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Abstract
Monte Carlo Tree Search (MCTS) is a pow-
erful framework for solving complex decision-
making problems, yet it often relies on the as-
sumption that the simulator and the real-world
dynamics are identical. Although this assump-
tion helps achieve the success of MCTS in
games like Chess, Go, and Shogi, the real-world
scenarios incur ambiguity due to their model-
ing mismatches in low-fidelity simulators. In
this work, we present a new robust variant of
MCTS that mitigates dynamical model ambi-
guities. Our algorithm addresses transition dy-
namics and reward distribution ambiguities to
bridge the gap between simulation-based plan-
ning and real-world deployment. We incorpo-
rate a robust power mean backup operator and
carefully designed exploration bonuses to ensure
finite-sample convergence at every node in the
search tree. We show that our algorithm achieves
a convergence rate of O(n−1/2) for the value es-
timation at the root node, comparable to that of
standard MCTS. Finally, we provide empirical
evidence that our method achieves robust perfor-
mance in planning problems even under signifi-
cant ambiguity in the underlying reward distribu-
tion and transition dynamics.

1. Introduction
Reinforcement learning (RL) provides a statistical ma-
chine learning framework to interact with the environ-
ments—such as autonomous vehicles, agile robots, and net-
work systems—sequentially and learn to take control ac-
tions to achieve the desired objective. Monte Carlo Tree
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Search (MCTS) algorithm, in conjunction with deep learn-
ing methods, solve complex decision-making problems in
high-dimensional environments. Its celebrated success sto-
ries include autonomous RL decision-making agents play-
ing board games Chess, Go, Shogi (Silver et al., 2016;
Schrittwieser et al., 2020), Poker (Brown and Sandholm,
2018; Keshavarzi and Navidi, 2025), and solving vari-
ous real-world challenging tasks like robotics and au-
tonomous systems (Hoel et al., 2019; Kartal et al., 2019;
Dam et al., 2022). MCTS offers a principled way to bal-
ance exploration and exploitation by using combinatorial
search mechanisms derived from online simulated trajecto-
ries. As a result, MCTS can effectively promote the explo-
ration of promising regions of the environment with only
partial modeling information of the environment.

However, most of these successes are limited to structured
or simulated environments. As successful as RL algorithms
are, an issue in applying them to real-world dynamical sys-
tems is the unavoidable discrepancy between the simula-
tors and the actual real-world system dynamics. In tradi-
tional RL approaches (Kaelbling et al., 1996; Salvato et al.,
2021), transition models are often learned from data col-
lected by interacting with simulator models to avoid unsafe
interactions with real-world systems, and reward models
may be subject to stochasticity, hacked rewards, or unmod-
eled external factors. Such ambiguities arise from a vari-
ety of sources: limited training data, non-stationary envi-
ronments, adversarial conditions, partial observability, or
simply modeling simplifications. These factors can lead to
a so-called simulation-to-reality gap, where the policy or
value function that appears optimal in the simulated en-
vironment may perform poorly when deployed in the real
world. A natural approach to addressing these challenges is
to incorporate robustness against simulation-to-reality gaps
directly into the planning algorithm.

RL agents making decisions under the framework of Ro-
bust Markov Decision Processes (RMDPs) (Iyengar, 2005;
Nilim and El Ghaoui, 2005) offer a principled mechanism
to conceptualize robustness against transition model and
reward model mismatches raised by simulation-to-reality
gaps. These robust RL agents explore policies that maxi-
mize expected returns under the worst-case model within
a prescribed ambiguity set. The ambiguity set is typically
constructed as a ball around the simulator dynamics or re-

1



Online Robust Reinforcement Learning Through Monte-Carlo Planning

ward model, with the design choice of the ball size cov-
ering the real-world ground truth model descriptors. Re-
cent works demonstrate their potential to achieve robust
decision-making performance when faced with perturba-
tions in transition dynamics and reward function models.
However, while value iteration and policy optimization
methods have been introduced and analyzed for robust RL,
MCTS-based planning algorithms have not been explored,
as per the authors’ knowledge. We discuss more detailed
related works in Section 2.

In this work, we propose a novel robust MCTS algorithm
equipped with non-asymptotic performance guarantees un-
der model ambiguity set. Importantly, we incorporate both
reward and transition ambiguity robustness, similar to re-
cent works (Zhou et al., 2021; Wang et al., 2024b) in robust
RL. In particular, our work resolves the following ques-
tions:

Can we use a search-based planning approach
like MCTS to balance exploitation and explo-
ration for the robust RL problem? What theo-
retical guarantee can we provide? Can we show
robust performance against standard algorithms
under the simulation-to-reality issue?

Our approach embeds the distributionally robust optimiza-
tion (Rahimian and Mehrotra, 2019) mathematical princi-
ple into the MCTS framework, ensuring that the value es-
timates and action selections are robust to transitions and
rewards drawn from the ambiguity sets. More precisely,
we conceptualize a robust backup operator and design ex-
ploration bonuses that accommodate ambiguity sets de-
fined using total variation, Kullback-Leibler, chi-squared,
or Wasserstein measures. This allows MCTS to simultane-
ously use a tree search mechanism to solve for robust value
estimates by trading off exploitation and exploration while
achieving robust policies that work uniformly well across
different models in the ambiguity set.

One of the key contributions of this work is the estab-
lishment of finite-sample bounds on the convergence rates
of our robust MCTS algorithm. Viewing each node in the
MCTS tree as a non-stationary bandit problem sheds light
on the nontrivial challenges of controlling the interaction
between ambiguity sets and exploration bonuses. More
specifically, coming up with exploration bonuses (thereby
robust value approximations) is nontrivial based on the
non-linear backup operator due to the formalization of ro-
bustness. We overcome these challenges by building on a
sequence of technical lemmas and applying concentration
inequalities to the robust backup operator, we show that
our method attains a convergence rate of order O(n−1/2)
for robust value estimation at the root node, where n is the
number of states visited while exploring the environment.
This convergence rate also matches the best-known results

for standard, non-robust MCTS, thereby demonstrating that
introducing robustness need not change the convergence
speed in terms of the number of samples.

Contributions. In this work, to the best of our knowl-
edge, we are the first to propose an MCTS-based algorithm
for the robust RL problem. Our contributions are threefold:

• Robust MCTS Algorithm: We solve the online robust RL
problem–accounting for model ambiguity in both tran-
sitions and rewards–using a planning algorithm enabled
by MCTS. This fundamental first step paves the way for
future applications in large-scale dynamical systems.

• Non-Asymptotic Guarantees: We provide rigorous finite-
sample performance bounds, ensuring that the robust
MCTS converges with a known rate, on par with standard
MCTS. Our analysis leads to novel exploration bonuses
that arise from careful analyses of robust backup oper-
ators and the tree search mechanism by recasting robust
MCTS for different ambiguity sets as a collection of non-
stationary multi-armed bandit problems.

• Robust Empirical Performance: We conduct experiments
in two environments (Gambler’s Problem and Frozen
Lake) to evaluate our robust algorithm, demonstrating
that it achieves superior robust performance to model
mismatches than the standard MCTS algorithm baseline.

2. Related Works
Robust RL. Robust RL agents make decisions to allevi-
ate environmental ambiguities under the RMDP framework
introduced by Iyengar (2005); Nilim and El Ghaoui (2005)
considers distributional robust optimization (Rahimian and
Mehrotra, 2019) mathematical formularization. Many re-
cent works extensively study the robust RL problem, ad-
dressing multiple aspects of the challenges of decision-
making learning algorithms. Panaganti and Kalathil (2021);
Zhou et al. (2021); Panaganti and Kalathil (2022); Shi
and Chi (2024) propose model-based dynamic program-
ming algorithms to solve the robust RL problem for finite
state-action environments, and Dong et al. (2022); Pana-
ganti et al. (2025) extend to the online and offline settings,
respectively. These works focus on addressing the sam-
ple complexity—minimal samples needed from the simu-
lator model (leading to the construction of an approximate
model) for every state-action pair to obtain an approximate
value estimation—issue. Panaganti and Kalathil (2021);
Panaganti et al. (2022); Zhang et al. (2023) propose model-
free value function approximation-based robust RL algo-
rithms utilizing special structures in the Bellman backups
arising due to specific forms of ambiguity sets. Different
from these approaches, our algorithm is inspired by MCTS
to solve the robust RL problem. MCTS scales well (Silver
et al., 2016) for large problems by embedding strong search
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mechanisms into model-based planning approaches in RL.

MCTS for non-robust RL. AlphaGo-like (Silver et al.,
2016) agents are powered by tree search mechanisms such
as MCTS in traditional dynamic programming planning for
standard RL. Kocsis and Szepesvári (2006); Shah et al.
(2020); Dam et al. (2024b) provide theoretical guarantees
for such heuristic search-based deep RL algorithms. Re-
cently, the adoption of MCTS (Świechowski et al., 2023) in
other learning settings has seen scaling advantages. For in-
stance, in non-standard RL settings, like supervised learn-
ing systems (Guez et al., 2018; Wang et al., 2024a), con-
strained dynamical systems (Parthasarathy et al., 2023;
Kurečka et al., 2024) to promote safe decision-making
choices, and partially observable and constrained dynam-
ical systems (Lee et al., 2018; Dam et al., 2022; 2020).
In bandits, like agents taking decisions in the space of
contexts (Ontanón, 2013; Mao et al., 2020). In applica-
tions, like autonomous vehicles and robots, (Kartal et al.,
2019; Yin et al., 2022) where the imitation of expert deci-
sions plays a critical role. Alternative approaches include
entropy regularization methods like MENTS (Xiao et al.,
2019), RENTS and TENTS (Dam et al., 2021; 2024a), and
Boltzmann-based approaches (Painter et al., 2023), though
these rely on temperature parameters that may impede con-
vergence to true optimal values. Inspired by such adoption
of MCTS, we enable MCTS-based planning for the first
time to the robust RL problem—equipped with theoretical
guarantees—that accounts for mitigating dynamical model
ambiguities.

Search-based planning for online robust RL. This line
of research is closest to ours in terms of search-inspired
algorithms. (Liu et al., 2022; Wang et al., 2023; Wang,
2024) introduces the Multi-Level Monte Carlo (MLMC)
method (Heinrich, 2001; Giles, 2008) to approximate
the robust Bellman backups. MLMC is another power-
ful statistical sampling method from the family of Monte
Carlo estimators. However, they have the drawback of
requiring random sampling procedures in each iteration
of the robust RL planning stages for every state-action
pair. By avoiding these pitfalls, MCTS adapts to the on-
line sampling procedure by enabling search from a tree
node—states and actions in dynamical systems—up to
some constant depth in the tree. Other works introduce
sampling-based Q-learning (Zhou et al., 2021; Liu et al.,
2022; Wang et al., 2024b) and policy iteration (Panaganti
and Kalathil, 2021; Kumar et al., 2023; Badrinath, 2023)
inspired approaches. These are popular methods in stan-
dard online RL enabling trajectory-based updates—at cur-
rent states, actions, and next states sampled with an updated
policy—to approximate the Bellman backups. However,
these require algorithmic and theoretical innovations–for
e.g., function approximation architectures–for scaling up

to high-dimensional dynamical systems (Panaganti et al.,
2022; Zhang et al., 2023; Panaganti et al., 2024; Liu and
Xu, 2024). The incorporation of the strong sampling pro-
cedure by MCTS avoids this issue.

3. Preliminaries
A Markov Decision Process (MDP) specified by the tuple
(S,A, P,R), where S ⊂ Rd is the (potentially large) state
space, A is a discrete action space, P : S × A → ∆(S)
is the transition model mapping each state–action pair to a
probability distribution over next states, and R : S × A →
R is the (possibly uncertain) reward function assumed to
be supported on a bounded interval [0, Rmax]. A stationary
policy π ∈ Π(M) is defined as π : S → ∆(A), meaning
that at each discrete time step t, the agent observes a state
st, samples an action at ∼ π(· | st), collects a reward
rt ∼ R(· | st, at), and transitions to st+1 ∼ P (· | st, at).
We mention detailed notations used in this work in Table 3.

3.1. Value Functions and Policies

We adopt a discounted formulation with discount factor
γ ∈ (0, 1). The state-value and state–action value functions
of a policy π are given by

V π
P,R(s) =

∑∞
t=0 Eat∼π

[
γt rt

∣∣ s0 = s
]
, (1)

Qπ
P,R(s, a) =

∑∞
t=0 Eat∼π

[
γt rt

∣∣ s0 = s, a0 = a
]
. (2)

The optimal state-value function is defined as V ⋆
P,R(s) =

supπ V π
P,R(s). By definition and existence of deterministic

optimal actions, the optimal state–action value function Q∗

satisfies V ⋆
P,R(s) = maxa Q

⋆
P,R(s, a) for each s ∈ S.

3.2. Conceptualization of Robustness

A key challenge in real-world RL is that both transitions
P and rewards R may be partially unknown or even time-
varying. Let P o and νo denote the nominal transition prob-
abilities and reward distributions, respectively, with each
reward r(s, a) ∼ νos,a. These nominal models can be either
factory-set approximations or a simulator of real-world sys-
tems. Following Wang et al. (2024b); Zhou et al. (2021);
Liu et al. (2022), we allow the environment to deviate from(
P o, νo

)
within a robustness budget ρT, ρR respectively.

This leads to a robust MDP that accounts for uncertainties
in both transitions and rewards.

Ambiguity Sets. We model transitions in an ambiguity
setP =

⊗
(s,a) Ps,a, where eachPs,a contains all plausi-

ble distributions over next states from (s, a). Analogously,
an ambiguity setR =

⊗
(s,a) Rs,a captures deviations in

the reward distributions r(s, a). Here, with a chosen metric
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D(·, ·),

Ps,a =
{
Ps,a ∈ ∆(S) : D

(
Ps,a, P

o
s,a

)
≤ ρT

}
,

and
Rs,a =

{
νs,a : D

(
νs,a, ν

o
s,a

)
≤ ρR

}
.

Different choices of D lead to distinct ambiguity sets,
such as total-variation balls (PTV), chi-squared neighbor-
hoods (PX ), or Wasserstein sets (PW ). For notational con-
venience, we denote the reward distributions νs,a ∈ Rs,a

also as their probability densities in the context of measur-
ing distances D

(
·, ·
)
.

4. Main Problem Formulation
This section establishes how Monte Carlo Tree Search
(MCTS) can be adapted to account for model ambiguity
in a robust Markov Decision Process (MDP). Our goal is
twofold: first, to clarify the root assumptions behind the
robust planning framework, and second, to describe how
MCTS is modified so that each node’s value estimate in-
corporates worst-case rewards and transitions.

Robust MDP. We consider a robust MDP M =
(S,A,P,R) in which the state space S may be large
or partially continuous, the action space A is discrete,
and the unknown reward r(s, a) and transition model
P(· | s, a) can lie within an ambiguity set R and P
(described in Section 3). At each step t, the agent ob-
serves a state st, selects an action at ∈ A, receives
reward rt, and transitions to a new state st+1. The ro-
bust state-value and state-action value functions of a pol-
icy π are given by V π(s) = minP∈P,R∈R V π

P,R(s) and
Qπ(s, a) = minP∈P,R∈R Qπ

P,R(s, a) respectively. A pol-
icy π⋆ that maximizes the value function is an optimal ro-
bust policy with corresponding optimal robust value func-
tions V ⋆(s) and Q⋆(s, a). Hence, both transitions and re-
wards may be adversarially perturbed, ensuring the agent
plans robustly for worst-case scenarios within these sets.

Robust Bellman Operator. In the robust MDP, the
worst-case expected value arises from an adversarial choice
of both transition and reward distributions within their re-
spective ambiguity sets. From the robust MDP literature
(Iyengar, 2005; Liu et al., 2022), by the construction of P
and R ambiguity sets, Q⋆ is known to be computable, and
thereby π⋆(s) = argmaxa∈A Q⋆(s, a).

Let us define for any set B and a vector v, σB(v) =
inf{uT v : u ∈ B}. Robust dynamic programming, given
by Vk+1(s) = maxa∈A Qk+1(s, a) and

Qk+1(s, a) = Rrob
s,a + γ σPs,a

(Vk),

where Rrob
s,a = minrs,a∈Rs,a ER∼rs,a [R], and σPs,a(V )

captures the worst-case expected reward at (s, a) and value
of V over Ps,a, converges to optimal robust value functions
V ∗ and Q∗ respectively.

MCTS in a Robust MDP. In Monte Carlo Tree Search,
we approximate a γ-discounted solution by simulating tra-
jectories down a growing search tree. Each node corre-
sponds to a state sh, with h indicating the depth in the tree
(distance from the root). From sh, the algorithm either ex-
pands a child node for the next state sh+1 or performs a
rollout using a simpler policy π0 if h reaches the maximum
search depth H . Trajectories terminate upon reaching depth
H or a terminal state.

Performance Measure. A canonical metric for MCTS
algorithms is the convergence rate r(t), where t indexes
the number of simulated trajectories (rollouts). Informally,
r(t) bounds how quickly the MCTS estimates approach the
true optimal values at the root node. For instance, one may
require that E

[
V ⋆(s0)−Q⋆(s0, ât)

]
≤ r(t), or∣∣E[V ⋆(s0)− V̂t(s0)

]∣∣ ≤ r(t),

where ât is the action chosen at the root after t rollouts, and
V̂t(s0) approximates V ⋆(s0).

Recursive Value Estimation Under Ambiguity. To cap-
ture the robust (worst-case) aspect of the MDP, we define a
recursive estimation scheme at each node that accounts for
infr(s,a)∈Rs,a

of reward and infP∈Ps,a transitions. Let sh
be a node at depth h. We assign a robust value Ṽ (sh) and
a robust action-value Q̃(sh, a) such that

Q̃(sh, a) = Rrob
s,a + γ σPsh,a

(
Ṽ
)
,

Ṽ (sh) = max
a∈A

Q̃(sh, a).

At a leaf node (h = H), we approximate the value with a
simple rollout policy π0, yielding Ṽ (sH) ≈ Vπ0

(sH).

Goal of MCTS. Since finite sample sizes introduce
noise, each node’s robust value Ṽ (sh) is estimated from
rollouts. The ultimate objective is to identify an action
a⋆ = argmaxa Q

⋆(s0, a) at the root state s0 within n sim-
ulated trajectories, where Q⋆(s0, a) represents the robust-
optimal action value. Intuitively, we want:

ân ≈ argmax
a

Q̃(s0, a), V̂n(s0) ≈ Ṽ (s0),

with small statistical error. In Section 5, we describe
how Robust-Power-UCT achieves this via specially de-
signed backup operators and action-selection rules. Sec-
tion 6 establishes finite-sample guarantees, showing that
robustness in MCTS need not degrade convergence speed
compared to its non-robust counterpart.
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5. Algorithm Description
We now describe the core parts of our
Robust-Power-UCT algorithm, focusing on the
value backup and action selection strategies. Other details,
such as the main loop and rollout procedure, are standard
MCTS routines and hence only briefly mentioned.

Table 1: Key Conditions for Algorithmic Constants (i ∈
[0, H])

Cond. Requirement

(1) bi < αi and bi > 2.

(2)


1 ≤ p ≤ 2 and αi ≤ βi

2 ,

or
p > 2 and αi ≤ βi

2 , 0 < αi − βi

p < 1

(3) αi

(
1− bi

αi

)
≤ bi < αi.

(4) αi = (bi+1 − 1)
(
1− bi+1

αi+1

)
.

(5) βi = (bi+1 − 1).

Value Backup. To estimate the value function at each
node, we use a power mean backup operator. When node
sh is expanded in the tree, we define inductively for all t,

V̂t(sh) =

( ∑
a∈Ash

Tsh,a(t)

t

[
Q̂Tsh,a(t)(sh, a)

]p)1
p

,

where p ≥ 1. This power mean backup places more em-
phasis on actions that have high current value estimates
(when p > 1), but still captures the contributions of other
actions. Meanwhile Q̂Tsh,a(t)(sh, a), or simply Q̂t(sh, a)
as the root is sh, itself is updated via

Q̂t(sh, a) = R̂rob
sh,a

+ γσP̂sh,a

(
V̂Tsh+1

(t)

)
, (3)

where R̂rob
sh,a

= minr∈R̂sh,a
ER∼r[R] is an empirical ro-

bust reward at (sh, a), and σP̂(·) is a robust operator cap-
turing worst-case transitions for ambiguity sets governed
by empirical estimates of nominal reward and transition
models:

P̂s,a =
{
Ps,a ∈ ∆(S) : D

(
Ps,a, p̂s,a

)
≤ ρT

}
,

and

R̂s,a =
{
νs,a ∈ ∆(B) : D

(
νs,a, ν̂s,a

)
≤ ρR

}
.

Action Selection. At each node sh in the search tree,
Robust-Power-UCT selects an action a according to an
optimistic rule that balances exploration and exploitation.

Specifically, we maintain an empirical estimate Q̂t(sh, a)
for each action and add an exploration bonus of the form:

C ·
(
Tsh(t)

) bh+1
βh+1(

Tsh,a(t)
)αh+1

βh+1

,

where Tsh(t) is the total number of visits to sh up to time
t, and Tsh,a(t) is how often action a has been taken from
sh. The exponents bh+1

βh+1
and αh+1

βh+1
control how aggressively

the algorithm explores, while C is a user-chosen constant.
At the end of training (greedy mode), the action with the
highest Q̂t is chosen.

Main Loop and Rollout. As in standard MCTS, the al-
gorithm repeatedly simulates from the root state s0, select-
ing actions according to the above scheme. When reaching
a leaf node (unexpanded or maximum depth), a rollout pol-
icy approximates the return from that leaf. These routines
are routine and can be implemented similarly to classical
MCTS methods.

By combining an optimistic action selection mecha-
nism with a power mean and robust operator for value
backup, Robust-Power-UCT systematically balances
exploration of uncertain actions and exploitation of promis-
ing ones, all under model ambiguity.

6. Theoretical Results
In robust MCTS planning, each internal node of the search
tree can be viewed as a non-stationary multi-armed bandit
due to ongoing updates of the node’s reward and transi-
tion ambiguity estimates. At each step, the empirical eval-
uations shift, reflecting how robust exploration is balanced
against uncertainty in the model. To handle this dynamic
process, we begin by studying a non-stationary multi-
armed bandit problem—focusing on how the power-mean
backup operator concentrates around its robust-optimal
value. We then leverage these results to prove convergence
properties of our robust MCTS algorithm, showing that it
systematically discards suboptimal branches under model
uncertainty while maintaining sample efficiency.

6.1. Non-Stationary Bandit Perspective

We first analyze Robust-Power-UCT in a simpler non-
stationary multi-armed bandit setting. Here, actions are se-
lected optimistically, and the power mean backup operator
is used at the root node.

6.1.1. PROBLEM DESCRIPTION AND KEY DEFINITIONS

We consider a class of non-stationary multi-armed bandit
(MAB) problems with K ≥ 1 actions (arms) with the re-
ward ∈ [0, R]. Define a sequence of estimator µ̂a,n (in this
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Algorithm 1: Robust-Power-UCT with γ discount factor. n : the number of rollouts. {bi, αi, βi}Hi=0 are positive con-
stants that satisfy conditions in Table 1. B is the total bins for [0, Rmax]. π0 is a rollout policy. C is an exploration constant.
Input: root node state s0
Output: optimal action at the root node
Function R = Rollout (s, depth)

Ṽ (s) = average of the call to π0(s)

return Ṽ (s)
Function a = SelectAction (sh, depth = h, greedy =
false, t)

if greedy == false then

a = argmax
a
{Q̂Tsh,a(t)(sh, a) + C

Tsh
(t)

bh+1
βh+1

Tsh,a(t)

αh+1
βh+1

}

else
a = argmax

a
{Q̂Tsh,a(t)(sh, a)}

end
return a

Function SimulateV (sh, depth, t)
a← SelectAction(sh, depth = h, greedy = false, t)
SimulateQ (sh, a, depth = h, t)
Tsh(t)← Tsh(t) + 1

V̂Tsh
(t)(sh)←

(∑
a

Tsh,a(t)

Tsh
(t)

(Q̂Tsh,a(t)(sh, a))
p
) 1

p

Function SimulateQ (sh, a, depth = h, t)
sh+1 ∼ P o(·|sh, a)
r(sh, a) ∼ νo

sh,a

if sh+1 /∈ Terminal and depth ⩽ H − 1 then
if Node sh+1 not expanded then

V̂Tsh+1
(t)(sh+1) = Rollout(sh+1, depth)

else
SimulateV (sh+1, depth = h+ 1, t)

end
end
Find j ∈ B s.t. r(sh, a) ∈ Binj [0, Rmax]

ν̂sh,a(j) =
ν̂sh,a(j)·Tsh,a(t)+1

Tsh,a(t)+1

p̂sh,a(sh+1) =
p̂sh,a(sh+1)·Tsh,a(t)+1

Tsh,a(t)+1

Tsh,a(t)← Tsh,a(t) + 1

Q̂Tsh,a(t)(sh, a)← R̂rob
sh,a + γσP̂sh,a

(V̂Tsh+1
(t))

Function MainLoop
For t = 0, · · · , n

SimulateV (s0, depth = 0, t)
return SelectAction (s0, greedy = true, n)

paper is the robustness estimation of the mean value of arm
a) such that µa,n = E

[
µ̂a,n

]
. We are interested in se-

quence of estimators that satisfy a suitable concentration
property:

Definition 1 (Concentration). A sequence of estimators
{Ŷn}n≥1 concentrates at rate (α, β) toward a limit Y , writ-

ing as Ŷn
α,β→

n→∞
Y , if there is a constant c > 0 such that

∀n ≥ 1, ∀ ε > n−α
β , Pr

(∣∣Ŷn−Y
∣∣ > ε

)
≤ c n−α ε−β .

Assumption 1 (Non-Stationary Rewards). For each arm
a ∈ [K], the sequence {µ̂a,n}n≥1 concentrates at rate

(α, β) toward a value µa, i.e. µ̂a,n
α,β→

n→∞
µa. Let µ⋆ =

maxa∈[K]{µa}, assumed to be unique with a strict gap
from suboptimal µa.

6.1.2. OPTIMISTIC ACTION SELECTION AND POWER
MEAN BACKUP

Under Assumption 1, we use an optimistic exploration rule
similar to Robust-Power-UCT. Let Ta(n) be the num-
ber of times arm a is pulled before time n. The algorithm
pulls each arm once initially. For n > K:

an = arg max
a∈[K]

{
µ̂a,Ta(n) + C n

b
β /Ta(n)

α
β

}
, (4)

where b > 2 and b < α. For the power mean
operator, let p ∈ [1,∞) and define µ̂n(p) =

(∑K
a=1

Ta(n)
n

[
µ̂a,Ta(n)

]p)1
p

. By applying Theorem 1 of

Dam et al. (2024b), we get µ̂n(p)
α′,β′

→
n→∞

µ⋆, where α′ =

(b− 1)
(
1− b

α

)
, and β′ = (b− 1).

Connecting Back to MCTS. This bandit analysis under-
pins how Robust-Power-UCT handles exploration and
the power mean backup. In an MCTS context, each node’s
local bandit analysis is augmented by worst-case backups,
but the principle is similar: the algorithm discards subopti-
mal branches with high probability, causing the robust es-
timates to concentrate around the best actions.

6.1.3. MAIN CONVERGENCE RESULTS

Before presenting the main result (Theorem 3), we first
show an important lemma used for our MCTS algorithm.

Lemma 17. For m ∈ [M ], let (V̂m,n)n⩾1 be a sequence

of estimator satisfying V̂m,n
α,β→

n→∞
Vm, and there exists a

constant L such that V̂m,n ⩽ L,∀n ⩾ 1. Let Xi be an
iid sequence from a distribution νo with mean µ and Si be
an iid sequence from a distribution p = (p1, . . . , pM ) sup-
ported on {1, . . . ,M}. Introducing the random variables
Nn

m = #|{i ⩽ n : Si = sm}|. Define a model estimate of
p as p̂n = (

Nn
1

n ,
Nn

2

n , ...,
Nn

M

n ). We define an estimate of νo

as ν̂n = 1
n

∑n
i=1 δXi

. Recall Rrob = minr∈R ER∼r[R]

w.r.t νo and R̂rob = minr∈R̂ ER∼r[R] w.r.t ν̂n. We define
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the sequence of estimators

Q̂n = R̂rob + γσp̂n
(V̂n).

Then with 2α ⩽ β, β > 1, Q̂n
α,β→

n→∞
Rrob + γσp(V ).

Remark 1. This non-asymptotic convergence result shows
that, for suitable parameters (α, β), the estimator Q̂n will
concentrate around the limiting quantity Rrob + γ σp(V )
with high probability. Importantly, we do not claim these
(α, β) are in any sense optimal; rather, we only need the
existence of such parameters that guarantee the concen-
tration at the prescribed rate. Moreover, our analysis uses
covering number generalization to handle continuous re-
ward distributions. Furthermore, the constant c implicit in

the notation V̂n
α,β→

n→∞
V can depend on problem-dependent

factors (e.g., size of the action set A, number of states S,
etc.), reflecting the stochastic process complexity.

6.2. Tree-Level Convergence

The above non-stationary bandit analysis is critical for
proving the subsequent tree-level theorems. In particular,
Theorem 2 (restated below) shows that under appropri-
ate parameter settings (Table 1), the estimated node values
V̂n(·) and Q̂n(·, ·) converge at a known rate:

Theorem 2. When applying Robust-Power-UCT with
parameters {bi}Hi=0, {αi}Hi=0, {βi}Hi=0 satisfying Table 1:

(i) For any node sh at depth h ∈ {0, . . . ,H},

V̂n(sh)
αh,βh→
n→∞

Ṽ (sh).

(ii) For any node sh at depth h ∈ {0, . . . ,H − 1},

Q̂n(sh, a)
αh+1,βh+1→

n→∞
Q̃(sh, a), ∀ a ∈ Ash .

Proof. (Sketch) The argument proceeds by induction on
the tree depth H . For H = 1, we handle the root node
using Lemma 17 plus the concentration assumptions on
leaf nodes. For general H , we note that descending into
a child node effectively reduces the depth by one, thus the
induction hypothesis applies. By carefully controlling ex-
ploration (Section 5) and using robust backups, each node’s
V̂ and Q̂ estimates concentrate at the specified rates.

Finally, Theorem 3 establishes that under optimal param-
eter tuning, the expected payoff at the root converges at
O(n−1/2).

Theorem 3. (Convergence of Expected Payoff) At the root
node s0, there is a choice of parameters yielding∣∣E[V̂n(s0)

]
− Ṽ (s0)

∣∣ ≤ O(n−1/2
)
.

Remark 2. These results show that both
Robust-Power-UCT and standard (non-robust) MCTS
achieve the same O(n−1/2) rate for value estimation at
the root node, which implies that robustness need not
affect convergence speed, which is order-optimal. While
we achieve this rate, the exact dependence on various
problem-dependent factors (e.g., number of actions A,
number of states S, tree search depth H , etc.) is not de-
codable (thereby not comparable to other online robust RL
results (Dong et al., 2022)) due to our analysis limitations.

7. Experiments
We evaluate Robust-Power-UCT in three distinct envi-
ronments designed to test different aspects of robust plan-
ning: the Gambler’s Problem, Frozen Lake, and Ameri-
can Option Pricing. For each environment, we compare:
Stochastic-Power-UCT (Dam et al., 2024b) (baseline) and
Robust-Power-UCT with Total Variation, Chi-squared, and
Wasserstein ambiguity sets.

While several robust reinforcement learning methods exist
(c.f.Section 2), to the best of our knowledge, this is the first
work to incorporate ambiguity sets directly into MCTS,
making Stochastic-Power-UCT our primary baseline. All
experiments are done over 100 seeds, using γ = 0.99 and
robustness budget ρ = 0.5, with these values showing con-
sistent performance across preliminary experiments with
different parameter settings. For concise presentation, we
only experiment with transition model ambiguity just as
prior robust RL works.

Full experimental details, environment descriptions and hy-
perparameter configurations are provided in Appendix.E.1,
along with an additional analysis of the robustness budget.
We also provide our code at https://github.com/
brahimdriss/RobustMCTS.

Remark 3. While the robust Bellman operator involves
solving a minimization problem over probability distribu-
tions, we can leverage dual reformulations to make its
computation tractable. Many prior works (Iyengar, 2005;
Nilim and El Ghaoui, 2005; Xu et al., 2023) show, for a
value function V and nominal distribution P o, the robust
value under all ambiguity balls with radius ρT can be com-
puted in at most O(S log(S)) time. Thus requiring only
marginally more computation than standard Bellman op-
erators O(S). This computational efficiency is crucial for
practical implementations, particularly in online planning
settings like MCTS with frequent Bellman updates.

7.1. Gambler’s Problem Robustness Results

The Gambler’s Problem provides an ideal testbed for evalu-
ating robustness to model misspecification. An agent must
reach a target capital through a series of bets, with each
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Figure 1: Success rates in the Gambler’s Problem under model mismatch. Results show planning with fixed probabilities
ph = {0.4, 0.6, 0.8}while executing across different probabilities. Shaded area demonstrates how robust methods maintain
more consistent performance under model mismatch compared to Stochastic-Power-UCT.

bet winning with probability ph. This enables precise con-
trol of the planning-execution mismatch through a single
parameter.

Figure 1 illustrates the performance of different Power-
UCT variants under model mismatch in the Gambler’s
Problem. The behavior of Stochastic-Power-UCT reveals a
fundamental vulnerability: when ph < 0.5, there exist mul-
tiple optimal policies that achieve winning ratios close to
the true environment probability. However, when planning
with ph ⩾ 0.5, the algorithm converges to an aggressive
single-bet strategy that fails catastrophically when the true
probability is lower than assumed.

The superior performance of robust variants stems from
their conservative betting strategies. While Stochastic-
Power-UCT often makes large single bets, robust variants
tend to make smaller, sequential bets that preserve capital
for future opportunities.

7.2. Frozen Lake Robustness Results

The Frozen Lake environment tests robustness in a different
complex setting where uncertainties compound over multi-
ple steps. The agent must navigate to a goal while avoid-
ing hazards, with actions potentially failing with probabil-
ity pslip.

Table 2 provides detailed success rates across different
planning and execution probabilities. With matching con-
ditions (4000 rollouts and pslip = 0.3 case), our results
closely match those reported in the original paper (Dam
et al., 2024b) even with slightly different dynamics. The
Wasserstein uncertainty set exhibits superior performance
in scenarios with lower execution probabilities, achieving
the highest success rates (bold) across multiple conditions.
For example, with pslip = 0.3, it achieves 58% success
when pexec = 0.1, significantly outperforming other ap-

proaches.

Both Wasserstein and Chi-squared variants outperform the
baseline Stochastic-Power-UCT and Total Variation ap-
proaches. Interestingly, when planning and execution prob-
abilities align (underlined values), both robust variants
maintain superior performance compared to standard ap-
proaches. This suggests that explicitly accounting for un-
certainty in the planning process provides benefits even
without model mismatch, possible by encouraging more
conservative and reliable decision-making strategies.

These results on Gambler’s Problem and Frozen Lake
demonstrate that explicitly accounting for model ambiguity
during planning can significantly improve reliability when
deployment conditions differ from simulation assumptions.
The choice of ambiguity set provides a mechanism for bal-
ancing conservatism against nominal performance.

7.3. American Option Robustness Results

The American Option environment provides a financial do-
main to test reward robustness under model uncertainty.
In this setting, the agent must decide when to exercise an
option to maximize expected returns, with the key uncer-
tain parameter being the probability pu of price increases
at each time step.

Figure 2 demonstrates the reward robustness of different
Power-UCT variants under model mismatch in option pric-
ing scenarios. We examine two planning scenarios: training
with pu = 0.5 (left panel) and pu = 0.6 (right panel), then
testing across execution probabilities from 0.4 to 0.8.

The results reveal that robust variants maintain significantly
more stable performance compared to standard Power-
UCT. When planning with pu = 0.5, the standard approach
shows dramatic performance degradation as the test prob-
ability deviates from the planning assumption, dropping
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Figure 2: Reward robustness comparison in American Option pricing under model mismatch. Results show planning with
fixed price-up probabilities pu = {0.5, 0.6} while testing across different probabilities. Robust variants maintain signif-
icantly more stable performance compared to standard Power-UCT, demonstrating consistent risk-averse behavior that is
particularly valuable in financial decision-making contexts where reliability is crucial.

Planning Execution pslip

pplanslip 0.1 0.2 0.3 0.4 0.5

0.3

Sp 15 12 10 8 7
Tv 18 15 12 10 8
Cs 55 45 35 25 18
Ws 58 48 32 28 20

0.4

Sp 8 7 6 5 4
Tv 10 8 7 6 5
Cs 35 28 22 18 12
Ws 38 30 25 20 15

0.5

Sp 5 4 4 3 3
Tv 6 5 4 4 3
Cs 25 20 15 12 8
Ws 28 22 18 15 10

Table 2: Success rates (%) for planning with Power-UCT
variants. Methods: Stochastic-Power-UCT (Sp), Robust
version with Total Variation (Tv), Chi-squared (Cs), and
Wasserstein (Ws) ambiguity sets. Underlined values indi-
cate matching planning and execution pslip. Bold indicates
highest success rate per planning scenario.

from approximately 5 to near 0 when pu = 0.8. In contrast,
robust variants maintain consistent performance across the
entire range.

When planning with pu = 0.6, standard Power-UCT ex-
hibits extreme sensitivity with dramatically varying perfor-
mance. The robust variants demonstrate desired risk-averse
behavior: achieving conservative but stable returns across
all conditions. This stability is especially valuable in fi-

nancial contexts where consistent performance is preferred
over potentially high but unreliable returns.

The Wasserstein and Chi-squared ambiguity sets show par-
ticularly strong performance, maintaining steady rewards
even under significant model mismatch, demonstrating that
explicitly accounting for uncertainty leads to policies in-
herently more robust to different deployment conditions.

8. Conclusions
We have developed a robust variant of Monte Carlo Tree
Search (MCTS) that addresses dynamical model and re-
ward distribution ambiguities, bridging the gap between
simulation-based planning and real-world deployment. The
dependence of MCTS-based algorithms’ convergence rates
on parameters (states S, actions A, depth H) remains un-
derexplored in standard RL. We will address this gap for
both robust and non-robust setups in the future. As our
formulation follows an overly conservative mathematical
framework, in the future, we will explore alternative robust
formulations that are more permeable to less conservative
solutions to address the simulation-to-reality gap.

Impact Statement
This paper presents a novel algorithm for the robust rein-
forcement learning field using the Monte Carlo Tree Search
planning mechanism. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

9



Online Robust Reinforcement Learning Through Monte-Carlo Planning

Acknowledgments
Tuan Dam was funded by Hanoi University of Science and
Technology (HUST) under Project No. T2024-TD-024. K.
Panaganti acknowledges support from the Resnick Insti-
tute and the ‘PIMCO Postdoctoral Fellow in Data Science’
fellowship at Caltech. B. Driss was funded by the project
ANR-23-CE23-0006. A. Wierman acknowledges support
by the NSF through CNS-2146814, CPS-2136197, CNS-
2106403, and NGSDI-2105648. This work was granted ac-
cess to the HPC resources of IDRIS under the allocation
2024-AD011015599 made by GENCI.

References
Kishan Panaganti Badrinath. Robust Reinforcement
Learning: Theory and Algorithms. PhD thesis, Texas
A&M University, 2023.

Noam Brown and Tuomas Sandholm. Superhuman ai for
heads-up no-limit poker: Libratus beats top professionals.
Science, 359(6374):418–424, 2018.

Imre Csiszár. Eine informationstheoretische ungleichung
und ihre anwendung auf den beweis der ergodizität von
markoffschen ketten. A Magyar Tudományos Akadémia
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A. Notations

Notation Description

S, A State space and action space of the MDP.
H Planning horizon (depth of the search tree).
(s, a) A specific state–action pair; s ∈ S, a ∈ A.
[M ] Denotes the set {1, 2, · · · ,M}.
νo
s,a Nominal (true) reward distribution for state–action pair (s, a).

νs,a, ν̂s,a Generic and empirical reward distributions for (s, a), respectively.
Rmax Maximum possible reward value (i.e., reward is supported in [0, Rmax]).
Df (P∥P o) f -divergence between distributions P and P o, for a convex f(·).
PTV

s,a , PX
s,a, PW

s,a Uncertainty sets under Total Variation, Chi-square, and Wasserstein distances, respectively.
σPs,a(V ) Worst-case value operator (or “robust backup”) over an uncertainty set Ps,a.
ρ Radius (budget) for the uncertainty set in f -divergence or Wasserstein distance.
σp̂n(V̂n) Robust backup operator with the empirical transition p̂n as the set center for empirical value V̂n.
Bp Constant bounding the metric space for Wasserstein distance (e.g. max distance dp).
α∗, α̂∗ Dual variables optimizing robust reward functions under TV uncertainty sets.
∆(X) Probability simplex over the support of set X or size of X .
NR(θ) θ-cover set used for bounding the supremum of (η −R)+ in total-variation analysis.
∥ · ∥∞, ∥ · ∥1 Infinity norm (maximum absolute value in a vector) and ℓ1 norm (sum of absolute values in a vector).
δx A point mass at a realization x.
δ, θ, ε Parameters often controlling confidence levels or approximation accuracy in concentration bounds.
c, C Constants from generic concentration or covering-number arguments (possibly problem-dependent).
pm, Nn

m Used for i.i.d. sampling from a discrete distribution (p1, . . . , pM ), with Nn
m the count of outcomes of type m.

Q̂n, Q
⋆ Estimated and true robust Q-values, respectively.

V̂n, V
⋆ Estimated and true robust value functions, respectively.

γ Discount factor in the MDP.
W(µn, µ) Wasserstein distance between empirical measure µn and true measure µ.
α,β→

n→∞
Notation for concentration at rate (α, β); see text for precise definition.

Table 3: Key Notations Used in the Appendix. Symbols and definitions for uncertainty sets (TV, χ2, Wasserstein), reward
distributions, and the main variables in robust MDP analysis.

B. Useful technical results
Lemma 1. (Lemma 1 (Panaganti and Kalathil, 2022)) For any (s, a) ∈ S × A and for any V1, V2 ∈ P|S|, we have
|σPs,a(V1)− σPs,a(V2)| ⩽ ∥V1 − V2∥∞ and |σP̂s,a

(V1)− σP̂s,a
(V2)| ⩽ ∥V1 − V2∥∞

Lemma 2. (Proposition 2 (Xu et al., 2023)) Fix any h, s, a ∈ [H] × S × A. For any θ, δ ∈ (0, 1), we have with the

probability of at least 1− δ,
∣∣∣σPTV

s,a
(V̂h+1)− σP̂TV

s,a
(V̂h+1)

∣∣∣ ⩽ 2θ +
√

H2 log(4H/θδ)/2n

From Lemma 2, we have

P
(∣∣∣σPTV

s,a
(V̂h+1)− σP̂TV

s,a
(V̂h+1)

∣∣∣ ⩾ 2θ +
√
H2 log(4H/θδ)/2n

)
< δ (5)

Set θ = ε/4 with ε = 2
√
H2 log(4H/θδ)/2n, then

2nε2/4 = H2 log(4H/θδ)⇒ exp{−2nε2/H2} = εδ/16H (6)

⇒ δ =
16H exp{−nε2/2H2}

ε
(7)

so that

P
(∣∣∣σPTV

s,a
(V̂h+1)− σP̂TV

s,a
(V̂h+1)

∣∣∣ ⩾ ε
)
<

16H exp{−nε2/2H2}
ε

(8)

Lemma 3. (Proposition 4 (Xu et al., 2023)) Fix any h, s, a ∈ [H] × S × A. For any θ, δ ∈ (0, 1), we have with the

probability of at least 1− δ,
∣∣∣σPX

s,a
(V̂h+1)− σP̂X

s,a
(V̂h+1)

∣∣∣ ⩽ 2θ +
√
2C2

pH

(Cp−1)
√
n

(√
log
(

2(1+CpH/(θ(Cp−1)))
δ

)
+ 1

)
13
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Then we have

P
(∣∣σPX

s,a
(V̂h+1)− σP̂X

s,a
(V̂h+1)

∣∣ ⩾ 2θ +

√
2C2

pH

(Cp − 1)
√
n

(√
log

(
2(1 + CpH/(θ(Cp − 1)))

δ

)
+ 1

))
< δ (9)

Set θ = ε/4 with ε = 2
√
2C2

pH

(Cp−1)
√
n

(√
log
(

2(1+CpH/(θ(Cp−1)))
δ

)
+ 1

)
, then

(
(Cp − 1)

√
nε

2
√
2C2

pH
− 1

)2

= log

(
2(1 + CpH/(θ(Cp − 1)))

δ

)
(10)

⇒ exp

−
(
(Cp − 1)

√
nε

2
√
2C2

pH
− 1

)2
 =

δ

2(1 + CpH/(θ(Cp − 1)))
(11)

⇒ P
(∣∣∣σPX

s,a
(V̂h+1)− σP̂X

s,a
(V̂h+1)

∣∣∣ ⩾ ε
)
< (12)

2

(
1 + CpH/(

ε(Cp − 1)

4
)

)
exp

−
(
(Cp − 1)

√
nε

2
√
2C2

pH
− 1

)2
 (13)

Lemma 4. (Proposition 9 (Xu et al., 2023)) Fix any h, s, a ∈ [H] × S × A. For any θ, δ ∈ (0, 1), we have with the

probability of at least 1− δ,
∣∣∣σPW

s,a
(V̂h+1)− σP̂W

s,a
(V̂h+1)

∣∣∣ ⩽ 2θ +
H(Bp+ρp)

ρp

√
log

(
2HBp+2H

√
ρp

ρpθδ

)
2n

Similarly, Set θ = ε/4 with ε =
2H(Bp+ρp)

ρp

√
log

(
2HBp+2H

√
ρp

ρpθδ

)
2n , then

exp

{
− 2nε2ρ2p

4H2(Bp + ρp)2

}
=

ρpθδ

2HBp + 2H
√
ρp

(14)

⇒ δ =
4 (2HBp + 2H

√
ρp)

ρpε
exp

{
− 2nε2ρ2p

4H2(Bp + ρp)2

}
(15)

so that

P
(∣∣∣σPW

s,a
(V̂h+1)− σP̂W

s,a
(V̂h+1)

∣∣∣ ⩾ ε
)
<

4 (2HBp + 2H
√
ρp)

ρpε
exp

{
− 2nε2ρ2p

4H2(Bp + ρp)2

}
(16)

Lemma 5. (Lemma 2 (Fournier and Guillin, 2015), Concentration inequality for Wasserstein distance ). For µ ∈ P(R),
we consider an i.i.d. sequence (Xk)k⩾1 of µ-distributed random variables and, for all n ⩾ 1, the empirical measure

µn :=
1

n

n∑
k=1

δXk
.

Assume that there exists γ > 0 such that E2,γ(µ) :=
∫
R exp

(
γ|x|2

)
µ(dx) <∞. Then for all n ⩾ 1, all x > 0,

P (W (µn, µ) ⩾ x) ⩽ C exp
(
−cnx2

)
where the Wasserstein distanceW (µn, µ) is defined by

W (µn, µ) := inf
π∈Π(µn,µ)

{∫
|x− y|π(dx, dy)

}
and the positive constant C and c depends only on γ and E2,γ(µ).
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Lemma 6. (Lemma 4 (Zhou et al., 2021)). Let X ∼ P be a random variable with X ∈ [0,M ], and Pn denotes its empirical
distribution of sample size n. For δ > 0, for any

α∗ ∈ argmax
α⩾0

{
−α log

(
EP

[
e−X/α

])
− αδ

}
(17)

(1) α∗ = 0. Furthermore, assume that the support of X is finite. Then there exists a constant N ′ := N ′(ε, δ, P ), such that
n ⩾ N ′, with probability at least 1− ε, we have

0 ∈ argmax
α⩾0

{
−α log

(
EPn

[
e−X/α

])
− αδ

}
(2) α∗ > 0. Then there exists a constant N ′′ := N ′′(ε, δ, P ), such that for any n ⩾ N ′′, with probability at least 1 − ε,
there exists a

α̂∗ ∈ argmax
α⩾0

{
−α log

(
EPn

[
e−X/α

])
− αδ

}
such that α∗, α̂∗ ∈ [α, ᾱ], where α > 0 is independent of n and ᾱ = M/δ.

The Total Variation, Chi-square, and Kullback-Liebler uncertainty sets are constructed with the f -divergence. The f diver-
gence between the distributions P and P o is defined as

Df (P∥P o) =

∫
f

(
dP

dP o

)
dP o (18)

where f is a convex function (Csiszár, 1963). We obtain different divergences for different forms of the function f , includ-
ing some well-known divergences. For example, f(t) = |t− 1|/2 gives Total Variation, f(t) = (t− 1)2 gives chi-square,
and f(t) = t log(t) gives Kullback-Liebler.
Lemma 7. (Lemma 5 (Panaganti et al., 2022)) Let Df be as defined in equation 18 with f(t) = |t− 1|/2 corresponding
to the TV uncertainty set. Then,

inf
Df (P∥P o)⩽ρ

EP [l(X)] = − inf
η∈R

EP o [(η − l(X))+] +

(
η − inf

x∈X
l(x)

)
+

× ρ− η,

Lemma 8. (Covering number (TV)). Given a reward function R ∈ Rs,a, let UR = {(η · 1−R)+ : η ∈ [0, Rmax]}. Fix
any θ ∈ (0, 1). Denote

NR(θ) = {(η · 1−R)+ : η ∈ {θ, 2θ, . . . , Nθ · θ}}

where Nθ = ⌈Rmax/θ⌉. ThenNR(θ) is a θ-cover for UR with respect to ∥·∥∞, and its cardinality is bounded as |NR(θ)| ⩽
2Rmax/θ. Furthermore, for any ν ∈ NR(θ), we have ∥ν∥∞ ⩽ 1.

Proof. First, Nθ = ⌈Rmax/θ⌉ is the minimal number of subintervals of length θ needed to cover [0, Rmax]. Denote Ji =
[(i− 1)θ, iθ) to be the i-th subinterval, 1 ⩽ i ⩽ Nθ. Fix some µ ∈ UR. Then µ = (η · 1−R)+. Without loss of generality,
assume this particular η ∈ Ji. Let ν = ((iθ) · 1−R)+. Now, for any s, a ∈ S ×A,

|ν(s, a)− µ(s, a)| = |(iθ −R)+ − (η −R)+|
(a)

⩽ |iθ −R− η +R|
⩽ |iθ − (i− 1)θ| = θ

where (a) follows from iθ > η and the fact that max{x, 0}−max{y, 0} ⩽ x− y, if x > y. Taking maximum with respect
to s, a on both sides, we get ∥ν − µ∥∞ ⩽ θ. Since ν ∈ NR(θ), this suggests NR(θ) is a θ-cover for UR. The cardinality
bound directly follows from
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|NR(θ)| = Nθ = ⌈Rmax/θ⌉ ⩽ Rmax/θ + 1 ⩽ 2Rmax/θ

where the last inequality is due to 0 < θ < 1. Now, for any ν ∈ NR(θ), we can establish the following

ν = (η · 1−R)+ ⩽ (Rmax1−R)+ ⩽ Rmax

where the inequality is element-wise.

Lemma 9. Fix any (s, a) ∈ S × A. Fix any reward function R ∈ Rs,a. Let NR(θ) be the θ-cover of UR =
{(η · 1−R)+ : η ∈ [0, Rmax]} as described in Lemma 8 . We then have

sup
η∈[0,Rmax]

∣∣∣ER∼ν̂s,a

[
(η −R)+

]
− ER∼νo

s,a

[
(η −R)+

]∣∣∣ ⩽ max
r∈NR(θ)

∣∣ν̂s,ar − νos,ar
∣∣+ 2θ

Proof. For any µ ∈ UR, there exists r ∈ NR(θ) such that ∥µ− r∥∞ ⩽ θ. Now for such particular µ and r, we have

∣∣ν̂s,aµ− νos,aµ
∣∣ ⩽ |ν̂s,aµ− ν̂s,ar|+

∣∣ν̂s,ar − νos,ar
∣∣+ ∣∣νos,ar − νos,aµ

∣∣
⩽ ∥ν̂s,a∥1 ∥µ− r∥∞ +

∣∣ν̂s,ar − νos,ar
∣∣+ ∥∥νos,a∥∥1 ∥r − µ∥∞

⩽ max
ν∈NR(θ)

∣∣ν̂s,ar − νos,ar
∣∣+ 2θ.

Taking maximum over UR on both sides, we get

sup
µ∈UR

∣∣ν̂s,aµ− νos,aµ
∣∣ ⩽ max

r∈NR(θ)

∣∣ν̂s,ar − νos,ar
∣∣+ 2θ.

Now note that by the definition of UR, we have

sup
η∈[0,Rmax]

∣∣∣ER∼ν̂s,a

[
(η −R)+

]
− ER∼νo

s,a

[
(η −R)+

]∣∣∣ ⩽ max
r∈NR(θ)

∣∣ν̂s,ar − νos,ar
∣∣+ 2θ

The desired result directly follows.

Lemma 10. Consider the total-variation uncertainty set

PTV
s,a =

{
P : 1

2 ∥P − P o
s,a∥1 ≤ δ

}
.

Let R̂robTV
s,a = minrs,a∼R̂s,a

ER∼rs,a [R] and RrobTV
s,a = minrs,a∼Rs,a ER∼rs,a [R] be the robust rewards defined using the

empirical estimate ν̂s,a and νos,a and respectively. Then there exists a constant

N∗(ε, δ, νos,a),

such that for all n ≥ N∗ (i.e. a sufficiently large number of reward samples at (s, a), the following holds with probability
at least 1− ε: ∣∣∣ R̂robTV

s,a −RrobTV
s,a

∣∣∣ ⩽√R2
max log(2/δ)

2n
.

16



Online Robust Reinforcement Learning Through Monte-Carlo Planning

Proof. Following similar analyses as in Proposition 2 (Xu et al., 2023) (Lemma.2), we get

∣∣∣R̂robTV
s,a −RrobTV

s,a

∣∣∣ = | inf
η∈[0,2Rmax/ρ]

{
ER∼ν̂s,a

[
(η −R)+

]
+

(
η − inf

R′∈[0,Rmax]
R′
)

+

· ρ− η

}
(19)

− inf
η∈[0,2Rmax/ρ]

{
ER∼νo

s,a

[
(η −R)+

]
+

(
η − inf

R′∈[0,Rmax]
R′
)

+

· ρ− η

}
| (20)

(a)

⩽ sup
η∈[0,2Rmax/ρ]

∣∣∣ER∼ν̂s,a

[
(η −R)+

]
− ER∼νo

s,a

[
(η −R)+

]∣∣∣ (21)

⩽max

{
sup

η∈[0,Rmax]

∣∣∣ER∼ν̂s,a

[
(η −R)+

]
− ER∼νo

s,a

[
(η −R)+

]∣∣∣ , (22)

sup
η∈[Rmax,2Rmax/ρ]

∣∣∣ER∼ν̂s,a

[
(η −R)+

]
− ER∼νo

s,a

[
(η −R)+

]∣∣∣} (23)

(b)

⩽ max

{
sup

η∈[0,Rmax]

∣∣∣ER∼ν̂s,a

[
(η −R)+

]
− ER∼νo

s,a

[
(η −R)+

]∣∣∣ , (24)∣∣∣ER∼ν̂s,a
[R]− ER∼νo

s,a
[R]
∣∣∣} (25)

(c)

⩽ max

{
max

r∈NR(θ)

∣∣ν̂s,ar − νos,ar
∣∣+ 2θ,

∣∣∣ER∼ν̂s,a
[R]− ER∼νo

s,a
[R]
∣∣∣} (26)

where (a) follows from the fact that |infx f(x)− infx g(x)| ⩽ supx |f(x)− g(x)|. For (b), recall that R ⩽ Rmax for any
R ∈ R. Hence, the term η − R′ is always non-negative for η ∈ [Rmax, 2Rmax/ρ], which cancels out by linearity of the
expectation. (c) follows from applying Lemma 9 to the first term. Recall that all r ∈ NR(θ) is upper bounded by Rmax.
Now we can apply Hoeffding’s inequality to the first term in equation 26:

P
(∣∣ν̂s,ar − νos,ar

∣∣ ⩾ ε
)
⩽ 2 exp

(
− 2nε2

R2
max

)
, ∀ε > 0

Now choose ε =

√
R2

max log(2|NR(θ)|/δ)
2N and recall that |NR(θ)| ⩽ 2Rmax/θ from Lemma 8. We have

P

(∣∣ν̂s,ar − νos,ar
∣∣ ⩾√R2

max log(4Rmax/θδ)

2n

)
⩽ P

(∣∣ν̂s,ar − νos,ar
∣∣ ⩾√R2

max log (2 |NR(θ)| /δ)
2n

)

⩽
δ

|NR(θ)|

Applying a union bound over NR(θ), we get

max
r∈NR(θ)

∣∣ν̂s,ar − νos,ar
∣∣ ⩽√R2

max log(4Rmax/θδ)

2n
(27)

with probability at least 1− δ. Now we can also apply Hoeffding’s inequality to the second term in equation 26. Recall that
any reward function is bounded by Rmax. We have

∣∣∣ R̂robTV
s,a −RrobTV

s,a

∣∣∣ ⩽√R2
max log(2/δ)

2n
(28)

with probability at least 1− δ. Combining equation 26 - equation 28 completes the proof.
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From Lemma 10, we have

P
(∣∣∣ R̂robTV

s,a −RrobTV
s,a

∣∣∣ ⩾ 2θ +
√

R2
max log(4Rmax/θδ)/2n

)
< δ (29)

Set θ = ε/4 with ε = 2
√
R2

max log(4Rmax/θδ)/2n, then

2nε2/4 = R2
max log(4Rmax/θδ)⇒ exp{−2nε2/R2

max} = εδ/16Rmax (30)

⇒ δ =
16Rmax exp{−nε2/2R2

max}
ε

(31)

so that

P
(∣∣∣ R̂robTV

s,a −RrobTV
s,a

∣∣∣ ⩾ ε
)
<

16Rmax exp{−nε2/2R2
max}

ε
(32)

Lemma 11. (Lemma 9 (Panaganti et al., 2022)) Let Df be defined as in equation 18 with the convex function f(t) =
(t− 1)2 corresponding to the Chi-square uncertainty set. Then

inf
Df (P∥P o)⩽ρ

EP [l(X)] = − inf
η∈R

{√
ρ+ 1

√
EP o [(η − l(X))2]− η

}
Lemma 12. Fix any s, a ∈ S ×A. For any θ, δ ∈ (0, 1) and ρ > 0, we have, with probability at least 1− δ, we can find a
constant N⋆ such that ∀n ⩾ N⋆, we have

∣∣∣R̂robX
s,a −RrobX

s,a

∣∣∣ ⩽ 2θ +

√
2C2

ρRmax

(Cρ − 1)
√
n

(√
log

(
2 (1 + CρRmax/ (θ (Cρ − 1)))

δ

)
+ 1

)
.

Proof. Similar to Lemma 10, the result is direct by applying the results of Lemma 9, Lemma 11 and the law of total
probability.

From the results of Lemma 12, Then we have

P
(∣∣∣R̂robX

s,a −RrobX
s,a

∣∣∣ ⩾ 2θ +

√
2C2

pRmax

(Cp − 1)
√
n

(√
log

(
2(1 + CpRmax/(θ(Cp − 1)))

δ

)
+ 1

))
< δ (33)

Set θ = ε/4 with ε = 2
√
2C2

pRmax

(Cp−1)
√
n

(√
log
(

2(1+CpRmax/(θ(Cp−1)))
δ

)
+ 1

)
, then

(
(Cp − 1)

√
nε

2
√
2C2

pRmax

− 1

)2

= log

(
2(1 + CpRmax/(θ(Cp − 1)))

δ

)
(34)

⇒ exp

−
(
(Cp − 1)

√
nε

2
√
2C2

pRmax

− 1

)2
 =

δ

2(1 + CpRmax/(θ(Cp − 1)))
(35)

⇒ P
(∣∣∣R̂robX

s,a −RrobX
s,a

∣∣∣ ⩾ ε
)
< 2

(
1 + CpRmax/(

ε(Cp − 1)

4
)

)
exp

−
(
(Cp − 1)

√
nε

2
√
2C2

pRmax

− 1

)2
 (36)

Lemma 13. Consider an MDP with the Wasserstein distance DW . Fix any s, a ∈ S ×A, we can derive

infDW (P∥P o)⩽ρ EP [l(X)] = − infλ∈[0,Rmax/ρp] (λρ
p −ER′∼νo

s,a
[infR′′∈R {R′′ + λdp (R′′, R′)}]

)
.

18
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Proof. Fix any (s, a) ∈ S ×A. We have

inf
DW (P∥P o)⩽ρ

ER∼P [l(X)] = − sup
DW (P∥P o)⩽ρ

ER∼P [−l(X)]

(a)
= − inf

λ⩾0

{
ER′∼νo

s,a

[
sup

R′′∈R
{−R′′ − λdp (R′′, R′)}

]
+ λρp

}
= sup

λ⩾0

{
ER′∼νo

s,a

[
inf

R′′∈R
{R′′ + λdp (R′′, R′)}

]
− λρp

}
(b)
= sup

λ∈[0,Rmax/ρp]

{
ER′∼νo

s,a

[
inf

R′′∈R
{R′′ + λdp (R′′, R′)}

]
− λρp

}
,

where (a) follows from ((Gao and Kleywegt, 2023) Theorem 1). For (b), let us first denote any optimizer in (a) to be λ∗.
Observe that since R is non-negative, it follows that

0 ⩽ −λ∗ρp + ER′∼νo
s,a

[
inf
R′′
{R′′ + λdp (R′′, R′)}

]
⩽ −λ∗ρp + ER′∼νo

s,a
[R′ + λdp (R′, R′)] ⩽ −λ∗ρp +Rmax

where in the last inequality we use that the distance metric satisfies d(R,R) = 0, for any R ∈ R.

Lemma 14. (Covering number (Wasserstein)). Consider the following set of R|R| vectors:

Uρ,R =

{(
inf

R′′∈R
{R′′ + λdp (R′′, 1)} , . . . , inf

R′′∈R
{R′′ + λdp (R′′, |R|)}

)T

: λ ∈ [0, Rmax/ρ
p]

}
Let

Nρ,R(θ) =

{(
inf

R′′∈R
{R′′ + λdp (R′′, 1)} , . . . , inf

R′′∈R
{R′′ + λdp (R′′, |R|)}

)T

: λ ∈
{

θ

Bp
,
2θ

Bp
, . . . , Nρ,θ

θ

Bp

}}
,

where Nρ,θ =
⌈
RmaxBp

ρpθ

⌉
and Bp = maxR′,R′′ dp (R′′, R′). Then Nρ,R(θ) is a θ-cover of Uρ,R with respect to ∥ · ∥∞,

and its cardinality is bounded as |Nρ,R(θ)| ⩽ RmaxBp+(Rmax∨ρp)
ρpθ . Furthermore, for any ν ∈ Nρ,R(θ), we have ∥ν∥∞ ⩽

Rmax(Bp+ρp)
ρp .

Proof. Fix any θ ∈ (0, 1). First note that Nρ,θ is the minimal number of subintervals of length θ
Bp

needed to cover

[0, Rmax/ρ
p]. Denote Ji =

[
(i− 1) θ

Bp
, i θ

Bp

)
, 1 ⩽ i ⩽ Nρ,θ. Fix some µ ∈ Uρ,R. Then µ must takes the form

µ =

(
inf

R′′∈R
{R′′ + λdp (R′′, 1)} , . . . , inf

R′′∈R
{R′′ + λdp (R′′, |R|)}

)T

,

for some λ ∈ [0, Rmax/ρ
p]. Without loss of generality, assume λ ∈ Ji. Now we pick

ν =

(
inf

R′′∈R

{
R′′ + i

θ

Bp
dp (R′′, 1)

}
, . . . , inf

R′′∈R

{
R′′ + i

θ

Bp
dp (R′′, |R|)

})T

Fix any R′ ∈ µ and R′′ ∈ ν, we have
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|R′ −R′′| =
∣∣∣∣ inf
R′′∈R

{R′′ + λdp (R′′, R′)} − inf
R′′∈R

{
R′′ + i

θ

Bp
dp (R′′, R)

}∣∣∣∣
(a)

⩽ sup
R′′∈R

∣∣∣∣(λ− i
θ

Bp

)
dp (R′′, R′)

∣∣∣∣
⩽

∣∣∣∣λ− i
θ

Bp

∣∣∣∣ max
R′,R′′

dp (R′′, R′) =

∣∣∣∣λ− i
θ

Bp

∣∣∣∣Bp

⩽

∣∣∣∣(i− 1)
θ

Bp
− i

θ

Bp

∣∣∣∣Bp = θ

where (a) is due to |infx f(x)− infx g(x)| ⩽ supx |f(x) − g(x)|. Taking maximum over R′ ∈ R on both sides, we get
∥µ− ν∥∞ ⩽ θ. Since ν ∈ Nρ,R(θ), this suggests that Nρ,R(θ) is a θ-cover for Uρ,R.
To bound the cardinality of Nρ,R(θ), we consider two cases. If 0 < ρ < 1, then ρpθ < 1 and

⌈
RmaxBp

ρpθ

⌉
⩽

RmaxBp

ρpθ
+ 1 ⩽

RmaxBp

ρpθ
+

Rmax

ρpθ
=

RmaxBp +Rmax

ρpθ

On the other hand, if ρ > 1, then since θ ∈ (0, 1), we have

⌈
RmaxBp

ρpθ

⌉
⩽

RmaxBp

ρpθ
+ 1 =

RmaxBp

ρpθ
+

ρpθ

ρpθ
⩽

RmaxBp

ρpθ
+

ρp

ρpθ
=

RmaxBp + ρp

ρpθ

Hence, we have |Nρ,R(θ)| = Nρ,θ ⩽ RmaxBp+(Rmax∨ρp)
ρpθ . Now we prove the last claim. Fix any ν ∈ Nρ,R. Note that for

any R′ ∈ R,

R′ = inf
R′′∈R

{R′′ + λdp (R′′, R′)} ⩽ Rmax + λBp ⩽ Rmax +
Rmax

ρp
Bp =

Rmax (Bp + ρp)

ρp

The result then follows from taking maximum over R′ ∈ R on both sides.

Lemma 15. Fix any (s, a) ∈ S ×A. Let Nρ,R(θ) be the θ-cover of the set

Uρ,R =

{(
inf

R′′∈R
{R′′ + λdp (R′′, 1)} , . . . , {R′′ + λdp (R′′, |R|)}

)T

: λ ∈ [0, Rmax/ρ
p]

}

as described in Lemma 14. We then have

sup
λ∈[0,Rmax/ρp]

| ER′∼νo
s,a

[
inf

R′′∈R
{R′′ + λdp (R′′, R′)}

]
− ER′∼ν̂o

s,a

[
inf

R′′∈R
{R′′ + λdp (R′′, R′)}

]
|

⩽ max
r∈Nρ,R(θ)

∣∣ν̂os,ar − νos,ar
∣∣+ 2θ.

Proof. The proof is identical to the proof of Lemma 9.

Lemma 16. Fix any (s, a) ∈ S ×A. For any θ, δ ∈ (0, 1) and ρ > 0, we have the following inequality with probability at
least 1− δ

∣∣∣R̂robW
s,a −RrobW

s,a

∣∣∣ ⩽ Rmax (Bp + ρp)

ρp

√√√√ log
(

2RmaxBp+2(Rmax∨ρp)
ρpθδ

)
2n

+ 2θ

where Bp = maxR′,R′′ dp (R′′, R′).
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Proof. From Lemma 13 , we have

RrobW
s,a = sup

λ∈[0,Rmax/ρp]

{
ER′∼νo

s,a

[
inf

R′′∈R
{R′′ + λdp (R′′, R′)}

]
− λρp

}
,

R̂robW
s,a = sup

λ∈[0,Rmax/ρp]

{
ER′∼ν̂o

s,a

[
inf

R′′∈R
{R′′ + λdp (R′′, R′)}

]
− λρp

}
.

Now it follows that∣∣∣R̂robW
s,a −RrobW

s,a

∣∣∣ = | sup
λ∈[0,Rmax/ρp]

{
ER′∼νo

s,a

[
inf

R′′∈R
{R′′ + λdp (R′′, R′)}

]
− λρp

}
(37)

− sup
λ∈[0,Rmax/ρp]

{
ER′∼ν̂o

s,a

[
inf

R′′∈R
{R′′ + λdp (R′′, R′)}

]
− λρp

}
| (38)

(a)

⩽ sup
λ∈[0,Rmax/ρp]

| ER′∼νo
s,a

[
inf

R′′∈R
{R′′ + λdp (R′′, R′)}

]
(39)

− ER′∼ν̂o
s,a

[
inf

R′′∈R
{R′′ + λdp (R′′, R′)}

]
| (40)

(b)

⩽ max
r∈Nρ,R(θ)

∣∣ν̂os,ar − νos,ar
∣∣+ 2θ (41)

where (a) follows from |supx f(x)− supx g(x)| ⩽ supx |f(x)− g(x)|. (b) follows from Lemma 15.
Recall that all ν ∈ Nρ,R(θ) is bounded by νmax :=

Rmax(Bp+ρp)
ρp . Now we can apply Hoeffding’s inequality:

P
(∣∣ν̂os,ar − νos,ar

∣∣ ⩾ ε
)
⩽ 2 exp

(
−2nε2

ν2max

)
= 2 exp

− 2nε2(
Rmax(Bp+ρp)

ρp

)2
 , ∀ε > 0

Now recall that |Nρ,R(θ)| ⩽ RmaxBp+(Rmax∨ρp)
ρpθ and choose

ε =
Rmax (Bp + ρp)

ρp

√
log (2 |Nρ,R(θ)| /δ)

2N

We then have

P

(∣∣ν̂os,ar − νos,ar
∣∣ ⩾ Rmax (Bp + ρp)

ρp

√
log (2 |Nρ,R(θ)| /δ)

2n

)
⩽

δ

|Nρ,R(θ)|
.

Finally, applying a union bound over Nρ,R(θ), we get

max
r∈Nρ,R(θ)

∣∣ν̂os,ar − νos,ar
∣∣ ⩽ Rmax (Bp + ρp)

ρp

√√√√ log
(

2RmaxBp+2(Rmax∨ρp)
ρpθδ

)
2n

,

with probability at least 1− δ. Combining the above and equation 41 completes the proof.
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Similarly, Set θ = ε/4 with ε =
2Rmax(Bp+ρp)

ρp

√
log

(
2RmaxBp+2Rmax

√
ρp

ρpθδ

)
2n , then

exp

{
− 2nε2ρ2p

4R2
max(Bp + ρp)2

}
=

ρpθδ

2RmaxBp + 2Rmax
√
ρp

(42)

⇒ δ =
4 (2RmaxBp + 2Rmax

√
ρp)

ρpε
exp

{
− 2nε2ρ2p

4R2
max(Bp + ρp)2

}
(43)

so that

P
(∣∣∣R̂robW

s,a −RrobW
s,a

∣∣∣ ⩾ ε
)
<

4 (2RmaxBp + 2Rmax
√
ρp)

ρpε
exp

{
− 2nε2ρ2p

4R2
max(Bp + ρp)2

}
. (44)

C. Convergence of Robust-Power-UCT Multi-armed bandits

Lemma 17. For m ∈ [M ], let (V̂m,n)n⩾1 be a sequence of estimator satisfying V̂m,n
α,β→

n→∞
Vm, and there exists a constant

L such that V̂m,n ⩽ L,∀n ⩾ 1. Let Xi be an iid sequence from a distribution νo with mean µ and Si be an iid sequence
from a distribution p = (p1, . . . , pM ) supported on {1, . . . ,M}. Introducing the random variables Nn

m = #|{i ⩽ n :

Si = sm}|. Let us study a random vector p̂n = (
Nn

1

n ,
Nn

2

n , ...,
Nn

M

n ). We define an estimate of νo as

νo ≈ ν̂n =
1

n

n∑
i=1

δXi ,

where δXi
is a point mass at Xi. And define RR = minr∼R ER∼r[R] w.r.t νo and RR̂ = minr∼R̂ ER∼r[R] w.r.t ν̂n. We

define the sequence of estimator
Q̂n = RR̂ + γσp̂n

(V̂n).

Then with 2α ⩽ β, β > 1,

Q̂n
α,β→

n→∞
RR + γσp(V ).

Proof. Let p = (p1, p2, ...pM ), p ∈ △M where △M = {x ∈ RM :
∑M

i=1 xi = 1, xi ⩾ 0} is the (M − 1)-dimensional
simplex. Without loss of generality, we assume that pm > 0 for all m. Let us define V = (V1, V2, ...VM ). Let V̂n =

(V̂1,Nn
1
, V̂2,Nn

2
, ..., V̂M,Nn

M
),
∑M

i=1 N
n
i = n, Nn

i is the number of times that population i was observed. We have Q̂n =

RR̂ + γσp̂n
(V̂n). Therefore,

P
(
|Q̂n −

(
RR + γσp(V )

)
| ⩾ ε

)
⩽ P

(
|RR̂ −RR| ⩾ 1

2
ε

)
+ P

(
|γσp̂n

(V̂n)− γσp(V )| ⩾ 1

2
ε

)
(45)

⩽ P
(
|RR̂ −RR| ⩾ 1

2
ε

)
︸ ︷︷ ︸

A

+P
(
|σp̂n

(V̂n)− σp(V )| ⩾ 1

2γ
ε

)
︸ ︷︷ ︸

B

. (46)

To upper bound A,

• TV:

A ⩽
16Rmax exp{−n(ε/4)2/2R2

max}
ε/4

(47)

• Chi-square:

A ⩽ 2

(
1 + CpRmax/(

ε(Cp − 1)

4
)

)
exp

−
(
(Cp − 1)

√
nε

2
√
2C2

pRmax

− 1

)2
 (48)
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• Wasserstein:

A ⩽
4 (2RmaxBp + 2Rmax

√
ρp)

ρpε
exp

{
− 2nε2ρ2p

4R2
max(Bp + ρp)2

}
(49)

To upper bound B, let us consider σp̂n
(V̂n)− σp(V ) = (σp̂n

(V̂n)− σp(V̂n)) + (σp(V̂n)− σp(V )). Then,

B ⩽ P
( ∣∣∣σp̂n

(V̂n)− σp(V̂n)
∣∣∣ ⩾ 1

4γ
ε

)
︸ ︷︷ ︸

B1

+P
( ∣∣∣σp(V̂n)− σp(V )

∣∣∣ ⩾ 1

4γ
ε

)
︸ ︷︷ ︸

B2

. (50)

By applying results from Lemma 2 and Equation 8, we obtain

• TV:

B1 ⩽
16H exp{−n(ε/4γ)2/2H2}

ε/4γ
(51)

• Chi-square:

B1 ⩽ 2

(
1 + CpH/(

ε(Cp − 1)

4
)

)
exp

−
(
(Cp − 1)

√
nε

2
√
2C2

pH
− 1

)2
 (52)

• Wasserstein:

B1 ⩽
4 (2HBp + 2H

√
ρp)

ρpε
exp

{
− 2nε2ρ2p

4H2(Bp + ρp)2

}
(53)

For B2, as the result from Lemma 1, we have∣∣∣σp(V̂n)− σp(V )
∣∣∣ ⩽ ∥V̂n − V ∥∞ ⩽ ∥V̂n − V ∥1

Therefore,

B2 ⩽ Pr

(
M∑

m=1

|V̂m,Nn
m
− Vm| ⩾

1

4γ
ε

)
⩽

M∑
m=1

Pr

(
|V̂m,Nn

m
− Vm| ⩾

1

4γM
ε|Nn

m

)
(54)

⩽
M∑

m=1

E
[
P
(

1

Nn
m

Nn
m∑

t=1

Vm,t − Vm ⩾
1

4γM
ε
∣∣Nn

m

)]
(55)

⩽
M∑

m=1

E
[
c(Nn

m)−α(
ε

4γM
)−β

]
. (56)

Let us define an event E =

{
Nn

m > npm

2

}
. Therefore,

B2 ⩽
M∑

m=1

E
[
c(
npm
2

)−α(
ε

4γM
)−β

]
+

M∑
m=1

E
[
P(Nn

m ⩽
npm
2

)

]
(57)

=

M∑
m=1

(c2α+2βγβp−α
m Mβ)n−αε−β +

M∑
m=1

E
[
P(Nn

m − pmn ⩽ −pmn

2
)

]
(58)

⩽
M∑

m=1

(c2α+2βγβp−α
m Mβ)n−αε−β +

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}

(59)

Therefore,
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• TV:

A+B ⩽ A+B1 +B2 ⩽
16Rmax exp{−n(ε/4)2/2R2

max}
ε/4

+
16H exp{−n(ε/4γ)2/2H2}

ε/4γ
(60)

+

M∑
m=1

(c2α+2βγβp−α
m Mβ)n−αε−β +

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}
. (61)

• Chi-Square:

A+B ⩽ A+B1 +B2 ⩽ 2

(
1 + CpRmax/(

ε(Cp − 1)

4
)

)
exp

−
(
(Cp − 1)

√
nε

2
√
2C2

pRmax

− 1

)2
 (62)

+ 2

(
1 + CpH/(

ε(Cp − 1)

4
)

)
exp

−
(
(Cp − 1)

√
nε

2
√
2C2

pH
− 1

)2
+

M∑
m=1

(c2α+2βγβp−α
m Mβ)n−αε−β

(63)

+

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}
. (64)

• Wasserstein:

A+B ⩽ A+B1 +B2 ⩽
4 (2RmaxBp + 2Rmax

√
ρp)

ρpε
exp

{
− 2nε2ρ2p

4R2
max(Bp + ρp)2

}
(65)

+
4 (2HBp + 2H

√
ρp)

ρpε
exp

{
− 2nε2ρ2p

4H2(Bp + ρp)2

}
+

M∑
m=1

(c2α+2βγβp−α
m Mβ)n−αε−β (66)

+

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}
. (67)

In both three cases, that leads to

P
(
|Q̂n −

(
RR + γσp(V )

)
| ⩾ ε

)
⩽ O(exp{−n}) +O(e−1 exp{−cnε2}) +

M∑
m=1

(c2α+2βγβp−α
m Mβ)n−αε−β (68)

+

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}

⩽ c
′
n−αε−β , (69)

with c
′
> 0 depends on c,M, α, β, pi. Here we need

2α ⩽ β, (70)

to argue that e−1 exp(−cnε2) = O(n−αε−β). Therefore, with n ⩾ 1, ε > 0,

P
( ∣∣∣Q̂n −

(
RR + γσp(V )

)∣∣∣ ⩾ ε

)
⩽ c

′
n−αε−β . (71)
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Furthermore,

lim
n−→∞

E
[∣∣∣Q̂n −

(
RR + γσp(V )

)∣∣∣] (72)

= lim
n−→∞

∫ ∞

0

P
(∣∣∣Q̂n −

(
RR + γσp(V )

)∣∣∣ ⩾ s
)
ds (73)

⩽ lim
n−→∞

∫ n
−α

β

0

1ds+

∫ +∞

n
−α

β

c
′
n−αs−β

 (74)

= lim
n−→∞

(
n−α

β + c
′
n−α

(
s−β+1

−β + 1
+ C

) ∣∣∣+∞

n
−α

β

)
= 0 (75)

= lim
n−→∞

(
n−α

β − c
′
n−α

(
n

α(β−1)
β

−β + 1

))
= 0 (because α > 0, β > 1) (76)

so that,
lim

n→∞
E[Q̂n] = RR + γσp(V ).

This means
Q̂n

α,β→
n→∞

RR + γσp(V ),

which concludes the proof.

D. Convergence of Robust-Power-UCT n Monte-Carlo Tree Search

Theorem 1. (Theorem 1 of Dam et al. (2024b)) For each arm a ∈ [K], let µ̂a,n
α,β→

n→∞
µa and define µ⋆ = maxa{µa}.

Suppose arms are selected according to equation 4 with parameters (α, β, b, C), and let p ∈ [1,∞). If

1 ≤ p ≤ 2, and α ≤ β
2 , or p > 2, 0 < α− β

p < 1,

and
α
(
1− b

α

)
≤ b < α,

then there exists a suitable constant C (depending on K, b, α, p,∆min) such that

µ̂n(p)
α′,β′

→
n→∞

µ⋆,

where ∆min = mina:µa<µ⋆
(µ⋆ − µa), α′ = (b− 1)

(
1− b

α

)
, and β′ = (b− 1).

Theorem 2. When applying Robust-Power-UCT with parameters {bi}Hi=0, {αi}Hi=0, and {βi}Hi=0 satisfying Table 1:

(i) For any node sh at depth h ∈ {0, . . . ,H},
V̂n(sh)

αh,βh→
n→∞

Ṽ (sh).

(ii) For any node sh at depth h ∈ {0, . . . ,H − 1},

Q̂n(sh, a)
αh+1,βh+1→

n→∞
Q̃(sh, a), ∀ a ∈ Ash .

Proof. We follow the proof technique of Dam et al. (2024b, Theorem 2).

Base Case (H = 1). Consider the root node s0. Each time we visit (s0, a), we collect:

• A reward sample rt(s0, a) from the reward distribution νos0,a, which then leads to evaluating ν̂n and R̂rob
s0,a =

minr∈R̂s0,a
ER∼r[R], thus approximates the worst-case reward at (s0, a).
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• A next state s1 ∼ P o
s0,a from M = |As0 | possible states (denote such states as S1

0 ). This then leads to p̂s0,a, and
captures the worst-case value from the transition ambiguity set P̂s0,a.

By definition of the robust Bellman backup, recall

Q̃(s0, a) = Rrob
s0,a + γ σPs0,a

(
Ṽ
)
,

where Rrob
s0,a = min rs0,a ∈Rs0,a

E[r].

SinceH = 1, the next state s1 is treated as a leaf. We approximate Ṽ (s1) ≈ Vπ0(s1), i.i.d. rollout returns under the policy
π0. By standard concentration bounds (e.g., Hoeffding), we obtain for all child nodes s1 ∈ S1

0 :

V̂n(s1)
α1,β1→
n→∞

Ṽ (s1). (77)

Next, recall by equation 3:
Q̂n(s0, a)← R̂rob

s0,a + γσP̂s0,a
(V̂Ts1 (n)

)

Here V̂Ts1
(n) is the estimated value at all child nodes s1 ∈ S1

0 . By Lemma 17 and equation 77, it follows that

Q̂n(s0, a)
α1,β1→
n→∞

Q̃(s0, a).

Since s0 is the root node, we perform the power-mean backup on {Q̂n(s0, a)}:

V̂n(s0) =
( ∑
a∈As0

Ts0,a(n)

n

[
Q̂Ts0,a(n)(s0, a)

]p)1
p

.

Under Theorem 1 (from Dam et al. (2024b) for robust settings), we conclude

V̂n(s0)
α0,β0→
n→∞

Ṽ (s0).

This establishes both points (i) and (ii) at depth 0 and confirms the result forH = 1.

Inductive Step (H > 1). Assume the theorem holds for all search trees up to depth H − 1. We now add one more level to
create a tree of depth H . Let s1 be a child of the new root s0. Then s1 itself is a root of a subtree with depth (H − 1). By
the inductive hypothesis:

V̂n(s1)
α1,β1→
n→∞

Ṽ (s1), Q̂n(s1, a
′)

α2,β2→
n→∞

Q̃(s1, a
′), ∀ a′.

At the new root s0, we repeat the argument used in the base case:

• Observing rewards rt(s0, a) from νos0,a.

• Transitioning under P o
s0,a to state s1.

Hence, Lemma 17 again implies

Q̂n(s0, a)
α1,β1→
n→∞

Q̃(s0, a),

and the power-mean operator at s0 yields

V̂n(s0)
α0,β0→
n→∞

Ṽ (s0).

Thus, depth H inherits the same concentration property from depth (H − 1). This completes the inductive argument,
establishing statements (i) and (ii) for any node at any depth ⩽ H .
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Theorem 3. (Convergence of Expected Payoff) At the root node s0, there is a choice of parameters yielding∣∣E[V̂n(s0)
]
− Ṽ (s0)

∣∣ ≤ O(n−1/2
)
.

Proof. By Jensen’s inequality (convexity of |x|), we obtain∣∣∣ E[V̂n(s0)
]
− Ṽ (s0)

∣∣∣ ≤ E
[∣∣∣V̂n(s0)− Ṽ (s0)

∣∣∣]
=

∫ ∞

0

P
(∣∣V̂n(s0)− Ṽ (s0)

∣∣ ≥ s
)
ds.

Next, we split this integral at s = n−α0/β0 . Using the concentration property V̂n(s0)
α0,β0→
n→∞

Ṽ (s0), we have

P
(∣∣V̂n(s0)− Ṽ (s0)

∣∣ ≥ s
)
≤ c0 n

−α0 s−β0 ,

for s > n−α0/β0 . Hence,

∣∣∣ E[V̂n(s0)
]
− Ṽ (s0)

∣∣∣ ≤ ∫ n
−
α0

β0

0

1 ds +

∫ ∞

n
−
α0

β0

c0 n
−α0 s−β0 ds

≤ n
−α0

β0 + c0 n
−α0

∫ ∞

n
−
α0

β0

s−β0 ds

= n
−α0

β0 +
c0

β0 − 1
n−α0

[
s−β0+1

]∞
s=n

−
α0

β0

.

Because α0

β0
≤ 1

2 (see Theorem 1), the dominant term is O(n− 1
2 ). Thus,∣∣∣ E[V̂n(s0)

]
− Ṽ (s0)

∣∣∣ ≤ O(n− 1
2
)
.

E. Experimental setup and Parameters selection
E.1. Experimental setup

All experiments are done over 100 seeds, using γ = 0.99 and robustness budget ρ = 0.5, with these values showing
consistent performance across preliminary experiments with different parameter settings. We use 2000 rollouts for The
Gambler’s Problem and 4000 rollouts for Frozen Lake.

We implement our robust MCTS framework by extending a base Monte Carlo Tree Search implementation from (Leurent,
2018). Our codebase adds Stochastic Power UCT and introduces new robust backup operators for handling different un-
certainty sets (Total Variation, Chi-squared, and Wasserstein), while maintaining the core MCTS selection and expansion
strategies. We also provide our code at https://github.com/brahimdriss/RobustMCTS.

E.2. Environments

The Gambler’s Problem (Sutton and Barto, 2018): a classic casino-inspired reinforcement learning environment where
an agent starts with an initial capital and aims to reach a specific goal amount through a series of betting decisions. In our
implementation, the agent begins with 50 units of capital and must reach a goal of 100 units to win. At each step, the agent
can bet any amount up to its current capital. The environment has a win probability ph for each bet, where the agent either
wins the wagered amount with probability ph or loses it with probability 1 − ph. The state space consists of all possible
integer capital amounts from 0 to 100, with 0 and 100 being terminal states. The action space at each state includes all
possible integer bets up to the current capital. This environment is particularly suitable for studying decision-making under
uncertainty as it combines both risk management and optimal stopping aspects.
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In our experiments, to reduce computational complexity while maintaining the same fundamental dynamics and challenges,
we scaled down the problem to use a starting capital of 5 units and a goal of 10 units. This smaller scale version preserves
all the essential characteristics and decision-making complexity of the original problem.

Frozen Lake(Towers et al., 2024): This environment presents a gridworld navigation challenge where an agent must
traverse a 4x4 frozen surface from a starting position to a goal while avoiding holes. The surface is slippery, introducing
stochastic dynamics where the agent’s intended actions may result in sliding to adjacent states with some probability. The
state space consists of 16 discrete states representing different positions on the grid, with some states marked as holes
(H) and one goal state (G). The action space includes four possible movements: left, right, up, and down. When the agent
executes an action, it moves in the intended direction with probability 1/3 and slides perpendicular to the intended direction
(left or right) with probability 2/3, making the environment highly stochastic. This environment is particularly valuable for
evaluating robust policies as it combines both navigational planning and uncertainty in action outcomes.

In our experiments, we define pslip as the probability that the executed action differs from the agent’s selected action. When
a slip occurs, the actual executed action is sampled uniformly at random, effectively modeling the uncertain dynamics of
the frozen surface.

E.3. Robust Performance Results

We investigate the impact of uncertainty budgets on agent performance in a modified gambler’s problem. In this experiment,
we fix the planning probability ph at 0.6 , the ambiguity set at Wasserstein. The agent’s robustness is evaluated across
different uncertainty budgets ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, where higher values of ρ correspond to more conservative
policies. For each uncertainty budget, we assess the agent’s performance by varying the execution probability from 0.2
to 0.8, thus testing the policy’s robustness to model misspecification. This experimental design allows us to analyze how
different levels of conservatism (controlled by the uncertainty budget) affect the agent’s ability to maintain performance
when faced with discrepancies between planning and execution environments.

Figure 3 demonstrate a clear trade-off between performance and robustness across different uncertainty budgets. Agents
with lower uncertainty budgets (ρ = 0.1, 0.3) achieve better performance when the execution probability matches or ex-
ceeds the planning probability, but their success rate drops significantly in misspecified environments. In contrast, higher
uncertainty budgets (ρ = 0.7, 0.9) show more consistent performance across different execution probabilities, particularly
maintaining better success rates when the execution probability is lower than the planning probability. This suggests that
while conservative policies might not achieve optimal performance in well-specified environments, they provide better
robustness to model misspecification. The moderate uncertainty budget (ρ = 0.5) appears to offer a balanced trade-off,
maintaining reasonable performance across both regimes.

We now investigate a wide range of transition model ambiguities for the Frozen Lake environment. Table 4 provides an
extended version of Table 2 with detailed success rates across different planning and execution probabilities. We observe
that the performance of Stochastic-Power-UCT algorithm degrades faster for increased noise injection for slipping prob-
abilities pslip. We again see Wasserstein robust MCTS does well across all planning versus execution phases. All robust
MCTS variants outperform the baseline.

Finally, our experiments reveal that the Wasserstein robust MCTS algorithm showcases the most robust performance across
all variants. It might be of independent interest for future research to give a theoretical understanding of this phenomenon.
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Figure 3: Performance comparison across different uncertainty budgets (ρ). Planning probability is fixed at ph = 0.6 (ver-
tical dashed line), while execution probability varies from 0.2 to 0.8. Higher uncertainty budgets lead to more conservative
policies, showing improved robustness when ph ⩽ 0.6 but potentially reduced performance when ph > 0.6.
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Planning Execution pslip

pplanslip 0.1 0.2 0.3 0.4 0.5

0.0

Sp 100 85 71 60 34
Tv 100 84 71 51 39
Cs 100 87 62 53 33
Ws 100 86 72 58 45

0.1

Sp 65 52 41 32 21
Tv 68 54 42 33 24
Cs 95 82 65 52 35
Ws 97 84 68 55 38

0.2

Sp 35 28 22 15 12
Tv 38 30 25 18 15
Cs 75 65 48 35 25
Ws 78 68 45 38 28

0.3

Sp 15 12 10 8 7
Tv 18 15 12 10 8
Cs 55 45 35 25 18
Ws 58 48 32 28 20

0.4

Sp 8 7 6 5 4
Tv 10 8 7 6 5
Cs 35 28 22 18 12
Ws 38 30 25 20 15

0.5

Sp 5 4 4 3 3
Tv 6 5 4 4 3
Cs 25 20 15 12 8
Ws 28 22 18 15 10

Table 4: Success rates (%) for planning with Power-UCT variants. Methods: Stochastic-Power-UCT (Sp), Robust version
with Total Variation (Tv), Chi-squared (Cs), and Wasserstein (Ws) ambiguity sets. Underlined values indicate matching
planning and execution pslip. Bold indicates highest success rate per planning scenario.
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