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ABSTRACT

Knowledge distillation is an efficient strategy to use data generated by large teacher
language models to train smaller “capable” student models, but selecting the
optimal teacher for a specific student-task combination requires expensive trial-
and-error. We propose a lightweight score called GRACE to quantify how effective
a teacher will be when post-training a student model to solve math problems.
GRACE efficiently measures distributional properties of student gradients, and it
can be computed without access to a verifier, teacher logits, teacher internals, or test
data. From an information-theoretic perspective, GRACE measures leave-one-out
stability in gradient-based algorithms, directly connecting it to the generaliza-
tion performance of distilled student models. On GSM8K and MATH, GRACE
correlates strongly (up to 86%) with the performance of the distilled Llama and
OLMo students. In particular, training on GRACE-selected teacher provides at
least a 6% improvement over naively using the best-performing teacher. We further
demonstrate the utility of GRACE in providing guidance on crucial design choices
in distillation, including (1) the best temperature to use when generating from the
teacher, (2) the best teacher to use given a size constraint, and (3) the best teacher
to use within a specific model family. Altogether, our findings demonstrate that
GRACE can efficiently and effectively identify the most compatible teacher for a
given student and provide fine-grained guidance on how to perform distillation.

1 INTRODUCTION

Distillation is an efficient and effective method to produce capable small models from existing,
powerful teacher models. In this work, we focus on the specific case of training autoregressive
language models on text generated by a teacher model. It is difficult to select the right teacher for a
given student and task: a counterintuitive fact is that a stronger-performing model is not always a
better teacher, which has been observed in classic classification/regression settings (Mirzadeh et al.,
2019; Harutyunyan et al., 2023; Panigrahi et al., 2025) and more recently in the context of language
models (Zhang et al., 2023b;a; Peng et al., 2024; Razin et al., 2025). Given the large number of
available models as potential teachers, the current approach of guess-and-check is costly, because it
requires collecting generations from a capable teacher and subsequently training a student on those
generations. Additionally, the specific hyperparameters used in both phases can dramatically affect
the final performance of the student, underscoring the need for careful, repeated testing to select the
right teacher. As such, the current work seeks to address the following question:

Given a pool of candidates, can we efficiently identify the best teacher for a given student and task?

We propose a score “GRACE” (GRAdient Cross-validation Evaluation) that measures the distribu-
tional properties of the student’s gradients on a small set of teacher-generated data to identify the
most compatible teacher efficiently and effectively (Section 2.2). Motivated by prior data selection
and distillation works, GRACE unifies data diversity and student-teacher alignment desiderata into a
single score that is efficient to compute and does not require access to an external verifier, teacher
logits, teacher representations, or test data. Computing GRACE requires relatively few samples
from each teacher, because it uses a cross-validation structure. This same structure allows us to
draw a natural connection to conditional mutual information-based generalization bounds (Steinke &
Zakynthinou, 2020; Rammal et al., 2022), providing insight into why GRACE works (Lemma 2.1).
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Figure 1: GRACE correlates most strongly with student performance after distillation on
math-related reasoning tasks. Results in this figure are for a LLaMA-1B-Base student on GSM8K
and MATH using 15 teachers of different sizes across the LLaMA, Gemma, Qwen, OLMo, and
phi families. (Left) We compare the Spearman correlations between final student performance and
four candidate scores: the student’s loss on teacher generations, the teacher’s performance on the
task, G-Vendi (Jung et al., 2025), and our score GRACE. (Right) We plot how our score GRACE
compares to the final student performance on GSM8K, measured by the average accuracy of 16
response attempts on each prompt in the test set.

We perform thorough experiments to verify that the GRACE score of a teacher correlates strongly
with the final performance of a student trained by that teacher. We focus on the math-related datasets
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), because broad community interest
in mathematical reasoning has driven the development of a large, diverse set of teachers that are
readily available and suitable for distillation. We train LLaMA-1B-Base and OLMo-1B-Base (for
GSM8K) as well as LLaMA-3B-Base (for MATH) using generations sampled from 15 candidate
teachers drawn from the LLaMA (Team, 2024c), OLMo (OLMo, 2024), Qwen (Qwen et al., 2024),
Gemma (Team, 2024b), and Phi (Abdin et al., 2024) families. Our results show that:

• GRACE correlates strongly with the student’s distillation performance (Figure 1), outperforming
baselines such as G-Vendi (Jung et al., 2025).

• Selecting teachers using GRACE yields more than 6% improvement in student accuracy compared
to using the best-performing teacher, on both GSM8K and MATH. Moreover, students trained on
teachers selected by GRACE reach within 1% of the absolute best outcome.

• GRACE offers actionable insights to practitioners. It helps identify 1) the optimal generation
temperature for a given teacher model, 2) the best model up to a certain size across model families,
and 3) the best size within a model family.

These results indicate that GRACE reliably identifies the most suitable teacher for a given student
and offers precise guidance for effective distillation.

2 GRACE: GRADIENT CROSS-VALIDATION EVALUATION

We consider the case of using distillation to fine-tune a pre-trained student model to solve specific
downstream tasks. For each of the N prompts x ∈ X , we autoregressively generate M responses
y1, ..., yM from a teacher distribution πT . This distribution encodes the temperature it may be
sampled at from the teacher as well. We then fine-tune the pre-trained student with the standard
autoregressive cross-entropy objective L on a dataset Ddistill

T containing N ×M teacher generations.
In contrast to logit-based distillation, this setting permits distillation across architectures and in cases
where the teacher’s logits are not available. We measure the performance of students and teachers as
the average accuracy of k sampled responses for a given prompt (i.e., average-at-k). We will use πS
to denote the pre-trained student, and refer to its parameters as ΘS ∈ RD when necessary.

2.1 GRADIENT-BASED SCORES

The problem of selecting a teacher for distillation is closely connected to the well-studied field of
data selection: choosing the best teacher based on its generations can be viewed as selecting the best
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subset from the union of all teachers’ generations, with the constraint that each subset must come
from a single teacher. For language models, many successful data selection methods rely on first-
or second-order gradient information to identify useful data for a given task. These methods are
designed to select individual datapoints out a dataset, but in our case, we would like to select a data
distribution (i.e., a teacher). As such, instead of quantifying the value of individual datapoints, we
turn our attention to gradient-based approaches to measure data quality in terms of its distributional
features. For a teacher πT , we assume access to only a subsampled dataset Deval

T ⊂ Ddistill
T containing

n×m prompt-generation pairs, where n,m may be much smaller than N,M . In our experiments
(Section 3), n×m is 60× smaller compared to the N ×M .

Gradients. We establish some useful notation to work with gradients. Let g(x,y) := ∇L(y|x; ΘS)
be the student’s gradient on the response y conditioned on prompt x. Since all gradients are
computed with respect to the student model’s parameters, we omit the explicit dependency on ΘS
for notational clarity. We process the gradient with two steps. First, for computational reasons,
we work with a random low-dimensional projection of the gradient, denoted Πg ∈ Rd with Π ∈
{±1/

√
D}d×D (Park et al., 2023). We also rescale the gradient to account for the response length

|y| by multiplying the projected gradient by log |y|. This is motivated by the empirical observation
that the gradient norm on a length-T sequence roughly decreases as 1/ log T (Figure 21), which can
cause gradient-based computations to unduly favor short sequences (Xia et al., 2024).

The processed gradient is denoted h(x,y) := log(|y|) · Πg(x,y). For a dataset D of generations,
we also define the matrix consisting of processed gradients (h) as G(D) ∈ Rnm×d and processed
and normalized gradients (h̃ = h/∥h∥) as G̃(D) ∈ Rnm×d. Then, we define the normalized Gram
matrix and the mean:

Σ̃(D) := 1

nm
G̃(D)⊤G̃(D), µ(D) := 1

nm
G(D)⊤1. (1)

G-Vendi (Jung et al., 2025). One natural distributional measure of data quality is diversity. Along
these lines, Jung et al. (2025) propose the G-Vendi score, which measures the directional coverage of
D as the entropy of the eigenvalues of the gradient Gram matrix.

G-Vendi(D) := Entropy(λ(Σ̃(D))) = −
∑

λ∈λ(Σ̃(D))

λ log λ, (2)

where λ(Σ̃(D)) denotes the eigenvalues of the normalized gradient gram matrix with |λ(Σ̃(D))| =
min{nm, d}. A larger G-Vendi score is better. Jung et al. (2025) use G-Vendi to select an optimal
subset of training dataD from a full dataset generated by a single teacher. However, using G-Vendi to
select a teacher out of many candidates may yield suboptimal choices. For example, when performing
self-distillation, where the student serves as its own teacher, we find that the G-Vendi score for GSM8K
(5.93) is higher than all other teacher models, even though the resulting student’s performance is as
low as 4%. This observation leads us to investigate another gradient-based distributional score.

G-Var. Prior works have shown that reducing gradient variance can boost generalization perfor-
mance (Wang et al., 2013; Keskar et al., 2016; Wang et al., 2021; Feng & Tu, 2021). As such, we
also compute the gradient variance (G-Var) as

G-Var(D) := 1

nm
Tr

(
Gµ(D)Gµ(D)⊤

)
=

1

nm

∑
(x,y)∈D

∥h(x,y)− µ(D)∥2, (3)

where Gµ(D) = G(D) − 1µ(D)⊤ denotes the centered processed gradient matrix. A smaller
G-Var score is considered better. Though G-Var alone is also insufficient. For example, on GSM8K,
G-Var’s value is largely determined by the model family and not reflecting the student’s performance
(Figure 2).

G-Var and G-Vendi together capture complementary distributional properties and can sometimes
trend in different directions. For instance, we find that increasing the teacher’s generation temperature
increases G-Var, suggesting that higher temperatures induce worse data, but also increases G-Vendi,
indicating higher diversity (Figure 6). As such, we treat G-Var and G-Vendi as baselines and propose
GRACE to unify them into one score.
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2.2 THE GRACE SCORE

GRAdient Cross-validation Evaluation, or GRACE, computes the gradient variance weighted under
the spectrum of the normalized gradient Gram matrix. GRACE is computed solely using the student’s
gradients on the teacher’s generations and does not require a verifier or access to test samples. We will
first define the score, and then describe its connection to leave-one-out conditional mutual information.

GRACE. For a dataset D of teacher generations containing n×m prompt-generation pairs, and
a choice of hyperparameter C, construct C partitions of the prompts in the dataset D, denoted
{Di}Ci=1, each containing n/C prompts and their generations. Let D−i denote the concatenation of
all partitions except the partition Di. Then, GRACE is defined as

GRACE(D) = 1

nm

C∑
i=1

Tr
(
Gµ(Di)M(D−i)

−1Gµ(Di)
⊤) (4)

=
1

nm

C∑
i=1

∑
(x,y)∈Di

∥M(Di)
−1/2(h(x,y)− µ(D))∥2, (5)

where M(D−i) = Σ̃(D−i) +
ν
d I with smoothing parameter ν > 0 for numerical stability.

A smaller GRACE score indicates a better distillation teacher. GRACE combines the spectral
information of G-Vendi with the variance computation in G-Var. In particular, we can interpret
GRACE as spectral-weighted gradient variance: for a random partition (D1,D2), if {λj ,uj}j∈[d]

denote the set of eigenvalues and eigenvectors for Σ̃(D2), then GRACE computes the following for
the given partition: ∑

j∈[d]

1

σj +
ν
d

 1

|D1|
∑

(x,y)∈D1

(h(x,y)⊤uj)
2

 . (6)

A small GRACE score requires the gradients to have a small variance along all eigenvectors of Σ̃, and
it penalizes the variances in directions where the eigenvalue is small more heavily. Variance along such
high-signal directions is more harmful, because even small amounts of noise can induce instability or
poor generalization. We consider the spectrum of the normalized gradients, since direction of the
gradients is more relevant than scale with the use of adaptive optimizers and normalization layers
(Loshchilov & Hutter, 2017; Ba et al., 2016; Li et al., 2022).

Connecting GRACE to leave-one-out CMI: GRACE connects naturally to leave-one-out con-
ditional mutual information (CMI), a frequently used concept in studying generalization (Xu &
Raginsky, 2017; Steinke & Zakynthinou, 2020; Rammal et al., 2022). At a high level, CMI captures
how much gradient updates are sensitive to removal of a sample and how much of this sensitivity can
be tracked to the dropped sample. A higher sensitivity suggests necessary memorization to reduce
loss on the training set D, which can lead to low generalization to unseen test examples. Under this
framework, we show that GRACE successfully unifies G-Var and G-Vendi.

Formally, we overload g(D; Θ) = 1
|D|

∑
(x,y)∈D g(x,y; Θ) to denote the gradient update on a dataset

D. To keep our discussion general, we consider g(D; Θ) that uses gradients and a preconditioner
matrix M:

g(D,Θ) = M(D; Θ)g(D; Θ) + ϵ,

where ϵ ∼ N (0, σ2I) denotes the gradient noise. Setting M as identity recovers gradient descent,
and setting M as a function of gradient second moments recovers various adaptive algorithms in
practice.

Let Θ′
D denote the resulting parameters after a gradient update with D, and Θ′

D\{(x,·)} denote
the parameters from a set where all training data connected to a uniformly sampled prompt x are
dropped from the training set D, then CMI measures the mutual information between the parameters
Θ′

D\{(x,·)} and the dropped prompt x. We show that CMI can be bounded as follows:

Lemma 2.1 (Informal). Let C = n, then for any D′, take M(Θ,D′) := Σ(D′)−1/2, then CMI is
bounded by 1

σ2n2 GRACE(D).
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Figure 2: GRACE achieves 86% Spearman correlation to Llama-1B’s post-distillation perfor-
mance on GSM8K, much higher than G-Var (55%) and G-Vendi (44%).

We defer the proofs to Appendix A.

Choice of M for GRACE: We defined GRACE based on a particular choice of the pre-conditioner
matrix in the definition of CMI. This is motivated by the adaptive optimization algorithms used in
practice (Kingma, 2014; Loshchilov & Hutter, 2017; Duchi et al., 2011). In principle, one could
obtain sharper predictions by choosing M optimally. We leave a more thorough exploration of this
direction to future work.

3 EXPERIMENTS

We compare the three scores mentioned in the previous section, G-Var, G-Vendi, and GRACE, on
two common math reasoning datasets, GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021). These datasets have a diverse set of strong teacher models readily available, due to the broad
community interest in mathematical reasoning. For each prompt-response pair, the model receives a
binary correctness score, and we quantify its performance by the average accuracy achieved when
sampling k responses for each prompt, referred to as average-at-k.

Settings. The student model is taken to be Llama-1B-base or OLMo-1B-base on GSM8K (Cobbe
et al., 2021), and Llama-3B-base on MATH (Hendrycks et al., 2021). We compare 15 teachers:
Llama-(3.2/3.3) 3/8/70B Instruct models, Qwen-2.5 1.5/3/7/14B Instruct models, Qwen-2.5 Math
1.5/7B Instruct models, Gemma-2 2/9/27B Instruct models, OLMo 7/13B Instruct models, and Phi-4
on both MATH and GSM8K (Dubey et al., 2024; Abdin et al., 2024; Yang et al., 2024; Qwen et al.,
2025; Team, 2024a). The teacher’s generation temperature is varied from 0.3 to 1.0 at 0.1 intervals.

To compute our scores, we use a subset of n = 512 randomly selected training prompts from the
training set, with m = 4 generations per prompt. For GRACE, we use C = 10-way cross validation.
The student gradients are randomly projected to dimension d = n = 512; we provide ablation results
on these hyperparameter choices in Section 3.3.

Each distillation training run uses learning rate1 10−5 and 4 epochs over the training set. We use
the cosine learning rate schedule with 5% warmup, 0 weight decay, and batch size 64. We generate
M = 16 responses per prompt from each teacher and fine-tune the student on all generations without
filtering for correctness of the final answer.2 We compare correlations of our metric to average-at-16
performance for the trained student model when responses are generated at temperature 1.0. 3 We
discuss later in Section 3.3 the results change when we look at other performance metrics. The
computation costs for computing GRACE are provided in Appendix C.3.

1We searched over learning rates {5× 10−5, 10−5, 5× 10−6} and found 10−5 to be consistently the best.
2Surprisingly, our ablations in Appendix D.1 show that our results are not significantly affected if we filter by

correctness.
3Results for greedy decoding is included in Figure 11 in appendix.
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Figure 3: GRACE achieves 74% Spearman correlation to OLMo-1B’s post-distillation perfor-
mance on GSM8K, significantly outperforming G-Var (43%) and G-Vendi (48%).

3.1 GRACE CORRELATES WELL WITH STUDENT’S PERFORMANCE

Figure 2 shows that for a Llama-1B model trained on GSM8K, GRACE achieves the best Spearman
correlation with the student performance on (0.86) when compared against G-Var (0.55) and G-Vendi
(0.44). Additional experiments with an OLMo-1B model trained on GSM8K (Figure 3) and with a
Llama-3B model trained on MATH (Figure 8) verify the utility of GRACE. In addition to G-Vendi
and G-Var, we also compare against other data selection baselines (Figure 4); a full list is provided in
Appendix C.1. Among all scores, GRACE is the only one to achieve consistently high correlation
(> 85%) with student performance on both GSM8K and MATH.

In contrast, two intuitive baselines fail to reflect the student’s distillation performance. The first is
the teacher’s own performance, measured in terms of its Average-at-16 performance, which only
shows a weak correlation of 11% for Llama-1B on GSM8K, in agreement with findings in prior
work (Mirzadeh et al., 2019; Harutyunyan et al., 2023; Panigrahi et al., 2025; Zhang et al., 2023b;a;
Peng et al., 2024; Razin et al., 2025). As an example, Llama-70B Instruct has the best performance
among all teachers, yet a student trained with Llama-70B Instruct reaches only 46% Average-at-k
performance. This is a 6.5% gap to the best performing student which has 52.5% accuracy. Similarly,
the student’s loss on teacher’s generations, measured on the base student, is also poorly correlated
with the student’s post-distillation performance (44% with Llama-1B training on GSM8K).

Teacher selection requires balancing directional coverage and variance. As a case study, we com-
pare different teachers under a fixed generation temperature of 0.6 (Figure 5). G-Var clearly separates
Qwen-Instruct from Llama-Instruct teachers but fails to distinguish between Qwen, Phi-Instruct, and
Qwen-Math-Instruct, suggesting that a low gradient variance alone is insufficient to identify the best
teacher. On the other hand, although G-Vendi provides better separation among teachers with low
G-Var, it also assigns higher scores to sub-optimal teachers, indicating that directional coverage by
itself is also inadequate. In contrast, GRACE achieves the strongest correlation (92%) and correctly
identifies Qwen-3B-Instruct as the optimal teacher.

3.2 GUIDING DISTILLATION PRACTICE WITH GRACE

GRACE can go beyond identifying the best teacher and inform distillation practices. Below we
discuss how GRACE provides guidance under common scenarios.

Selecting generation temperature. The temperature τ used to rescale the teacher’s logits when gen-
erating responses is known to have a strong influence on student performance after distillation (Zheng
& Yang, 2024; Peng et al., 2024). However, there hasn’t been a principled approach to choose the
temperature. We show in Figure 6 that GRACE can identify such a good generation temperature for
two Qwen teachers: it closely predicts the optimal generation temperature for Llama-1B training,
which are 0.8 (vs. predicted 0.9) with the 3B teacher and 0.4 (vs. predicted 0.5) with the 1.5B teacher.
In comparison, G-Var and G-Vendi tend to increase monotonically with the temperature, even though
the student’s performance shows an inverse U-shape in temperature. In Figure 7 (left), when averaged
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Figure 4: GRACE is the only score achieving more than 80% correlation with the performance
of Llama-1B on GSM8K and Llama-3B on MATH. Teacher performance and the pre-trained
student’s loss on teacher generations show only weak correlations. While G-Var correlates well with
student performance on MATH, it is significantly worse on GSM8K.

Figure 5: GRACE can effectively correlate with student performance when compared across
different teacher choices. Here, we report Llama-1B performance on GSM8K across different
teacher choices at a generation temperature 0.6. GRACE achieves 92% correlation with student
performance after training, while also predicting Qwen-3B-Instruct to be the optimal teachers. The
black triangles mark the best teacher selected by each score. Gap denotes the performance gap
between the best performing student and student trained under the teachers selected by each score.

across all temperatures, we find that GRACE achieves 75% correlation with the student performance,
outperforming the 53% and 59% correlations by G-Var and G-Vendi.

Selecting a teacher under a size budget. In practice, one common resource constraint for distillation
is the compute required to locally host open-source teachers. Motivated by this, we test whether

Figure 6: GRACE can identify a good generation temperature. Results are shown for Llama-
1B trained with Qwen-2.5-1.5B-Instruct and Qwen-2.5-3B-Instruct teachers on GSM8K. GRACE
correctly identifies that (1) a lower temperature is optimal for Qwen-2.5-1.5B-Instruct, and (2) a
higher temperature is effective for Qwen-2.5-3B-Instruct. In contrast, G-Var can only identify (1)
and G-Vendi can only identify (2).
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Figure 7: GRACE is effective at predicting behavior of student performance with teacher
generation temperature (left) and the best teacher up to a certain size (right)). Results are for
Llama-1B on GSM8K. (Left) When varying the generation temperature for a fixed teacher, GRACE
gets a consistent strong negative correlation (75%). In contrast, all other scores do not show consistent
trends across teachers. Violin plots show the distribution over teachers. (Right) GRACE achieves
high correlation (75% and above) to performance for teachers under various size constraints.

GRACE can be used to select a teacher under a given size. Specifically, we evaluate three scale
constraints: (1) 3B and below, (2) 10B and below, and (3) 30B and below. As shown in Figure 7
(right), GRACE is highly effective, reaching more than 75% correlations and consistently identifying
the best teacher under all three size budgets, while the baseline scores are much less reliable. Such
difference is also reflected by the performance gap between the student trained by the ground truth
best teacher, and the student trained by the teacher selected by each score. The gaps for GRACE are
under 1% across all groups, indicating that it is often close to selecting the optimal teacher, whereas
G-Vendi and G-Var can induce performance gaps of at least 5% for teacher sizes below 10B.

Selecting teachers within a model family Another practical limitation is the family of models that
one can access, motivating us to test GRACE against models within each model family. We split
the teacher models by model family and consider all generation temperatures. Since some families
include only a small number of teachers, the Spearman correlations can be unreliable. We hence
report the performance gap between learning from the true best teachers and from the teacher selected
by a score. As shown in Figure 13, when averaged across all families, GRACE achieves a gap of just
1%, whereas other metrics yield average gaps of at least 3% or more. Moreover, we note that it is not
always preferred to choose teacher from the same family as the student. For example, a Llama-1B
base student learns better from a Qwen-Instruct teacher than any of Llama-Instruct teachers.

3.3 ABLATIONS

We test the effect of various hyperparameters used in the GRACE computation. We vary the number
of prompts (n), the number of generations per prompt (m), and the dimension of the gradient random
projection (d). For the Llama-1B student on GSM8K, we find that GRACE is generally robust to
these hyperparameter choices, and the default values (m = d = 512, m = 4) work well (see details
in Appendix D.3). We also vary the number of cross-validation splits used in GRACE. For both
GSM8K and MATH, the correlation with student performance remains fairly stable once C >= 6
(Figure 20), so we set C = 10 for our experiments.

To test the robustness with respect to teacher selection, we evaluate correlations on random subsets of
teachers. In addition to the case studies in Section 3.2, we repeatedly compute scores over random
subsets of teachers. As shown in Figure 22 and Figure 23, GRACE consistently maintains high
correlations across these subsets (see details in Appendix D.5).

We further examine how correlations change when replacing Average-at-k with other evaluation
metrics. For GSM8K, we find that Spearman correlation drops when switching from Average-at-k
to either greedy or best-of-k accuracy, even though GRACE still identifies the best teacher model
(Figures 11 and 12). Greedy reflects performance from a single generation at temperature 0.0, and
best-of-k measures whether the student answers correctly at least once over k responses at generation

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

temperature 1.0. A deeper investigation into the discrepancy between Average-at-k and these discrete
performance metrics is left to future work.

4 RELATED WORK

Knowledge distillation Knowledge distillation is a classic method used to improve the optimization
and generalization of a small model (Hinton et al., 2015). A counterintuitive finding is that a better-
performing model is not necessarily a better teacher, which has been observed in both classic
classification or regression settings (Mirzadeh et al., 2019; Jafari et al., 2021; Harutyunyan et al.,
2023) and more recently in language models (Zhang et al., 2023a;b; Xu et al., 2024; Panigrahi et al.,
2025). For language models, one can distill from either the logits of the teacher or the generated
texts. 4 While the former can lead to better student performance, it is more computationally costly,
requires higher access, and is less flexible due to tokenizer choices. We hence focus on distilling from
generated texts (Eldan & Li, 2023; Li et al., 2023; Busbridge et al., 2025). Recent work by Guha et al.
(2025) supports our findings: they demonstrate that a weaker teacher can yield a stronger distilled
model, that distillation benefits from increased sample size, and that filtering has little impact on the
resulting student’s performance.

Data selection For text-based distillation, selecting the best teacher can be considered as the
problem of choosing the most useful subset of samples from the generations of all teachers. This
aligns with the broad task of data selection, which aims to identify subsets of data that maximize
certain utility (Sorscher et al., 2022; Albalak et al., 2024). Many approaches leverage gradient
information (Mirzasoleiman et al., 2019; Killamsetty et al., 2020; Pruthi et al., 2020; Xia et al.,
2024), including some that directly rely on notions of coverage (Ash et al., 2019; Jung et al., 2025).
Directional coverage also ties to the notion of coverage in reinforcement learning. Specifically,
autoregressive training on teacher generations can be viewed as a form of behavior cloning, for which
increasing the coverage is provably beneficial (Song et al., 2024; Huang et al., 2025; Rohatgi et al.,
2025). Despite these similarities, distillation differs from standard data selection in that it allows
generating new data and offers a richer design space (Peng et al., 2024). An effective teacher-selection
score should therefore be versatile and broadly applicable across scenarios, a property that GRACE
demonstrates as shown in Section 3.2.

5 DISCUSSION AND CONCLUSION

Motivated from an optimization perspective, this work leverages gradient information to design
a score for identifying the most suitable teacher for distillation. We identified two distributional
properties of the student’s gradients: the directional coverage of the (normalized) gradients, and the
gradient variance. Variants of the former has been adopted in data selection, whereas the latter is less
explored in the context of distillation. Our proposed score, GRACE, combines both properties and
strongly correlates with the student’s performance after distillation. Experiments on GSM8K and
MATH establish that GRACE enables principled comparison across teachers and offers actionable
insights into practical scenarios, highlighting GRACE’s potential as a practical and general-purpose
tool for guiding distillation practices.

There are several promising avenues for future work. A natural next step is to refine GRACE into
a more fine-grained score. While it already captures two important distributional properties of the
student’s gradients, its correlations with downstream performance are not yet perfect, suggesting that
additional explanatory factors remain untapped. Potential candidates include incorporating richer
properties of the teacher and distribution-specific characteristics of the data. Although GRACE’s
design intentionally avoids requiring teacher logits, selectively incorporating logit-level information
where available may lead to further performance gains. It will also be interesting to investigate
GRACE’s utility in adaptive distillation strategies, where teacher choice may vary dynamically across
training stages or subsets of data, rather than being fixed upfront.

4We consider generations following standard next-token distributions, as opposed to antidistillation sam-
pling (Savani et al., 2025).
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datasets, ensuring reproducibility and transparency. All experimental design and analysis were
carried out by the authors themselves, and we used language models to assist with rephrasing texts.
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A CONNECTING GRACE TO LEAVE-ONE-OUT CMI

A.1 INFORMAL DISCUSSION

All our discussion assumes that we don’t apply a pre-processing function h and we look into the
original gradient space in this section.

Suppose the parameters of the student model are denoted by ΘS ∈ RD. For theoretical presentation
purposes, we collect 1 response per prompt from the teacher on n prompts, forming the training set
D. Our theoretical statements can be generalized to the case, where we collect multiple responses for
each prompt. We will use Ê as the empirical mean. Let U = U(x ∈ D) be a random variable that
selects a prompt x̂ uniformly at random and removes all prompt–response pairs associated with it.
The resulting dataset is

DU := D \ {(x̂, ŷ)}.

We then perform a single gradient update with a preconditioner matrix M that can depend on the
training set DU :

Θft;U ← ΘS − η E(x,y)∼DU

[
M(DU ; ΘS)∇L(y|x; ΘS)

]
+ ϵ, (7)

where ϵ ∼ N (0, σ2I) denotes Gaussian noise.

We measure the CMI between the updated parameters Θft;U and the random variable U , defined as
I(Θft;U ;U | D). This quantifies how much information about the omitted prompt x̂ can be inferred
from the updated parameters after training. For simplicity of notation, we define the following
notations, following our notation on GRACE:

µ(D \ {(x̂, ŷ)}) = ÊD\{(x̂,ŷ)}∇L(y|x; ΘS)

Σ̃(D \ {(x̂, ŷ)}) = 1

(n− 1)m
G̃⊤G̃

where G̃ contains normalized gradients from examples in the set D \ {(x̂, ŷ)}.
Lemma A.1 (Informal). Under the one-step update rule on the parameters Θ (Equation (7)),

I(Θft;U ;U |S) ≲
2η2

σ2n2
Ê(x̂,ŷ) ∥M(D \ {(x̂, ŷ)}; ΘS) ḡx̂,ŷ∥22

If we use gradient descent and set M as I, we get G-Var that uses mean shifted gradients. If
instead we choose M as the inverse normalized gradient covariance matrix, i.e. MD\{(x̂,ŷ)} =

Σ̃(D \ {(x̂, ŷ)})−1/2, we recover GRACE.

The lemma indicates that GRACE evaluates the stability of a one-step gradient update when few
prompts are removed from the batch. Importantly, the outcome of this update depends on the
optimization method, since gradient descent and preconditioned updates can behave differently. In
our setting, the preconditioner matrix is closely related to the one used in AdaGrad (Duchi et al.,
2011). Since adaptive optimizers are the de facto choice for training language models, it is essential
to incorporate this preconditioning effect in our analysis. In principle, one could obtain sharper
predictions by choosing M optimally. This might require a short warm-up training phase of the
student model and setting M as a function of the optimizer states during the warm-up training, akin
to Xia et al. (2024). We leave a more thorough exploration of this direction to future work.

Note on theoretical limitations: Our current analysis only establishes a connection between GRACE
and leave-one-out conditional mutual information. Prior work by Rammal et al. (2022) shows that
this quantity upper-bounds the generalization gap in terms of the gap between train and test loss.
By contrast, our experiments focus on tracking the student model’s test performance using GRACE.
Empirically, we find that GRACE serves as a reliable predictor of student performance, even though
it fails to correlate with loss-based quantities. This gap highlights the need for a stronger theoretical
framework to fully explain the behavior of GRACE, which we leave to future work.
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B PROOF OF LEMMA A.1

We will slightly simplify notations for presentation. We will use

M−{(x̂,ŷ)} := M (D \ {(x̂, ŷ)}; ΘS)

µ−{(x̂,ŷ)} := µ (D \ {(x̂, ŷ)}; ΘS) .

Then, a more formal version of Lemma A.1 is given as follows:
Lemma B.1 (Bounds for Pre-conditioned Gradient Descent). Under the one-step update rule on the
parameters Θ (Equation (7)),

I(Θft;U ;U |S) ≲
3η2

σ2n2
Ê(x̂,ŷ)

∥∥M−{(x̂,ŷ)}ḡx̂,ŷ

∥∥2
2

+
3η2

σ2
Ê(x̂,ŷ)

∥∥∥(M−{(x̂,ŷ)} − Ê(x̄,ȳ)M−{(x̄,ȳ)}

)
µ−{(x̂,ŷ)}

∥∥∥2
2

where ḡx̂,ŷ = ∇L(ŷ | x̂; ΘS)− µ−{(x̂,ŷ)}.

Proof. For any (x̄, ȳ) pair, denote the mean parameter update on the training set D \ (x̄, ȳ) as
δ−(x̄,ȳ) := ΘS − ηM−{(x̄,ȳ)}µ−{(x̄,ȳ)}.

By the definition of CMI,

I(Θft;U ;U |S) = Êu∼UDKL

(
pΘft;u|D,u||ÊūpΘft;Ū |D,ū

)
,

where pΘft;u|D,u denotes the probability distribution of Θft;u conditioned on dropping prompts from
D according to the random variable u. Note that there is a one-to-one correspondence between the
variable u and the random prompt x̂ that we drop. Thus, one can write

I(Θft;U ;U |S) = Êx̂DKL

(
pΘft;−x̂|D,x̂||Êx̄pΘft;−x̄|D,x̄

)
,

where pΘft;−x̂|D,x̂ denotes the probability distribution of Θft;−x̂ conditioned on dropping prompts
from x̂ from the training set.

The update rule for any set D \ (x̄, ȳ) is given by

Θft;−x̄ ← ΘS − δ−(x̄,ȳ) + ϵ := δ−(x̄,ȳ) + ϵ.

Because of the gaussian noise ϵ,

Θft;−x̂ ∼ N
(
δ−(x̄,ȳ), σ

2I
)
.

Then, using the properties of gaussian distribution;

I(Θft;U ;U | D) = Êx̂DKL

(
pΘft;−x̂|D,x̂

∥∥∥∥ Êx̄pΘft;−x̄|D,x̄

)
= Êx̂ÊX∼N(δ−(x̂,ŷ),σ2I)

(
log

(
1
Z e−∥X−δ−(x̂,ŷ)∥22/2σ2

)
− log Êx̄

(
1
Z e−∥X−δ−(x̄,ȳ)∥22/2σ2

))
≤ Êx̂ÊX∼N(δ−(x̂,ŷ),σ2I)

(
log

(
1
Z e−∥X−δ−(x̂,ŷ)∥22/2σ2

)
− Êx̄ log

(
1
Z e−∥X−δ−(x̄,ȳ)∥22/2σ2

))
=

1

2σ2
Êx̂ÊX∼N(δ−(x̂,ŷ),σ2I)

(
−
∥∥X − δ−(x̂,ŷ)

∥∥2
2
+ Êx̄

∥∥X − δ−(x̄,ȳ)

∥∥2
2

)
=

1

2σ2
Êx̂Êx̄ÊX∼N(δ−(x̂,ŷ),σ2I)

(
−
∥∥X − δ−(x̂,ŷ)

∥∥2
2
+

∥∥X − δ−(x̄,ȳ)

∥∥2
2

)
=

1

2σ2
Êx̂Êx̄

∥∥δ−(x̄,ȳ) − δ−(x̂,ŷ)

∥∥2
2

=
1

σ2
Êx̂

∥∥∥δ−(x̂,ŷ) − Êx̄δ−(x̄,ȳ)

∥∥∥2
2

In the second step, we simply use the CDF formulation of gaussian distribution, where Z = (2πe)−D.
The third step applies a jensen’s inequality.
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Using the definition of δ, we have

I(Θft;U ;U | D) ≤
1

σ2
Êx̂

∥∥∥M−(x̂,ŷ)µ−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}µ−{(x̄,ȳ)}

∥∥∥2
2

Warmup: When the pre-conditioner is identity matrix Then for any (x̄, ȳ) pair, we have
M−{(x̄,ȳ)} = I. Then, the formulation simplifies to

I(Θft;U ;U | D) ≤
η2

σ2
Êx̂

∥∥∥µ−{(x̂,ŷ)} − Êx̄µ−{(x̄,ȳ)}

∥∥∥2
2

=
η2

σ2
Êx̂

∥∥∥∥ n

n− 1
µ(D)− 1

n− 1
∇L(ŷ | x̂; ΘS)− Êx̄

(
n

n− 1
µ(D)− 1

n− 1
∇L(ȳ | x̄; ΘS)

)∥∥∥∥2
2

=
η2

σ2(n− 1)2
Êx̂

∥∥∥∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)
∥∥∥2
2

=
η2

σ2(n− 1)2
Êx̂

(
1− 1

n

)2 ∥∥∥∇L(ŷ | x̂; ΘS)− ÊD\x̄∇L(ȳ | x̄; ΘS)
∥∥∥2
2

=
η2

σ2n2
Êx̂

∥∥∥∇L(ŷ | x̂; ΘS)− ÊD\{x̄,ȳ}∇L(ȳ | x̄; ΘS)
∥∥∥2
2

The first step follows from the fact that µ(D) = Êx̂∼DL(ŷ | x̂; ΘS).

General pre-conditioner M: We follow similar steps as above:

I(Θft;U ;U | D) ≤
η2

σ2
Êx̂

∥∥∥M−{(x̂,ŷ)}µ−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}µ−{(x̄,ȳ)}

∥∥∥2
2

=
η2

σ2
Êx̂

∥∥∥ n

n− 1
M−{(x̂,ŷ)}µ(D)−

1

n− 1
M−{(x̂,ŷ)}∇L(ŷ | x̂; ΘS)

− Êx̄

(
n

n− 1
M−{(x̄,ȳ)}µ(D)−

1

n− 1
M−{(x̄,ȳ)}∇L(ȳ | x̄; ΘS)

)∥∥∥2
=

η2

σ2
Êx̂

∥∥∥ n

n− 1

(
M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

− 1

n− 1

(
M−{(x̂,ŷ)}∇L(ŷ | x̂; ΘS)− Êx̄

(
M−{(x̄,ȳ)}∇L(ȳ | x̄; ΘS)

)) ∥∥∥2
=

η2

σ2
Êx̂

∥∥∥ n

n− 1

(
M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

− 1

n− 1
M−{(x̂,ŷ)}

(
∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)

)
− 1

n− 1
Êx̄

(
M−{(x̂,ŷ)} −M−{(x̄,ȳ)}

)
∇L(ȳ | x̄; ΘS)

∥∥∥2
≤ 3η2

σ2
Êx̂

(
n

n− 1

)2

Êx̂

∥∥∥(M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

∥∥∥2
2

+
3η2

σ2

1

(n− 1)2
Êx̂

∥∥∥Êx̄

(
M−{(x̂,ŷ)} −M−{(x̄,ȳ)}

)
∇L(ȳ | x̄; ΘS)

∥∥∥2
2

+
3η2

σ2

1

(n− 1)2
Êx̂

∥∥∥M−{(x̂,ŷ)}

(
∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)

)∥∥∥2
2

≤ 3η2

σ2
Êx̂

(
n

n− 1

)2

Êx̂

∥∥∥(M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

∥∥∥2
2

+
3η2

σ2

1

(n− 1)2
Êx̂

∥∥∥M−{(x̂,ŷ)}

(
∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)

)∥∥∥2
2
+O

(
1/n4

)
.

Here, we assume that M is a well conditioned matrix, and so the second term is a small term of
order 1

n4 . This can be ensured by a small smoothing term. The first term looks at the sensitivity of
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the pre-conditioned matrix M when a sample is dropped. The second term looks at the change in
gradient with a drop in sample.

When M is set as Σ̃−1/2, we find there are two terms in the bound above: how much Σ̃−1/2 changes
with a drop in sample and second, how much the gradients change with respect to the Σ̃−1/2 matrix,
which is related to the GRACE term. We find that Σ̃−1/2 is extremely stable in our experiments, and
the first term is 5− 10x smaller compared to the second term. This gives us the rough bound that the
CMI is bounded by GRACE.

C ADDITIONAL RESULTS

Here, we report the performance when we allow more computation for the computation of GRACE.
We use highher d than the ones reported in Figures 2 and 3. We use d = 1024 and n = 512. The
correlation improves for both the models on GSM8K; however it hurts on MATH.

Figure 8: GRACE achieves 88% correlation to Llama-3B performance after training on MATH,
across all teacher, generation temperature combinations. G-Var and G-Vendi can achieve 90%
and 74% correlation respectively. Here, n = 512, d = 512 are used to compute all metrics.

C.1 MORE BASELINES

We consider the following baselines:

1. Student Loss on the teacher’s generations;

2. G-Var (Equation (3));

3. G-Vendi (Equation (2));

4. Determinant

5. Determinant × gradient norm, corresponding to BADGE (Ash et al., 2019), which captures
both the diversity and magnitude of gradients;

6. Gradient inner product, which is another way to capture gradient diversity: Given gradients
from the training setD, we compute pairwise inner product between the normalized gradients
of generations for the same prompt:

ExE(x,y1),(x,y2)∼D

[
g1

∥g1∥2

]⊤
g2

∥g2∥2
,

where g1 = ∇LCE(x,y1;πS),

g2 = ∇LCE(x,y2;πS).

7. Gradient inner product with norm, which is similar to the above but additionally considering
gradient magnitude: Here, we compute pairwise inner product between the gradients of
generations from the same prompt.

8. Average Probabilities (per token): this computes the average probability per token of the
student on the teacher’s generations, averaged over all generations and all prompts.
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9. Best average probabilities per prompt: we compute the average probability per token for
each generation, and take the highest average probability (i.e. the most probable) across all
generations of the same prompt. We then take an average across all prompts.

10. Correct average probabilities: Here, we simply compute the average probabilities of tokens
in correct generations for each prompt and take the average across all prompts.

11. Incorrect average probabilities: Same as above, but over incorrect generations.

12. Different average probabilities per prompt: For each prompt, we compute the average per-
token probabilities for correct and incorrect generations respectively, and take the difference
of the two. We then average over all prompts.

As mentioned in Section 3, naive metrics are not useful for identifying the best teachers.

C.2 PERFORMANCE GAP WITH GRACE SELECTED TEACHER V/S THE ABSOLUTE BEST
TEACHER

In addition to spearman correlations that we reported in the main paper, we also report the performance
gap of the student trained with the teacher that is judged to be the best w.r.t. a metric, and the
performance of the absolute best student. We report this metric for the following two cases: first,
when we look at teachers constrained to a some size, and second, when we look at teachers constrained
to a particular model family (from our discussion in Section 3.2). We observe that in both cases,
across different groups, GRACE returns the least performance gap. Please see Figures 13 and 14.

Figure 9: Repeated experiment from Figure 2 but with d = 1024. GRACE achieves 90% correlation
to Llama-1B performance after training on GSM8K, across all teacher, generation temperature
combinations. G-Var and G-Vendi can only achieve 55% and 47% correlation respectively.

Figure 10: Repeated experiment from Figure 3 but with d = 1024. GRACE achieves 81% cor-
relation to Llama-1B performance after training on GSM8K, across all teacher, generation
temperature combinations. G-Var and G-Vendi can only achieve 43% and 50% correlation respec-
tively.

C.3 COMPUTATIONAL COMPLEXITY

GRACE is computationally inexpensive to compute. As shown in Table 1, for m = d = 512 and
m = 4, the gradients for each model takes around 10 minutes to compute and around 4.3MB to store.
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Figure 11: Repeated experiment from Figure 2 but greedy performance of trained student model.
GRACE achieves only 70% correlation to Llama-1B performance after training on GSM8K,
across all teacher, generation temperature combinations. This is a sharp reduction from 90%
correlation to Average-at-16. However, GRACE still predicts the optimal teacher.

Figure 12: Repeated experiment from Figure 2 but best-of-16 performance of trained student model.
GRACE achieves only 64% correlation to Llama-1B performance after training on GSM8K,
across all teacher, generation temperature combinations. This is a sharp reduction from 90%
correlation to Average-at-16. However, GRACE still predicts the optimal teacher.

Figure 13: Gaps in the best performing and best predicted student model for each metric across
teacher families for Llama-1B training on GSM8K. We observe that on average, GRACE selects a
teacher that returns a student within 1% performance to the absolute best performing student from
the teachers in a model family. On the other hand, other metrics can select a teacher that can return a
student with performance gap atleast 3% w.r.t. the absolute best performing student from the teachers
in a model family.
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Figure 14: Gaps in the best performing and best predicted student model for each metric across
teacher scale groups for Llama-1B training on GSM8K. We observe that across each group, GRACE
selects a teacher that returns a student within 1% performance to the absolute best performing student
from the teachers in the group. On the other hand, other metrics can select a teacher that can return
a student with performance gap atleast 2.5% w.r.t. the absolute best performing student from the
teachers in the group.

Gradient Features Computation Metric Computation

Computation complexity O(n ·m · P · d) O(n ·m · d2 + d3)
Running time ≈ 10 minutes < 10 seconds

Storage Complexity O(n ·m · d) -
Actual storage 4.3 MB -

Table 1: Time complexity to compute GRACE. The running time and the actual storage have been
computed on ñ = 512, m = 4, d = 512 for Llama-1B training on GSM8K, and have been reported
as a rough average across all settings. Wall-clock time has been reported on a single H100 (80 GB)
GPU. For gradient computation, we use 32 parallel CPU threads following Park et al. (2023). Here,
P denotes the number of parameters in the model.
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Figure 15: Comparing teachers, when we filter correct responses from the teacher v/s when we don’t
filter correct responses from the teacher. Here, we train Llama-1B on GSM8K with 15 teachers
and generation temperatures 0.4, 0.6, 0.8, 1.0. We compare students trained from teacher without
filtering (x-axis) with students trained from teacher with correct answer filtering (y-axis). We find
that students trained with no filtering outperforms models trained with filtering.

D ABLATIONS

D.1 FILTERING V/S NO FILTERING

In our experiments in the main paper, we perform no filtering of the responses from the teacher.
Here, we compare to the case when we filter the teacher’s responses by correctness. We sample 16
responses from each teacher and remove the incorrect responses. Then, we sample with repetition to
get a set of 16 responses to train the model.

First, we find that the student gets worse performance with filtering of correct responses from the
teacher (Figure 15). However, we find that when we compare our metrics to the student performance
after training, we find that our metrics have slightly higher spearman correlation with the student
performance when we train with filtering on teacher responses, compared to student trained with no
filtering on the teacher responses (Figure 16).

D.2 ABLATION ON TRAINING HYPERPARAMETERS

We observe that a Llama-1B model trained on generations of Llama-70B Instruct models and Gemma-
2-27B Instruct models perform badly. We train with learning 1e0−5 on the 16 generations per prompt
of the teacher for 4 epochs. One primary question is whether the small model is over-optimizing on
the teacher’s generations. To check this, we track the train and test performance of the trained model
with varying number of generations (Figure 17) and epochs of training (Figure 18). We observe that
the performance of the trained student model improves with increasing number of epochs and number
of generations, implying no over-optimization in our training setting.

D.3 ABLATIONS ON THE PARAMETERS OF GRACE

In Figure 19, we show the behavior of GRACE with changing hyperparameters. We take Llama-
1B training on GSM8K as a case-study. We vary number of prompts (n), number of generations
per prompt (m), and the projection dimension of gradients (d) for computing the GRACE score
and compare correlations to the student performance. We observe that (a) GRACE improves with
increasing gradient dimension, (b) GRACE gives a good enough estimate with m = 4 generations
per prompt, (c) GRACE generally increases with number of prompts that we consider but might show
a small dip as we increase further.

We additionally vary the number of cross-validation splits used in GRACE. As shown in Figure 20,
the correlations to the student performance do not vary much for both GSM8k and MATH for more
than C = 6 splits. We take C = 10 as the default.
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Figure 16: Comparisons between the metrics and the student performance when we filter responses
v/s we don’t filter correct responses from the teacher. Here, we train Llama-1B on GSM8K with 15
teachers and generation temperatures 0.4, 0.6, 0.8, 1.0. We find that our metrics have slightly higher
spearman correlation to the student performance when we filter correct responses from the teacher
and train only on them.

Figure 17: Llama-1B training on GSM8K with 16 responses per prompt of gemma-27b-instruct
and llama-70b instruct model. We vary the number of epochs and observe that both train and test
performance improves with more epochs of training. Here, the definition of pass@16 on y-axis is
identical to Average-at-16.

Figure 18: Llama-1B training on GSM8K with varying number of responses per prompt of gemma-
27b-instruct and llama-70b instruct model. We observe that both train and test performance improves
with more training samples from the teacher. Here, the definition of pass@16 on y-axis is identical to
Average-at-16.
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(a) When we vary gradient projec-
tion dimension d with n.

(b) When we vary number of gener-
ations m per prompt.

(c) When we vary number of
prompts

Figure 19: Varying hyperparameters for GRACE on Llama-1B training on GSM8K at generation
temperature 0.8. We use the base setup as n = 512, m = 16, and d = n. We vary one of them,
while fixing the others. Main takeaway: (a) GRACE improves with increasing gradient dimension,
(b) GRACE gives a good enough estimate with m = 4 generations per prompt, (c) GRACE generally
increases with number of prompts that we consider but might show a small dip as we increase further.

Figure 20: Varying number of cross-validation splits on GSM8K (left) and MATH (right).

D.4 GRADIENT NORM’S RELATION TO LENGTH

Figure 21 shows that the norm of the gradient on a generation decreases as the generation length
grows, roughly following a trend of 1/ log T for length-T generations, consistent with observations
in Xia et al. (2024). Intuitively, this is likely because longer generations tend to contain a larger
fraction of less important tokens that do not contribute much to the overall gradient. This observation
motivates the log T scaling in Section 2.

D.5 ABLATION ON ROBUSTNESS OF METRICS

We check the robustness of each metric by reporting the distributions of the metric values computed
over random subsets of teachers. Specifically, we use 100 random draws of subsets consisting of 60%
of teachers.

We compare GRACE against the baselines listed in Appendix C.1. Among all candidate metrics,
GRACE is the only one showing consistently strong correlations on both datasets.

Figure 21: Gradient norm decreases inversely with log T , where T is the sequence length. This
motivates the gradient scaling in Section 2.
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Figure 22: Robustness of metrics on GSM8k: we report the distribution of metric values, computed
over 100 random subsets of teachers, each consisting of 60% of the full set of teacher-temperature
combinations. The proposed metric GRACE consistently shows strong correlations.

Figure 23: Robustness of metrics on MATH: following the same setup as Figure 22, GRACE shows
the strongest correlation with smallest variations across random subsets.
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