent with findings from393

instruction-following literature(Lou et al., 2024),394

which highlight that larger models, despite superior395

reasoning abilities, are more likely to deviate from396

strict output constraints—particularly in settings397

without strongly grounded demonstrations. An il-398

lustrative example of such a violation is provided399

in Appendix F.1.400
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Qwen & QwQ
Setting
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MT

Deepseek-v3 Deepseek-r1
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4.2

Deepseek-r1 & v3

Figure 2: Invalid output rate (%) for Qwen and
DeepSeek models under AT and MT. DeepSeek-r1
shows notably higher error rates, especially in MT, indi-
cating reduced stability when processing relative time
inputs.

These results reveal a trade-off between deep 401

reasoning and strict instruction adherence. As mod- 402

els develop more complex inference capabilities, 403

they may favor semantic interpretation over rigid 404

output formatting, particularly under ambiguous 405

prompts. This tension between interpretive depth 406

and structural control is further evidenced by in- 407

creased format violations, detailed in Appendix F.1. 408

4.2 Temporal Granularity Analysis 409

To address part of our second research question 410

regarding the effect of temporal granularity on rea- 411

soning performance, we analyze how the granular- 412

ity of time expressions influences model accuracy 413

under both AT and MT conditions. Passages are 414

grouped into two levels: those with only year-level 415

expressions (coarse-grained) and those that include 416

month or day annotations (fine-grained). 417

Fine-grained timestamps lead to more sta-
ble reasoning

418
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Models perform more robustly on fine-grained419

passages, where temporal cues are more precise.420

These timestamps help disambiguate events that421

occur in the same year but at different times, en-422

abling better alignment and control over sentence423

reordering.424

To quantify this effect, we compare error rates425

between AT and MT across both granularity lev-426

els. As shown in Figure 10, the performance gap427

between AT and MT is consistently larger under428

coarse-grained inputs. For example, GPT-4 and429

QwQ-32B both show over 25% error rate increase430

when relative time replaces coarse absolute times-431

tamps.432

Stronger Models Within Families Are
More Affected by Coarse-Grained Time
Inputs

433

All models show performance degradation when434

temporal inputs are coarsened from day/month435

to year-level granularity. Notably, the strongest436

models—QwQ-32B and DeepSeek-r1—exhibit437

the largest MT–AT error increases under coarse-438

grained conditions (Figure 3), suggesting a reliance439

on fine-grained temporal cues. As specificity de-440

clines, these models may resort to overgeneralized441

reasoning, increasing deviation from the gold stan-442

dard. This aligns with Yang et al.(Yang et al.,443

2024), who show that temporally aware embed-444

dings enhance reasoning but amplify sensitivity to445

time granularity. In contrast, weaker models appear446

less affected, likely due to simpler, more conser-447

vative reasoning. Detailed results are in Appendix448

F.2.449

Relative time expressions are less harmful
when granularity is high

450

The negative impact of switching to relative time451

is most severe under vague or underspecified tem-452

poral conditions. When time granularity is higher,453

relative expressions carry more specific temporal454

meaning—mitigating ambiguity and supporting455

more stable reasoning.456

These findings highlight the interaction between457

surface-level time granularity and deeper temporal458

reasoning ability. Improving model robustness to459

coarse-grained relative time may require explicit460

training on relational semantics and underspecified461

narratives.462

Qwen2.5-7B QwQ-32B
0.00

0.05

0.10

0.15

0.20
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0.30

M
T 
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T 
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r R
at

e

0.01

0.19

0.04

0.26

Qwen & QwQ
Time Granularity
Fine-grained
Coarse-grained

Deepseek-v3 Deepseek-r1

0.10

0.180.18

0.24

Deepseek-r1 & v3

Figure 3: MT-AT error rate increase under different time
granularities for Qwen and DeepSeek models. Both
show greater degradation with coarse-grained inputs,
with QwQ-32B and DeepSeek-r1 most affected, sug-
gesting reduced robustness to underspecified temporal
cues.

4.3 Event Sequence Length Analysis 463

To address our third research question regarding 464

the interaction between time type and reasoning 465

complexity, we now examine how event sequence 466

length influences temporal reasoning performance. 467

Longer sequences sharply degrade model
performance

468

Figure 4 visualizes error rates for all evaluated 469

models under both the AT and MT settings. We 470

observe a clear trend: as the number of events rises, 471

nearly all models experience a steady and often 472

steep increase in error rate. 473

Most models begin with reasonably low error 474

rates (e.g., 0.2–0.4) on short passages (4–6 events), 475

particularly under the AT setting. However, accu- 476

racy degrades quickly, and by 12 events, even the 477

best-performing models (e.g., GPT-4, Deepseek- 478

R1, Qwen-32B) approach near-complete failure in 479

the MT setting. 480

Relative time increases vulnerability to
sequence length

481

The contrast between AT and MT is particularly 482

striking: while AT error rates often increase more 483

gradually, MT error rates rise faster and reach 1.0 484

earlier. This pattern reveals that relative time rea- 485

soning is disproportionately affected by sequence 486

length—likely because models must track more im- 487

plied temporal links without the support of explicit 488

anchors. 489

Among all models, Qwen-32B and DeepSeek- 490

R1 stand out for maintaining lower MT error rates 491

in the 4–8 event range, while others such as Mistral 492

and LLaMA variants fail almost immediately. The 493
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4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Event Number

QwQ-32B

Deepseek-r1

Gpt4

Deepseek-v3

LLaMA3.3-70B

Gpt3.5-turbo

Qwen2.5-7B

LLaMA2-13B

Mistral-7B

0.21 0.29 0.42 0.48 0.54 0.64 0.68 0.77 0.88 0.85 0.94 0.92 0.94 0.91 1.00 1.00 1.00

0.23 0.32 0.45 0.51 0.60 0.67 0.69 0.79 0.81 0.84 0.90 0.94 0.94 0.91 0.96 0.96 1.00

0.43 0.55 0.73 0.73 0.82 0.91 0.94 0.99 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.39 0.52 0.67 0.77 0.79 0.91 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.52 0.64 0.87 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.70 0.83 0.92 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.77 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) AT Error Rates by Model and Event Number

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Event Number

QwQ-32B

Deepseek-r1

Gpt4

Deepseek-v3

LLaMA3.3-70B

Gpt3.5-turbo

Qwen2.5-7B

LLaMA2-13B

Mistral-7B

0.41 0.54 0.67 0.76 0.81 0.89 0.92 0.90 0.95 0.96 0.99 0.98 1.00 1.00 1.00 1.00 1.00

0.44 0.58 0.68 0.75 0.80 0.86 0.91 0.95 0.98 0.98 0.99 1.00 0.98 1.00 1.00 1.00 1.00

0.56 0.72 0.84 0.90 0.89 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.57 0.70 0.81 0.89 0.91 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.68 0.83 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.80 0.91 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.83 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5

0.6

0.7

0.8

0.9

1.0

(b) MT Error Rates by Model and Event Number

Figure 4: Comparison of AT and MT error rates across different models and event numbers. Error rate is defined as
1 - Exact Match (EM), representing the proportion of outputs that fail to exactly match the gold permutation.

robustness of these models may stem from better494

generalization over temporal language, or implicit495

pretraining biases favoring temporal coherence.496

By 15–20 events, nearly all models saturate at497

an error rate of 1.0 in both AT and MT conditions.498

These results indicate that existing models struggle499

to maintain coherence in long event chains, and500

relative-time reasoning becomes brittle under in-501

creased temporal complexity.502

4.4 Absolute vs. Mixed Time Comparison503

To directly address our last research question, we504

compare model performance between passages505

with AT and MT.506

Mixed-Time Settings Introduce Substan-
tial Difficulty

507

All models exhibit performance drops under the508

MT setting, though the magnitude varies. GPT-4509

and GPT-3.5 Turbo experience steep EM reduc-510

tions of over 50%, suggesting a strong reliance on511

explicit absolute-time cues. In contrast, frontier512

models like QwQ-32B and Deep see k-R1 show513

more graceful degradation, with EM drops around514

20%, and Kendall’s τ remaining above 0.50.515

Reliance on explicit timestamps amplifies
degradation

516

Models like GPT-4 perform well under AT con-517

ditions but degrade sharply in MT, suggesting518

strong reliance on explicit date cues. In contrast,519

DeepSeek-R1 and QwQ maintain more stable per-520

formance, indicating better generalization to natu-521

ral temporal variation. As shown in Table 4, color-522

coded drops in EM and Kendall’s τ highlight that523

smaller models (e.g., Mistral, LLaMA2-13B) not524

only perform poorly overall, but also show mini- 525

mal AT–MT difference—suggesting weak tempo- 526

ral sensitivity. These findings underscore the need 527

to evaluate LLMs under both controlled and realis- 528

tic temporal settings to fully assess their reasoning 529

capabilities. 530

5 Conclusion 531

In this work, we present a novel benchmark for 532

evaluating LLMs’ temporal reasoning in complex 533

narratives that combine absolute and relative time 534

expressions across varied granularities. Unlike 535

prior datasets limited to a single time type or sim- 536

plified task settings, our sentence-level benchmark 537

captures the hybrid temporal structures found in 538

real-world biographies. 539

Through extensive analysis across time condi- 540

tions, granularity levels, and sequence lengths, we 541

find that even the strongest models (e.g., QwQ-32B, 542

DeepSeek-R1) struggle to maintain temporal co- 543

herence under mixed-time settings—particularly 544

with coarse-grained or long-range dependencies. 545

These results highlight LLMs’ reliance on surface- 546

level cues and their limited capacity for relational 547

temporal reasoning. 548

To support broader research on temporal mod- 549

eling, we additionally release a large-scale con- 550

version table of aligned absolute-to-relative time 551

expressions—a novel resource for studying time 552

normalization and contextual rewriting. 553

We hope our benchmark and accompanying re- 554

sources encourage future work on time-aware in- 555

ference, instruction-following under temporal am- 556

biguity, and constraint-driven model alignment. 557

Future work will aim to improve model gener- 558

alization in relative time settings and enhance in- 559

struction adherence through better prompting and 560

constraint-aware training. 561
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Limitations562

While our benchmark offers a robust platform for563

evaluating temporal reasoning in LLMs, several564

limitations remain.565

First, the dataset is built from Wikipedia-style566

biographies, which—though rich in timestamped567

events—do not cover all narrative types. Domains568

such as scientific writing or fiction may exhibit569

different temporal patterns.570

Second, we adopt a sentence-level event abstrac-571

tion, omitting finer discourse phenomena like si-572

multaneity or intra-sentential shifts. Time expres-573

sions are automatically extracted and occasionally574

noisy, which may affect alignment.575

Third, relative expressions are generated via576

GPT-4o rewrites. While this improves lexical di-577

versity, it introduces ambiguity—e.g., “2004” may578

become “the following year,” requiring prior con-579

text. Annotators observed occasional grounding580

errors (e.g., “this year” interpreted as 2023), but581

such cases are accepted if event order is preserved.582

Fourth, our evaluation focuses on global metrics583

(EM, Kendall’s τ ), which may overlook partial cor-584

rectness in passages with underspecified temporal585

cues.586

Fifth, we evaluate models under zero- and one-587

shot prompting only, without fine-tuning or ar-588

chitectural changes (e.g., temporal embeddings),589

which may further improve performance.590

We also observe frequent instruction-following591

failures in open-source models. Despite format592

constraints, models like Mistral-7B often produce593

verbose outputs. One-shot prompting improves594

compliance, but we do not compare prompting595

strategies systematically due to budget constraints.596

Finally, performance collapses on very long pas-597

sages (e.g., >30 events), likely due to compounded598

reasoning and context-length challenges. These599

cases are excluded from analysis and underscore600

the need for better long-context temporal reason-601

ing.602
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Time Replacement Prompt

You are a time conversion assistant. Your task is to
replace exactly {num_to_keep} absolute time expres-
sions with relative time expressions.

• Absolute time refers to any date in year, month-
year, or full-date format.

• Retain {num_to_keep} absolute times, convert
the rest into natural relative references.

• Avoid repeating the same phrasing.

• Do not simply compute or state time differences.

Return:

• Modified Context: the rewritten passage.

• Replacement Information: lines showing origi-
nal → relative expressions.

762

(2) Event Ordering Prompt (Benchmark)763

One-Shot Benchmark Prompt

The following is a set of shuffled sentences. Please
infer the correct order and return the sentence order
as a sequence of numbers.

Instructions: - Only return a comma-separated
sequence of numbers.
- Do not include any explanations, additional text, or
line breaks.
- The sequence should reflect the correct order of the
given sentences.

Example:
Input:
1. The sun rises in the east.
2. It is early morning.
3. The birds are singing.
Correct output:
2,1,3
Now, process the following sentences:
{context}
Please output only the sequence of numbers.

764

B Example of Relative Time Conversion765

Below are three representative examples showing766

how absolute time expressions are converted into767

relative expressions using our prompt-based gener-768

ation pipeline.769

We acknowledge that certain time replacements770

(e.g., replacing “2015” with “a few years after join-771

ing MIT”) may introduce implicit event dependen-772

cies, such as the need to infer the timing of the773

prior event (i.e., joining MIT). However, our task774

primarily evaluates whether models can recover the775

correct chronological order of events rather than776

verifying precise temporal anchoring of each indi- 777

vidual expression. 778

Therefore, as long as the replacement does not 779

alter the relative order of events in the passage, such 780

substitutions are considered acceptable within our 781

task framework. These more ambiguous or indirect 782

expressions are intentionally included to simulate 783

the diversity and complexity of naturally occurring 784

narratives with mixed temporal expressions. 785

Example 1 786

Original Passage (Gold Sequence)

(1) His father, Babalyk, born in 1860, was
the only child in the family.
(2) He studied at a Kazakh school, then in
the Tatar language school, then in 1941–
1943 he graduated from the gymnasium in
the city of Tacheng.
(3) In 1943–1947, while studying at the uni-
versity in Ürümqi, he was arrested for na-
tionalist actions and imprisoned.
(4) After the founding of the Communist
State, he became governor of Ili Kazakh
Autonomous Prefecture in June 1955, and
held that office until 1958.

787

Converted Passage (Mixed Time Expres-
sions)

(1) His father, Babalyk, born in 1860, was
the only child in the family.
(2) He studied at a Kazakh school, then in
the Tatar language school, then during the
early 1940s he graduated from the gymna-
sium in the city of Tacheng.
(3) Around the mid-1940s, while studying
at the university in Ürümqi, he was arrested
for nationalist actions and imprisoned.
(4) After the founding of the Communist
State, he became governor of Ili Kazakh
Autonomous Prefecture in June 1955, and
held that office until 1958.

788

Replacement Mapping

1. Sentence 2: 1941–1943 → during the
early 1940s
2. Sentence 3: 1943–1947 → around the
mid-1940s

789
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Example 2790

Original Passage (Gold Sequence)

(1) Zaharia was a gold medalist at the In-
ternational Collegiate Programming Con-
test, where his team University of Waterloo
placed fourth in the world and first in North
America in 2005.
(2) While at University of California, Berke-
ley’s AMPLab in 2009, he created Apache
Spark as a faster alternative to MapReduce.
(3) In 2013 Zaharia was one of the co-
founders of Databricks where he is chief
technology officer.
(4) He joined the faculty of MIT in 2015,
and then became an assistant professor of
computer science at Stanford University in
2016.
(5) In 2019 he was spearheading MLflow at
Databricks, while still teaching.

791

Converted Passage (Mixed Time Expres-
sions)

(1) Zaharia was a gold medalist at the In-
ternational Collegiate Programming Con-
test, where his team University of Waterloo
placed fourth in the world and first in North
America in 2005.
(2) While at University of California, Berke-
ley’s AMPLab several years later, he cre-
ated Apache Spark as a faster alternative to
MapReduce.
(3) In 2013 Zaharia was one of the co-
founders of Databricks where he is chief
technology officer.
(4) A few years after joining MIT, he
became an assistant professor of computer
science at Stanford University in 2016.
(5) In 2019 he was spearheading MLflow at
Databricks, while still teaching.

792

Replacement Mapping

1. Sentence 2: 2009→ several years later
2. Sentence 4: 2015 → a few years after
joining MIT

793

Example 3 794

Original Passage (Gold Sequence)

(1) In 1937, Schulze moved to Peenemünde
Army Research Center; in 1939, he was
appointed chief of the Propulsion Unit, a
position he held until 1945.
(2) Classified as wards of the state, the seven
men landed at Fort Strong on September
29, 1945; all but von Braun, Schulze in-
cluded, were then transferred to Aberdeen
Proving Ground to translate and catalog 14
tons of V-2 documents taken from Germany.
(3) By 1946, Schulze was among the Oper-
ation Paperclip scientists employed at Fort
Bliss.
(4) He moved to Alabama, where he was
naturalized in Birmingham on November
11, 1954.

795

Converted Passage (Mixed Time Expres-
sions)

(1) In 1937, Schulze moved to Peenemünde
Army Research Center; in 1939, he was
appointed chief of the Propulsion Unit, a
position he held until the end of World
War II.
(2) Classified as wards of the state, the seven
men landed at Fort Strong during the late
1940s; all but von Braun, Schulze included,
were then transferred to Aberdeen Proving
Ground to translate and catalog 14 tons of
V-2 documents taken from Germany.
(3) By the year after World War II ended,
Schulze was among the Operation Paperclip
scientists employed at Fort Bliss.
(4) He moved to Alabama, where he was
naturalized in Birmingham on November
11, 1954.

796

Replacement Mapping

1. Sentence 1: 1945 → the end of World
War II
2. Sentence 2: September 29, 1945 →
during the late 1940s

797

C Time Expression Conversion Table 798

To support future research on temporal rewriting 799

and normalization, we release a conversion table 800
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that records all absolute-to-relative time expression801

rewrites applied during the construction of the our802

dataset. Each entry in the table represents a sin-803

gle replacement performed by GPT-4o during the804

mixed-time generation process.805

Table 5 presents representative examples. The806

rewrites range from grounded historical interpreta-807

tions (e.g., “1945” → “the end of World War II”) to808

relative references that depend on the surrounding809

narrative timeline (e.g., “2004” → “the following810

year”).811

Original Time Rewritten Time

1970 early 1970s
1979 late 1970s
2000 the turn of the millennium
2004 the following year
1967 several decades ago
1976 a little over four decades ago
1993 Approximately three decades back
2009 Fourteen years ago
2012 eight years ago
1948 a little over 75 years ago
1949 about 74 years back
1951 early 1950s
1956 approximately mid-1950s
1989 the last decade of the 1980s

October 2, 2003 early October 2003
January 23, 2004 late January 2004
January 23, 2004 Soon after
January 28, 2004 at the end of January 2004
February 1, 2004 shortly after

Table 5: Sample entries from the time expression conver-
sion table, covering grounded historical, approximate,
and relative rewrites.

We caution that not all rewritten expressions are812

context-independent. While some rewrites refer to813

widely understood historical periods (e.g., “1945”814

→ “the end of World War II”), others depend on the815

internal narrative timeline. For example, “2004” is816

sometimes rewritten as “the following year”, which817

is contextually appropriate only if the previous sen-818

tence refers to “2003”. Such replacements, though819

semantically coherent in context, may not be suit-820

able for standalone use.821

Moreover, during our double-annotation process822

(see Section 3.4 and Section D for details), we823

adopt a practical criterion: a rewritten time expres-824

sion is considered valid as long as it preserves the825

overall temporal order of the passage, even if the826

substitution is not lexically precise. This design827

choice reflects our focus on evaluating temporal rea-828

soning rather than surface-level rewriting fidelity.829

We therefore encourage users to consult the con-830

text when applying this conversion table in down-831

stream tasks such as generation, normalization, or 832

rule extraction. The conversion table is best viewed 833

as a supporting resource rather than a standalone 834

ground truth. 835

D Annotation Protocol and Analysis 836

To evaluate the quality of GPT-generated relative 837

time expressions, we conducted a double annota- 838

tion study on 200 sampled passages. Each annota- 839

tor was presented with the original passage (Gold 840

Sequence), the GPT-modified passage (Gpt Mod- 841

ified Context), and a detailed list of substitutions 842

(Replacement Info). 843

Although some relative expressions are not ex- 844

act translations of the original absolute timestamps, 845

we consider the replacement acceptable as long 846

as the temporal sequence of events remains un- 847

affected. This evaluation criterion was reflected 848

in the annotation guidelines for the “Info Accu- 849

racy” dimension. This decision aligns with our task 850

definition, where the primary goal is to evaluate 851

models’ ability to reconstruct the correct temporal 852

order, rather than the surface accuracy of individual 853

time expressions. 854

For each passage, annotators were instructed to 855

evaluate the following three dimensions: 856

1. Info Accuracy (Y/N): Whether the relative 857

expression generated by GPT-4 accurately re- 858

flects the semantics of the original absolute 859

timestamp. 860

• Y: The relative time correctly corre- 861

sponds to the absolute time and aligns 862

with the provided substitution info. 863

• N: The expression is semantically incor- 864

rect, overly vague, or omits critical tem- 865

poral details. 866

2. Context Logic (Y/N): Whether the modified 867

relative expression fits logically and tempo- 868

rally within the surrounding passage. 869

• Y: The expression is coherent in context 870

and does not break the narrative or event 871

sequence. 872

• N: The expression introduces chronolog- 873

ical contradictions or disrupts temporal 874

flow. 875

3. Naturalness Score (1–5): Fluency and read- 876

ability of the modified sentence, regardless of 877

correctness. 878
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Field Example Annotation

Original Passage In March 2007 she was elected to the fellowship of the Royal Society of Edinburgh.
In 2018 she was appointed Head of the School of Informatics at Edinburgh, taking over
from Johanna Moore, until succeeded by Helen Hastie in 2023.
In 2018, Hillston was elected the membership of the Academia Europaea.
Hillston was elected a Fellow of the Royal Society in May 2022.
Since January 1st 2023 Hillston has been Editor-in-Chief of Proceedings of the Royal
Society A (the first female Editor-in-Chief in the journal’s history).

Rewritten Passage In March 2007 she was elected to the fellowship of the Royal Society of Edinburgh.
In 2018 she was appointed Head of the School of Informatics at Edinburgh, taking over
from Johanna Moore, until succeeded by Helen Hastie this year.
In 2018, Hillston was elected the membership of the Academia Europaea.
Hillston was elected a Fellow of the Royal Society in May of last year.
Since January 1st 2023 Hillston has been Editor-in-Chief of Proceedings of the Royal
Society A (the first female Editor-in-Chief in the journal’s history).

Replacement Mapping Sentence 2: 2023 → this year
Sentence 4: May 2022 → May of last year

Accuracy(Y/N) Y
Coherence(Y/N) N
Naturalness Score(1-5) 3
Error Type InfoLoss
Free-form Comment The current year is assumed to be 2023, causing a disruption in contextual

coherence.

Table 6: Full annotation example including rewritten passage and free-form comment.

• 5: Fully natural and indistinguishable879

from human-written text.880

• 4: Mostly fluent with only minor disflu-881

ency.882

• 3: Somewhat awkward but understand-883

able.884

• 2: Clearly unnatural with evident phras-885

ing issues.886

• 1: Machine-like and syntactically poor.887

Annotators were also encouraged to optionally888

tag common issues using a predefined label set:889

• infoless: Key temporal information is miss-890

ing.891

• vague: Time span is ambiguous (e.g., “many892

years later”).893

• inconsistent: Logical contradiction in894

event ordering.895

• HardUnderstand: Converted sentence is se-896

mantically unclear.897

• Other: Additional problems not captured by898

the above categories.899

To ensure consistency, annotators jointly re- 900

viewed 5–10 initial examples and were encouraged 901

to leave free-form comments for both high-quality 902

and problematic samples. The estimated annotation 903

time per passage ranged from 1–3 minutes. 904

Here, “free-form” refers to an open comment 905

field in the annotation interface, where annotators 906

could optionally write their reflections on the qual- 907

ity of time expression rewriting, such as natural- 908

ness, contextual alignment, or specific GPT-related 909

issues. 910
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Figure 5: Absolute counts of issue types labeled by
Annotator A and Annotator B.
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Annotation Results and Agreement911

Figure 6 summarizes inter-annotator agreement pat-912

terns. For naturalness, Annotator 1 was generally913

more lenient, assigning the highest score (5) in 126914

instances, while Annotator 2 gave more conserva-915

tive, mid-range ratings. For binary categories, most916

passages received consistent “Y-Y” judgments, al-917

though moderate disagreement (e.g., “Y-N”) re-918

mained, particularly in Contextual Coherence.919

Overall, raw agreement reached 79.5% for Re-920

placement Accuracy and 71.5% for Contextual Co-921

herence. For naturalness, the quadratic-weighted922

Cohen’s κ score was 0.19, indicating moderate923

agreement and highlighting the inherent subjec-924

tivity in fluency assessment.925

These results confirm that the majority of GPT-926

generated relative time expressions are accurate,927

contextually appropriate, and linguistically natural928

to human readers. Despite some disagreements, the929

double-annotation protocol validates the reliability930

of our rewriting strategy and supports its use in931

constructing temporally ambiguous test sets for932

evaluating LLMs.
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(a) Binary agreement (Y/N)
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(b) Naturalness score distribution

Figure 6: Annotation agreement patterns across evalua-
tion dimensions.

933

Error Type Distribution 934

To better understand annotator preferences and ten- 935

dencies in error labeling, we compare the absolute 936

count of common issue types annotated by each 937

annotator. As shown in Figure 5, Annotator A 938

overwhelmingly labeled vague expressions (62 in- 939

stances), while Annotator B distributed their anno- 940

tations more evenly across multiple categories. 941

Specifically, Annotator B marked 27 instances 942

each of InfoLoss and Incosistent, as well as 18 943

instances of HardUnderstand, compared to Anno- 944

tator A’s respective counts of 6, 11, and 1. These 945

differences suggest that Annotator A is particularly 946

sensitive to ambiguity and imprecision in temporal 947

phrasing, whereas Annotator B applies stricter stan- 948

dards in identifying information loss and logical 949

inconsistency. 950

Despite these differences in emphasis, both anno- 951

tators consistently identified problematic passages, 952

reinforcing the value of error-type labels in guiding 953

future improvements. The complementary nature 954

of these annotation styles also offers useful insights 955

into the diverse aspects of failure in GPT-based 956

time rewriting. 957

Due to limited computational budget, we did 958

not conduct adjudication to resolve annotation dis- 959

agreements, which may leave some borderline 960

cases open to interpretation.

Figure 7: Distribution of temporal granularity among
all absolute time expressions.

961

E Dataset Distribution Visualizations 962

To better illustrate the internal structure of our 963

dataset, we present a set of visualizations that high- 964

light the distribution of event counts and temporal 965

granularity across all passages. 966
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(a) Histogram of passages by event count. Most passages
contain fewer than 10 events.

(b) Proportional breakdown by event count range.

Figure 8: Event count distribution across passages in
the dataset.

Figure 7 shows the distribution of temporal gran-967

ularity for all absolute time expressions in the968

dataset. The majority (70.7%) of expressions spec-969

ify only the year (e.g., “in 1987”), while 23.5% in-970

clude both year and month (e.g., “July 1987”), and971

only 5.8% provide a full date (e.g., “July 15, 1987”).972

This skew toward coarse-grained time references973

reflects common patterns in Wikipedia-style bio-974

graphical writing and suggests that many temporal975

relations must be inferred from sparse cues.976

Figure 8 presents the distribution of event counts977

across passages. Figure 8a displays a histogram978

showing that most passages contain fewer than 10979

events, with a peak in the 4–9 range. Figure 8b980

provides a proportional breakdown, confirming that981

79.1% of passages fall into the 4–9 event range.982

Passages with more than 20 events are relatively983

rare, accounting for less than 5% of the dataset.984

This distribution suggests that the dataset is cen-985

tered around passages with fewer than 10 events,986

maintaining a manageable level of complexity for987

most temporal reasoning tasks. At the same time, a988

small number of long-sequence passages (with 20989

or more events) are included to support long-tail 990

evaluation and stress-test models under extended 991

temporal contexts. 992

F All model result 993

F.1 Format Violation Analysis 994

We first provide a representative example of a for- 995

mat violation. As shown in the box below, instead 996

of returning a comma-separated list of sentence 997

indices as instructed, the model outputs a verbose 998

sequence of full event descriptions. This behavior 999

constitutes a clear deviation from the expected for- 1000

mat and illustrates a common failure mode among 1001

instruction-sensitive models. Such violations not 1002

only complicate automated evaluation but also in- 1003

dicate potential weaknesses in instruction compre- 1004

hension, particularly when temporal reasoning is 1005

embedded in ambiguous inputs. 1006

Example of Invalid Output Format

Gold Order: [5,4,1,3,2]
Expected Format: A comma-separated list
of indices, e.g., 5,2,1,4,3
Model Output:

1970, She was established what
was for nearly a decade the only
protein crystallography labora-
tory in Israel., In 1970, Her par-
ents ... Then, from 1979 to 1984
she was a group leader ... On
Saturday, 18 October 2014, Pro-
fessor Yonath ... She was visit-
ing professor at the University of
Chicago ...

Violation Type: Verbose explanation
instead of index list

1007

Figure 9 shows format violation rates under AT 1008

and MT settings. Violations include missing in- 1009

dices, extraneous text, or malformed outputs. 1010

While most models perform well (violation 1011

<1%), Mistral-7B (51.3% AT, 34.0% MT) and 1012

LLaMA2-13B (14.7% AT, 12.7% MT) show 1013

significant instability. In contrast, models like 1014

Qwen2.5-7B, Deepseek-v3, and GPT-3.5-turbo 1015

maintain consistently low violation rates. 1016

MT settings generally increase format errors, 1017

highlighting the destabilizing effect of relative 1018

expressions on instruction-following. Notably, 1019
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Figure 9: Prompt format violation rates across models
in both AT and MT settings.
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Figure 10: EM error rate increase (MT - AT) across time
granularity levels. Coarse-grained (year-only) passages
lead to stronger degradation under mixed-time input,
especially for models like Deepseek-r1 and Qwen-32B.

Mistral-7B and LLaMA2-13B often generate ver-1020

bose explanations instead of plain index lists.1021

These findings suggest that instruction adher-1022

ence is not solely determined by model size or1023

reasoning ability, and remains fragile under am-1024

biguous temporal input.1025

F.2 Granularity Analysis1026

Figure 10 reveals that when only year-level times-1027

tamps are present, models rely heavily on numer-1028

ical comparison (e.g., 1995 vs. 2000) under AT.1029

Once these cues are replaced with vague relative1030

phrases like “a few years later,” performance de-1031

grades sharply. The absence of fine-grained res-1032

olution compounds the difficulty of interpreting1033

relative time.1034

Interestingly, under fine-grained conditions, the1035

performance gap between AT and MT narrows.1036

While absolute timestamps are more complex (e.g.,1037

full dates), the corresponding relative phrases (e.g.,1038

“early that year,” “a few months earlier”) are of-1039

ten more informative. These naturalistic expres-1040

sions provide additional linguistic cues that par-1041

tially compensate for the loss of exact time, helping 1042

models maintain ordering accuracy. 1043

G Full Error Rate Curves Across Event 1044

Numbers 1045

Figure 11 provide a comprehensive view of model 1046

scalability when handling increasing event chains. 1047

While the main text focuses on results with up 1048

to 15 events (where most meaningful distinctions 1049

occur), we include these extended plots to show 1050

that beyond this point, most models saturate to 1051

an error rate of 1.0, suggesting a consistent upper 1052

bound on current models’ capacity for temporal 1053

reasoning in complex narratives.
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(a) Error Rate (AT) vs. Event Number for all evaluated models.
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(b) Error Rate (MT) vs. Event Number for all evaluated
models.

Figure 11: Full error rate trends under AT and MT;
most models saturate at 1.0 beyond 15 events, indicating
scalability limits.

1054
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