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Abstract

Resource-efficiently computing representations of probability distributions and the distances
between them while only having access to the samples is a fundamental and useful problem
across mathematical sciences. In this paper, we propose a generic framework to learn the
probability and cumulative distribution functions (PDFs and CDFs) of a sub-Weibull, i.e.
almost any light- or heavy-tailed, distribution while the samples from it arrive in a stream.
The idea is to reduce these problems into estimating the frequency of an appropriately cho-
sen subset of the support of a properly discretised distribution. We leverage this reduction to
compute mergeable summaries of distributions from the stream of samples while requiring
only sublinear space relative to the number of observed samples. This allows us to estimate
Wasserstein and Total Variation (TV) distances between any two distributions while sam-
ples arrive in streams and from multiple sources. Our algorithms significantly improves on
the existing methods for distance estimation incurring super-linear time and linear space
complexities, and further extend the mergeable summaries framework to continuous distri-
butions with possibly infinite support. Our results are tight with respect to the existing
lower bounds for bounded discrete distributions. In addition, we leverage our proposed
estimators of Wasserstein and TV distances to tightly audit the fairness and privacy of al-
gorithms. We empirically demonstrate the efficiency of proposed algorithms across synthetic
and real-world datasets.

1 Introduction

Computing distances between probability distributions while having access to samples is a fundamental and
practical problem in statistics, computer science, information theory, and many other fields. Among the
multitude of distances proposed between distributions, we focus on the Wasserstein and Total Variation
distances in this work.

Wasserstein Distance. Optimal transport (Villani, 2009) has emerged as a popular and useful tool in
machine learning. It involves computing Wasserstein distance between distributions and using it further for
learning. The statistical and computational aspects of Wasserstein distances have been extensively stud-
ied, refer to Panaretos & Zemel (2018); Peyré & Cuturi (2019); Chewi et al. (2024). This geometrically
insightful approach has found applications in text document similarity measurement (Kusner et al., 2015),
dataset distances (Alvarez-Melis & Fusi, 2020), domain adaption (Courty et al., 2016), generative adversar-
ial networks (Arjovsky et al., 2017), data selection and valuation (Just et al., 2024; Kang et al., 2024), fair
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classification and regression (Jiang et al., 2020; Chzhen et al., 2020) to name a few. Thus, it is a funda-
mental question to compute Wasserstein distance between two distributions when we only have access to
samples from it. But computing Wasserstein distance is often memory and computationally intensive until
we know the exact parametric form of the data distribution (precisely, location-scatter families) (Gelbrich,
1990; Alvarez-Esteban et al., 2016; Cuesta-Albertos et al., 1996; Alvarez-Melis & Fusi, 2020). In absence of
such parametric assumptions, we need linear space complexity and super-linear time complexity in terms of
observed samples to estimate Wasserstein distances between the underlying data distributions (Cuturi, 2013;
Panaretos & Zemel, 2018; Chizat et al., 2020; Rakotomamonjy et al., 2024; Chewi et al., 2024). Additionally,
in practice, the stream might arrive from multiple sources, as in Federated Learning (Kairouz et al., 2021).
This has motivated a recent line of work to estimate Wasserstein distance in federated setting (Rakotoma-
monjy et al., 2024; Li et al., 2024). However, these methods incur communication cost equal to the number
of samples in the stream. These gaps in literature motivate us to ask

Can we estimate the Wasserstein distance between two continuous distributions with infinite support
in sublinear space, time, and communication complexity w.r.t. number of samples n?

Total Variation (TV) Distance. TV (Devroye & Gyorfi, 1990) is another well-studied distance between
two probability distributions. It measures the maximum gap between the probabilities of any event w.r.t.
the two distributions. TV also quantifies the minimum probability that X ̸= Y among all couplings of (X, Y )
sampled from the distributions. TV distance between the output distributions of an algorithm operated on
two neighbouring datasets also central to auditing the privacy level of the algorithm (Koskela & Mohammadi,
2024). Additionally, in bandits, the hardness of a problem depends on the TV distance between the reward
distributions of the available actions (Azize & Basu, 2022; Azize et al., 2023). Thus, estimating TV distance
from empirical samples emerges as a fundamental problem in privacy and machine learning. Estimating TV
distance has been studied extensively (Canonne, 2022). There is a long line of work focusing on estimating
TV distance between discrete distributions with finite support (Kamath et al., 2015; Han et al., 2015; Feng
et al., 2024; Devroye & Reddad, 2019; Bhattacharyya et al., 2023; 2024; 2025). Feigenbaum et al. (2002);
Guha et al. (2006); Roy & Vasudev (2023) propose sublinear algorithm to estimate TV distance while
having access to sample streams. But the question of estimating TV distance for continuous distributions
with infinite supports remains wide open. This motivates the question:

Can we estimate the TV distance between two continuous distributions with infinite support
in sublinear space, time, and communication complexity w.r.t. number of samples n?

We address these questions for any bounded tail distribution by reducing them into estimation of a sublin-
ear summary, i.e. the frequency of an appropriately chosen subset of the support of a properly discretised
distribution.

Mergeable Sublinear Representation of Distributions. We propose to learn an approximately correct
sublinear summary of a distribution from the data stream that can address the previous questions (Sec-
tion 4.1). Because then we can store, communicate, and compute with only these sublinear and discrete
summaries of distributions. In literature, we find that the sublinear summaries of histograms has been ex-
tensively studied over decades (Misra & Gries, 1982; Alon et al., 1996; Charikar et al., 2002; Cormode &
Muthukrishnan, 2005). Additionally, in the continuous distributed monitoring setup (Cormode, 2013), one
might want to estimate TV and Wasserstein distances when data streams arrive from multiple sources. Also,
with the growth of federated and distributed learning, the question of how these sublinear-sized summaries of
histograms from multiple streams can be merged efficiently has gained interest (Agarwal et al., 2013; Berinde
et al., 2010; Anderson et al., 2017). In machine learning, we work a lot with continuous data distributions.
Thus, to be practically useful, we need to extend these sublinear summarisers to continuous setting and find
minimal conditions to yield theoretical guarantees. On the other hand, there is another long line of research
to learn histograms from samples of a continuous distribution and control the error in this process (Scott,
1979; Freedman & Diaconis, 1981; Ioannidis, 2003; Diakonikolas et al., 2018). But it is an open question to
develop algorithms and analysis to join these two streams of research, i.e.

Can we learn sublinear summaries of (possibly continuous) distributions
while having a stream of n samples from it?
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Our contributions address these questions affirmatively.

1. Computing Mergeable Sublinear Summary from Multiple Streams. We propose a generic framework to
learn summaries of PDF and CDF of a continuous or discrete (possible with infinite support) distribution
using sublinear space (Section 4.2). Given data arriving in a stream (or multiple streams) from an underlying
distribution, we propose SPA and SCA ϵ-approximate corresponding PDF and CDF independent of stream
length. To our knowledge, we initiate the study of mergeable sublinear summaries over streams from an
infinite set and establish theoretical error bounds for streams from an infinite set and any sub-Gaussian or
sub-Weibull distribution.

2. Sublinearly Estimating Wasserstein distance. We use SCA to propose SWA to PAC-estimate Wasserstein
distance (Section 4.3). We first show that mergeable sublinear summaries learned by SCA are universal
estimators of the true distribution in Wasserstein distance. In turn, SWA computes a sublinear summary of a
distribution that is O

(
n−1/2) close in Wasserstein distance using Õ (

√
n) space for n samples1 SWA operates

in the distributed/federated setting with a communication cost of Õ (
√

n) per round while preserving the
estimation guarantee.

3. Sublinearly Estimating TV distance. For TV distance, we leverage SPA and set the parameters properly
to propose STVA (Section 4.4). STVA maintains mergeable sublinear summaries of the bucketed versions of
the true distributions, which have probably infinite buckets in their supports. We show that if we set the
bucket width to Θ̃(n−1/3), STVA yields a Õ

(
n−1/3) estimate of TV distance between two distributions using

Õ
(
n1/3) space.

4. Applying estimators for fairness and privacy auditing. In Section 5.1, we demonstrate usefulness of
our Wasserstein and TV distances estimators for auditing fairness and privacy of machine learning models,
respectively. Experimental results demonstrate the accuracy and sublinearity of the proposed estimators for
auditing models trained on real-life datasets from fairness and privacy literatures.

2 Preliminaries

We discuss the fundamentals of distributional distances and the generic algorithmic template to learn merge-
able summaries of histograms, which are essential to this work.

Notations. µ, µn and µb,n denote the true, empirical, and bucketed empirical measure with bucket width
b, respectively. pµ : Supp (µ) → [0, 1] and Qµ : Supp (µ) → [0, 1] denote the probability density function
(PDF) and cumulative density function (CDF) of µ, respectively. [n] refers to {1, 2, . . . , n} for n ∈ N.

2.1 Distances between Probability Distributions

Now, we define the Wasserstein and TV distances between distributions. We start with defining the Wasser-
stein distance between distributions defined over metric spaces.
Definition 1 (p-th Wasserstein distance (Villani, 2009)). Given two probability measures µ, ν over a metric
space X , the p-th Wasserstein distance between them is

Wp (µ, ν) ≜
(

min
π∈Π(µ,ν)

∫
X ×X

∥x− y∥p dπ(x, y)
) 1

p

.

π is a coupling over x and y, and Π is the set of all couplings.
Here, Wasserstein distance is the cost calculated for the optimal coupling between the two probability
measures over Euclidean distances. For univariate distributions, Wasserstein distance can be expressed as
norms between inverse CDFs of the distributions (Peyré & Cuturi, 2019).
Lemma 2. For univariate measures µ, ν over R, the p-th Wasserstein distance Wp (µ, ν) is

Wp (µ, ν) =
∥∥Q−1

µ −Q−1
ν

∥∥p

Lp([0,1]) , (1)

1Soft-O notations, i.e. Õ (·) and Θ̃ (·), ignore the polylogarithmic and other lower order terms.
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where Q−1
µ : [0, 1]→ R ∪ {−∞} of a probability measure µ is the pseudoinverse function defined as Q−1

µ (r) ≜
minx∈R∪{−∞} {x : Qµ(x) ≥ r} for r ∈ [0, 1].

The other distance that we study is the Total Variation (TV) distance.
Definition 3 (Total Variation (TV) Distance). Given measures µ, ν with support X , TV distance between
them is

TV (µ, ν) ≜ sup
A⊆X

|µ(A)− ν(A)| = 1
2 ∥µ− ν∥1 .

2.2 Mergable Summaries of Histograms

The principal algorithmic technique that we use is that of summarising a histogram, which is a long-studied
problem (Misra & Gries, 1982; Alon et al., 1996; Charikar et al., 2002; Agarwal et al., 2013; Anderson et al.,
2017). We refer to Cormode & Hadjieleftheriou (2008) for an overview.

First, we formally introduce the problem. We consider data arriving in a stream ζ of length n, where each
element belongs to a universe U . The j-th element of U , i.e. Uj , appears fj times in the stream ζ. Our goal
is to maintain an approximate count of elements f̂j such that

∥∥∥f̂j − fj

∥∥∥
p

is small for some p. If we separately

keep count of all the elements , the problem is trivial and we get f̂j = fj ,∀Uj ∈ U . However, the goal is to
obtain a ‘good’ approximation while using sublinear, i.e. o (n), space. More generally, the i-th element of
the stream can have a weight wi ∈ N. Then, the task is to generate estimates F̂ =

{
f̂j |Uj ∈ U

}
, which are

close to the true frequency fj =
∑n

i=1 wi1[ζi = Uj ] for all j.

Now, we extend the problem setup to aggregate from multiple streams (Agarwal et al., 2013). Given
S-streams of data ζ1, ζ2, ..., ζS , we aim to generate estimates F̂1, F̂2, ..., F̂S and combine them efficiently
to output a globally ‘good’ frequency estimate F̂ = merge

(
F̂1, F̂2, ..., F̂S

)
for the concatenated stream

ζ1 ◦ ζ2 ◦ ... ◦ ζS .

We build on the algorithm of Anderson et al. (2017), which extends the well-known Misra-Gries algo-
rithm (Misra & Gries, 1982). We refer to it as the Mergeable Misra-Gries (MMG) algorithm and provide
the details in Algorithm 5. This family of algorithms is broadly known as the counter-based algorithms for
histogram summarisation and consists of three main modules. First, they operate by maintaining a sublin-
ear number of counters, say k = o(n), all initiated with 0. Then, the module MMG · Update updates them
according to the elements in stream. Specifically, for each stream element, if our algorithm has already
assigned a counter, it adds the weight to the corresponding counter. If not, it assigns an empty counter
to the element if there is an unassigned counter. Otherwise, the values of all counters are reduced by the
median value of counters. Second, if the streams are coming from multiple sources, the module MMG · Merge
takes the counters in all the summaries as an input stream, and update each counter in the final summary
by considering the counters as stream elements and their counts as the corresponding weights. For updating,
it reuses the module MMG · Update. Finally, given an element, the module MMG · Estimate returns an estimate
of its frequency by returning the value stored in the counter if the element is assigned a counter, and 0
otherwise. Note that Update, Estimate, and Merge takes amortised Õ (1) , Õ (1), and Õ (k) time to execute,
respectively. For brevity, we defer the further details to Appendix A.

Now, we derive a rectified version of Theorem 2 of Anderson et al. (2017) that bounds the error in frequency
estimation using the residuals res(n, k/4) (defined below).
Lemma 4 (Estimation Guarantee of MMG). (a) If MMG uses k counters, MMG · Estimate yields a summary
{f̂j}Uj∈U satisfying 0 ≤ fj − f̂j ≤ res(n,τ)

(k−k∗)−τ , for all τ ≤ (k − k∗) and Uj ∈ |U|. Here, res(n, τ) denotes
the sum of frequency of all but τ most frequent items. (b) If we choose k∗ = k

2 τ = k/4, we get that
0 ≤ fj − f̂j ≤ 4 res(n,k/4)

k , ∀Uj ∈ |U|.

We extend and analyse MMG’s design technique, originally developed for the discrete distributions with finite
support points, to continuous and discrete distributions with infinite support points.
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3 Problem: Estimating Distances between Distributions from Sample Streams

Now, we formally state our problem setup. Let µ and ν be two measures on R. We consider that the data
is arriving in two streams ζµ and ζν of size n, and each element of the two streams are independent and
identically distributed (i.i.d.) samples of µ and ν, respectively. We denote by µ̂n and ν̂n the two summaries
of µ and ν computed from the sample streams. Given a probability metric D, our objective is to compute
an (ε, δ)-estimate of D (µ, ν) while using sublinear (o (n)) space to store µ̂n and ν̂n. Specifically, we want to
yield D (µ̂n, ν̂n) ensuring

P [|D (µ, ν)−D (µ̂n, ν̂n) | ≥ ε] ≤ δ , (2)

such that |essSup(µ̂n)∪ essSup(ν̂n)| = o (n), and (ε, δ) ∈ (0, 1)× (0, 1). In this work, we particularly focus on
two probability metrics: Wasserstein distances D (µ, ν) = Wp (µ, ν), and TV distance D (µ, ν) = TV (µ, ν).
For streams coming from multiple sources, like in the federated (or continuous distributed monitoring)
setting, we consider the concatenated streams ζµ = ζµ,1 ◦ ζµ,2 ◦ . . . ◦ ζµ,S and ζν = ζν,1 ◦ ζν,2 ◦ . . . ◦ ζν,S , to
be the input streams of length n each to estimate the distance D (µ, ν).

Structural Assumptions. In this work, we assume that the data generating distributions have bounded
tails (Assumption 7). For the case of D (µ, ν) =Wp (µ, ν), we assume the distribution to have ℓD bi-Lipschitz
CDF (Assumption 9). For the case of D (µ, ν) = TV (µ, ν), we assume the distribution to have ℓD-Lipschitz
PDF (Assumption 10).

To formalise the bounded-tail assumption, we first define the sub-Gaussian and sub-Weibull random variables.

Definition 5 ((τ, σ)-Sub-Gaussian Distributions). A distribution µ is said to be (τ, σ)-sub-Gaussian if for
any τ ≥ t ≥ 0, we have PX∼D [|X − E[X]| ≥ t] ≤ 2 exp

(
− t2

σ2
µ

)
.

When τ → ∞, (τ, σ)-sub-Gaussian distribution reduces to the classical definition of sub-Gaussian distribu-
tion (Vershynin, 2018). Sub-Gaussians cover a wide-range of distributions including any bounded distribu-
tion, Gaussians, mixture of Gaussians etc. (Vershynin, 2018). It is standard to assume the noise and data
to be sub-Gaussian in regression problems (Wainwright, 2019). Sub-Gaussianity appears in the underlying
scoring mechanism for classification (Wang et al., 2018). We also consider the notion of sub-Weibull dis-
tribution that generalises the notion of sub-Gaussianity to any form of exponentially bounded tails. While
sub-Gaussian distributions are considered to be light-tailed, sub-Weibull distributions are considered for
heavy-tail distributions in the concentration of measure literature (Foss et al., 2011; Vladimirova et al.,
2020; Bakhshizadeh et al., 2023).
Definition 6 ((τ, α)-Sub-Weibull Distributions). A distribution µ is said to be (τ, α)-sub-Weibull if there
exists some constant cα for any τ ≥ t ≥ 0, we have PrX∼µ [X ≥ t] ≤ cα exp

(
−t1/α

)
..

When τ → ∞, (τ, α)-sub-Weibull distribution reduces to the classical definition of sub-Weibull distribu-
tion (Vladimirova et al., 2020). For simplicity, we denote (∞, α)-sub-Weibull Distributions as α-sub-Weibull.
Note that, for sub-Gaussians, α = 1/2. Now, we formally state our assumptions.
Assumption 7 (Sub-Gaussian or sub-Weibull Data Generating Distributions). We consider the distributions
yielding the samples are either σ-sub-Gaussian or α-sub-Weibull.

The tail bound assumption is required because we have access to only the samples from the stream rather
than the true distribution. Thus, we need to have enough samples such that the empirical measures available
to the algorithm are close to the true distributions. The tail bounds provide a control of this concentration
of measure phenomenon. We now state our assumptions regarding the lipschitzness of the distributions.
Definition 8 (ℓ-Lipschitz Functions). Given two metric spaces (X, dx) and (Y, dy), a function f : X→ Y
is said to be ℓ-Lipschitz if dy(f(x1), f(x2)) ≤ ℓdx(x1, x2) ∀x1, x2 ∈ X.
Assumption 9 (Bi-Lipschitz Distributions). The distribution D over (X, dx) with CDF QD has ℓD-bi-
Lipschitz CDF, if 1

ℓD
dx(a, b) ≤ |QD(a)−QD(b)| ≤ ℓDdx(a, b) , ∀a, b ∈ X .
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This essentially implies that the PDF of D is bounded above and below everywhere. Any distribution with
bounded PDF, and continuous and compact support satisfies this, which encompasses most of the common
data distributions.
Assumption 10 (Lipschitz PDF Distributions). The distribution D with pdf µD over (X, dx) has ℓD-
Lipschitz PDF, i.e. |µD(a)− µD(b)| ≤ ℓDdx(a, b) , ∀a, b ∈ X.

Any exponential family distribution with bounded parameters have Lipschitz PDF. It includes Gaussians with
bounded mean and variance, exponential and Poisson distributions, and other commonly used distributions.

4 Sublinear Estimators of Wasserstein and TV Distances

In this section, we explain our methodology for mergeable summary creation of bounded-tail distributions,
and estimation of Wasserstein and TV distances from sample streams. We theoretically and numerically
demonstrate accuracy and sublinearity of our estimators.

4.1 From Sublinear Distance Estimation to Learning Sublinear Summaries

Let us consider the empirical measure µn on n points generated from the true (possibly continuous) measure
µ. Thus, for any probability distance D, we observe that

|D (µ, ν)−D (µ̂n, ν̂n) | ≤ D (µ, µn) + D (ν, νn)︸ ︷︷ ︸
Concentration of measures

+D (µn, µ̂n) + D (νn, ν̂n)︸ ︷︷ ︸
Sublinear summaries

,

if all of these distances are well-defined. In that case, the distance of the empirical measure and the true one
decreases due to concentration of measures. While we learn sublinear summaries for each of the empirical
distributions and aim to control the distance between the empirical distributions and the sublinear summary,
i.e. D (µn, µ̂n), for any bounded-tail true distribution µ.

In Section 4.2, we propose algorithms to estimate PDFs and CDFs of bounded-tail distributions. This allows
us to control D (µn, µ̂n) and in turn, compute the desired distances if µn has bounded-tails. We first proof
that the empirical distribution µn corresponding to a sub-Gaussian or sub-Weibull µ is also sub-Gaussian or
sub-Weibull, respectively.
Theorem 11 (Empirical Measure is Sub-Gaussian). Given an σ-sub-Gaussian true measure µ, the empirical
measure µn generated by X1, X2, ..., Xn drawn i.i.d. from µ is (τ, σ)-sub-Gaussian with probability at least
1− δ given n ≥ c exp

(
τ2

σ2

)
log 1

δ .

Theorem 12 (Empirical Distribution is sub-Weibull). Given an α-sub-Weibull true measure µ, the empirical
measure µn generated by X1, X2, ..., Xn drawn i.i.d. from µ is (τ, α)-sub-Weibull with probability at least 1−δ

given n ≥ exp( α
√

τ)
12 log 1

δ .

We show that with high probability, the empirical distribution retains sub-Gaussianity and sub-Weibull
property of the true measure µ. This result is important for learning sublinear summaries of true distribution
from sample streams. The proof is in Appendix B.

4.2 Learning Mergable Sublinear Summaries

In this section, we state our results regarding sublinear summary approximation of sub-Gaussian and sub-
Weibull distributions satisfying Assumption 7. We use MMG (Algorithm 5) that approximates a data stream
generated from bounded number of elements. We design appropriate bucketing techniques, and leverage the
tail bounds to approximate the PDF and CDF of continuous distributions using this algorithm.

A. Learning PDF. We first turn the support of the empirical distribution into a collection of buckets of
width b > 0, and in turn, construct an empirical bucketed distribution µb,n out of the empirical distribution
µn.
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Definition 13 (Bucketed Empirical Distribution). Let D be a distribution supported on a (finite or
infinite) closed interval B ⊆ R with (discrete or continuous) measure µ. Given a reference point x0 ∈ B,
bucket width b, and an index set I ⊆ Z, we can represent B = B(x0, I, b) ≜ ∪i∈I [x0 + ib, x0 + (i + 1)b]. We
define the bucketed empirical distribution, denoted µb,n, to be the empirical distribution generated from n

samples of µ as µb,n(i) ≜ ni

n , where ni is the number of samples falling in the bucket ⊔i.

For brevity, we denote the bucket [x0 + ib, x0 + (i + 1)b] by ⊔i. We note that B inherits the metric structure
of R. Specifically, the distance between two points x1 ∈ ⊔i and x2 ∈ ⊔j is defined as d(x1, x2) = |i− j|b.

In Algorithm 1, we first fix a number of buckets k, and treat each of the buckets as an element of the stream.
The weight of a bucket is the number of elements in the stream that falls in it, which is ni for ⊔i. We
apply MMG over these buckets to return the estimated frequency f̂i for each bucket ⊔i. Finally, we return the
learned PDF {pµb,n

(i)}i∈I =
{

f̂i

maxj F̂j

}
i∈I

as a summary of µn’s PDF. Now, we bound the learning error of
SPA.

Algorithm 1 Sublinear PDF Approximator:
SPA(ζ i.i.d.← µ, k, b)

1: Initialize
2: MMG · Initialize (k)
3: Update(ζi)
4: ⊔ζi ← ⊔ that contains ζi

5: MMG · Update (ζi, 1)
6: Merge(T2)
7: MMG · Merge (T2)
8: Estimate(ζi)
9: f̂i ← MMG · Estimate(ζi)

10: return pµ̂n
(i)← f̂i

maxj F̂j

Algorithm 2 Sublinear CDF Approximator
SCA(ζ i.i.d.← µ, ε, k, b)

1: Initialize
2: MMG · Initialize (k)
3: Update(ζi)
4: ⊔ζi

← ⊔ that contains ζi

5: MMG · Update (⊔ζi
, 1)

6: Merge(T2)
7: MMG · Merge (T2)
8: Estimate(ζi)
9: F̂j ← MMG · EstimateCumulate(ζi)

10: return Q̂i ← F̂i

maxj F̂j

Theorem 14 (SPA Learning Error). (a) If SPA uses k buckets and outputs µ̂n, then for all i ∈ I,

∣∣pµ̂n
(i)− pµb,n

(i)
∣∣ ≤ max

{
4 res(n, k/4)

n

fi

n
,

fi − f̂i

n

}
.

(b) Further, if µ corresponding to µn is σµ-sub-Gaussian, |ζ| = n ≥ c
ε log

( 1
δ

)
, and k ≥

⌈
8σµ

b

√
log
( 1

ε

)⌉
, then

for all i ∈ I, P(
∣∣pµ̂n(i)− pµb,n

(i)
∣∣ ≥ ε) ≤ δ.

(c) Further, if µ corresponding to µn is α-SubWeibull, |ζ| = n ≥ c
ε log

( 1
δ

)
, and k ≥

⌈
c
b

(
log
( 1

ε

))α⌉, then for
all i ∈ I, P(

∣∣pµ̂n
(i)− pµb,n

(i)
∣∣ ≥ ε) ≤ δ.

Lemma 4 shows that the error in MMG depends on the sum of frequency of elements except the ones with the
highest frequencies. SPA leverages this observation, the boundedness of the tails of a distribution (Assump-
tion 7), and the guarantee on the preservation of tail bounds for the empirical measure (Theorem 11 and 12).
In SPA, we set bucket width b as k ≥ τk (ε, b) such that the (possibly) uncovered tails have sufficiently small
mass. This yields an (ϵ, δ)-PAC estimate of the empirical PDF. The proof is in Appendix C.

B. Learning CDF. Now, we want to learn a sublinear summary of the CDF of the empirical distribution
µn. Thus, we start by bucketing its support with k counters. Given the corresponding PDF pµb,n

, we define
the CDF of the bucketed empirical distribution as Qµb,n

(i) ≜
∑

j≤i pµb,n
(j).

In general, if there is a total order on the stream universe U , we can define the cumulant function F : U → N
as Fi ≜

∑
j≤i fj . Total order exists for the real line and the bucket B defined on it. Lemma 15 establishes

the error bound of MMG · EstimateCumulate for the cumulant F. The proof is in Appendix A.
Lemma 15 (Error Bound of MMG · EstimateCumulate). If MMG uses k counters, MMG · EstimateCumulate
yields a summary {F̂j}Uj∈U satisfying 0 ≤ Fi − F̂i ≤ 2res(n, k

4 ) .
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Figure 1: Evolution of summaries constructed using 105 samples from N (0, 5). We set b = 0.05 and bucket
numbers 100, 300, 500, 700.

Now, in the spirit of Theorem 14, we appropriately set the bucket width and collect enough samples to yield
an (ϵ, δ)-PAC estimate of the empirical CDF (Appendix C).
Theorem 16 (SCA Learning Error). Given stream length |ζ| = n ≥ τn (ε, δ) generated from a bounded-tail
distribution µ, SCA with bucket width b sets #buckets to k ≥ τk (ε, b) and outputs Q̂, such that with probability
at least 1− δ,

∣∣∣Qµb,n
(i)− Q̂(i)

∣∣∣ ≤ ε for all i ∈ I.

Tail Condition τn (ε, δ) τk (ε, b)

σµ-sub-Gaussian c
ε log

( 1
δ

) ⌈
8σµ

b

√
log
( 4

ε

)⌉
α-sub-Weibull c

ε log
( 1

δ

) ⌈
c

2b

(
log
( 4

ε

))α⌉
Note that the space complexities of both SPA and SCA are independent of streaming universe’s size.

Numerical Demonstration. We take a stream of 105 samples from a Gaussian N (0, 5) and estimate its
PDF with SPA. We set the bucket width to b = 0.05 and vary the number of buckets from 100 to 700.
Figure 1 validates that increasing the number of buckets, while still being sublinear in #samples, in SPA
leads to more accurate summaries of a continuous sub-Gaussian density function.

4.3 Estimating Wasserstein Distance

In this section, we introduce an algorithm, namely SWA, to estimate Wasserstein distance between distri-
butions satisfying Assumption 7 and 9. SWA leverages SCA to learn the CDF and use the inverse CDF
formulation of Wasserstein (Lemma 2) to obtain a good estimation of the Wasserstein distance between two
distributions. We present the pseudocode of SWA in Algorithm 3.

Algorithm 3 Sublinear Wasserstein Estimator: SWA(ζµ, ζν
i.i.d.← µ, ν, ε, p)

Require: ℓµ, ℓν ← Lipschitz constant of µ and ν, p← p-th Wasserstein
1: for D ∈ {µ, ν} do
2: bD ← ϵ

4
3: {QD̂n

(i)}k
i=1 ← SCA(ζD, bD, τk (ε, ℓD, δ) , ε/2)

4: end for
5: return Wp (µ̂n, ν̂n)← plug {Qµ̂n(i)}k

i=1 and {Qν̂n(i)}k
i=1 in Equation (1)

Universal Learning Guarantee of SCA. We show that SCA is a universally good estimator of the CDF of
any bounded-tail measure with respect to the Wasserstein distance. This is a culmination of three results.

First, SCA guarantees an (ϵ, δ)-PAC summary of the CDF of a bucketed empirical distribution. To leverage
that guarantee in the case of Wasserstein distance for a (possibly continuous) measure µ, we need to choose
the bucket width b appropriately such thatWp (µn, µb,n) is small as the distance of the true and the bucketed
distribution is bounded by b (Lemma 32).
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Second, once we have the (ϵ, δ)-PAC summary of the CDF, the rest is to show that it yields small error
in computing the inverse CDF, and in turn, the Wasserstein distance (Equation (1)). We establish a guar-
antee on the approximation error of the pseudoinverse of a bi-Lipschitz CDF, given a guarantee on the
approximation error on the CDF (Corollary 34).

Finally, we show that the empirical measure µn corresponding to a true measure µ with bi-Lipschitz CDF
also exhibits bi-Lipschitz CDF with high probability.
Theorem 17 (Bucketed Empirical Measure is Bi-Lipschitz). Let the bucketed empirical measure µb,n gen-
erated by n i.i.d. samples coming from a distribution µ with ℓµ bi-Lipschitz CDF. For any ε, δ ∈ (0, 1) and
fixed constant c > 0, if n ≥ c

ε2b2 log
( 2

δ

)
max

{
1

ℓ2
µ

, ℓ2
µ

}
, µb,n is (1 + ε)ℓµ bi-Lipschitz with probability 1− δ.

Proof of Theorem 17 is in Appendix B. Finally, these results together yield Theorem 18, i.e. SCA learns a
universal estimator of any measure µ. The proof is in Appendix D.
Theorem 18 (Universal Learning of SCA inWp (, )). Given |ζ| = n ≥ τn (ℓµ, ε, δ) generated from a bounded-
tail distribution µ and ε, δ ∈ (0, 1), if we set the bucket width b = ε/2, then SCA uses τk (ℓµ, ε) buckets (i.e.
space) and outputs µ̂n, such that P(Wp (µn, µ̂n) ≥ ε) ≤ δ. We omit the constants in τn (ℓµ, ε, δ) and τk (ℓµ, ε)
for simplicity.

Tail Condition τn (ℓµ, ε, δ) τk (ℓµ, ε)
σµ-sub-Gaussian log (1/δ) max

{
1
ε , 1

ℓ2
µ

, ℓ2
µ

}
σµ

ε log
(

ℓµ

ε

)
α-sub-Weibull log (1/δ) max

{
1
ε , 1

ℓ2
µ

, ℓ2
µ

}
1
ε

(
log
(

ℓµ

ε

))α

PAC Gurantee of SWA. We know (Equation (3)) that controlling the distance between the empirical
measure and the sublinear summary is enough to control the distance estimation error if the empirical
distribution concentrates to the true one. Lemma 43 of Bhat & L.A. (2019) proposes the concentration
guarantees of empirical measure in Wasserstein distance. Combining this result and Theorem 18 yields
estimation guarantees of µ̂n w.r.t. true measure µ.
Theorem 19 (PAC Guarantee of SWA). Given |ζ| = n ≥ τn (ℓµ, ε, δ) generated from a bounded-tail
distribution µ, with bucket width b = ε/2, then SCA uses τk (ℓµ, ε) space and outputs µ̂n such that
P(W1 (µ, µ̂n) ≤ ε) ≥ 1 − δ . This further shows that for a stream of size n = O

(
ϵ−2 log(1/δ)

)
from two

distributions µ and ν, SWA yields
|W1 (µ̂n, ν̂n)−W1 (µ, ν) | ≤ 4ε (3)

with probability 1 − 2δ. Here, ϵ ∈ (0, 1/4] and δ ∈ (0, 1/2]. Here, σ ≜ max {σµ, σν}, ℓ ≜ max {ℓµ, ℓν}. We
omit the constants in τn (ℓµ, ε, δ) and τk (ℓµ, ε) for simplicity.

Tail Condition τn (ℓµ, ε, δ) τk (ℓµ, ε)
σ-sub-Gaussian log (1/δ) max

{ 1
ε2 , 1

ℓ2 , ℓ2} σ
ε log

(
ℓ
ε

)
α-sub-Weibull log (1/δ) max

{
1
ε2 ,
(
log 1

δ

)2α−1
, 1

ℓ2 , ℓ2
}

1
ε

(
log
(

ℓ
ε

))α

Remark 20 (Space, Time, and Communication Complexity of SWA.). SWA requires Õ
( 1

ε

)
time, space, and

communication cost to learn a distribution in Wasserstein distance. Observe that the lower bound on n
in Theorem 19 ensures convergence µn to µ in Wasserstein distance. This is the only term that has δ-
dependence as the rest of the algorithm is deterministic. SWA’s time, space and communication complexities
are sublinear (Θ̃(

√
n)) compared to the number of samples required to ensure convergence of the empirical

measure while retaining the same error.

4.4 Estimating TV Distance

In this section, we introduce STVA that yields an estimate of TV distance between two bounded-tail distribu-
tions with Lipschitz PDFs. STVA leverages SPA to sublinearly learn the PDFs of the distributions, and then,
estimates the TV distance as L1 norm between them (Definition 3).
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Algorithm 4 Sublinear TV Distance Estimator: STVA(ζµ, ζν
i.i.d.← µ, ν, ε, b)

Require: σµ, σν ← Subgaussian parameter of µ and ν, b← bucket width
1: for D ∈ {µ, ν} do
2: kD ← τk (ε, ℓ, δ)
3: bD ← τb (ε, ℓ)
4: {pD̂n

(i)}k
i=1 = {p̂n(i)}k

i=1 ← SPA (D, kD, bD)
5: end for
6: return TV (µ̂n, ν̂n)← 0.5

∑
i

∣∣pµ̂n(i) − pν̂n(i)
∣∣1 (max

{
pµ̂n(i), pν̂n(i) > 0

})

PAC Guarantee of STVA. We establish the estimation guarantee of STVA in three steps. First, we prove
that if we choose the bucket width properly to discretise the support of µ, we obtain a control over the
TV distance between true distribution and its bucketed version. Second, we leverage the concentration
inequalities of Berend & Kontorovich (2013) to control the TV distance between the bucketed distribution
and the empirical bucketed distribution from the streamed samples. Finally, we establish the approximation
guarantee of SPA to control the TV distance between the empirical bucketed distribution and its sublinear
summary.

Step 1: Setting the Bucket Width. Standard rules (Scott, 1979; Freedman & Diaconis, 1981) of choosing
optimal bucket width of a histogram depends either on rule of thumbs or crucially depends on parameters
such as sample size n,

∫∞
−∞ p′(x)2 dx etc., which are difficult to estimate for an unknown distribution arriving

in a stream. We propose a bucketing technique depending on the Lipschitz constant of the true PDF and the
sub-Gaussian parameter of the true distribution to tune the bucket width a priori. Proof is in Appendix E
Theorem 21 (Bucket Width for TV Distance Estimation). Given a bounded-tail distribution µ with ℓµ-
Lipschitz PDF and a corresponding bucketed measure µb, if we fix the bucket width b = τb (ε, ℓ), we have
TV (µ, µb) ≤ ϵ.

Tail Condition σµ-sub-Gaussian α-sub-Weibull
τb (ε, ℓµ) ε

σµℓµ

√
log(2/ε)

ε
ℓµ(log(2cα/ε))α

Step 2: Concentration of Bucketed Empirical Distribution in TV. For continuous measures, as-
sumption on the structure of the distribution is necessary to establish meaningful convergence rates in TV
distance (Diakonikolas, 2016). We establish a convergence result for bucketed measure µb generated from a
bounded-tail measure µ that possibly has infinite buckets in its support (Appendix E).
Lemma 22 (Concentration in TV over Infinite Buckets). Let µn be an empirical measure generated from
a discrete bucketed measure µb corresponding to a bounded-tail distribution µ, and, ε, δ ∈ (0, 1). Then, for
n ≥ τn (ε, b, δ), P [TV (µ, µn) ≥ ε] ≤ δ. Here, Γ(·) denotes the Gamma function (Davis, 1959).

Tail Condition σµ-sub-Gaussian α-sub-Weibull
τn (ε, b, δ) cε−2 max

{
4σµ

√
π

b , log (1/δ)
}

cε−2 max
{ 2cα

b Γ(1 + α), log (1/δ)
}

Step 3: Approximation Guarantee of SPA. Theorem 14 shows that SPA learns a pointwise approximation
to the PDF of any bucketed empirical measure. However, to extend this guarantee to the TV distance, we
need to show that the the sum of errors over the entire support is small. Note that bounded-tail distributions
have small mass in the tails (i.e. in most of the buckets). Hence, it suffices to control the error in learning
PDF of the ‘heavier’ buckets to control the error in estimating the TV distance. The proof is in Appendix E.
Theorem 23 (Learning Error of SPA). If SPA accesses a stream of length |ζ| = n ≥ τn (ε, δ) from a bounded-
tail distribution, and uses τk (ε, δ) buckets to output a sublinear summary pµ̂n , then with probability 1 − δ,
TV (µ̂n, µb,n) ≤

∥∥pµ̂n − pµb,n

∥∥
1 ≤ ε.
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Tail Condition τn (ε, δ) τk (ε, b)

σµ-sub-Gaussian c
ε log

( 1
δ

) ⌈
8σµ

b

√
log
( 6

ε

)⌉
α-sub-Weibull c

ε log
( 1

δ

) ⌈
c
b

(
log
( 6

ε

))α⌉

These results together yield the PAC guarantee for STVA.
Theorem 24 (PAC Guarantee of STVA). Given ϵ ∈ (0, 1/6], δ ∈ (0, 1/4], a stream of size n ≥ τn (ε, ℓ, δ)
from two bounded-tail and ℓ-Lipschitz distributions µ and ν, and bucket width b = τb (ε, ℓ, δ), STVA uses
τk (ε, ℓ, δ) space and

P (|TV (µ̂n, ν̂n)− TV (µ, ν) | ≥ 6ε) ≤ 4δ . (4)

Here, σ ≜ max {σµ, σν}, ℓ ≜ max {ℓµ, ℓν}. We omit the constants in τn (ℓµ, ε, δ) and τk (ℓµ, ε) for simplicity.

Tail Condition τn (ε, ℓ, δ) τk (ε, ℓ) τb (ε, ℓ)

σ-sub-Gaussian ε−2 max
{

σ2ℓ log(1/ε)
ε , log

( 1
δ

)}
σ2ℓ

ε log
( 1

ε

)
ε

σℓ
√

log(2/ε)

α-sub-Weibull ε−2 max
{

ℓ(log(1/ε))α

ε Γ(1 + α), log
( 1

δ

)}
ℓ
ε

(
log
( 1

ε

))2α ε
ℓ(log(2cα/ε))α

Remark 25 (Space, Time, Communication Complexity of STVA). STVA requires Õ
( 1

ε

)
time, space, and

communication complexity per round to estimate the TV distance between two bounded-tail distributions2.
Observe that the lower bound on n ensures convergence of µ̂n to µ in TV distance (Theorem 24). This is
the only term with δ-dependence as the rest of the algorithm is deterministic. Thus, STVA achieves Θ̃(n1/3)
time, space, and communication complexity with respect to #samples required for convergence of empirical
measure while retaining the order of error.

Note that the bounds in Theorem 24 ensures that ε is of the order n−1/3, which ensures that the bucket
width is of the order n−1/3 and the error in TV distance is of the order n−1/3. Our result is consistent
with those of other standard histogram bucket width rules, which chooses bucket width of order n−1/3 and
ensures the integrated mean squared error to be of order n2/3 (Scott, 1979; Freedman & Diaconis, 1981).
Remark 26 (Further Implications of Theorem 23). We observe that Theorem 23 does not only yield a
guarantee on TV distance estimation error but also have two further implications, which might be of general
interest.

1. ℓ1-estimation of True Frequencies: A closer look into the result shows that SPA can also yield an ℓ1
approximation of the true frequencies ({fi}i) corresponding to any probability distribution when the tails
are sufficiently bounded.

2. Estimation of any Integral Probability Metric (IPM): As our algorithms yield pointwise estimates of both
the PDF and CDF of a distribution, these methods can be used to estimate any Integral Probability Metric
(IPM), such as Dudley metric, Maximum Mean Discrepancy (MMD), Kolmogorov distance (Sriperumbudur
et al., 2012).

4.5 Tightness of Space Complexity

We compare upper bounds on space complexities of SPA and SCA to the existing lower bounds for finite
universe of streams. Frequency estimation have been extensively studied in this setting. Theorem 27 provides
a Ω

(
ε−1) lower bound on space complexity of any non-trivial solution, i.e. not storing the entire stream, or

counts of all elements in the universe, to the frequency estimation problem with respect to the ℓ∞-norm.

2Note that for sub-Gaussians α = 1
2 .
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Figure 2:
Performance of
SWA with N (0, 5),
N (1, 5) and b = 0.05

Figure 3:
Performance of
STVA with N (0, 5),
N (1, 5) and b = 0.05

Figure 4: Auditing
with SWA on re-
gression output of
ACS_Income .

Figure 5: Auditing
with SWA on clas-
sification output of
ACS_Income .

Figure 6: Privacy
Auditing of logis-
tic regression on
MNIST.

Theorem 27 (Lower Bound of Frequency Estimation in ℓ∞-norm (Chakrabarti, 2024)). Given a stream ζ
of length n coming from a universe U of size m, any algorithm that produces a (εn)-ℓ∞ approximation of
the frequency vector {fi}i∈[m] as

{
f̂i

}
i∈[m]

must use Ω
(
min

(
n, m, ε−1)) space.

Our framework provides a Õ
(
ε−1) approximation of the true frequencies in ℓ1-norm for any bounded-tail

distribution with both infinite and finite supports, i.e. universe of streams (ref. Remark 26)3. Hence,
Theorem 27 indicates that our algorithms are tight in terms of space complexity.

5 Experimental Analysis

Our aim is to understand whether SWA and STVA yield PAC estimates of Wasserstein and TV distances
between sub-Gaussian distributions with sublinear space, i.e. number of buckets, with respect to the number
of samples.

Setup. We compute distances between two Gaussian distributions N (0, 5) and N (1, 5), where 105 samples
from each of them arrive through S = 10 sources. True TV and Wasserstein distances between them are
0.0797 and 1.00, respectively. We set the bucket width to b = 0.05 and increase the number of buckets as
{100, 150, . . . , 1000}. We run each of the experiments 50 times. Finally, for SWA, we report the estimated
Wasserstein distance and the learning error of SCA, i.e. Wp (µn, µ̂n), in Figure 2. Similarly, for STVA, we
report the estimated TV distance and the learning error of SPA, i.e. TV (µn, µ̂n), in Figure 3. We report the
true distances in each case as the dotted horizontal lines.

Results.

1. Accuracy and Sublinearity of SWA. The estimation error of SWA and learning error becomes negligible
as the bucket number reaches to 750 while using 105 samples. This is better than the theoretical upper limit
of buckets, i.e. 1040, suggested by our results.

2. Accuracy and Sublinearity of STVA. The estimation error of STVA and learning error becomes negligible
as #buckets also reaches to 750. Thus, the results demonstrate that both STVA and SWA yield accurate estimates
of TV and Wasserstein distances while using only sublinear space w.r.t. #samples.

5.1 Applications: Auditing Fairness and Privacy

Auditing fairness (Ghosh et al., 2021; 2022; Yan & Zhang, 2022) and privacy (Nasr et al., 2023; Steinke
et al., 2024; Koskela & Mohammadi, 2024; Annamalai & Cristofaro, 2024; Azize & Basu, 2025) of Machine
Learning (ML) models is an important and increasingly studied question for developing trustworthy ML.
Here, we deploy SWA and STVA to estimate the fairness and privacy of ML models trained on real-world data,
respectively. The details are provided in Appendix G.

3Note that while our techniques consider the data arrives from a distribution rather than arbitrarily from a universe (as in
Theorem 27), it suffices if the underlying data are generated from a distribution and the order of their arrivals is arbitrary.
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6 Discussions and Future Works

We propose an algorithmic framework to learn mergeable and sublinear summaries of discrete and continuous,
sub-Gaussian and sub-Weibull distributions while data streams arrive from a single or multiple sources. We
show that the computed mergeable sublinear summarisers are universal estimators with respect to Wasser-
stein distance. We establish the first sublinear time, space, and communication algorithms to estimate TV
and Wasserstein distances over continuous and discrete (with infinite support) distributions. We also note
that our framework can be used to estimate any ℓp-norm based distance between distributions with sublinear
resources. However, our work is constrained to distributions over scalars. A future direction is to study these
problems for multi-variate distributions.
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A Mergeable Misra Gries Algorithm

Algorithm 5 MMG (Anderson et al., 2017)
1: Initialize(k)
2: T ← ∅ ▷ T is the set of items for which counters are assigned
3: k ← k
4: k∗ ← k

2
5:
6: Update(i, ∆)
7: if ζi ∈ T then
8: c(ζi)← c(ζi) + ∆
9: else if |T | < k then

10: T = T ∪ {ζi}
11: c(ζi)← c(ζi) + ∆
12: else
13: DecrementCounters()
14: end if
15: if ∆ ≥ ck∗ then
16: T = T ∪ {ζi} ▷ |T | ≤ k∗ + 1 ≤ k after this line
17: c(ζi)← c(ζi) + ∆− ck∗

18: end if
19:
20: DecrementCounters()
21: // Notation: Let ck∗ be the k∗-th largest value, counting multiplicity,
22: // in the multiset {c(ζj) : ζj ∈ T}.
23: for ζj ∈ T : do
24: c(ζj) = c(ζj)− ck∗

25: if c(ζj) ≤ 0:
26: T = T \ {ζj}
27: end for
28:
29: Estimate(i)
30: if ζi ∈ T then
31: return c(ζi)
32: else
33: return 0
34: end if
35:
36: EstimateCumulate(ζi)
37: c (ζi)← Estimate (ζi)
38: return F̂i ←

∑
ζj≤ζi

Cj

39:
40: Merge(T2)
41: for ζi ∈ T2 do
42: UpdateT1(ζi, c(ζi))
43: return T1
44: end for

First, we outline the proof for the Lemma 4, restated here for ease of reading.
Lemma 4 (Estimation Guarantee of MMG). (a) If MMG uses k counters, MMG · Estimate yields a summary
{f̂j}Uj∈U satisfying 0 ≤ fj − f̂j ≤ res(n,τ)

(k−k∗)−τ , for all τ ≤ (k − k∗) and Uj ∈ |U|. Here, res(n, τ) denotes
the sum of frequency of all but τ most frequent items. (b) If we choose k∗ = k

2 τ = k/4, we get that
0 ≤ fj − f̂j ≤ 4 res(n,k/4)

k , ∀Uj ∈ |U|.
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The proof of the result follows that of Theorem 2 in Anderson et al. (2017). The change is in the Lemma 4.
We provide the proof for the updated statement here. The notation is kept same as that of the original work
for ease of reading.

As in the original paper, we define Nl =
∑l

i=1 wj , Cl =
∑k

i=1 ci, and El =
∑

i∈[m] fi,l − f̂i,l

Lemma 28. En ≤ (Nn − Cn) / (k − k∗)

Proof. As in the original proof, we proceed by proof by induction, the case for l = 0 is true as No = C0 =
E0 = 0.

Suppose the hypothesis holds for some l − 1, i.e.:

El−1 ≤ (Nl−1 − Cl−1) / (k − k∗)

If the l-th element in the stream does not cause DecrementCounters to be called, we have El = El−1,
Cl = Cl−1 + wl, Nl = Nl−1 + wl. Hence ,we have:

El = El−1 ≤ (Nl−1 − Cl−1) / (k − k∗) = (Nl − Cl) / (k − k∗)

The case when DecrementCounters is called is more interesting, we have

El = El−1 + ck∗ (5)

Here, we know that at l − 1-th step, (k − k∗) counters had value ≥ ck∗ . Therefore, they retain some non-
negative value after being reduced by ck∗ , while the remaining k∗ counters have value 0. Hence, we have
Cl ≤ Cl−1 − (k − k∗) ck∗ .

Nl − Cl

=Nl−1 + wl − Cl

≥Nl−1 + wl − Cl−1 + (k − k∗) ck∗

≥Nl−1 − Cl−1 + (k − k∗) ck∗ (6)

Now, combining Equations (5) and (6), we have:

El = El−1 + ck∗ ≤ Nl−1 − Cl−1

(k − k∗) + ck∗ = Nl−1 − Cl−1 + (k − k∗) ck∗

(k − k∗) ≤ Nl − Cl

(k − k∗)

The second part of the proof of Theorem 2 in the original paper follows similarly under the updated statement
of Lemma 28. Giving us the final result of Lemma 4.

To establish the estimation guarantee of EstimateCumulate, we need a simple corollary of the Lemma 4:
Corollary 29 (MMG Estimation Guarantees). For j ∈ {1, 2}, given streams ζj being stored in two separate
sets of counters of size k, the merged summary satisfies:

0 ≤ fi − f̂i ≤
4 res(n, k

4 )
k

for all j ≤ k∗, where res(n, j) denotes the sum frequency of all but j of the most frequent items.

Proof. We fix k∗ = k
2 , and j = k

4 . These values satisfy the criteria of Theorem 4, i.e. k
2 = Ω(k) and j < k∗.

Plugging in these values gives the result.

We now prove the Lemma 15:

21



Published in Transactions on Machine Learning Research (01/2026)

Proof. We denote by Topk the set of k elements with highest true frequency fi. Then, we have:

Fi − F̂i =
∑
j≤i

fj − f̂j

=
∑
j≤i

j∈T op k
4

fj − f̂j +
∑
j≤i

j /∈T op k
4

fj

≤
∑

j∈T op k
4

4 res(n, k
4 )

k
+

∑
j /∈T op k

4

fj

≤ 2 res(n,
k

4 )

Where the first inequality uses Corollary 29, and the last inequality follows from the definition of res(n, k).

B Properties of Empirical Measure

In this section we provide the proofs for Theorems 11, 12, and 17. We restate the theorems for easy of
reading. We introduce the multiplicative Chernoff bound that will be relevant to our analysis.
Lemma 30 (Multiplicative Chernoff Bound(Mitzenmacher & Upfal, 2005)). Given i.i.d. random variables
X1, X2, ..., Xn where Pr[Xi = 1] ≤ p and, define X = 1

n

∑
i∈[n] Xi. Then, we have:

Pr[X ≥ (1 + ε)p] ≤ exp
(
−nε2p

3

)
0 ≤ ε < 1 (7)

(8)

Theorem 11 (Empirical Measure is Sub-Gaussian). Given an σ-sub-Gaussian true measure µ, the empirical
measure µn generated by X1, X2, ..., Xn drawn i.i.d. from µ is (τ, σ)-sub-Gaussian with probability at least
1− δ given n ≥ c exp

(
τ2

σ2

)
log 1

δ .

Proof. To capture the tail behaviour w.r.t. some t ≤ τ for each sample, we define random variables
Z1, Z2, ..., Zn as:

Zi =
{

1 Xi ≥ t

0 Xi < t

We denote by Z = 1
n

∑
i∈[n] Zi. Then, we have for the empirical measure µn,

Pr
X∼µn

[X ≥ t] = Z

Furthermore, we have by Definition 5:

Pr [Zi = 1] ≤ 2 exp
(
− t2

σ2

)
Then, by Lemma 30, we have:

Pr
[
Z ≥ 2 exp

(
− t2

σ2

)]
≤ Pr

[
Z ≥ 3 exp

(
− t2

σ2

)]
≤ exp

−n exp
(
− t2

σ2

)
6

 ≤ δ

By setting c = 6, we get the desired result.

Now, we prove Theorem 12, restated here for ease of reading:
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Theorem 12 (Empirical Distribution is sub-Weibull). Given an α-sub-Weibull true measure µ, the empirical
measure µn generated by X1, X2, ..., Xn drawn i.i.d. from µ is (τ, α)-sub-Weibull with probability at least 1−δ

given n ≥ exp( α
√

τ)
12 log 1

δ .

Proof. To capture the tail behaviour w.r.t. some t ≤ τ for each sample, we define random variables
Z1, Z2, ..., Zn as:

Zi =
{

1 Xi ≥ t

0 Xi < t

We denote by Z = 1
n

∑
i∈[n] Zi. Then, we have for the empirical measure µn,

Pr
X∼µn

[X ≥ t] = Z

Furthermore, we have:

Pr [Zi = 1] ≤ cα exp
(
−t1/α

)
Then, by Lemma 30, we have:

Pr
[
Z ≥ 1.5cα exp

(
t1/α

)]
≤ exp

(
−

ncα exp
(
−t1/α

)
12

)
≤ exp

(
−ncα exp (− α

√
τ)

12

)
≤ δ

Next, we prove the Theorem 17. For that purpose, we need the following lemma.
Lemma 31 (DKW Inequality (Dvoretzky et al., 1956)). Given a sequence of i.i.d. random variables
X1, X2, ..., Xn generated from a distribution µ with true cdf Qµ. Let Qµn

be the cdf of the empirical measure
µn generated from the samples X1, X2, ..., Xn. Then, for all ε ≥ 0, given n ≥ ln(2)

2ϵ2 , we have:

P
(

sup
x∈R
|Qµ(x)−Qµn(x)| ≥ ε

)
≤ 2 exp

(
−2nε2)

Theorem 17 (Bucketed Empirical Measure is Bi-Lipschitz). Let the bucketed empirical measure µb,n gen-
erated by n i.i.d. samples coming from a distribution µ with ℓµ bi-Lipschitz CDF. For any ε, δ ∈ (0, 1) and
fixed constant c > 0, if n ≥ c

ε2b2 log
( 2

δ

)
max

{
1

ℓ2
µ

, ℓ2
µ

}
, µb,n is (1 + ε)ℓµ bi-Lipschitz with probability 1− δ.

Proof. For n ≥ log
( 2

δ

)
max

(
2

ε2b2ℓ2
µ

,
8ℓ2

µ

ε2b2

)
, we have by Lemma 31:

P
[
sup
x∈B

∣∣Qµ(x)−Qµb,n
(x)
∣∣ ≥ min

(
εbℓµ

2 ,
εb

4ℓµ

)]
≤ δ

Let us denote εDKW = min
(

εbℓµ

2 , εb
4ℓµ

)
. Then, we have with probability 1− δ,

sup
x∈B

∣∣Qµ(x)−Qµb,n
(x)
∣∣ ≤ εDKW . (9)

Now, we have ∀a, b ∈ B, with probability 1− δ:∣∣Qµb,n
(a)−Qµb,n

(b)
∣∣

≤ |Qµ(a)−Qµ(b)|+ 2εDKW

≤ℓµ |a− b|+ εℓµ |a− b|
≤ℓµ(1 + ε) |a− b|
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Where the first inequality follows from Equation (9) and triangle inequality, and the second inequality follows
from the fact that εDKW ≤ εbℓµ

2 and b ≤ |a− b| ,∀a, b ∈ B. For the other side of the inequality,∣∣Qµb,n
(a)−Qµb,n

(b)
∣∣

≥ |Qµ(a)−Qµ(b)| − 2εDKW

≥ 1
ℓµ
||a− b|| − ε |a− b|

2ℓµ

≥ 1
ℓµ(1 + ε) |a− b|

Where the first inequality follows from Equation (9) and triangle inequality, and the second inequality follows
from the fact that εDKW ≤ εb

4ℓµ
and b ≤ |a− b| ,∀a, b ∈ B, and the third inequality follows from the fact that

for all ε ∈ (0, 1), 1− ε
2 ≥

1
1+ε .

C Estimation Guarantees of SPA and SCA

In this section, we provide the proofs for Theorem 14 and 16. We restate the theorems here for ease of
reading:
Theorem 14 (SPA Learning Error). (a) If SPA uses k buckets and outputs µ̂n, then for all i ∈ I,

∣∣pµ̂n(i)− pµb,n
(i)
∣∣ ≤ max

{
4 res(n, k/4)

n

fi

n
,

fi − f̂i

n

}
.

(b) Further, if µ corresponding to µn is σµ-sub-Gaussian, |ζ| = n ≥ c
ε log

( 1
δ

)
, and k ≥

⌈
8σµ

b

√
log
( 1

ε

)⌉
, then

for all i ∈ I, P(
∣∣pµ̂n

(i)− pµb,n
(i)
∣∣ ≥ ε) ≤ δ.

(c) Further, if µ corresponding to µn is α-SubWeibull, |ζ| = n ≥ c
ε log

( 1
δ

)
, and k ≥

⌈
c
b

(
log
( 1

ε

))α⌉, then for
all i ∈ I, P(

∣∣pµ̂n(i)− pµb,n
(i)
∣∣ ≥ ε) ≤ δ.

Proof of Theorem 14. Proof of (a): We Start with the first equation:

p̂(i)− pµb,n
(i) = f̂i

maxj F̂j

− fi

n
≤ f̂i

n− 2 res(n, k/4) −
fi

n

≤ fi

n− 2 res(n, k/4) −
fi

n

=fi

(
1

n− 2 res(n, k/4) −
1
n

)
=fi

n

(
2 res(n, k/4)

n− 2 res(n, k/4)

)
≤fi

n

4 res(n, k/4)
n

For the second part,

pµb,n
(i)− p̂(i) = fi

n
− f̂i

maxj F̂j

≤ fi

n
− f̂i

n
≤ fi − f̂i

n

Finally, we have:

∣∣pµb,n
(i)− p̂(i)

∣∣ = max
(
pµb,n

(i)− p̂(i), p̂(i)− pµb,n
(i)
)
≤ max

(
4 res(n, k/4)

n

fi

n
,

fi − f̂i

n

)
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Now, we also have by Corollary 29 and the fact that fi ≤ n,

∣∣pµb,n
(i)− p̂(i)

∣∣ ≤ 4 res(n, k/4)
n

Proof of (b): If µ is σµ-sub-Gaussian, by Lemma 11, we know that µn generated by µ is (τ, σµ) sub-Gaussian
given n ≥ c exp

(
τ2

σ2
µ

)
log
( 1

δ

)
. Here, we can fix τ = 2σµ

√
log
( 1

ε

)
. Hence, by the property of sub-Gaussian

distributions 7 and the fact that each bucket of size b,

res(n, k/4)
n

= P
µn

[
X ≥

⌈
2σµ

√
log
(

1
ε

)⌉]
≤ ε .

Proof of (c): For α-sub-Weibull distributions, by Lemma 12, we know that µn generated by µ is τ, α-sub-
Weibull given n ≥ exp( α

√
τ)

12 log 1
δ . Here, we can fix τ = c

(
log
( 1

ε

))α, and thus n ≥ 1
3ε log 1

δ suffices. Hence,
by the property of sub-Weibull distributions (Definition 6) and the fact that each bucket of size b,

res(n, k/4)
n

= P
µn

[
X ≥

⌈
c

(
log
(

1
ε

))α⌉]
≤ ε

Theorem 16 (SCA Learning Error). Given stream length |ζ| = n ≥ τn (ε, δ) generated from a bounded-tail
distribution µ, SCA with bucket width b sets #buckets to k ≥ τk (ε, b) and outputs Q̂, such that with probability
at least 1− δ,

∣∣∣Qµb,n
(i)− Q̂(i)

∣∣∣ ≤ ε for all i ∈ I.

Tail Condition τn (ε, δ) τk (ε, b)

σµ-sub-Gaussian c
ε log

( 1
δ

) ⌈
8σµ

b

√
log
( 4

ε

)⌉
α-sub-Weibull c

ε log
( 1

δ

) ⌈
c

2b

(
log
( 4

ε

))α⌉

Proof of Theorem 16. Step 1: Bounding the residuals in frequency estimation under tail condi-
tions. For sub-Gaussian distributions, by Lemma 11, we know that µn generated by µ is (τ, σµ) sub-Gaussian
given n ≥ c exp

(
τ2

σ2
µ

)
log
( 1

δ

)
. Here, we can fix τ = 2σµ

√
log
( 4

ε

)
. Hence, by the property of sub-Gaussian

distributions 7 and the fact that each bucket of size b,

res(n, k/4)
n

= P
µn

[
X ≥

⌈
2σµ

√
log
(

4
ε

)⌉]
≤ ε

4 (10)

For α-sub-Weibull distributions, by Lemma 12, we know that µn generated by µ is (τ, α)-sub-Weibull given
n ≥ exp( α

√
τ)

12 log 1
δ . Here, we can fix τ =

(
log
( 4

ε

))α, and thus n ≥ 1
3ε log 1

δ suffices. Hence, by the property
of sub-Weibull distributions (Definition 6) and the fact that each bucket of size b,

res(n, k/4)
n

= P
µn

[
X ≥

⌈
c

(
log
(

4
ε

))α⌉]
≤ ε

4 (11)

Step 2: Bounding the error in CDF estimation.
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Part i. Now, we have:

Qµb,n
(i)− Q̂(i) = Fi

N
− F̂i

maxj F̂j

≤ Fi − F̂i

n
since n ≥ max

j
F̂j

= 2 res(n, k/4)
n

By Lemma 15

≤ ε By Equation (10) and (11)

Part ii. Now, we look into the other side of the error. First, we observe that:

res(n, k/4)
n− 2 res(n, k/4) ≤

2 res(n, k/4)
n

≤ ε

Here, the first inequality is given by the fact 2res(n, k/4) ≤ n, and the second inequality follows from (10).

Thus,

Q̂(i)−Qµb,n
(i) = F̂i

maxj F̂j

− Fi

N

≤ Fi

maxj F̂j

− Fi

N
, since Fi ≥ F̂i

= Fi

(
1

maxj F̂j

− 1
n

)

≤ Fi

(
1

n− 2 res(n, k/4) −
1
n

)
, since max

j
F̂j ≥ max

j
Fj − 2 res(n, k/4) = n− res(n, k/4)

= Fi

(
2 res(n, k/4)

n (n− 2 res(n, k/4))

)
≤ 2 res(n, k/4)

n− 2 res(n, k/4) Fi ≤ n

≤ 4 res(n, k/4)
n

n ≥ 4 res(n, k/4)

≤ ε By Equation (10) and (11)

D Estimation Guarantee of SWA

In this section, we state the proofs for Theorem 18. We start with Lemma 32 which shows that a bucketed
empirical measure µb,n is close to the underlying empirical measure µn in Wasserstein distance given the
bucket size is sufficiently small.
Lemma 32. Given a distribution µ and corresponding µDisc

b with bucket size b, we have:

Wp
(
µ, µDisc

b

)
≤ b

Proof. For any i-th bucket corresponding to µDisc
b , we have:

Qµ(Bi + b

2) = QµDisc
b

(Bi + b

2)
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∣∣∣Q−1
µ (x)−Q−1

µDisc
b

(x)
∣∣∣ ≤ b

Hence, we have:

Wp
(
µ, µDisc

b

)
=
(∫ 1

0

∣∣∣Q−1
µ (x)−Q−1

µDisc
b

(x)
∣∣∣p dx

) 1
p

≤
(∫ 1

0
bp dx

) 1
p

= b

This concludes the proof.

A general version of Lemma 32 is given in Staib et al. (2017, Theorem 4.1). However, we prove our version
here for simplicity and ease of access.

Next, we prove the following lemma that characterizes the approximation of a function based on an approx-
imation guarantee on its inverse.
Lemma 33 (Inverse Approximation of inverse ℓ-Lipschitz functions). Let f be a ℓ bi-Lipschitz function.
Given an estimate f̂ of f such that f̂(x) ∈ [f(x) − ε, f(x) + ε], we can construct an estimate f̂−1 of the
pseudoinverse function f−1 such that ∀x ∈ Range(f):

f̂−1(x) ∈ [f−1(x)− ℓε, f−1(x) + ℓε]

Proof. We construct f̂−1 as f̂−1(y) = minx

{
x ∈ R ∪ {−∞} : f̂(x) = y

}
. Let us consider x ∈ Range(f), and

f−1(x) = y1 and f̂−1(x) = y2, and w.l.o.g. assume y2 ≥ y1. Then, we have:

f(y1) = f̂(y2)
f̂(y1) + ε ≥ f̂(y2)

ε ≥ f̂(y2)− f̂(y1)

Next, we use the fact that the function f is ℓ bi-Lipschitz to show that y2 − y1 is bounded by ℓε:

y2 − y1

≤f̂−1(f̂(y2))− f̂−1(f̂(y1)) By definition of f̂−1

≤ℓ(f̂(y2)− f̂(y1)) ≤ ℓε

Hence, for any x ∈ Range(f), we have |f̂−1(x)− f−1(x)| ≤ ℓε, completing our proof.

The following corollary follows directly.
Corollary 34 (From CDF to Inverse CDF). For an ℓ bi-Lipschitz distribution µ with CDF Qµ and pseu-
doinverse CDF Q−1

µ , given an approximate CDF Q̂µ satisfying |Q̂µ(x) − Qµ(x)| ≤ ε, ∀x ∈ R, we construct
an approximation of pseudoinverse CDF Q̂−1

µ , such that ∀x ∈ [0, 1], |Q̂−1
µ (x)−Q−1

µ (x)| ≤ ℓε.

Now, we prove the Theorem 18. We restate the theorems here for ease of reading:
Theorem 18 (Universal Learning of SCA inWp (, )). Given |ζ| = n ≥ τn (ℓµ, ε, δ) generated from a bounded-
tail distribution µ and ε, δ ∈ (0, 1), if we set the bucket width b = ε/2, then SCA uses τk (ℓµ, ε) buckets (i.e.
space) and outputs µ̂n, such that P(Wp (µn, µ̂n) ≥ ε) ≤ δ. We omit the constants in τn (ℓµ, ε, δ) and τk (ℓµ, ε)
for simplicity.

Tail Condition τn (ℓµ, ε, δ) τk (ℓµ, ε)
σµ-sub-Gaussian log (1/δ) max

{
1
ε , 1

ℓ2
µ

, ℓ2
µ

}
σµ

ε log
(

ℓµ

ε

)
α-sub-Weibull log (1/δ) max

{
1
ε , 1

ℓ2
µ

, ℓ2
µ

}
1
ε

(
log
(

ℓµ

ε

))α
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Proof of Theorem 18. By Theorem 17, 16, and Lemma 33; and the parameters we have used, we have with
probability 1− δ: ∣∣∣Q−1

µε/2,n
− Q̂−1

∣∣∣ ≤ 2ℓµ

∣∣∣Qµε/2,n
− Q̂

∣∣∣ ≤ ε/2

Hence, by Lemma 2, we have with probability at least 1− δ:

Wp (µn, µ̂n) ≤ Wp
(
µn, µε/2,n

)
+Wp

(
µε/2,n, µ̂n

)
≤ ε/2 +

(∫ 1

0
|Q−1

µε/2,n
(r)− Q̂−1(r)|p dr

)1/p

≤ ε/2 +
(∫ 1

0
|ε/2|p dr

)1/p

= ε

The bound on number of buckets can be obtained by plugging in the values in the line 3 of Algorithm 3 in
Theorem 16.

We now proof the Theorem 19, restated here for ease of reading:
Theorem 19 (PAC Guarantee of SWA). Given |ζ| = n ≥ τn (ℓµ, ε, δ) generated from a bounded-tail
distribution µ, with bucket width b = ε/2, then SCA uses τk (ℓµ, ε) space and outputs µ̂n such that
P(W1 (µ, µ̂n) ≤ ε) ≥ 1 − δ . This further shows that for a stream of size n = O

(
ϵ−2 log(1/δ)

)
from two

distributions µ and ν, SWA yields

|W1 (µ̂n, ν̂n)−W1 (µ, ν) | ≤ 4ε (3)

with probability 1 − 2δ. Here, ϵ ∈ (0, 1/4] and δ ∈ (0, 1/2]. Here, σ ≜ max {σµ, σν}, ℓ ≜ max {ℓµ, ℓν}. We
omit the constants in τn (ℓµ, ε, δ) and τk (ℓµ, ε) for simplicity.

Tail Condition τn (ℓµ, ε, δ) τk (ℓµ, ε)
σ-sub-Gaussian log (1/δ) max

{ 1
ε2 , 1

ℓ2 , ℓ2} σ
ε log

(
ℓ
ε

)
α-sub-Weibull log (1/δ) max

{
1
ε2 ,
(
log 1

δ

)2α−1
, 1

ℓ2 , ℓ2
}

1
ε

(
log
(

ℓ
ε

))α

Proof. We combine the results of Corollary 44 , 45, and Theorem 18 to establish this result. By Corollary 44
for sub-Gaussian distributions, we have with probability 1− 2δ:

|W1 (µ, ν)−W1 (µn, νn)| ≤ 2ε By Triangle Inequality (12)

Similarly, by Corollary 45 for α-sub-Weibull distributions, we have with probability 1− 2δ:

|W1 (µ, ν)−W1 (µn, νn)| ≤ 2ε By Triangle Inequality (13)

By Theorem 19, we have with probability 1− 2δ:

|W1 (µ̂n, ν̂n)−W1 (µn, νn)| ≤ 2ε By Triangle Inequality (14)

A union bound argument and triangle inequality over Equations (12) or (13) and (14) completes the proof.

E Estimation Guarantee of STVA

In this section, we prove the theorems concerning STVA, i.e. Theorem 21, Lemma 22, and Theorems 23 and 24.
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E.1 Proof of Theorem 21

In this section, we detail the proof of Theorem 21.
Theorem 21 (Bucket Width for TV Distance Estimation). Given a bounded-tail distribution µ with ℓµ-
Lipschitz PDF and a corresponding bucketed measure µb, if we fix the bucket width b = τb (ε, ℓ), we have
TV (µ, µb) ≤ ϵ.

Tail Condition σµ-sub-Gaussian α-sub-Weibull
τb (ε, ℓµ) ε

σµℓµ

√
log(2/ε)

ε
ℓµ(log(2cα/ε))α

Proof. Initial Bounds: The distribution µ has a ℓµ-Lipschitz PDF. Consider any bucket ⊔ of size b, then
miny∈⊔ µ(y)−maxy∈⊔ µ(y) ≤ bℓµ. As miny∈⊔ µ(y) ≤ µb(x) ≤ maxy∈⊔ µ(y),∀x ∈ ⊔, we have for any bucket
⊔:

|µ(x)− µb(x)| ≤ bℓµ ∀x ∈ ⊔∫
⊔
|µ(x)− µb(x)|dx ≤ b2ℓµ (15)

The main idea of our proof is that we bound the error due to bucketing in buckets with high frequency and
use the fact that the remaining buckets has sufficiently small frequency to achieve our bound. To denote the
buckets with high frequency, recall that Topk denotes the set of k buckets with highest frequency, b denotes
the length of each bucket.

TV (µ, µb)

=1
2

∫ ∞

−∞
|µ(x)− µb(x)|dx (16)

=1
2
∑
⊔∈B

∫
⊔
|µ(x)− µb(x)|dx

=1
2
∑

⊔∈T opk

∫
⊔
|µ(x)− µb(x)|dx + 1

2
∑

⊔/∈T opk

∫
⊔
|µ(x)− µb(x)|dx

≤1
2
∑

⊔∈T opk

b2ℓµ + 1
2
∑

⊔/∈T opk

[∫
⊔

µb(x)dx +
∫

⊔
µ(x)dx

]
By Equation (15)

≤kb2ℓµ/2 +
∑

⊔/∈T opk

∫
⊔

µ(x)dx

(17)

Sub-Weibull Distributions: For α-sub-Weibull distributions, we fix k = ℓµ(log(2cα/ε))2α

ε and bucket size
b = ε

ℓµ(log(2cα/ε))α and bound the terms in Equation (17). For the first term, we have:

kb2 ℓµ

2 = ℓµ (log(2cα/ε))2α

ε

(
ε

ℓµ (log (2cα/ε))α

)2
ℓµ

2 ≤ ε/2 (18)

For the second term: ∑
⊔/∈T op ℓµ(log(2/ε))2α

ε

∫
⊔

µ(x)dx = P
X∼µ

[
X ∈ ∪⊔/∈T op ℓµ(log(2/ε))2α

ε

⊔
]

≤ P
X∼µ

[
X ≥

(
log 2cα

ε

)α]
≤ ε/2 (19)
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Combining Equations (18) and (19) with the bound from Equation (17), we obtain the result.

Sub-Gaussian Distributions: For sub-Gaussian distributions, we fix k = σ2
µℓµ log(2/ε)

ε and bucket size
b = ε

σµℓµ

√
log(2/ε)

and bound the terms in Equation (17). For the first term, we have

kb2 ℓµ

2 =
σ2

µℓµ log(2/ε)
ε

(
ε

σµℓµ

√
log (2/ε)

)2
ℓµ

2 ≤ ε/2 (20)

For the second term: ∑
⊔/∈T op σ2

µℓµ log2(2/ε)
ε

∫
⊔

µ(x)dx = P
X∼µ

[
X ∈ ∪⊔/∈T op σ2

µℓµ log(2/ε)
ε

⊔

]

≤ P
X∼µ

[
X ≥ σµ

√
log (2/ε)

]
≤ε/2 (21)

Combining Equations (20) and (21) with the bound from Equation (17), we obtain the result.

E.2 Proof of Lemma 22

Consider the two possible ways of looking at a histogram. Given a histogram defined over R, one can think
of it as defining a (not necessarily probability) measure over R defined so that the measure at each point
is equal to the frequency of the bucket the point lies in. Alternatively, one can define a measure over the
buckets with the measure at each bucket is equal to the frequency of the bucket. In this section, we formalize
these notions and establish the relation between them in term of TV and Wasserstein distances.
Definition 35 (Bucketed Continuous Distribution). Let D be a distribution supported on a (finite or
infinite) closed interval I ⊆ R with (discrete or continuous) measure µ. Given x0 as a reference point in I
and b as the bucket width, we further represent I as I(x0, J, b) ≜ ∪j∈J [x0 + jb, x0 + (j + 1)b]. Here, index
set J ⊆ Z. We define the corresponding bucketed continuous distribution DCont

b with measure µCont
b defined

over I ⊆ R as:

µCont
b (x) = 1

b

∫ x0+(j+1)b

x0+jb

µ(x)dx

= 1
b

µ ([x0 + jb, x0 + (j + 1)b]) ,

where x ∈ [x0 + jb, x0 + (j + 1)b].
Definition 36 (Bucketed Discrete Distribution). Let D be a distribution supported on a (finite or infinite)
closed interval I ⊆ R with (discrete or continuous) measure µ. Given x0 as a reference point in I and
b as the bucket width, we further represent I as I(x0, J, b) ≜ ∪j∈J [x0 + jb, x0 + (j + 1)b]. We define the
corresponding bucketed discrete distribution DDisc

b with measure µDisc
b defined over ∪j∈J{x0 +jb+b/2} ⊆ R

as µDisc
b (j) =

∫ x0+(j+1)b

x0+jb
µ(x)dx = µ ([x0 + jb, x0 + (j + 1)b]).

The support set of µDisc
b inherits the metric structure of R. For ease of notation, we express the distance

between the i-th and j-th support points of µDisc
b as d(⊔i,⊔j) ≜ |i− j|b.

We introduce the following lemma establishing the equivalence of bucketed discrete and continuous measure
with respect to the TV distance.
Lemma 37 (TV of continuous and discrete bucketed distributions). Given two measures µ, and ν, we have:

TV
(
µCont

b , νCont
b

)
= TV

(
µDisc

b , νDisc
b

)
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Proof.

TV
(
µCont

b , νCont
b

)
=1

2

∫ ∣∣µCont
b (x)− νCont

b (x)
∣∣ dx

=1
2
∑
j∈J

1
b

∫ x0+(j+1)b

x0+jb

∣∣∣∣∣
∫ x0+(j+1)b

x0+jb

µ(x)dx−
∫ x0+(j+1)b

x0+jb

ν(x)dx

∣∣∣∣∣dx

=1
2
∑
j∈J

∣∣∣∣∣
∫ x0+(j+1)b

x0+jb

µ(x)dx−
∫ x0+(j+1)b

x0+jb

ν(x)dx

∣∣∣∣∣
= TV

(
µDisc

b , νDisc
b

)

We now establish a TV distance concentration result on bucketed empirical distribution corresponding to a
sub-Gaussian distribution.
Lemma 22 (Concentration in TV over Infinite Buckets). Let µn be an empirical measure generated from
a discrete bucketed measure µb corresponding to a bounded-tail distribution µ, and, ε, δ ∈ (0, 1). Then, for
n ≥ τn (ε, b, δ), P [TV (µ, µn) ≥ ε] ≤ δ. Here, Γ(·) denotes the Gamma function (Davis, 1959).

Tail Condition σµ-sub-Gaussian α-sub-Weibull
τn (ε, b, δ) cε−2 max

{
4σµ

√
π

b , log (1/δ)
}

cε−2 max
{ 2cα

b Γ(1 + α), log (1/δ)
}

Proof. Let us consider the standard bijection from Z to N as:

f(x) =
{

2x if x > 0
-2x+1 if x ≤ 0

σµ-Sub-Gaussian Distributions: For sub-Gaussian distributions,If i is even, we have:

p(i) = µDisc
b (⊔i/2) ≤ µDisc

b

(
∪j≥i/2⊔j

)
≤ µ({x|x ≥ bi/2}) ≤ 2 exp

(
− i2b2

4σ2
µ

)
.

If i is odd, we have:

p(i) = µDisc
b (⊔−(i−1)/2) ≤ µDisc

b

(
∪j≤−(i−1)/2⊔j

)
≤ µ({x|x ≤ −b(i− 1)/2}) ≤ 2 exp

(
− (i− 1)2b2

4σ2
µ

)
.

Combining these terms, we have:∑
i∈N

√
pµ(i) ≤

∑
i∈N

4 exp
(
−i2b2/4σ2

µ

)
≤ 4

∫ ∞

0
exp(−x2b2/σ2

µ)dx = 2
√

4πσ2
µ/b2 = 4σµ

√
π

b
.

We now combine this with Lemma 42 to complete the proof.

α-SubWeibull Distributions: For α-SubWeibull distributions, if i is even, we have:

p(i) = µDisc
b (⊔i/2) ≤ µDisc

b

(
∪j≥i/2⊔j

)
≤ µ({x|x ≥ bi/2}) ≤ cα exp

(
−(ib)1/α

)
.

If i is odd, we have:
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p(i) = µDisc
b (⊔−(i−1)/2) ≤ µDisc

b

(
∪j≤−(i−1)/2⊔j

)
≤ µ({x|x ≤ −b(i− 1)/2}) ≤ cα exp

(
−((i− 1)b)1/α

)
.

Combining these terms, we have:

∑
i∈N

√
pµ(i) ≤

∑
i∈N

2cα exp
(
−(ib)1/α

)
≤ 2cα

∫ ∞

0
exp

(
−(xb)1/α

)
dx = 2cα

Γ(1 + α)
b

.

We now combine this with Lemma 42 to complete the proof.

E.3 Bounding Errors of SPA and STVA (Theorems 23 and 24)

Theorem 23 (Learning Error of SPA). If SPA accesses a stream of length |ζ| = n ≥ τn (ε, δ) from a bounded-
tail distribution, and uses τk (ε, δ) buckets to output a sublinear summary pµ̂n , then with probability 1 − δ,
TV (µ̂n, µb,n) ≤

∥∥pµ̂n
− pµb,n

∥∥
1 ≤ ε.

Tail Condition τn (ε, δ) τk (ε, b)

σµ-sub-Gaussian c
ε log

( 1
δ

) ⌈
8σµ

b

√
log
( 6

ε

)⌉
α-sub-Weibull c

ε log
( 1

δ

) ⌈
c
b

(
log
( 6

ε

))α⌉

Proof. Step 1: Bounding the residuals in frequency estimation under tail conditions. For sub-
Gaussian distributions, by Theorem 11, we know that µb,n generated by µDisc

b is (τ, σµ) sub-Gaussian given
n ≥ c exp

(
τ2

σ2
µ

)
log
( 1

δ

)
. Here, we can fix τ = 2σµ

√
log
( 6

ε

)
. Hence, by the property of sub-Gaussian

distributions 7 and the fact that length of each bucket is b,

res(n, k/4)
n

≤ P
µb,n

[
X ≥

⌈
2σµ

√
log
(

6
ε

)⌉]
≤ ε

6 (22)

For α-sub-Weibull distributions, by Lemma 12, we know that µn generated by µ is (τ, α)-sub-Weibull given
n ≥ exp( α

√
τ)

12 log 1
δ . Here, we can fix τ = 2

(
log
( 6

ε

))α, and thus n ≥ 1
2ε log 1

δ suffices. Hence, by the property
of sub-Weibull distributions (Definition 6) and the fact that each bucket of size b,

res(n, k/4)
n

= P
µn

[
X ≥

⌈
c

(
log
(

6
ε

))α⌉]
≤ ε

4 (23)
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Step 2: Bounding the error in PDF estimation. Now, we proceed to bound the TV Distance. We
denote by Topk the set of k elements with highest true frequency fi. Then, we have:∥∥p̂− pµb,n

∥∥
1 =

∑
i

∣∣pµb,n
(i)− p̂(i)

∣∣
≤
∑

i

max
(

4 res(n, k/4)
n

· fi

n
,

fi − f̂i

n

)
Theorem 14

≤
∑

i

4 res(n, k/4)
n

· fi

n
+
∑

i

fi − f̂i

n

≤ 4 res(n, k/4)
n

∑
i

fi

n
+

∑
i∈T opk/4

fi − f̂i

n
+

∑
i/∈T opk/4

fi

n

≤ 4 res(n, k/4)
n

+
∑

i∈LearningT opk/4
fi − f̂i +

∑
i/∈T opk/4

fi

n

≤ 4 res(n, k/4)
n

+ 2 res(n, k/4)
n

Lemma 4

= 6 res(n, k/4)
n

≤ ε Equation (22) and (23)

We now proof the Theorem 24, restated here for ease of reading:
Theorem 24 (PAC Guarantee of STVA). Given ϵ ∈ (0, 1/6], δ ∈ (0, 1/4], a stream of size n ≥ τn (ε, ℓ, δ)
from two bounded-tail and ℓ-Lipschitz distributions µ and ν, and bucket width b = τb (ε, ℓ, δ), STVA uses
τk (ε, ℓ, δ) space and

P (|TV (µ̂n, ν̂n)− TV (µ, ν) | ≥ 6ε) ≤ 4δ . (4)

Here, σ ≜ max {σµ, σν}, ℓ ≜ max {ℓµ, ℓν}. We omit the constants in τn (ℓµ, ε, δ) and τk (ℓµ, ε) for simplicity.

Tail Condition τn (ε, ℓ, δ) τk (ε, ℓ) τb (ε, ℓ)

σ-sub-Gaussian ε−2 max
{

σ2ℓ log(1/ε)
ε , log

( 1
δ

)}
σ2ℓ

ε log
( 1

ε

)
ε

σℓ
√

log(2/ε)

α-sub-Weibull ε−2 max
{

ℓ(log(1/ε))α

ε Γ(1 + α), log
( 1

δ

)}
ℓ
ε

(
log
( 1

ε

))2α ε
ℓ(log(2cα/ε))α

Proof. Composing Lemma 22, Lemma 37, Theorem 21, and Theorem 23 yields the proof.

By Theorem 21, and Lemma 37, we have:∣∣TV (µ, ν)− TV
(
µCont

b , νCont
b

)∣∣ ≤ 2ε By Theorem 21 and Triangle Inequality∣∣TV (µ, ν)− TV
(
µDisc

b , νDisc
b

)∣∣ ≤ 2ε By Lemma 37 (24)

From Lemma 22, and fixing the b, we have with probability 1− 2δ:∣∣TV (µb,n, νb,n)− TV
(
µDisc

b , νDisc
b

)∣∣ ≤ 2ε By Triangle Inequality (25)

From Theorem 23, we have with probability 1− 2δ:

|TV (µ̂n, ν̂n)− TV (µb,n, νb,n)| ≤ 2ε By Triangle Inequality (26)

A union bound argument and triangle inequality over Equation (24), (25) and (26) completes the proof.
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F Useful Technical Results

Lemma 38 (Inverse of Bi-Lipschitz function is Bi-Lipschitz ). Given an invertible function f : Dom f →
Range f that is ℓ bi-Lipschitz , the corresponding inverse function f−1 : Range f → Dom f is also bi-Lipschitz
with parameter ℓ.

The following corollary is directly implied from Lemma 38.
Corollary 39 (Bi-Lipschitz CDF implies Bi-Lipschitz Inverse CDF). A distribution satisfying Assumption 9
has bi-Lipschitz inverse CDF.
Definition 40 (α-SubWeibull Distribution and Random Variable (Vladimirova et al., 2020)). A distribution
µ is said to be α-SubWeibull if there exists some constant cα for any t ≥ 0, we have:

Pr
X∼µ

[X ≥ t] ≤ cα exp
(
−t1/α

)
(27)

Correspondingly, the random variable X drawn from µ is said to be a SubWeibull random variable.
Lemma 41 (MGF Charecterization of SubWeibull(Theorem 2.1 in Vladimirova et al. (2020))). Given X be
a α-SubWeibull random variable, then the MGF of |X|1/α satisfies:

∃c > 0 such that E
[
exp

(
(γ |X|)1/α

)]
≤ exp

(
(γc)1/α

)
for all γ such that 0 < γ ≤ 1/c.
Lemma 42 (True Measure Concentration (Cohen et al., 2020)). For a measure µ defined over a simplex
∆N and corresponding empirical distribution µn generated by n samples, for any ε, δ ∈ (0, 1), there exists a
constant c such that n ≥ cε−2 max

{∑
i∈N
√

p(i), log (1/δ)
}

, we have with probability 1− δ,

Pr [TV (µ, µn) ≥ ε] ≤ δ

Lemma 43 (Concentration of Empirical Measure In Wasserstein Distance (Theorem 2 in Fournier & Guillin
(2015))). Let µ be a distribution on R. Then for all p ∈ N,

• If ∃α < 1
p , γ > 0 such that E

[
exp

(
(γ |X|)1/α

)]
<∞, then,

P [W1 (µ, µn) ≥ ε] ≤ exp
(
−cnε2)+ exp

(
−cnε1/pα

)
• If ∃α ∈

(
1
p ,∞

)
, γ > 0 such that E

[
exp

(
(γ |X|)1/α

)]
<∞, then,

P [W1 (µ, µn) ≥ ε] ≤ exp
(
−cnε2)+ exp

(
−c (nε)1/2pα

)
The Lemma 43 implies the following two corollaries:
Corollary 44 (Concentration in Wasserstein distance of Empirical Measures over R (Bhat & L.A., 2019)).
Given an empirical measure µn generated by n i.i.d. samples generated from a subGaussian measure µ over
R, we have:

P [W1 (µ, µn) ≥ ε] ≤ exp
(
−cnε2)

Corollary 45. Let µ be a distribution on R such that ∃α ∈ (1,∞) , γ > 0 such that E
[
exp

(
(γ |X|)1/α

)]
<

∞, then,

P [W1 (µ, µn) ≥ ε] ≤ exp
(
−cnε2)+ exp

(
−c (nε)1/2α

)
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Lemma 46 (Strong Demographic Parity andW1 (, ) distance (Jiang et al., 2020)). Let f : Rd × [k]→ [0, 1] be
a function where [k] denotes the sensitive attribute. Let µs denote the output distribution of f corresponding
to the sensitive attribute s ∈ [k]. Then, we have for all s, s′ ∈ [k]:

E
t∼U[0,1]

[P [f(X, s) ≥ t]− P [f(X, s′) ≥ t]] =W1 (µs, µs′)

Lemma 47 (Privacy and Hockey Stick Divergence(Balle et al., 2018)). For a given α ∈ R, a mechanism
M is (α, β)-differentially private if for all X, X′ with Ham

(
X, X′) = 1:

Heα

(
M ( X)||M

(
X′)) ≤ β

where Heα (µ||ν) is called the Hockeystick divergence between µ and ν.
Lemma 48 (From HSD to TV Approximation (Koskela & Mohammadi, 2024)). Given two measured µ, ν
and their TV distance approximations µ̂n, ν̂n satisfying TV (µ, µ̂n) ≤ ε, and TV (µ̂n, ν̂n) ≤ ε; we have for
all α ∈ R:

Heα (µ||ν) ≤ Heα (µ̂n||ν̂n) + (1 + eα) ε
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G Experimental Details - Fairness and Privacy Auditing

G.1 Fairness Auditing

Group fairness measures in ML model’s prediction measure the disparity in predictions of ML models across
different subpopulations. The subpopulations correspond to a sensitive attribute (e.g. gender, economic
status, ethnicity etc.) on which they should not be discriminated. Fairness auditors try to estimate violations
of such group fairness measures by querying a model and then collecting the responses (Ghosh et al., 2021;
Yan & Zhang, 2022; Chugg et al., 2024; Ajarra et al., 2025).

A popular group fairness measure is demographic parity (Feldman et al., 2015).
Definition 49 (Demographic Parity). Given O ⊆ R and sensitive attributes [k], a regression function
f : Rd × [k]→ O satisfies demographic parity if for all s, s′ ∈ [k], we have supt∈O P(f(X, s) ≤ t)−P(f(X, s′) ≤
t) = 0. For classification, S = [0, 1] and the definition is referred as strong demographic parity (Jiang et al.,
2020).

Jiang et al. (2020) show that bounding strong demographic parity is equivalent parity is equivalent to bound-
ing the maximum of 1-Wasserstein distance between the output distributions of any two subpopulations. This
motivates us to use SWA to estimate demographic parity for ML models.

Experimental Setup: We test accuracy and sublinearity of SWA for fairness auditing on the well-known
ACS Income dataset (Ding et al., 2021). We test both on linear regression (d = 10) for income as output
and classification with logistic regression (d = 10) for income above and below 40000 USD as outputs. We
compute Wasserstein Distance between the distribution of outputs of linear and logistic regression models
for male and female data points of a model trained on ACS_Income data. We use 3 : 1 train-test split for
both cases. We use scikit-learn (Pedregosa et al., 2011) to train both the models, and use the ’liblinear’
solver for logistic regression. For reference, we compute the distance between the bucketed versions of the
output distribution exactly. We choose the bucket size to be 10 and 0.01, for the regression and classification
tasks, respectively. For the regression task, we increase the number of buckets as {500, 1000, . . . , 20000}; and
for the classification task, we increase the number of buckets as {50, 100, . . . , 1250}. Finally we report the
multiplicative approximation error of our estimates w.r.t. the true distance in both the cases with increasing
number of buckets. We run each of the experiments 50 times.

Results: Sublinearity of SWA in Fairness Auditing: We use 416625 total samples consisting of almost
half male and female samples each. The sample streams arrive via S = 10 sources. For the linear regression
model, the approximation error drops below 0.1 when we use 12500 buckets. For the logistic regression
model, the approximation error drops below 0.1 when we use 750 buckets. The difference in #buckets is due
to the difference in variance and the width of buckets used in each case.

G.2 Privacy Auditing

Differential privacy (Dwork, 2006) is now considered as the gold standard for data privacy protection. It
aims to keep an input datum indistinguishable while looking into outputs of an algorithm.
Definition 50 ((α, β)- Differential Privacy (Dwork, 2006)). An algorithm f : X → Y is (α, β)-
differentially private if for any X, X′ with Ham

(
X, X′) = 1 and ∀S ⊆ Y, we have P[f(x) ∈ S] ≤

eα P[f(x′) ∈ S] + β.
An equivalent representation of differential privacy is Heα

(
M ( X)||M

(
X′)) ≤ β (Balle et al., 2018),

where Hockey Stick Divergence (HSD) is defined as Hτ (µ||ν) ≜
∫

X [µ(x) − τν(x)]+dx. Recently, Koskela
& Mohammadi (2024) show that estimating the HSD of two distributions is equivalent to estimating the
HSD and TV distance between their empirical counterparts. They construct histograms over outputs of a
black-box auditor and use this result to estimate TV distances for privacy auditing. As auditing privacy is
data intensive, it motivates us to use STVA in this setting.

We adopt the experimental setting of Annamalai & Cristofaro (2024) and compute the TV distance between
the output distributions of logistic regressors trained on neighbouring datasets, say IN and OUT, sampled
from MNIST (LeCun, 1998).
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Experimental Setup: We study the performance of STVA in the case of privacy auditing. We generate
losses for datasets with and without canary using the work of Annamalai & Cristofaro (2024). We run logistic
regression on MNIST dataset with 50 epochs and α = 10. We denote the losses with and without canary to
be lossesin and lossesin, respectively. We obtain 1000 samples of losses for both the cases and take these
losses as the distribution of interest. We choose the bucket size to be 0.01 for the logistic regression task.
The mean of lossesin and lossesout are −2.3194 and −2.3241, respectively. The standard deviation of
lossesin and lossesout are 0.005654 and 0.005535, respectively. We increase the number of buckets as
{10, 20, . . . , 100}. Finally we report the multiplicative approximation error of our estimates w.r.t. the true
distance in both the cases with increasing number of buckets. We run each of the experiments 50 times.

Results: Given 1000 samples, Figure 6 show that STVA computes the TV distance between output dis-
tributions for IN and OUT datasets. The sample streams arrive via S = 10 sources. The approximation
error drops below 0.1 while using only 250 buckets. This shows STVA can conduct resource-efficient privacy
auditing of large-scale datasets.
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G.3 Enlarged Plots

Figure 7: Performance of SWA with N (0, 5), N (1, 5)
and b = 0.05

Figure 8: Performance of STVA with N (0, 5), N (1, 5)
and b = 0.05

Figure 9: Auditing with SWA on regression output of
ACS_Income

Figure 10: Auditing with SWA on classification out-
put of ACS_Income

Figure 11: Privacy Auditing of logistic regression on
MNIST.
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