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Abstract
Sparse autoencoders (SAEs) have emerged as a
powerful tool for interpreting neural networks by
extracting the concepts represented in their acti-
vations. However, choosing the size of the SAE
dictionary (i.e. number of learned concepts) cre-
ates a tension: as dictionary size increases to cap-
ture more relevant concepts, sparsity incentivizes
features to be split or absorbed into more spe-
cific features, leaving high-level features missing
or warped. We introduce Matryoshka SAEs, a
novel variant that addresses these issues by simul-
taneously training multiple nested dictionaries of
increasing size, forcing the smaller dictionaries
to independently reconstruct the inputs without
using the larger dictionaries. This organizes fea-
tures hierarchically - the smaller dictionaries learn
general concepts, while the larger dictionaries
learn more specific concepts, without incentive
to absorb the high-level features. We train Ma-
tryoshka SAEs on Gemma-2-2B and TinyStories
and find superior performance on sparse prob-
ing and targeted concept erasure tasks, more dis-
entangled concept representations, and reduced
feature absorption. While there is a minor trade-
off with reconstruction performance, we believe
Matryoshka SAEs are a superior alternative for
practical tasks, as they enable training arbitrarily
large SAEs while retaining interpretable features
at different levels of abstraction.

1. Introduction
Sparse autoencoders (SAEs) have emerged as a powerful
tool for interpreting the internal representations of neural
networks (Bricken et al., 2023; Cunningham et al., 2023).
By training autoencoders to map dense activations of neu-
ral networks into a sparse latent space, researchers aim to
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extract meaningful, human-interpretable features that pro-
vide insight into a model’s decision-making process. In
practice, however, sparsity is only an imperfect proxy for
interpretability; optimizing to represent inputs using as few
active latents as possible can lead to pathological solutions.

A core issue lies in the mismatch between the flat sparsity ob-
jective and the inherent hierarchical structure of real-world
features. For example, a broad, general concept (e.g. “punc-
tuation marks”) might be a parent feature to more specific
ones (“punctuation mark and period”, “punctuation mark
and question mark,” and “punctuation mark and comma”).
When an SAE has the capacity to learn many latents, the
sparsity penalty can push it to replace each general concept
with a set of narrowly specialized features without retain-
ing the original high-level category—a phenomenon called
feature splitting (Bricken et al., 2023). Even more prob-
lematic is feature absorption (Chanin et al., 2024), where a
parent feature only partially splits and a number of specific
instances of a general feature are absorbed by more spe-
cialized latents, leaving “holes” in the representation of the
more general feature (e.g. a latent that activates on all tokens
starting with an E, except if the word is Elephant). Finally,
feature composition occurs when the SAE merges distinct
concepts (like “red” and “triangle”) into single composite
features (”red triangle”) to minimize the number of active
latents, instead of learning the underlying features (Anders
et al., 2024; Wattenberg & Viégas, 2024; Leask et al., 2025).

These problems become more severe as SAEs scale to larger
dictionary sizes (i.e., more learned concepts), since the
model exploits the additional capacity to further minimize
active latents through mechanisms like feature splitting (Kar-
vonen et al., 2024a). This presents a stark contrast to typical
deep learning, where scaling consistently improves both
training loss and model capabilities (Kaplan et al., 2020;
Hoffmann et al., 2022). While larger SAEs do achieve lower
training loss (Gao et al., 2024; Templeton, 2024), their per-
formance on downstream tasks often deteriorates (Karvonen
et al., 2024a). This fundamental tension creates significant
practical challenges for deploying SAEs in interpretabil-
ity research - they become less reliable for probing model
behavior, steering models, analyzing feature circuits, or un-
derstanding how models process information. The current
recommended approach is to train a sweep of different sizes
and evaluate each of them, but this is costly (Lieberum et al.,
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Figure 1. Architecture and Performance of Matryoshka SAEs. (Left) The model learns multiple nested reconstructions simultaneously,
with each reconstruction using only a subset of the total latents. This creates pressure for early latents to capture general features while
later latents can specialize in more specific concepts. (Right) Comparative metrics between SAEs with average sparsity of 40 active latents
per token (L0=40) showing that while Matryoshka SAEs sacrifice a small amount of reconstruction fidelity (higher variance unexplained),
they achieve significantly lower feature absorption rates and less feature composition (lower decoder cosine similarity).

2024). Ideally, we would like to have a single SAE that can
capture both high-level and fine-grained features.

Therefore, we introduce Matryoshka SAEs, a novel hierar-
chical approach to SAE training, named after the Russian
nesting dolls and inspired by Kusupati et al. (2024). Ma-
tryoshka SAEs learn a single feature space that retains both
abstract and specific features by training multiple nested
SAEs of increasing size simultaneously. Each nested sub-
SAE is optimized to reconstruct the input using only a subset
of the total latents (including the sub-SAEs nested within
itself). This nested structure prevents later, more specialized
latents from absorbing the roles of earlier, more general
ones, effectively regularizing the SAE to learn features at
multiple levels of abstraction. Despite the need for recon-
structions at multiple scales, Matryoshka SAEs can be im-
plemented efficiently with a modest increase in training time
compared to traditional SAEs, depending on the number of
nested sub-SAEs.

Through extensive experiments on both synthetic and real-
world datasets, we demonstrate that Matryoshka SAEs miti-
gate feature absorption across a wide range of model sizes
and sparsity levels. We find that Matryoshka SAEs have
more disentangled latent representations (as measured by
maximum cosine similarity of decoder vectors) and also im-
prove performance on probing and targeted concept erasure
tasks compared to standard SAE baselines. Furthermore, we
find that with increasing dictionary size, Matryoshka SAEs
often improve or maintain their performance on downstream
tasks, where other architectures deteriorate in performance.
While Matryoshka SAEs exhibit a small trade-off in recon-
struction error due to the additional constraints, we argue
that the improved quality of the learned latents, which also
get better with scaling, make them an attractive alternative
for practical applications.

We consider our results a positive sign for the use of SAEs

in interpretability research. We find that concerning failure
modes that were thought to be fundamental barriers to us-
ing SAEs, can be mitigated through simple changes in the
training procedure. This indicates that other problems with
SAEs might be easier to solve than thought, and illustrates
the promise of more research in this area.

2. Background
2.1. Interpretability with Sparse Autoencoders

Early mechanistic interpretability work sought to under-
stand neural networks by examining individual architectural
components, but faced challenges due to polysemanticity
- where components seem to exhibit multiple unrelated be-
haviors (Olah et al., 2020; Elhage et al., 2022). In recent
years, SAEs emerged as a promising solution for extract-
ing monosemantic and interpretable features from model
activations (Bricken et al., 2023; Cunningham et al., 2023;
Templeton, 2024; Gao et al., 2024; Rajamanoharan et al.,
2024a;b), which researchers can analyze through manual
inspection (Bricken et al., 2023; Lin, 2023) or automated
interpretability techniques (Gao et al., 2024; Juang et al.,
2024). Their effectiveness has been demonstrated across var-
ious applications, such as analyzing attention mechanisms in
GPT-2 (Kissane et al., 2024), circuit analysis (Marks et al.,
2024; Makelov et al., 2024), and model-diffing (Lindsey
et al., 2024).

Technically, an SAE consists of an encoder and a decoder:

f(x) = σ(Wencx+ benc) (1)

x̂ = Wdecf(x) + bdec (2)

The encoder is trained to map high-dimensional activations
or hidden states from inside a neural network into a sparse,
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overcomplete representation f(x), called the SAE latents or
features. The activation function σ enforces non-negativity
and sparsity in f(x), with a latent i typically considered
active when fi(x) > 0.

The decoder maps the sparse features back to the original
input space through a linear transformation, producing an
approximate reconstruction x̂. This reconstruction aims to
minimize the mean squared error with respect to the original
input x while maintaining the sparsity constraints on the
intermediate representation.

Recent architectural improvements include JumpReLU
SAEs (Rajamanoharan et al., 2024b), which learn individual
activation thresholds, and TopK SAEs (Gao et al., 2024),
which enforce exactly K active features per sample. For our
Gemma-2-2B experiments, we use the BatchTopK (Buss-
mann et al., 2024) activation function, which we further
describe in Section 3.2.

2.2. Challenges in Scaling SAEs

At the heart of SAE training lies a fundamental tension
between reconstruction quality and sparsity. The sparsity
objective, typically implemented via L1 regularization or
explicit L0 constraints such as TopK, encourages SAEs
to represent inputs using as few active latents as possible.
While some degree of sparsity is necessary to extract in-
terpretable features from superposition, optimizing for the
reconstruction + sparsity loss often leads to pathological
solutions. This manifests in several interrelated phenomena:

Feature splitting (Bricken et al., 2023) causes unified con-
cepts to fragment into many specialized latents – for exam-
ple, a feature responding to punctuation marks may split into
separate features for question marks, periods, and commas.
Even though each individual, specialized latent might be
interpretable, the high-level concept of “punctuation mark”
- which might be functionally used by the LLM - is now
missing from the dictionary. Instead, the “punctuation mark”
decoder direction is now implicitly represented in the de-
coder vector of each specific latent, as for example “comma”
also implies “punctuation mark”. Leask et al. (2025) found
that when doubling the dictionary size of an SAE, only
one-third of the latents in the larger SAE represent novel
concepts, while the other latents represent concepts similar
to those of the smaller SAE in a sparser way.

Feature absorption (Chanin et al., 2024) occurs when a la-
tent representing a general feature develops systematic blind
spots in cases handled by more specialized latents. For ex-
ample, consider a latent that activates on female names like
“Mary”, “Jane”, “Sarah”, and “Lily”. If a specialized latent
splits for the name “Lily”, the latent for female names might
instead become an “all female names except Lily” latent.
Unlike feature splitting where general concepts completely

fragment, absorption creates specific “holes” in otherwise
intact general features, making the general feature less reli-
able for downstream tasks and harder to interpret.

Feature composition represents another sparsity-driven dis-
tortion that occurs when features naturally co-occur. When
presented with a direct product space of independent fea-
tures (e.g. colors and shapes), the sparsity objective incen-
tivizes learning single latents that capture specific combi-
nations (like “red triangle”) rather than representing the
underlying independent features (“red” and “triangle”) sep-
arately (Anders et al., 2024; Wattenberg & Viégas, 2024).
Even when these features are conceptually and functionally
independent in the model, combining them allows the SAE
to achieve the same reconstruction with fewer active latents.
Leask et al. (2025) have shown using “meta-SAEs” that the
latents of sparse autoencoders are often composed of more
fundamental “meta-latents”.

These issues become more severe as dictionary size in-
creases. While larger dictionaries allow for representing
more relevant features, they also enable more opportunities
for sparsity-driven distortions. The reconstruction objective
alone does not prevent these distortions since they achieve
similar reconstruction with fewer active latents. Their per-
sistence suggests they arise from fundamental limitations in
standard SAE training objectives rather than optimization
challenges. This creates a pressing need for new training
approaches that can preserve features at multiple levels of
abstraction while maintaining the benefits of sparsity. Ide-
ally, we want SAEs that can capture both high-level concepts
and their refinements without letting specialized features
absorb or fragment their general counterparts.

2.3. Matryoshka Representation Learning

Matryoshka Representation Learning (MRL) (Kusupati
et al., 2024) is an approach to representation learning that
encodes information at varying levels of granularity within
a single embedding vector. This allows the representation
to be adaptable to the computational constraints of diverse
downstream tasks. MRL is designed to modify existing
representation learning pipelines with minimal overhead
during training and no additional costs during inference
and deployment. The key distinction of MRL lies in its
loss function, which is modified to incorporate the perfor-
mance when using only part of the embedding vector. The
name “Matryoshka” is inspired by the nested Russian dolls,
reflecting the nested nature of the representations.

3. Matryoshka Sparse Autoencoders
Matryoshka SAEs extend traditional sparse autoencoders
by simultaneously training multiple nested autoencoders of
increasing size, as illustrated in Figure 1. Given a maximum
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dictionary size m, we define a sequence of nested dictionary
sizes M = m1,m2, ...,mn where m1 < m2 < ... <
mn = m. Each size mi corresponds to a sub-SAE that must
reconstruct the input using only the first mi latents.

We experiment with two types of Matryoshka SAE: random
prefix, where M is randomly sampled from a distribution
per batch, and fixed prefix where M is set as a hyperparam-
eter before training. Formally, for an input x ∈ Rn, the
encoder and decoder are defined as:

f(x) = σ(Wencx+ benc) (3)

x̂i(f) = Wdec
0:mi,:f0:mi

+ bdec for mi ∈ M (4)

where Wenc ∈ Rm×n is the encoder matrix, Wdec ∈ Rn×m

is the decoder matrix, benc ∈ Rm is the encoder bias,
bdec ∈ Rn is the decoder bias, and the subscript notation
0 : mi indicates taking the first mi rows or elements. Each
nested decoder Wdec

0:mi,:
must learn to reconstruct the input

using only a subset of the latents, creating a hierarchy of
representations at different scales.

3.1. Training Objective

The key innovation in Matryoshka SAEs is the training ob-
jective that enforces good reconstruction at multiple scales
simultaneously:

L(x) =
∑

m∈M
∥x− (f(x)0:mWdec

0:m + bdec)︸ ︷︷ ︸
reconstruction using first m latents

∥22 + αLaux

(5)

where Laux is the standard auxilary loss as used in Gao
et al. (2024). The first m1 latents must learn to reconstruct
the input as well as possible on their own, the first m2

latents must do the same, and so on. Early latents must be
able to reconstruct the input when mi is smaller, creating
pressure for them to capture general, widely applicable
features. Later latents only participate in reconstructing
larger dictionaries, allowing them to specialize in more
specific features.

3.2. BatchTopK Activation Function

For our Gemma-2-2B language model experiments, we use
the BatchTopK activation function (Bussmann et al., 2024)
to determine which latents are active. The BatchTopK ac-
tivation function improves upon standard element-wise ap-
proaches by considering sparsity across batches rather than
individual examples. For a batch X = [x1, ...,xB ], Batch-
TopK retains the B ×K largest activations across the entire
batch while setting others to zero:

BatchTopK(X) = X⊙ 1[X ≥ τ(X)] (6)

where τ(X) is the (B×K)th largest value in X, ⊙ denotes
element-wise multiplication, and 1[·] is the indicator func-
tion. This allows the number of active latents per example
to vary naturally while maintaining an average sparsity of
K across the batch. During inference, BatchTopK is re-
placed with a global threshold to ensure consistent behavior
independent of the batch:

BatchTopK(x) = x⊙ 1[x ≥ θ] (7)

where θ is calibrated on the training data to maintain the
desired average sparsity.

4. Experiments
To understand how Matryoshka SAEs prevent feature ab-
sorption and fragmentation, we conduct experiments across
three settings of increasing complexity: a synthetic toy
model designed to exhibit feature absorption, a qualita-
tive investigation of the features learned on a small 4-layer
TinyStories model, and finally benchmarks on the larger
Gemma-2-2B architecture.

4.1. Toy Model Demonstration of Feature Absorption

We first demonstrate the ability of Matryoshka SAEs to
avoid feature absorption in a controlled, synthetic setting,
with a toy model following the model introduced in Chanin
et al. (2024). Concretely, we construct a tree-structured
set of L binary features, each mapped to a unique direc-
tion in Rd (we use d = 20). The root feature is always
present (though it is excluded from L). Every other fea-
ture is sampled conditional on its parent being present, with
an associated edge probability p(parent→child) ∈ (0, 1). If a
feature is active, we add its direction vector to produce the
final d-dimensional input. This induces a hierarchical de-
pendency analogous to “comma” =⇒ “punctuation mark”
in real text: child features always appear with their parent
features.

We train two types of autoencoders on data generated from
this model: a standard sparse autoencoder (Vanilla SAE)
with L latents, matching the true number of features and
a Matryoshka SAE with the same total latents L, but with
additional nested reconstruction objectives on sub-prefixes
of the latents. For the Matryoshka SAE, we sample the
prefix lengths from a truncated Pareto distribution at each
training step, and use a ReLU activation function (see Ap-
pendix C for more training details). Both models have the
same encoder and decoder architecture.

Figure 3 shows the ground-truth features against the closest-
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Figure 2. Toy model decoder vector similarity. Graphical representation of the toy model (left). The heatmaps show the cosine similarity
between learned latent vectors and ground-truth feature vectors for the Matryoshka SAE (middle) and Vanilla SAE (right). The Matryoshka
SAE shows a clear diagonal structure, which demonstrates disentanglement of the hierarchical features and learning the ground truth. The
Vanilla SAE, however, exhibits high similarity between parent and child latents, indicating feature absorption.

Figure 3. Toy model activations. Ground-truth feature activations
alongside Matryoshka SAE activations and Vanilla activations for
one of the parents and its children on the toy model. Notice that in
the Vanilla SAE the parent latent (column bracketed in blue) does
not fire when its children (bracketed in red) fire. For the activations
of all features in the toy model, see Figure 11.

matching Matryoshka and Vanilla activations on a single
batch for a single parent and its children features (for a plot
of the activations of all features see Figure 11). The Vanilla
SAE exhibits feature absorption - when one of the child
features is active, the corresponding parent feature does not
activate. In contrast, the Matryoshka SAE recovers the true
underlying feature structure, with parent features remaining
active regardless of which child features are active.

To further see whether the autoencoders have found the
ground truth features, we measure the cosine similarity be-
tween the learned decoder vectors and the ground-truth
feature vectors (Figure 2). For the Vanilla SAE, we observe
high similarity between parent and child latents, indicating

that the model is learning redundant representations and fail-
ing to disentangle the hierarchical features. The Matryoshka
SAE, on the other hand, shows a clear diagonal structure in
its similarity matrix, demonstrating that it is able to recover
the true feature vectors with minimal overlap, with only
small nonzero off-diagonal terms.

4.2. TinyStories Investigation

We now examine feature absorption in a 4-layer Trans-
former1 (hidden size 768) trained on TinyStories (Eldan
& Li, 2023), a dataset of simple English children’s stories.
To systematically study how features evolve as SAE dictio-
nary size increases, we train a family of small “reference”
SAEs with varying dictionary sizes (30, 100, 300, 1k, 3k,
and 10k latents) on three model locations: attention block
outputs, MLP outputs, and the residual stream.

These reference SAEs reveal a consistent pattern: smaller
SAEs (like S/1 with 100 latents) often capture broad,
general concepts, while larger ones tend to fragment
these concepts into specialized cases. To visualize
these relationships, we developed an interactive tool
(sparselatents.com/tree view) that traces how
latents evolve across SAE sizes. Technical details about
the visualization methodology can be found in Appendix E.

“Female tokens” Absorption Example. In Figure 4, we
highlight latent 65 in our 300-latent reference SAE (S/2/65),
which consistently fires on female-coded tokens: “she,”
“her,” “girl,” and female names like “Lily” and “Sue.” When
we examine the corresponding latents in the 1000-latent
SAE (S/3), we find that the general female-words latent
(S/3/66) has developed systematic “holes”—it stops fir-
ing on “Lily” because a specialized “Lily-specific” latent
(S/3/359) has absorbed that case. The original concept be-
comes fragmented, obscuring that the model treats “Lily”
as a female name.

1https://github.com/noanabeshima/
tinymodel
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Figure 4. Feature absorption in a TinyStories model. Example
activations showing how a general “female words” latent (S/2/65)
develops holes in a larger SAE (S/3/66) as specialized latents for
“Lily” (S/3/359) and “Sue” (S/3/861) absorb specific cases. Feature
absorption locations are circled in red.

In contrast, when we train a 25k-latent Matryoshka SAE
with the same average sparsity, it maintains the broad cover-
age of female-coded tokens while still developing special-
ized child latents (e.g. a Sue latent, Lily latent, and a female
names latent without holes, see here). This preserves the
hierarchical relationship between general and specific fea-
tures, making the model’s representations easier to interpret.
In Appendix D, we show a few examples of features learned
by the Matryoshka SAE.

4.3. Larger-Scale Validation with Gemma-2-2B

In our Gemma-2-2B language model experiment, we
use fixed prefix Matryoshka over random as we found
that they attained slightly better eval metrics (see Ap-
pendix H for details). We use a dictionary size of
D = 65536 with five nested sub-SAEs where M =
{2048, 6144, 14336, 30720, 65536}. We train five Ma-
tryoshka SAEs with an average sparsity of respectively 20,
40, 80, 160, and 320 active latents per token.

The SAEs were trained on the residual stream activations
from layer 12 of Gemma 2-2B using 500M tokens sampled
from The Pile (Gao et al., 2020). We use the Adam optimizer
with a learning rate of 3× 10−4 and batch size of 2048. No
additional regularization terms are used beyond the implicit
regularization from the multiple reconstruction objectives.

We evaluate Matryoshka SAEs against six alternative SAE
architectures (see Appendix A) to assess both basic perfor-
mance and effectiveness in addressing feature absorption
and composition challenges. We use the evaluations pro-
vided by SAE Bench (Karvonen et al., 2024a) to compare
Matryoshka SAEs to the baseline SAEs across a wide vari-
ety of tasks. In these evaluations, we use all latents of the
Matryoshka SAE. In Appendix F, we study the performance
of the different nested sub-SAEs.

Reconstruction and Downstream Performance. We first
examine basic performance metrics of the SAEs: reconstruc-
tion quality (measured by variance of the input explained by
the reconstruction) and downstream performance (measured
by cross-entropy loss when feeding reconstructed activa-
tions back into the language model). Figure 5 shows these
metrics across different sparsity levels.

Figure 5. Reconstruction performance. The variance explained
of Matryoshka SAEs is slightly worse than some competing ar-
chitectures. However, looking at the downstream LLM CE loss,
Matroshka SAEs perform comparable, especially at larger L0s.

Matryoshka SAEs consistently show slightly worse recon-
struction compared to standard BatchTopK SAEs. For ex-
ample, at a L0 of 40 the reconstruction of Matryoshka SAEs
explains 70% of the variance in model activations, whereas
BatchTopK SAEs explain 72% of the variance. This per-
formance gap is expected, as the nested reconstruction con-
straints prevent Matryoshka SAEs from splitting and absorb-
ing broad latents to optimize sparsity. Therefore, it would
be surprising if there was not mild degradation here. The
PCA baseline, included for reference, is not subjected to any
sparsity constraints and can therefore utilize its full capacity
for reconstruction, unlike the SAEs.

However, downstream model loss tells a different story. De-
spite worse reconstruction, at larger L0s, Matryoshka SAEs
achieve comparable cross-entropy loss when their recon-
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structed activations are fed back into the language model.
This suggests that Matryoshka SAEs may be learning more
meaningful features that better capture the language model’s
internal representations, even though they reconstruct the
raw activations less accurately.

Feature Absorption and Splitting. We evaluate the ex-
tent to which Matryoshka SAEs reduce two key pathologies
that emerge when scaling sparse autoencoders: feature ab-
sorption and feature splitting. Following the methodology
of Chanin et al. (2024), we use first-letter classification tasks
as a probe to measure these phenomena.

Figure 6. Feature absorption and splitting. Matryoshka SAEs
significantly reduce feature absorption and splitting compared to
baselines.

The absorption rate, as reported in Figure 6 and calculated
following SAEBench (Karvonen et al., 2024a), measures
the fraction of tokens where a latent corresponding to a
first-letter feature fails to activate despite the token starting
with that letter, because the feature is absorbed by another
latent. To quantify feature absorption, we first train logis-
tic regression probes on the raw activations to establish a
ground truth for which directions encode first-letter infor-
mation. The absorption rate is then determined by finding
false-negative tokens where main SAE latents (identified
via k-sparse probing for the letter feature) fail to fully ac-
tivate (their projection onto the ground truth direction is
less than the model’s projection) while other “absorbing” la-
tents compensate on these tokens. For further details on this
metric, we refer to Chanin et al. (2024) and the SAEBench
implementation.

Secondly, we also analyze feature splitting. The splitting
metric in Figure 6, also from SAEBench, counts how many
latents are needed to represent a single first-letter feature.
We measure this by training k-sparse probes on SAE latents
and detecting when increasing k (the number of latents used
by the probe) by one causes a jump in F1 score by more
than a threshold τ = 0.03. Such a jump indicates that
additional latents contain significant information about the
feature, suggesting the feature has been split across those
multiple latents.

As shown in Figure 6, Matryoshka SAEs reduces both fea-

ture absorption and splitting compared to the baseline ar-
chitectures. For example, at an average sparsity (L0) of 40
active latents per token, Matryoshka SAEs exhibit an ab-
sorption rate of just 0.05, in contrast to 0.49 for BatchTopK
SAEs. This indicates that Matryoshka SAEs are far more
successful at preserving general first-letter features in the
presence of specialized latents.

Similarly, Matryoshka SAEs require fewer latents to capture
first-letter features, demonstrating reduced feature splitting.
At an L0 of 40, Matryoshka SAEs need only one latent
per first letter on average, while BatchTopK SAEs split this
information across three latents.

These results demonstrate that the hierarchical structure
imposed by Matryoshka SAEs is effective at combating the
feature absorption and splitting that typically emerge when
increasing SAE dictionary size. Matryoshka SAEs are able
to maintain coherent high-level features even in the presence
of specialized low-level features.

Sparse Probing and Targeted Concept Removal. We
evaluate the quality of the features learned by the SAEs
through three complementary analyses that measure differ-
ent aspects of feature quality and disentanglement.

First, we perform sparse probing to assess whether the
learned latents encode semantically meaningful concepts
(Gao et al., 2024). We use a suite of 35 binary classification
tasks spanning five domains: professions, sentiment, lan-
guage, code, and news. For each task, we encode the inputs
through the SAE, apply mean pooling over non-padding
tokens, select the most relevant latent, and train a logistic
regression probe. Strong performance on these tasks indi-
cates that the SAE has learned relevant latents and are not
missing, entangled, or split across multiple latents.

Figure 7. Probing and concept isolation. Matryoshka SAEs score
considerably better at SCR and TPP than baseline models, and
better at sparse probing at lower sparsities.
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Second, we test the SAE’s ability to separate dataset biases,
such as the spurious correlation between a profession like
“nurse” always being associated with “female”, using spuri-
ous correlation removal (SCR) (Karvonen et al., 2024b). We
train classifiers on intentionally biased data, then ablate the
latents that encode the spurious signal. A higher resulting
accuracy suggests the SAE was more effective at isolating
the spurious correlation (e.g. gender), enabling the classifier
to focus on the intended task (e.g. profession classification).

Third, we evaluate how well the SAE isolates individual
concepts using Targeted Probe Perturbation (TPP) (Karvo-
nen et al., 2024b). We ablate latents specific to one class
and measure the change in accuracy of a classifier trained
for that class as well as classifiers for other classes. If the
ablated latents are properly disentangled, it should have an
isolated causal effect - reducing accuracy on the relevant
class probe while leaving other class probes unaffected.

As shown in Figure 7, Matryoshka SAEs significantly out-
perform all benchmark architectures on the TPP and SCR
metrics, demonstrating they learn more disentangled and
isolated concept representations. On the sparse probing
tasks, Matryoshka SAEs achieve the best performance at
lower sparsity levels and consistently outperform standard
BatchTopK SAEs across all sparsity levels. These results
strongly suggest that the hierarchical structure imposed by
Matryoshka SAEs leads to higher quality and more relevant
learned features.

Feature Composition Analysis. To quantify feature com-
position and shared information between latents, we look at
the average maximum cosine similarity between two latents
in an SAE. If the SAE has many latents with high cosine
similarity, this means that multiple latents are representing
similar information, indicating composition of information.

Figure 8. Average maximum cosine similarity. The maximium
cosine similarity is considerably lower for Matryoshka SAEs, indi-
cating less feature composition.

In Figure 8, we see that the average maximum cosine sim-
ilarity between decoder vectors is substantially lower for
Matryoshka SAEs, indicating feature composition is less
of problem for Matryoshka SAEs. In Appendix F.2, we

investigate this phenomenon further using meta-SAEs and
find that the same holds.

Automated Interpretability. We evaluate feature inter-
pretability using gpt4o-mini as an LLM judge. Following
Bills et al. (2023) and Paulo et al. (2024), we generate fea-
ture explanations for 1000 latents from a range of activating
dataset examples and score the explanation by asking an
LLM judge to predict on which inputs a latent will be ac-
tive. Figure 9 shows that the interpretability of latents of
Matryoshka SAEs are comparable to standard BatchTopK
SAEs and more interpretable than many alternative baseline
architectures.

Figure 9. Automatic interpretability score. Matryoshka SAE
latents are among the most interpretable.

Scaling SAEs To evaluate how Matryoshka SAEs perfor-
mance changes when increasing dictionary size, we train
Matryoshka SAEs with dictionary sizes of 4k, 16k, and
65k. Figure 10 shows that on almost all metrics Matryoshka
SAEs improve or are stable with scale, whereas alterna-
tive architectures often degrade. These results indicate that
as one increases the dictionary size of the SAE to capture
more of features of the LLM, Matryoshka SAEs may be the
superior choice for many downstream tasks.

Figure 10. Scaling evaluations. Performance across three differ-
ent dictionary sizes. Average performance across L0s 40, 80, 160
are reported.
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5. Limitations
While Matryoshka SAEs demonstrate improved perfor-
mance of downstream tasks, this comes at the cost of slightly
reduced reconstruction performance compared to standard
SAEs. Although downstream loss remains competitive, ap-
plications requiring precise activation reconstruction may
find this trade-off problematic.

Furthermore, the multiple nested reconstruction objectives
increases training time compared to standard SAEs. This
increase is dependent on the length of the set of nested
dictionary sizes (M). In our experiments with 5 nested
SAEs, this increased training time with circa 50%.

While we conducted several ablations (Appendix H), many
design choices specific to Matryoshka SAEs remain to be
explored. For instance, explicitly enforcing the number
of active latents for different latent groups within the Ma-
tryoshka SAE has not been studied and might offer even
finer control over the granularity of learned features. Such
variations could be promising avenues for future research.

Finally, our evaluation relies heavily on imperfect quantita-
tive measures of feature quality and automated interpretabil-
ity metrics and are mostly conducted a single LLM. For
example, our evaluation of feature absorption relies primar-
ily on first-letter classification tasks. While these standard-
ized metrics provide valuable insights, they may not fully
capture human-relevant aspects of feature interpretability
or the practical utility of the learned representations for
manual downstream analysis. Future work investigating
the human interpretability of Matryoshka SAE latents and
their applicability to practical interpretability tasks would
be valuable.

6. Discussion and Conclusion
We have presented Matryoshka SAEs, a novel variant of
sparse autoencoders that addresses key challenges with spar-
sity when scaling SAEs. By enforcing hierarchical feature
learning through nested dictionaries, our approach achieves
lower feature absorption rates and improved concept isola-
tion compared to standard approaches. This demonstrates
that the pathologies of scaling SAEs are not fundamental
limitations, but rather artifacts of myopic training objectives
that can be overcome through simple modifications to the
training process.

Looking forward, the success of this approach suggests that
many apparent problems with SAEs may have surprisingly
simple solutions waiting to be discovered. As we work to
understand increasingly large and capable neural networks,
approaches to interpretability that scale as well will become
essential to better understanding these systems.

Impact Statement
This work advances mechanistic interpretability techniques
for neural networks. Better understanding of model internals
could help identify failure modes, verify intended behaviors,
and guide the development of more reliable and safe AI sys-
tems. However, advances in model interpretability may also
accelerate progress in large language model development
and deployment, potentially amplifying both positive and
negative societal impacts of these technologies.
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A. SAE Training Details
We use the baseline SAE suite provided by SAE Bench (Karvonen et al., 2024a). It contains SAEs trained on layer 12 of
Gemma-2-2B and layer 8 of Pythia-160M Biderman et al. (2023). The SAE Bench suite contains 6 proposed SAE variants.

SAE Bench Variants
ReLU (Anthropic Interpretability Team, 2024)
TopK (Gao et al., 2024)
BatchTopK (Bussmann et al., 2024)
Gated (Rajamanoharan et al., 2024a)
JumpReLU (Rajamanoharan et al., 2024b)
P-Annealing (Karvonen et al., 2024c)

Table 1. List of evaluated sparse autoencoder architectures

Our Matryoshka SAEs were trained in a directly comparable manner, including identical data ordering and hyperparameters.

B. Code Implementation
This appendix shows an example code implementation to get the reconstruction and loss of a Matryoshka SAE. For the
code implementation used in our experiments see https://github.com/saprmarks/dictionary_learning/
blob/main/dictionary_learning/trainers/matryoshka_batch_top_k.py.� �
def forward(self, input_data):

# Compute features and apply sparsity
features = relu((input_data - self.bias) @ self.encoder)
sparse_features = batch_top_k(features) # Same features as standard BatchTopK SAE

# Dictionary size cutoffs
dict_sizes = [2048, 6144, 14336, 30720, 65536]

losses = []

# Start with bias
current_output = self.bias.clone()

# Incrementally add reconstructions from each group
for i in range(len(dict_sizes)):

start_idx = 0 if i == 0 else dict_sizes[i-1]
end_idx = dict_sizes[i]

# Add contribution from this group of features
group_features = sparse_features[:, start_idx:end_idx]
group_weights = self.decoder[start_idx:end_idx]
current_output = current_output + group_features @ group_weights

# Store and compute loss
losses.append(((current_output - input_data)**2).mean())

# Sum all losses
total_loss = sum(losses)

return total_loss, current_output # Return summed loss and final reconstruction� �
Listing 1. Example code implementation of Matryoshka SAE

C. Toy Model Details
Here we provide implementation details for training the SAEs on our synthetic hierarchical feature dataset. Code can be
found at https://github.com/noanabeshima/matryoshka-saes. The models are implemented in PyTorch
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and use the following configuration:

Model Architecture. Both the Vanilla and Matryoshka SAEs use the following hyperparamaters:

• Input/output dimension: 20

• Number of latents: 20

• ReLU activation function

• Adaptive sparsity control targeting the ground-truth average ℓ0 of 1.2338

• Optimizer: Adam with learning rate 3e-2, betas=(0.5, 0.9375)

• Training steps: 40,000

• Batch size: 200

• Gradient clipping norm: 1.0

Matryoshka-Specific Components. Per batch, 10 prefix lengths are sampled from a truncated Pareto(0.5) distribution,
with the full SAE always included. Specifically, each possible prefix length ℓ ∈ {1, . . . ,m}, where m is the total number
of latents, is assigned a probability proportional to P (ℓ) ∝ 1−

(
ℓ
m

)α
where α > 0 controls how heavily the distribution

favors shorter prefixes (we use α = 0.5 in our experiments). This yields a monotonically decreasing probability distribution
over prefix lengths. We then normalize this distribution and sample prefix lengths without replacement, always including the
full prefix length m to ensure the complete SAE is trained.

Figure 11. Full feature absorption toy model activations Ground-truth feature activations alongside Matryoshka SAE activations and
Vanila activations. Notice that for the Vanilla SAE, parent latents (columns bracketed in blue) do not fire when their children (bracketed in
red) fire.

D. TinyStories examples
Figure 12 shows a set examples of features learned by the Matryoshka SAE trained on the TinyStories model. The first
feature activates on female-related tokens, the second feature on adjectives indicating that something is small, whereas the
third feature activates on nouns that refer to the location where a story takes place.
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Figure 12. A set of example features learned by the Matryoshka SAE trained on the TinyStories model.

E. Tree Methodology
To generate the hierarchical visualizations in sparselatents.com/tree view, we implemented a variant of Masked Cosine
Similarity (MCS), building upon the metric introduced in “Towards Monosemanticity” (Bricken et al., 2023).

E.1. Modified Masked Cosine Similarity

The original MCS between two latents A and B is calculated as follows:

1. Compute the cosine similarity between activations of A and B, but only for tokens where latent A is active

2. Compute the cosine similarity between activations of A and B, but only for tokens where latent B is active

3. Take the larger of these two similarity values as the final MCS

Our approach modifies MCS in two ways:

1. We only consider the cosine similarity between A and B’s activations on tokens where B is active, for a directed version
of MCS.

2. We scale this directed similarity by the ratio max(B activations)/max(A activations), which we hoped would down-
weight relationships involving latents with minimal activation

We use a more conservative similarity threshold of 0.6 compared to the original implementation.

E.2. Tree Construction Process

The tree generation proceeds through these steps:

1. Starting with a parent latent (e.g., S/1/12), we identify all latents in a wider SAE model (e.g., S/2) that exceed our
directed MCS threshold

2. For each identified S/2 latent, we recursively apply the same methodology to find children in S/3

3. We continue this process to build the complete hierarchical structure
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E.3. Handling Multi-Parent Relationships

The resulting structure often forms a directed acyclic graph (DAG) rather than a strict tree, as some latents in deeper layers
(e.g., S/3) may have relationships exceeding the similarity threshold with multiple parent latents in the previous layer (e.g.,
S/2).

To simplify visualization, we assign each multi-parent latent exclusively to the parent with which it exhibits the highest
similarity score. While this approach necessarily obscures some of the complexity in the underlying network structure, it
enables clearer visualization and interpretation.

E.4. Interpretation

It’s important to note that these tree visualizations should not be interpreted as comprehensive representations of the
full model structure. Rather, they serve as targeted explorations highlighting sets of latents that potentially demonstrate
feature absorption relationships when examined together. They provide a window into how features may be organized and
recomposed across different model widths.

F. Investigating the sub-SAEs
In addition to using the complete Matryoshka SAEs, we also investigate using only a number of the sub-SAEs. For this
analysis, we train a Matryoshka SAE with 36864 latents and 5 subgroups of {2304, 4608, 9216, 18432, and 36864}. For
fair comparison, we train five standard BatchTopK SAEs with dictionary sizes matching our nested sub-SAEs (2304, 4608,
9216, 18432, and 36864), each calibrated to match the effective sparsity of the corresponding sub-SAE (average L0 norms
of 22, 25, 27, 29, and 32 respectively).

In Figure 13, we find a distinct activation patterns across different latent groups, with early latents showing consistently
higher activation rates due to their participation in multiple reconstruction objectives.

Figure 13. Latent frequency per latent index. Distribution of latent activations across different groups in the Matryoshka SAE. Each
color represents a different nested dictionary size. Early latents (blue) show higher average activation rates, reflecting their use in multiple
reconstruction objectives.

By using only a limited number of the sub-SAEs of the single Matryoshka SAE, we can construct dictionaries of different
sizes. Figure 14 shows the reconstruction performance of the sub-SAEs compared to their matched BatchTopK SAEs.
Although the BatchTopK SAEs explain a larger percentage of the variance of the input, the difference in degradation of
downstream language model cross-entropy loss decreases when more sub-SAEs are used.
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Figure 14. Reconstruction performance of sub-SAE. Although the BatchTopK SAEs explain a larger percentage of the variance of the
input, the difference in degradation of downstream language model cross-entropy loss decreases when more sub-SAEs are used.

F.1. Hierarchies of Matryoshka Features

The nested training objective of Matryoshka SAEs is designed to encourage the formation of a feature hierarchy. Early
latents, belonging to smaller sub-SAEs, are pressured to capture broad, general concepts since they must reconstruct the
input independently. Subsequent latents in larger sub-SAEs can then learn more specific features, potentially representing
refinements or components of the earlier, more general features, without the same incentive to absorb or fragment these
foundational concepts.

We can visualize these learned hierarchies by examining the co-occurance between features. Figure 15 illustrates such a
hierarchy. In this hierarchy, we observe a clear parent-child relationship structure. The root latent (103) represents a general
”sports team names” concept that activates broadly on any mention of sports teams. This general feature branches into more
specific subcategories, such as rankings of sports teams and news headlines containing sports teams.

Figure 15. Hierarchy of features related to sports names. The thickness of the connections indicates the fraction of inputs on which the
child features co-occur with their parent features.
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F.2. Investigating Composition with Meta-SAEs

We train meta-SAEs on the decoder matrices of both architectures. Each meta-SAE has a dictionary size one-quarter that of
its input SAE and uses an average of 4 active latents. The variance explained by these meta-SAEs serves as a proxy for
shared information between latents.

Meta-SAEs explain substantially more variance in BatchTopK SAE decoder directions compared to Matryoshka SAE
directions (Figure 16). For the largest dictionary size Meta-SAEs explain 55% of variance in BatchTopK decoder directions,
whereas they only explain 42% of variance in Matryoshka SAE decoder directions.

This indicates that Matryoshka SAE latents are more disentangled, with less shared information between them. The effect
strengthens with dictionary size: BatchTopK SAEs show increasing levels of shared structure while Matryoshka SAEs
maintain relatively constant levels of disentanglement.

Figure 16. Meta-SAE Evaluation Comparison between Matryoshka SAEs and standard BatchTopK SAEs.

G. Evaluations with Board Game Models
Karvonen et al. (2024c) evaluated SAEs on specialized models trained exclusively on chess and Othello games, leveraging
the well-defined ground truth features in these domains. Their evaluation created two key metrics:

• Board reconstruction: The ability to reconstruct the game board from the SAE latents

• Feature coverage: The alignment of SAE latents with predefined board game features

While these toy models offer a controlled environment for testing, we find that the results do not show significant differentia-
tion between Matryoshka SAEs and other evaluated architectures (ReLU, P-Anneal, Gated, and TopK) in terms of these
metrics. In the low L0 regime (L0 ≤ 150), Matryoshka performs comparably to other architectures on both metrics. Notably,
the best overall performance achieved by each architecture tends to occur in this lower L0 range, with peak scores being
fairly comparable across architectures.

However, Matryoshka shows some degradation in performance at higher L0 values. This behavior may be partially explained
by the model architecture: Chess-GPT uses a relatively small hidden dimension of 512, meaning that high L0 values (≥ 150)
represent a significant fraction of the model’s representational capacity. This differs substantially from our main experiments
on Gemma-2B, where even our largest L0 values represent a much smaller fraction of the model’s hidden dimension.

Given that our primary interest lies in understanding SAE behavior on large-scale language models that better reflect
real-world applications, we focus our main analysis on results from Gemma-2-2B. However, we include these toy model
results for completeness and to facilitate comparison with prior work. Figure 17 shows the performance comparison on the
two metrics from the chess model evaluation.
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Figure 17. Evaluation results on the ChessGPT toy model showing (left) feature coverage and (right) board reconstruction accuracy across
different architectures. While Matryoshka SAEs show comparable performance at low L0 values, they slightly underperform at higher
L0s compared to other architectures.

H. Ablations
To better understand the key components of Matryoshka SAEs and validate our design choices, we conduct a series of
ablation studies. These experiments systematically modify different aspects of the architecture while keeping other variables
constant. All ablation studies were trained on 200M tokens from The Pile (Gao et al., 2020), with evaluations performed on
layer 12 of Gemma-2-2B. We examine both 16k and 65k dictionary sizes and find differences become more pronounced at
larger sizes, so we focus on 65k in our ablation studies.

H.1. Ablation: Loss Weighting

The standard Matryoshka SAE equally weights the reconstruction loss for each nested dictionary size. However, we can
interpolate between Matryoshka and standard BatchTopK behavior by weighting the losses according to dictionary size. The
BatchTopK SAE can be thought of as a special case of Matryoshka with a single group.

We implement a Weighted Matryoshka variant that assigns loss weights proportional to the number of new latents in each
group. For nested dictionaries using [25%, 50%, 100%] of total latents, this yields weights [0.25, 0.25, 0.5] compared to
the standard [0.33, 0.33, 0.33]. This weighting scheme emphasizes accurate reconstruction of the full dictionary while
maintaining some pressure for hierarchical feature learning.

With our ablation training budget of 200M tokens, the Weighted Matryoshka achieves downstream cross-entropy loss similar
to BatchTopK SAEs, outperforming the equally-weighted variant. However, this comes at the cost of reduced feature quality
- the weighted variant performs worse on feature absorption and spurious correlation removal metrics, suggesting that equal
weighting is important for maintaining the hierarchical benefits of Matryoshka SAEs. Given that the cross-entropy gap
between standard Matryoshka and BatchTopK disappears with larger training budgets, larger L0s, and larger dictionary
sizes (as shown in Section 4.3), these results support using equal weighting to preserve feature quality without significant
reconstruction trade-offs.
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Figure 18. Evaluation Results comparing the Matryoshka, Weighted Matryoshka, and BatchTopK 65K width Gemma-2-2B SAEs.
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H.2. Ablation: Stop Gradients

We investigate how gradient flow between different dictionary sizes affects the learning dynamics of Matryoshka SAEs. In
the standard implementation, the reconstruction for each nested dictionary incorporates the reconstructions from smaller
dictionaries. This allows gradients to flow through the entire chain of reconstructions - when optimizing the loss for larger
dictionaries, gradients can affect how smaller dictionaries learn their features. In our stop gradient variant, we detach each
partial reconstruction before it’s used in the next one, forcing each group of latents to learn independently of the others.

These changes effectively isolate the training of each nested dictionary, preventing larger dictionaries from influencing
how smaller ones learn features. Our evaluation shows mixed results: while the stop gradient variant achieves better
feature absorption scores at low L0 values, it shows degraded performance on loss recovered, sparse probing, and Spurious
Correlation Removal (Figure H.2). Given these degradations, we did not pursue this variant further, though future work with
more sophisticated metrics or qualitative analysis may reveal additional benefits to this approach.
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Figure 19. Evaluation Results comparing the Matryoshka, Stop Gradient Matryoshka, and BatchTopK 65K width Gemma-2-2B SAEs.
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H.3. Ablation: Number of Nested Dictionaries

We investigate how the number of nested dictionaries affects Matryoshka SAE performance. Our standard implementation
uses five nested dictionaries, with each group representing the following fractions of the total latents: [1/32, 1/16, 1/8, 1/4,
(1/2 + 1/32)]. We compare this against two variants:

• A three-group variant with ratios [1/8, 1/4, (5/8)]

• A ten-group variant with ratios (1/16384)[96, 152, 241, 383, 607, 964, 1531, 2430, 3857, 6123], derived from
logarithmically spaced values between 128 and 8192 and normalized to sum to the total dictionary size. We chose
this logarithmic spacing to avoid the extremely small dictionary sizes that would result from extending our standard
geometric progression to 10 groups.

The three-group variant improves on loss recovered compared to our standard five-group implementation but performs
worse on feature absorption and SCR, suggesting it interpolates between Matryoshka and BatchTopK behavior. Our
ten-group variant slightly improves on feature absorption but performs significantly worse on loss recovered and automated
interpretability metrics. Based on these results, we find that while the exact number of groups is not critical, five groups
provides a reasonable balance between the trade-offs present in these metrics (Figure H.3).
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Figure 20. Evaluation Results comparing Matryoshka variants with different numbers of nested dictionaries (3, 5, and 10 groups) against
BatchTopK SAE. All models use 65K width on Gemma-2-2B
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H.4. Ablation: Randomly Sampled Dictionary Sizes

As an alternative to fixed dictionary sizes, we explored dynamically sampling prefix lengths from a truncated Pareto
distribution during training. Specifically, each possible prefix length ℓ ∈ {1, . . . ,m}, where m is the total number of latents,
is assigned a probability proportional to P (ℓ) ∝ 1−

(
ℓ
m

)α
where α > 0 controls how heavily the distribution favors shorter

prefixes (we use α = 0.5 in our experiments). This yields a monotonically decreasing probability distribution over prefix
lengths. We then normalize this distribution and sample prefix lengths without replacement, always including the full prefix
length m to ensure the complete SAE is trained.

Random sampling could theoretically create a more continuous feature hierarchy by exposing the model to diverse dictionary
sizes throughout training. We evaluated both strategies on 16k-width SAEs with three different configurations for the
number of sampled prefixes (3, 5, and 10 groups).

On our current evaluation metrics, random sampling showed similar performance to fixed dictionary sizes, with minor
degradation in spurious correlation removal and sparse probing performance, as shown in Figure 21. Random sampling may
also introduce additional complexity for distributed training across multiple GPUs. While our evaluation framework may
not capture all relevant aspects of feature quality, we opted for fixed dictionary sizes for our main experiment given these
considerations.
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Figure 21. Random vs Fixed Dictionary Sizes. Comparison of Matryoshka SAE variants using randomly sampled dictionary sizes
against fixed dictionary sizes and BatchTopK baseline. We evaluate configurations with 3, 5, and 10 groups on 16k-width SAEs trained on
Gemma-2-2B. Random sampling shows similar or slightly worse performance compared to fixed dictionary sizes across most metrics.
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