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Abstract

Neural networks often learn simple explanations that fit the majority of the data1

while memorizing exceptions that deviate from these explanations. This leads to2

poor generalization when the learned explanations are spurious. In this work, we3

formalize the interplay between memorization and generalization, showing that4

spurious correlations, when combined with memorization, can reduce the training5

loss to zero, leaving no incentive to learn robust, generalizable patterns. To address6

this issue, we introduce memorization-aware training (MAT). MAT leverages the7

flip side of memorization by using held-out predictions to adjust a model’s logits,8

guiding it towards learning robust patterns that remain invariant from training to9

test, thereby enhancing generalization under distribution shifts.10

1 Introduction11

Neural networks can learn simple explanations that work for the majority of their training data12

(Geirhos et al., 2020; Shah et al., 2020; Dherin et al., 2022). These models might then treat minority13

examples—those that do not conform to the learned explanation—as exceptions (Zhang et al., 2021).14

This becomes particularly problematic if the learned explanation is spurious, meaning it does not15

hold in general or is not representative of the true data distribution (Idrissi et al., 2022; Sagawa et al.,16

2020; Pezeshki et al., 2021; Puli et al., 2023).17

Empirical Risk Minimization (ERM), the standard learning algorithm for neural networks, can18

exacerbate this issue. ERM enables neural networks to quickly capture spurious correlations and,19

with sufficient capacity, memorize the remaining examples rather than learning the true patterns that20

explain the entire dataset. This could be dangerously misleading, as a model that appears to excel in21

most cases may have actually captured a spurious correlation. Combined with memorization of the22

remaining minority examples, a neural network can fully mask its failure to grasp the true patterns23

in the data, giving a false sense of reliability and robustness.24

Identifying whether a model with nearly perfect accuracy on the training data has learned generalizable25

patterns or merely relies on a mix of spurious correlations and memorization is critical. The answer26

lies in the model’s performance on held-out data, particularly on minority examples. Metrics such as27

held-out average accuracy or more fine-grained group accuracies can help us identify a better model.28

A question that arises is: How can one use held-out performance signals to proactively guide a model29

toward learning generalizable patterns?30

Traditionally, held-out performance signals are primarily used for hyperparameter tuning and model31

selection. However, in this work, we propose a novel approach that leverages these signals more strate-32

gically to guide the learning process. But we first need to precisely understand when memorization33

can hinder generalization. Towards this goal, our paper makes the following contributions:34
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• Formalizing the interplay between memorization and spurious correlations: We study how35

memorization affects generalization in an interpretable setup, revealing that spurious correlations36

alone do not cause poor generalization in neural networks. Instead, it is the combination of37

spurious correlations with memorization that leads to this problem. Our analysis shows that models38

trained with ERM tend to rely on spurious features for the majority of the data while memorizing39

exceptions, achieving zero training loss but failing to generalize on minority examples.40

• Introducing memorization-aware training (MAT): MAT is a novel learning algorithm that leverages41

the flip side of memorization by using held-out predictions to adjust a model’s logits during42

training. This adjustment guides the model toward learning invariant features that generalize43

better under distribution shifts. Unlike ERM, which relies on the i.i.d. assumption, MAT is built44

upon an alternative assumption that takes into account the instability of spurious correlations45

across different data distributions.46

The main body of the paper examines our first contribution: the link between memorization and47

generalization, showing how their interaction impacts a model’s ability to learn robust patterns versus48

spurious correlations through controlled experiments. For more on this interaction in other tasks, such49

as regression, and how memorization-aware training (MAT), our second contribution, can improve50

generalization, see the appendix (Sections C and A). For related work, refer to Section D.51

2 The Interplay between Memorization and Spurious Correlations in ERM52

Problem Setup and Preliminaries. We consider a standard supervised learning setup for a K-class53

classification problem. The data consists of input-label pairs (x, y), where x is the input vector and54

y ∈ {1, . . . ,K} is the class label. Let p(y | x) denote the training data distribution and let a denote55

any attribute or combination of attributes within x that may or may not be relevant for predicting the56

target y.57

The objective is to learn a model p̂(y | x) that accurately estimates p(y | x). Given input x, let58

f(x;w) ∈ RK be the output logits of a model, where each fk(x;w) represents the logit for class k.59

The estimated conditional probability p̂(y = k | x;w) is computed using a softmax function with60

temperature τ > 0:61

p̂tr(y = k | x;w) =
exp(fk(x;w)/τ)∑K
j=1 exp(fj(x;w)/τ)

.

In order to generalize well under the i.i.d. assumption that p(y,x) is invariant between training62

and test sets, empirical risk minimization (ERM) seeks to minimize the following regularized cross-63

entropy loss over a training dataset Dtr = {(xi, yi)}ni=1:64

LERM =
1

n

n∑
i=1

l(yi, p̂
tr(y | xi;w)) +

λ

2
||w||2,

where l(yi, p̂
tr(y | xi;w)) = −

∑K
k=1 I(yi = k) log p̂tr(y = k | xi;w) is the cross-entropy loss, and65

λ
2 ||w||2 is weight-decay regularization.66

In cases where there is a distribution shift between training and test, in the presence of spurious67

correlations, the i.i.d. assumption breaks down, and when combined with memorization, ERM can68

result in poor generalization. We study such scenario in the following section.69

Memorization Can Exacerbate Spurious Correlations Adapting the frameworks introduced in70

Sagawa et al. (2020) and Puli et al. (2023), we now study the interplay between memorization and71

spurious correlations in an interpretable setup.72

Setup 2.1 (Spurious correlations and memorization). Consider a binary classification problem with73

labels y ∈ {−1,+1} and an unknown spurious attribute a ∈ {−1,+1}. Each input x ∈ Rd+274

is given by x = (xy, γxa, ϵ), where xy ∈ R is a core feature dependent only on y, xa ∈ R is a75

spurious feature dependent only on a, and ϵ ∈ Rd are noise features uncorrelated with both y and a.76

The scalar γ ∈ R modulates the rate at which the model learns to rely on the spurious feature xa,77

effectively acting as a scaling factor that increases the feature’s learning rate relative to the core78

feature xy . The attribute a is considered spurious because it is correlated with the labels y at training79
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but has no correlation with y at test time, potentially leading to poor generalization if the model80

relies on xa. Specifically, the data generation process is defined as:81

xy γxa ϵx :=
( )

∈ Rd+2

y a

xy ∼ N (y, σy

2)

xa ∼ N (a, σa
2)

ϵ ∼ N (0, σ2
ϵI)

a =

{
y w.p. ρ,
−y w. p. 1− ρ,

ρ =

{
ρtr, (train),
0.5, (test).

To better understand this setup, one can think of a classification task between cow and camel82

images. In this example, x represents the pixel data, y ∈ {cow, camel} are the class labels, and83

a ∈ {grass, sand} are the background labels. Here, xy represents the pixels associated with the84

animal itself (either cow or camel), xa represents the pixels associated with the background (grass85

or sand), and ϵ represents irrelevant pixels that are specific to each individual example. The key86

assumption is that the joint distribution of class labels and attribute labels differs between training87

and test datasets, i.e., ptr(a, y) ̸= pte(a, y). For example, in the training set, most cows (camels)88

might appear on grass (sand), while in the test set, cows (camels) appear equally on each background.89

Figure 1: Illustration of two scenarios in the interpretable classification setup involving spurious
correlations and memorization. The left panel represents a scenario without input noise (σϵ → 0),
where memorization is not possible. In this case, the model trained with ERM initially learns the
spurious feature xa serving the majority, but eventually adjusts the decision boundary to the core
feature xy, resulting in good generalization on minority test examples. The middle and right panels
depict a scenario with input noise (σϵ ≫ 0), where memorization is possible. Here, the model
trained with ERM fails to generalize as it memorizes exceptions using the noise features ϵ leaving
no more incentive for the model to learn the core feature. In contrast, the model trained with MAT
(Appendix A) learns the invariant features, and generalizes well even in the presence of noise.

Illustrative Scenarios. We first empirically study a configuration of the above setup where γ = 590

making the spurious feature easier and faster for the model to learn while being only 90% correlated91

with the class label, i.e., ρtr = 0.9. In contrast, the core feature xy is 100% correlated with y, but due92

to a smaller norm, it is learned more slowly. Here we consider two cases:93

1. Noiseless input ⇒ Spurious Features but No Memorization ⇒ ERM generalizes well. Figure94

1-(left) presents a case where there are no input noise features (σϵ → 0). As training progresses,95

the model first learns xa due to its larger norm, resulting in perfect accuracy on the majority96

examples. Once the model achieve nearly perfect accuracy on the majority examples, it starts97

to learn the minority examples. At this point, the model must adjust its decision boundary to98

place more emphasis on the core feature xy , ultimately achieving perfect generalization on both99

majority and minority examples.100
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2. Noisy input ⇒ Spurious Features + Memorization ⇒ ERM fails to generalize.101

Figure 1-(middle) presents a similar setup to the former, but this time with input noise features102

(σϵ ≫ 0). Again, initially, the model learns the spurious feature xa. However, unlike Case 1,103

the noise features ϵ provides the model an opportunity to memorize minority examples directly.104

As a result, the model achieves zero training loss by memorizing minority examples using the105

noise dimensions instead of learning to rely on the core feature xy . Consequently, the model fails106

to adjust its decision boundary to align with xy, and does not generalize on held-out minority107

examples. We argue that most real-world scenarios resemble this case rather than the former case.108

These results illustrate that the combination of spurious correlations and memorization creates a109

‘loophole’ for the model. When memorization happens, there is no more incentives for the model to110

learn the true, underlying patterns necessary for robust generalization.111

Theoretical Analysis. We now provide a formal analysis to formalize our empirical observations.112

Complete proofs are provided in Appendix E.113

Theorem 2.2 (Memorization Exacerbates Spurious Correlations). Consider a binary classification114

problem under the setup described in Setup 2.1, where a linear model f(x;w) = x⊤w is trained115

using Empirical Risk Minimization (ERM). Let ŵERM = (ŵy, ŵa, ŵϵ) ∈ Rd+2 denote the learned pa-116

rameters, where ŵy, ŵa ∈ R correspond to the core feature xy and spurious feature xa, respectively,117

and ŵϵ ∈ Rd corresponds to the noise features ϵ.118

Assume the following asymptotic conditions hold:119

λ → 0+, n → ∞, λ
√
n → ∞,

where λ > 0 is the weight decay regularization parameter, and n is the number of training samples.120

These conditions ensure that ERM converges to the maximum likelihood estimator. For a training121

dataset Dtr generated under ρtr > 0.5, where ρtr is the probability that a = y at training time, the122

following results hold:123

The ERM-trained classifier ŷERM(x) = sign(x⊤ŵERM) achieves perfect accuracy on all training124

examples:125

p (ŷERM(x) = y | x ∈ Dtr) → 1.

For held-out (test) examples, denote the classifier as ŷho
ERM(x). Then:126

1. Noiseless Input Case: In the noiseless case where the noise variance σϵ → 0+, the ERM-127

trained classifier converges to a classifier that relies solely on the core feature xy. For a128

random test point x:129

p
(
ŷho

ERM(x) = y
)
→ 1.

2. Noisy Input Case: Suppose d ≫ log n (where d is the dimension of the noise features) and130

γ ≫ σϵ

√
d/m, where m := ρtrn is the number of majority samples in the training set. Then,131

at test time, the ERM-trained classifier ŷERM(x) relies pathologically on the spurious feature132

xa. For a random test point x:133

p
(
ŷho

ERM(x) = a
)
→ 1.

The condition d ≫ log n ensures that noise features from different samples are approximately134

orthogonal, and γ ≫ σϵ

√
d/m guarantees that the spurious feature xa is learned faster by gradient135

descent than other features.136

3 Discussion137

In our first contribution, we showed that spurious features alone do not solely cause poor generaliza-138

tion. Instead, memorization features remove the incentive for the model to learn the true underlying139

patterns from minority cases. However, to achieve our main goal of learning generalizable patterns, it140

is crucial to provide the model with feedback on its failures. Held-out performance, which is free141

of memorization, offers a way to achieve this. To address this, we propose MAT (Memorization-142

Aware Training), a method that adjusts model logits during training to encourage the learning of143

generalizable features. Details of MAT are provided in Appendix A. In addition, we introduce and144

analyze three types of memorization—bad, good, and ugly—highlighting their effects and relevance145

in different scenarios of benign and malign overfitting. This discussion is elaborated in Appendix C.146
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A Memorization-Aware Training (MAT)293

As exemplified in Section 2, the i.i.d. assumption underlying ERM is violated in the presense of294

spurious correlations between the label y and certain attributes a. If a classifier ŷ(x) relies on these295

unstable correlations, it may fail to generalize to test data where ptr(y, a) ̸= pte(y, a). To address this296

distribution shift, we propose an alternative assumption.297

A.1 An Alternative to the i.i.d. Assumption298

We assume that any predictive path involving a is unreliable because p(y, a) changes between training299

and test. To focus on the stable relationship independent of a, we introduce an invariant quantity that300

remains consistent across both distributions. Specifically, we assume that:301

ptr(y | x)∑
a p

tr(y | a)ptr(a | x)
∝ pte(y | x)∑

a p
te(y | a)pte(a | x)

, (1)

where the term
∑

a p(y | a)p(a | x) represents the conditional probability of y given x when passing302

through a as an intermediate attribute.303

Deriving a New Learning Algorithm. To derive a new learning algorithm based on this assumption,304

we aim to express ptr(y | x) in terms of pte(y | x). Starting from the assumption in Equation 1, we305

have:306

ptr(y | x)∑
a p

tr(y | a)ptr(a | x)
∝ pte(y | x)∑

a p
te(y | a)pte(a | x)

, (by assumption) (2)

⇒ ptr(y | x)∑
a p

tr(y | a)ptr(a | x)
∝ pte(y | x)

pte(y)
, (assuming y ⊥ a in test set) (3)

⇒ ptr(y | x) ∝ pte(y | x)
∑
a

ptr(y | a)ptr(a | x), (assuming pte(y) ∼ U) (4)

⇒ ptr(y | x) ∝ pte(y | x) ptr
a(y | x), (change of variable) (5)

⇒ ptr(y | x) = pte(y | x) ptr
a(y | x)∑

y′ pte(y′ | x) ptr
a(y

′ | x)
, (normalization so it sums to 1) (6)

where ptr
a(y | x) is the correction term accounting for the prediction of label y given x that goes307

through a:308

ptr
a(y | x) :=

∑
a

ptr(y | a)ptr(a | x).

Instead of directly estimating ptr(y | x), we estimate pte(y | x) using a softmax on the logits of a309

model. Thus, the expression for p̂tr(y = k | x) is:310

p̂tr(y = k | x) =
exp

(
fk(x;w) + log ptr

a(y = k | x)
)∑

y′ exp
(
fy′(x;w) + log ptr

a(y
′ | x)

) , (see Lemma E.1). (7)

Equation 7 proposes adjusting the logits of a model to account for the fact that pa(y | x) is unreliable311

and varies from training to test. This formulation is related to prior work on logit adjustment (Kang312

et al., 2019; Menon et al., 2020; Ren et al., 2020; Liu et al., 2022; Tsirigotis et al., 2024), but differs313

in how the adjustment is computed.314

A.2 Estimating pa(y | x) Using Held-Out Predictions315

In Section 2, we showed that a model trained with ERM under Setup 2.1 tends to rely heavily on316

spurious attributes when evaluated on held-out data. Specifically, for a given input x, the predicted317

label ŷho
ERM aligns almost exclusively with the spurious attribute a, implying p(ŷho

ERM = a | x) → 1.318

This implies that for a specific a = a∗, p(a∗ | x) ≈ 1 and p(a | x) ≈ 0 for all other a ̸= a∗.319
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Table 1: Average/worst accuracies comparing methods for environment discovery. We specify access
to annotations in training data (etr) and validation data (eva). Symbol ∼ denotes inferred group
annotations by the method, and symbol † denotes original numbers.

Waterbirds CelebA MNLI CivilComms
etr eva Avg Worst Avg Worst Avg Worst Avg Worst

✗ ✓ ERM 83.8 66.4 95.5 55.1 81.6 72.0 84.3 74.0
✓ ✓ GroupDRO 90.2 86.5 93.1 88.3 80.6 73.4 84.2 73.8
✗ ✓ LC† - 90.5 - 88.1 - - - 70.3
✗ ✓ MAT 89.4 88.2 88.0 85.6 TBD TBD TBD TBD

✗ ✗ ERM 83.6 66.4 95.3 58.6 81.8 69.1 81.5 64.7
✗ ∼ uLA† 91.5 86.1 93.9 86.5 - - - -
∼ ∼ XRM+GroupDRO† 89.3 88.1 91.4 89.1 75.8 72.1 84.0 72.2
✗ ∼ MAT TBD TBD TBD TBD TBD TBD TBD TBD

This observation simplifies the estimation of ptr
a(y | x) as:320

ptr
a(y | x) =

∑
a

ptr(y | a)ptr(a | x) ≈ ptr(y | a∗),

where a∗ = argmaxa p(ŷ
ho
ERM = a | x).321

To compute ptr(y | a∗), following (Liu et al., 2022), we use the empirical counts from the training322

data:323

ptr(y | a∗) = count(y, a∗)
count(a∗)

.

Thus, the held-out predictions of the ERM model provide a straightforward way to estimate ptr
a(y | x),324

allowing us to adjust the model logits accordingly for improved generalization.325

Specifically, MAT employs a shared backbone network with three classification heads:326

• Heads A and B: These heads are trained on two random non-overlapping splits of the training327

data using ERM. Each head provides held-out predictions for the other head’s split, from328

which we estimate ptr(y | a∗).329

• Head C: This is the main classifier whose logits are adjusted using Equation 7, based on the330

held-out predictions from Heads A and B.331

During training, all three heads—A, B, and C—are updated simultaneously. Heads A and B optimize332

only their head parameters. Head C updates its own parameters as well as those of the shared333

backbone. To further reinforce reliance on spurious correlations, we employ Label Flipping strategy334

(Pezeshki et al., 2023) on Heads A and B. Flipping is done according to held-out probabilities and335

hence amplifies the biases of the auxiliary classifiers.336

B Experiments337

We first, conduct experiments to demonstrate the effectiveness of Memorization-Aware Training338

(MAT) in improving generalization under subpopulation shift. We then provide a detailed analysis of339

the memorization behaviors of models trained with ERM and MAT.340

B.1 Experiments on Subpopulation Shift341

We evaluate our approach on four datasets under subpopulation shift. In all experiments, we assume342

that spurious correlation or environment annotations are not available during training. We consider343

two settings: (1) group annotations are available in the validation set for model selection, and (2) no344

annotations are available even in the validation set.345

For evaluation, we report two key metrics on the test set: (1) average test accuracy and (2) worst-group346

test accuracy, the latter being computed using ground-truth annotations.347
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Table 1 compares the performance of MAT with several baseline methods, including ERM, GroupDRO348

(Sagawa et al., 2019), and other environment discovery methods like LC (Liu et al., 2022), uLA349

(Tsirigotis et al., 2024) and XRM+GroupDRO (Pezeshki et al., 2023). These methods vary in their350

assumptions about access to annotations, both in training and validation for model selection. For351

instance, ERM does not assume any training group annotations, while GroupDRO has full access to352

group annotations for both training and validation data.353

In the Waterbirds dataset, MAT demonstrates strong performance with 88.2% worst-group accuracy354

when the groung truth group annotations of the validation set are used for model selection, improving355

substantially over ERM. Similarly, on the CelebA dataset, MAT achieves competitive results, with a356

worst-group accuracy of 85.6%. These results suggest that MAT’s memorization-aware approach357

effectively mitigates overfitting to spurious correlations, particularly in challenging worst-group358

scenarios.359

B.2 Analysis of Memorization Scores360

To understand the extent of memorization in models trained with ERM, we analyze the distribution361

of memorization scores across subpopulations. We focus on the Waterbird dataset, which includes362

two main classes—Waterbird and Landbird—each divided into majority and minority subpopulations363

based on their background (e.g., Waterbird on water vs. Waterbird on land). This setup allows us to364

investigate how memorization varies with group size and context.365

The memorization score is derived from the influence function, which measures the effect of each366

training sample on a model’s prediction. Formally, the influence of a training sample i on a target367

sample j under a training algorithm A is defined as:368

infl(A,D, i, j) := p̂
(A)
D (yj | xj)− p̂

(A)
D¬(xi,yi)

(yj | xj) (8)

where D is the training dataset, D¬(xi,yi) denotes the dataset with the sample (xi, yi) removed. The369

memorization score is a specific case of this function where the target sample (xj , yj) is the same as370

the training sample. It measures the difference between a model’s performance on a training sample371

when that sample is included in the training set (held-in) versus when it is excluded (held-out).372

Calculating self-influence scores with a naive leave-one-out approach is computationally expensive,373

but recent methods like TRAK (Park et al., 2023) provide an efficient alternative. TRAK approximates374

the data attribution matrix. The diagonal of this matrix directly gives the self-influence scores.375

Figure 2 depicts the distribution of self-influence scores across subpopulations in the Waterbird376

dataset. We note that minority subpopulations (e.g., Waterbirds on land) show higher self-influence377

scores compared to their majority counterparts (e.g., Waterbirds on water) for a model trained with378

ERM. A model trained with MAT, however, shows a similar distribution of self-influence for both the379

majority and minority examples.380

C Memorization: The Good, the Bad, and the Ugly381

We showed that the combination of memorization and spurious correlations, rather than spurious382

correlations alone, could be key reason for poor generalization. Neural networks can exploit spurious383

features and memorize exceptions to achieve zero training loss, thereby avoiding learning more384

generalizable patterns. However, an interesting and somewhat controversial question arises: Is385

memorization always bad?386

To explore this, we look into a simple regression task to understand different types of memorization387

and their effects on generalization. We argue that the impact of memorization on generalization can388

vary depending on the nature of the data and the model’s learning dynamics, and we categorize these389

types of memorization into three distinct forms.390

Setup C.1 (Regression with Memorization). Let xy ∈ R be a scalar feature that determines the391

true target, y∗ = f(xy). Let D = {(xi, yi)}ni=1 be a dataset consisting of input-target pairs (x, y).392

Define the input vector as x = concat(xy, ϵ) ∈ Rm+1, where ϵ ∼ N (0, σ2
ϵ I) ∈ Rm represents input393

noise concatenated with the true feature xy . The target is defined as y = y∗ + ϵ, where ϵ ∼ N (0, σϵ)394

represents additive target noise.395

11



Figure 2: Self-Influence estimation of the Waterbird groups by ERM and MAT. The distribution of
self-influence scores is shown for both the majority and minority subpopulations (e.g., Waterbirds
on water vs. Waterbirds on land). Models trained with ERM exhibit higher self-influence scores for
minority subpopulations, suggesting increased memorization in these groups. In contrast, models
trained with MAT show more uniform self-influence distributions across both majority and minority
subpopulations. The rightmost plots display the proportion of samples in different self-influence
intervals, with MAT producing a more balanced distribution compared to ERM.
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(Noisy) Training examples
True function f(x ∗ )
Predicted function g(x) = g([x ∗ , δ])
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Figure 3: Three types of memorization in regression models trained with different levels of input
noise (σϵ). The plots show the ERM-trained model g(x) = g(xy, ϵ) (solid blue line) versus the true
underlying function f(xy) (dashed gray line) and the noisy training examples. In all the three, the
models are trained until the training loss goes below 1e−6. Good memorization (Left, σϵ = 1e−4):
Model learns the true function f(xy) well but slightly memorizes residual noise in the training data
using the input noise ϵ. This type of memorization is benign, as it does not compromise generalization.
Bad memorization (Middle, σϵ = 1e− 3): The model relies more on noise features than learning
the true function f(xy), leading to partial learning of f(xy) and fitting of noise-dominated input
features. This type of memorization impedes learning of generalizable patterns and is considered
malign. Ugly memorization (Right, σϵ = 0.0): Without input noise, the model overfits the training
data, including label noise, resulting in a highly non-linear and complex model that fails to generalize
to new data. This type is referred to as catastrophic overfitting.

In this context, xy can be interpreted as the core feature (e.g., the object in an object classification396

task), ϵ as irrelevant random noise, and ϵ as labeling noise or error. Now, consider training linear397

regression models ŷ = g(x) on this dataset. Fixing σϵ, we train three models under three different398

input noise levels: σϵ ∈ {0, 0.01, 0.1}. The results, summarized in Figure 3, showcases three types399

of memorization:400

The Good. At an intermediate level of input noise, σϵ = 1e − 4, the model effectively captures401

the true underlying function, f(xy). However, due to the label noise, the model cannot achieve a402
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zero training loss solely by learning f(xy). As a result, it begins to memorize the residual noise in403

the training data by using the input noise ϵ. This is evidenced by sharp spikes at each training point,404

where the model, g(x), precisely predicts the noisy label if given the exact same input as during405

training. Nevertheless, for a neighboring test example with no input noise, the model’s predictions406

align well with f(xy), demonstrating good generalization.407

This phenomenon is often referred to as “benign overfitting” where a model can perfectly fit (overfit408

in fact) the training data while relying on noise and unreliable features, yet still generalize well to409

unseen data (Belkin et al., 2019a; Muthukumar et al., 2020; Bartlett et al., 2020). The key insight is410

that the overfitting in this case is “‘benign” because the model’s memorization by relying on noise411

features does not compromise the underlying structure of the true signal. Instead, the model retains412

a close approximation to the true function on test data, even though it memorizes specific noise in413

the training data. This has been shown to occur particularly in over-parameterized neural networks414

(Belkin et al., 2019b; Nakkiran et al., 2021).415

The Bad. At a higher level of input noise, σϵ = 1e − 3, the model increasingly rely on the416

input noise features ϵ rather than fully learning the true underlying function f(xy). In this case,417

memorization is more tempting for the model because the noise dominates the input, making it418

difficult to recover the true signal. As a result, the model g(x) might achieve zero training loss by419

only partially learning f(xy) and instead relying heavily on the noise in the inputs to fit the remaining420

variance in the training data.421

This is an instance of bad memorization as it hinders the learning of generalizable patterns. It becomes422

particularly problematic when the data contains spurious correlations. A model can achieve zero423

training loss by relying on a combination of spurious correlations and memorization of any errors424

that are not already satisfied by the spurious correlation. This phenomenon is referred to as "malign425

overfitting" in Wald et al. (2022), where a model perfectly fits the training data but in a way that426

compromises its ability to generalize, especially in situations where robustness, fairness, or invariance427

are critical.428

It is important to note that both good and bad memorization stem from the same learning dynamics.429

ERM, and the SGD that drives it, do not differentiate between the types of correlations or features430

they are learning. Whether a features contributes to generalization or memorization is only revealed431

when the model is evaluated on held-out data. If the features learned are generalizable, the model432

will perform well on new data; if they are not, the model will struggle, revealing its reliance on433

memorized, non-generalizable patterns.434

The Ugly. Finally, consider the case where there is no input noise, σϵ = 0.0. In this case, the435

model may initially capture the true function f(xy), but due to the presence of label noise, it cannot436

achieve zero training loss by learning only f(xy). Unlike the previous cases, the absence of input437

noise means the model has no additional features to leverage in explaining the residual error. As a438

result, the model is forced to learn a highly non-linear and complex function of the input x = xy to439

fit the noisy labels.440

In this situation, memorization is ugly: The model may achieve perfect predictions on the training441

data, but this comes at the cost of catastrophic overfitting— where the model overfits so severely that442

it not only memorizes every detail of the training data, including noise, but also loses its ability to443

generalize to new data (Mallinar et al., 2022).444

These examples show that memorization is not always bad; its impact varies with the nature of445

the data. While MAT mitigates the negative effects of memorization in the presence of spurious446

correlations, there are cases where memorization can benefit generalization or even be essential447

(Feldman & Zhang, 2020). Future work could focus on distinguishing these scenarios and exploring448

the nuanced role of memorization in large language models (LLMs). Recent work (Carlini et al.,449

2022; Schwarzschild et al., 2024) have highlighted the importance of defining and understanding450

memorization in LLMs, as it can inform how these models balance between storing training data and451

learning generalizable patterns.452
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D Related Work453

Detecting Spurious Correlations. Early methods for detecting spurious correlations rely on human454

annotations (Kim et al., 2019; Sagawa et al., 2019; Li & Vasconcelos, 2019), which are costly and455

susceptible to bias. Without explicit annotations, detecting spurious correlations requires assumptions.456

A common assumption is that spurious correlations are learned more quickly or are simpler to learn457

than core features (Geirhos et al., 2020; Arjovsky et al., 2019; Sagawa et al., 2020). Based on458

this, methods like Just Train Twice (JTT) (Liu et al., 2021), Environment Inference for Invariant459

Learning (EIIL) (Creager et al., 2021), Too-Good-To-Be-True Prior (Dagaev et al., 2023), and460

Correct-n-Contrast (CnC) (Zhang et al., 2022) train models with limited capacity to identify "hard"461

(minority) examples. Other methods such as Learning from Failure (LfF) (Nam et al., 2020) and462

Logit Correction (LC) (Liu et al., 2022) use generalized cross-entropy to bias classifiers toward463

spurious features. Closely related to this work is Cross-Risk Minimization (XRM) (Pezeshki et al.,464

2023), where uses the held-out mistakes as a signal for the spurious correlations.465

Mitigating Spurious Correlations. Reweighting, resampling, and retraining techniques are widely466

used to enhance minority group performance by adjusting weights or sampling rates (Idrissi et al.,467

2022; Nagarajan et al., 2020; Ren et al., 2018). Methods like Deep Feature Reweighting (DFR)468

(Kirichenko et al., 2022) and Selective Last-Layer Finetuning (SELF) (LaBonte et al., 2024) retrain469

the last layer on balanced or selectively sampled data. GroupDRO (Sagawa et al., 2019) minimizes470

worst-case group loss, while approaches like LfF and JTT increase loss weights for likely minority471

examples. Data balancing can also be achieved through data synthesis, feature augmentation, or472

domain mixing (Hemmat et al., 2023; Yao et al., 2022; Han et al., 2022).473

Logit adjustment methods are crucial for robust classification under biased training conditions.474

Menon et al. (2020) propose a method that corrects model predictions based on class frequencies,475

building on prior work in post-hoc adjustments (Collell et al., 2016; Kim & Kim, 2020; Kang et al.,476

2019). Other methods, such as Label-Distribution-Aware Margin (LDAM) loss (Cao et al., 2019),477

Balanced Softmax (Ren et al., 2020), Logit Correction (LC) (Liu et al., 2022), and Unsupervised478

Logit Adjustment (uLA) (Tsirigotis et al., 2024), adjust classifier margins to handle class or group479

imbalance effectively.480

Memorization and Spurious Correlations. Research has shown that memorization in neural481

networks can significantly affect model robustness and generalization. Arpit et al. (2017); Maini et al.482

(2022); Stephenson et al. (2021); Maini et al. (2023); Krueger et al. (2017) explore memorization’s483

impact on neural networks, examining aspects like loss sensitivity, curvature, and the layer where484

memorization occurs. Yang et al. (2022) investigate "rare spurious correlations," which are akin485

to example-specific noise features that models memorize. Bombari & Mondelli (2024) provide a486

theoretical framework quantifying the memorization of spurious features, differentiating between487

model stability with respect to individual samples and alignment with spurious patterns. Finally,488

Yang et al. (2024) propose Residual-Memorization (ResMem), which combines neural networks with489

k-nearest neighbor-based regression to fit residuals, enhancing test performance across benchmarks.490
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E Proofs491

Lemma E.1. Let p1(y = j | x) = eϕj(x)∑k
i=1 eϕi(x) be a softmax over the logits ϕi(x) and define492

p2(y = j | x) such that p2(y = j | x) ∝ w(j, x)p1(y = j | x) for some weighting function w(j, x).493

Then,494

p2(y = j | x) = eϕj(x)+logw(j,x)∑k
i=1 e

ϕi(x)+logw(i,x)
.

Proof. Given p2(y = j | x) ∝ w(j, x)p1(y = j | x), we substitute the expression for p1(y = j | x):495

p2(y = j | x) ∝ w(j, x) · eϕj(x)∑k
i=1 e

ϕi(x)
.

Since w(j, x) · eϕj(x) = eϕj(x)+logw(j,x), we have496

p2(y = j | x) ∝ eϕj(x)+logw(j,x)∑k
i=1 e

ϕi(x)
.

To ensure that p2(y = j | x) is a valid probability distribution that sums to 1, we need a normalization497

factor. Define the normalization constant Z as follows:498

Z =

k∑
j=1

eϕj(x)+logw(j,x).

Thus, the properly normalized form of p2(y = j | x) is:499

p2(y = j | x) = eϕj(x)+logw(j,x)

Z
.

Substituting back the expression for Z, we get500

p2(y = j | x) = eϕj(x)+logw(j,x)∑k
i=1 e

ϕi(x)+logw(i,x)
.

This completes the proof.501

F Proof of Theorem 2.2502

Setting derivatives of the objective equation ?? zero gives the normal equation

1

n

n∑
j=1

(s(x⊤
i w)− yi)xi + λw = 0.

Solving for w then gives503

ŵ =

n∑
i=1

αixi, with αi :=
πi − π̂i

η
, with πi := 1{yi>0}, π̂i := s(vi), vi := x⊤

i ŵ, η := nλ. (9)

Note that the vi’s correspond to logits, while the α = (α1, . . . , αn) ∈ Rn should be thought of as the504

dual representation of the weights vector ŵ. Indeed, by construction, one has505

ŵ = X⊤α, (10)

where X ∈ Rn×d is the design matrix.506

Our mission is then to derive necessary and sufficient conditions for e > 0, where507

e := γŵspure − ŵcore =

n∑
i=1

(γx
(1)
i − x

(2)
i )αi =

n∑
i=1

(γ2ai − si)αi, (11)

where sj := 2yj − 1.508
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F.1 Fixed-Point Equations509

Define subsets I±, S, L ⊆ [n] and integers m, k ∈ [n] by510

I± := {i ∈ [n] | yi = ±1}, S := {i ∈ [n] | ai = γyi}, L := {i ∈ [n] | ai = −γyi}, (12)
m := E |S| = pn, k := E |L| = (1− p)n. (13)

Thus, S (resp. L) corresponds to the sample indices in the majority (resp. the minority) class.511

One computes the logits as follows512

vi = x⊤
i ŵ =

n∑
j=1

αjx
⊤
j xi = γ2

n∑
j=1

αjzjai +
∑
j

αjsjsi +

n∑
j=1

αjϵ
⊤
j ϵi

=


a+

∑n
j=1 αjϵ

⊤
j ϵi, if i ∈ S ∩ I+,

b+
∑n

j=1 αjϵ
⊤
j ϵi, if i ∈ S ∩ I−,

c+
∑n

j=1 αjϵ
⊤
j ϵi, if i ∈ L ∩ I+,

e+
∑n

j=1 αjϵ
⊤
j ϵi, if i ∈ L ∩ I−,

(14)

where a, b, c, e ∈ R are defined by513

a := γŵspu + ŵcore =
n∑

j=1

(γ2zj + sj)αj ,

b := −γŵspu − ŵcore = −
n∑

j=1

(γ2zj + sj)αj ,

e := γŵspu − ŵcore =

n∑
j=1

(γ2zj − sj)αj ,

c := ŵcore − γŵspu =

n∑
j=1

(−γ2zj + sj)αj .

(15)

Observe that514

b = −a, c = −e. (16)
The following lemma will be crucial to our proof.515

Lemma F.1. If a ≥ 0 and e ≥ 0, then part (B) of Theorem ?? holds. On the other hand, if a ≥ 0 and516

e ≤ 0, then part (C) of Theorem ?? holds.517

Proof. Indeed, for a random test point (x, a, y), we have518

P(CERM (x) = Cspu(x)) = P(xspu × x⊤ŵ ≥ 0) = P(γ2ŵspu + yxspuŵcore + xspux
⊤
ϵ ŵϵ ≥ 0)

= P(−xspux
⊤
ϵ ŵϵ ≤ γ2ŵspu + yxspuŵcore)

Now, independent of y, the random variable −xspux
⊤
ϵ ŵ has distribution N(0, σ2

ϵ ∥ŵϵ∥2). Now,519

because ŵ = X⊤α by construction, the variance can be written as σ2
ϵ ∥ŵϵ∥2 = σ2

ϵ ∥X⊤
ϵ α∥2, which is520

itself chi-squared random variable which concentrates around its mean σ4
ϵ ∥α∥2. Furthermore, thanks521

to equation 19, ∥α∥2 ≤ 1/(nλ2), which vanishes in the limit ??. We deduce that522

P(CERM (x) = Cspu(x)) → P(γ2ŵspu + yxspuŵcore ≥ 0)

= p1{γŵspu+ŵcore≥0} + (1− p)1{γŵspu−ŵcore≥0}

= p1{a≥0} + (1− p)1{e≥0}.

Thus, if a ≥ 0 and e ≥ 0, we must have P(CERM (x) = Cspu(x)) = p+ 1− p = 1, that is, part (B)523

of Theorem 2.2 holds.524

On the other hand, one has525

P(CERM (x) = Ccore(x)) = P(xcore × x⊤ŵ ≥ 0) = P(ŵcore + yxspuŵspu ≥ 0)

= p1{ŵcore+γŵspu≥0} + (1− p)1{ŵcore−γŵspu≥0}

= q1{a≥0} + (1− q)1{e≤0},

where q := P(a = y). We deduce that if a ≥ 0 and e ≤ 0, then P(CERM (x) = Ccore(x)) =526

q + 1− q = 1, i.e part (C) of Theorem ?? holds.527
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F.2 Structure of the Dual Weights528

The following result shows that the dual weights α1, . . . , αn cluster into 4 lumps corresponding to529

the following 4 sets of indices S ∩ I+, S ∩ I−, L ∩ I+, and L ∩ I−.530

Lemma F.2. There exist positive constants A,B,C,E > 0 such that the following holds with large531

probability uniformly over all indices i ∈ [n]532

αi ≃


A, if i ∈ S ∩ I+,

−B, if i ∈ S ∩ I−,

C, if i ∈ L ∩ I+,

−E, if i ∈ L ∩ I−.

(17)

Furthermore, the empirical probabilities predicted by ERM are given by533

π̂i = yi − ηαi =


1− ηA, if i ∈ S ∩ I+,

ηB, if i ∈ S ∩ I−,

1− ηC, if i ∈ L ∩ I+,

ηE, if i ∈ L ∩ I−.

(18)

Proof. First observe that534

∥α∥ ≤ 1

λ
√
n
. (19)

Indeed, one computes535

∥α∥2 =
1

η2

n∑
i=1

(πi − π̂i)
2 ≤ 1

η2

n∑
i=1

1 ≤ n

η2
=

1

λ2n

Next, observe that
∑

j αjϵ
⊤
j ϵi = αi∥ϵi∥2 +

∑
j ̸=i αjϵ

⊤
j ϵi ≃ σ2

ϵαid. This is because αi∥ϵi∥2

concentrates around it mean which equals σ2
ϵαid, while w.h.p,

1

σ2
ϵd

sup
i∈[n]

∣∣∣∣∣∣
∑
j ̸=i

αjϵ
⊤
j ϵi

∣∣∣∣∣∣ ≲ ∥α∥
√

n log n

d
= σϵ∥α∥

√
n ·

√
log n

d
≤ σϵλ

√
log n

d
= o(1).

The above is because λ → 0 and (log n)/d → 0 by assumption. Henceforth we simply ignore the536

contributions of the terms
∑

j ̸=i αjϵ
⊤
j ϵi. We get the following equations in the limit equation ??537

vi =


σ2
ϵαid+ a, if i ∈ S ∩ I+,

σ2
ϵαid+ b, if i ∈ S ∩ I−,

σ2
ϵαid+ c, if i ∈ L ∩ I+,

σ2
ϵαid+ e, if i ∈ L ∩ I−,

ηαi = yi − s(vi) =


1− s(σ2

ϵαid+ a), if i ∈ S ∩ I+,

−s(σ2
ϵαid+ b), if i ∈ S ∩ I−,

1− s(σ2
ϵαid+ c), if i ∈ L ∩ I+,

−s(σ2
ϵαid+ e), if i ∈ L ∩ I−.

(20)

Now, because of monotonicity of σ, we can find A,B,C,E > 0 such that538

αi =


A, if i ∈ S ∩ I+,

−B, if i ∈ S ∩ I−,

C, if i ∈ L ∩ I+,

−E, if i ∈ L ∩ I−,

as claimed.539

We will make use of the following lemma.540

Lemma F.3. In the unregularized limit λ → 0+, it holds that ηA, ηB, ηC, ηE ∈ [0, 1/2].541

Proof. Indeed, in that unregularized limit, ERM attains zero classification error on the training dataset542

(first part of Theorem 2.2). This means mean that π̂i ≥ 1/2 iff yi = 1, and the result follows.543

17



F.3 Final Touch (Proof of Theorem ??544

We resume the proof of Theorem 2.2. The scalars A,B,C,E must verify545

ηA = 1− s(σ2
ϵAd+ a) = s(−σ2

ϵAd− a),

ηB = s(−σ2
ϵBd+ b) = s(−σ2

ϵBd− a) = 1− s(σ2
ϵBd+ a),

ηE = s(−σ2
ϵEd+ e),

ηC = 1− s(σ2
ϵCd+ c) = 1− s(σ2

ϵCd− e) = s(−σ2
ϵCd+ e).

(21)

We deduce that546

A = B, C = E, (22)

ηA = s(−σ2
ϵAd− a), ηE = s(−σ2

ϵEd+ e). (23)

Proof of Part (C). In particular, for the noiseless case where σϵ → 0+, we have ηA ≃ s(−a) and547

ηE ≃ s(e). We know from Lemma F.3 that ηA, ηE ≤ 1/2. This implies a ≥ 0 and e ≤ 0, and548

thanks to Lemma F.1, we deduce part (C) of Theorem 2.2.549

Proof of Part (B). In remains to show that a ≥ 0 and e ≥ 0 in the noisy regime σϵ > 0, and then550

conclude via Lemma F.1.551

Define N1 := |S ∩ I+|, N2 := |S ∩ I−|, N3 := |L ∩ I+|, N4 := |L ∩ I−|. Note that from the552

definition of a, b, c, e in equation 15, one has553

a = (γ2 + 1)(N1 +N2)A− (γ2 − 1)(N3 +N4)E,

e = (γ2 − 1)(N1 +N2)A− (γ2 + 1)(N3 +N4)E,

b = −a, c = −e,

ηA = s(−σ2
ϵAd− a), ηE = s(−σ2

ϵEd+ e),

B = A, C = E.

(24)

We now show that a ≥ 0 and e ≥ 0 under the conditions d ≫ log n and γ ≫ σϵ

√
d/m.554

Indeed, under the second condition, the following holds w.h.p555

σ2
ϵd+ (γ2 + 1)(N1 +N2) = ((γ2 + 1)(N1 +N2) + σ2

ϵd) ≃ ((γ2 + 1)m+ σ2
ϵd)

≃ (γ2 + 1)m ≃ (γ2 + 1)(N1 +N2),

where we have used the fact that N1 +N2 concentrates around its mean m = pn. We deduce that556

σ2
ϵAd+ a = (σ2

ϵd+ (γ2 + 1)(N1 +N2))A− (γ2 − 1)(N3 +N4)E

≃ (γ2 + 1)(N1 +N2)A− (γ2 − 1)(N3 +N4)E

≃ a,

from which we get.557

1/2 ≥ ηA ≥ s(−σ2
ϵAd− a) = s(−(1 + o(1))a) = s(−a) + o(1),

i.e s(−a) ≥ 1/2− o(1). But this can only happen if a ≥ 0.558

Finally, the conditions d ≫ log n and γ ≫ σϵ

√
d/m imply γ ≫ Kσϵ

√
d/k and g ≥ K log(3n) for559

any constant K > 0. Theorem 1 of Puli et al. (2023) https://arxiv.org/abs/2308.12553560

then gives e = γŵspu − ŵcore > 0, and we are done.561
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