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Abstract

There are many different causal effect estimators in causal inference. However, it1

is unclear how to choose between these estimators because there is no ground-truth2

for causal effects. A commonly used option is to simulate synthetic data, where3

the ground-truth is known. However, the best causal estimators on synthetic data4

are unlikely to be the best causal estimators on real data. An ideal benchmark for5

causal estimators would both (a) yield ground-truth values of the causal effects and6

(b) be representative of real data. Using flexible generative models, we provide a7

benchmark that both yields ground-truth and is realistic. Using this benchmark,8

we evaluate over 1500 different causal estimators and provide evidence that it is9

rational to choose hyperparameters for causal estimators using predictive metrics.10

1 Introduction11

In causal inference, we want to measure causal effects of treatments on outcomes. Given some12

outcome Y and a binary treatment T , we are interested in the potential outcomes Yi(1) and Yi(0).13

Respectively, these denote the outcome that unit i would have if they were to take the treatment14

(T = 1) and the outcome they would have if they were to not take the treatment (T = 0). We are15

often interested in causal estimands such as E[Y (1)]− E[Y (0)], the average treatment effect (ATE).16

This is equivalent to the following expression using Pearl’s do-notation (Pearl, 1994, 2009, 2019):17

E[Y | do(T = 1)]− E[Y | do(T = 0)], where do(T = t) is a more mnemonic way of writing that18

we set the value of the treatment to t.19

There are many different estimators for estimating causal estimands (see, e.g., Neal, 2020; Hernán &20

Robins, 2020; Morgan & Winship, 2014; Imbens & Rubin, 2015, and Appendix E). However, it is21

unclear how to choose between these estimators because the true values of the causal estimands are22

generally unknown. This is because we cannot observe both potential outcomes (Rubin, 1974), so23

we have no ground-truth. This is often referred to as the fundamental problem of causal inference24

(Holland, 1986). Supervised machine learning does not have this “no ground-truth” problem because25

it is only interested in estimating E[Y | T ], which only requires samples from P (Y | T ), rather than26

samples from P (Y | do(T = 1)) and P (Y | do(T = 0)). Yet, we must choose between causal27

estimators. How can we do that when faced with the fundamental problem of causal inference?28

To evaluate causal estimators, people have created various benchmarks, each bringing different29

strengths and weaknesses that we will cover in Section 3. In this paper, we focus on how well causal30

estimators perform in the simplest setting, where there is no unobserved confounding, no selection31

bias, and no measurement error. It is straightforward to extend RealCause to these more complex32

settings. The ideal benchmark for choosing between causal estimators in this setting should have the33

following qualities: (1) yield ground-truth estimands, (2) be representative of a substantial subset of34

real data, (3) do not have unobserved confounders, and (4) yield many different data distributions of35

varying important characteristics (e.g. degree of overlap).36

(1) is important in order to know which estimators yield estimates closer to the ground-truth. (2) is37

important so that we know that estimators that perform well on our benchmark will also perform well38
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on real datasets that we would apply them to. (3) is important so that we can rule out unobserved39

confounding as the explanation for an estimator performing poorly. (4) is important because it40

is unlikely that rankings of causal estimators on a single problem will generalize perfectly to all41

problems. Rather, we might expect that certain estimators perform better on distributions with certain42

properties and other estimators perform better on distributions with other specific properties. Existing43

benchmarks often have 1-3 of the above qualities (Section 3). Our benchmarking framework has all44

four.45

We present a benchmark that simulates data from data generating processes (DGPs) that are statisti-46

cally indistinguishable from observed real data. We first take the observed pretreatment covariates47

W as the only common causes of T and Y . Then, we fit generative models Pmodel(T | W ) and48

Pmodel(Y | T,W ) that closely match the real analogs P (T |W ) and P (Y | T,W ). This allows us to49

simulate realistic data by first sampling W from the real data, then sampling T from Pmodel(T |W ),50

and finally sampling Y from Pmodel(Y | T,W ). Importantly, because we’ve fit generative models51

to the data, we can sample from both interventional distributions Pmodel(Y | do(T = 1),W ) and52

Pmodel(Y | do(T = 0),W ), which means that we have access to ground-truth estimands for our53

realistic simulated data. That is, the fundamental problem of causal inference isn’t a problem in these54

DGPs. We then use this realistic simulated data for benchmarking.55

Main contributions56

1. RealCause and corresponding realistic benchmarks57

2. Application of RealCause to show evidence in favor of selecting hyperparameters based on58

predictive metrics (like in machine learning)59

3. Open-source dataset for predicting causal performance of causal estimators from predictive60

performance61

2 Preliminaries and notation62

Let T be a binary scalar random variable denoting the treatment. Let W be a set of random variables63

that corresponds to the observed covariates. Let Y be a scalar random variable denoting the outcome64

of interest. Let e(w) denote the propensity score P (T = 1|W = w). We denote the treatment65

and outcome for unit i as Ti and Yi. Yi(1) (resp. Yi(0)) denotes the potential outcome that unit i66

would observe if Ti were 1, taking treatment (resp. if Ti were 0, not taking treatment). Y (t) is a67

random variable that is a function of all the relevant characteristics I (a set of random variables) that68

characterize the outcome of an individual (unit) under treatment t.69

We define the individual treatment effect (ITE) for unit i as follows: τi , Yi(1)−Yi(0) We define the70

average treatment effect (ATE) as follows: τ , E[Y (1)− Y (0)]. Let C be a set of random variables,71

denoting all the common causes (confounders) of the causal effect of T on Y . We can identify72

the ATE from observational data if we observe C. This setting has many names: “no unobserved73

confounding,” “conditional ignorability,” “conditional exchangeability,” ‘selection on observables,”74

etc. In this setting, we can identify the ATE via the adjustment formula (Robins, 1986; Spirtes et al.,75

1993; Pearl et al., 2016; Pearl, 2009):76

τ = EC [E[Y | T = 1, C]− E[Y | T = 0, C]] (1)

We define the conditional average treatment effect (CATE) similarly:77

τ(x) , E[Y (1)− Y (0) | X = x] = EC [E[Y |T = 1, x, C]− E[Y |T = 0, x, C]] (2)

Here, X is a set of random variables that corresponds to the characteristics that we are interested in78

measuring more specialized treatment effects with respect to (x-specific treatment effects). In this79

paper, we’ll only consider CATEs where X =W , so there is no further need for the variable X .80

Similarly, we consider DGPs where W = C, for simplicity, so it suffices to use only the variable W .81

This means that we must adjust for all of W to get causal effects and that the CATEs reduce to82

τ(w) = E[Y |T = 1, w]− E[Y |T = 0, w] , µ(1, w)− µ(0, w) , (3)

where µ is the mean conditional outcome. Our DGPs provide ground-truth CATEs by providing µ.83

This allows our DGPs to capture unobserved causes of Y in the data.84
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3 Methods for evaluating causal estimators85

3.1 Simulated synthetic data86

The simplest way to get ground truth ATEs is to simulate synthetic data that we construct so that87

the only confounders of the effect of T on Y are W . This gives us access to the true outcome88

mechanism P (Y | T,W ). Using the outcome mechanism, we have access to the ground-truth CATE89

via Equation 3 and the ground-truth ATE via Equation 1.90

In these simulations, we additionally have access to the true treatment selection mechanism P (T |91

W ) (or just “selection mechanism” for short). We must be able to sample from this to generate92

samples from P (W,T, Y ) via ancestral sampling: P (W ) → P (T | W ) → P (Y | T,W ). Having93

access to P (T | W ) gives us ground-truth for things like the propensity scores and the degree of94

positivity/overlap violations.95

This is probably the most common method for evaluating causal estimators. However, it has several96

disadvantages. First, the data is completely synthetic, so we do not know if the rankings of estimators97

that we get will generalize to real data. Second, authors proposing new causal estimators are naturally98

interested in synthetic data with specific properties that their estimator was developed to perform99

well on. This means that different synthetic data used in different papers cannot be used for a fair100

comparison.101

3.2 Simulated semi-synthetic data with real covariates102

One natural improvement on the completely synthetic data described in Section 3.1 is to make it103

more realistic by taking the covariates W from real data. This means that P (W ) is realistic. Then,104

one can proceed with generating samples through ancestral sampling by simulating P (T |W ) and105

P (Y | T,W ) as arbitrary stochastic functions. One of the main advantages of this is that these106

stochastic functions can be made to have any properties that its designers choose, such as degree107

of nonlinearity, positivity violation, treatment effect heterogeneity, etc. (Dorie et al., 2019). This is108

what many current benchmarks do (Dorie et al., 2019; Shimoni et al., 2018; Hahn et al., 2019). The109

main problem is that the selection mechanism P (T |W ) and outcome mechanism P (Y | T,W ) are110

unrealistic.111

3.3 Simulated data that is fit to real data112

The way to fix the unrealistic selection and outcome mechanisms is to fit them to real data. This is113

what we do, and we are not the first. For example, there is work on this in economics (Knaus et al.,114

2018; Athey et al., 2019; Huber et al., 2013; Lechner & Wunsch, 2013), in healthcare (Wendling115

et al., 2018; Franklin et al., 2014), and in papers that are meant for a general audience (Abadie &116

Imbens, 2011; Schuler et al., 2017). Some fit relatively simple models (Franklin et al., 2014; Abadie117

& Imbens, 2011), whereas others fit more flexible models (Wendling et al., 2018; Athey et al., 2019;118

Schuler et al., 2017). Our work is distinguished from the above work in two key ways: we statistically119

test that our generative models are realistic using two samples tests and we provide knobs to vary120

important characteristics of the DGPs. See Appendix A.1 for more discussion on this.121

Using RCTs for ground-truth Finally, there are several different ways to use RCTs for ground-122

truths, but they all have problems, which we discuss in Appendix A.2.123

4 RealCause: a method for producing realistic benchmark datasets124

The basic idea is to fit flexible generative models Pmodel(T | W ) and Pmodel(Y | T,W ) to the125

selection mechanism P (T | W ) and the outcome mechanism P (Y | T,W ), respectively. For126

Pmodel(W ), we simply sample from P (W ), just as is done in the semi-synthetic data simulations we127

described in Section 3.2. These three mechanisms give us a joint Pmodel(W,T, Y ) that we would like128

to be the same as the true P (W,T, Y ). This is what makes our DGPs realistic.129

Architecture We use neural networks to parameterize the conditioning of Pmodel(T | W ) and130

Pmodel(Y | T,W ); that is, the input of the neural net is either W (to predict T ) or both W and131

T (to predict Y ). A naive approach would be to concatenate W and T to predict the Y , but our132
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experiments on semi-synthetic data (where τ is known) suggest that the resulting generative model133

tends to underestimate τ . For example, this can happen from the network “ignoring” T , especially134

when W is high-dimensional. Therefore, we follow the TARNet structure (Shalit et al., 2017) to135

learn two separate conditionals Pmodel(Y | T = 0,W ) and Pmodel(Y | T = 1,W ), encoding the136

importance of T into the structure of our network. Since all conditionals depend on W , we use a137

multi-layer perceptron (MLP) to extract common features h(W ) of W . We then have three more138

MLPs to model T , Y | T = 0, and Y | T = 1 separately, taking in the features h(W ) as input. These139

all use the same h(W ), which is also learned, like in Dragonnet (Shi et al., 2019). For simplicity, all140

four MLPs have the same architecture. The tunable hyperparameters are the number of layers, the141

number of hidden units, and the activation function.142

Distribution assumption We use the output of the MLPs to parameterize the distributions of143

selection and outcome. For example, for binary data (such as treatment), we apply the logistic144

sigmoid activation function to the last layer to parameterize the mean parameter of the Bernoulli145

distribution. For real-valued data (such as the outcome variable), one option is to assume it follows146

a Gaussian distribution conditioned on the covariates, in which case we would have the neural net147

output the mean and log-variance parameters. The baseline model that we use is a linear model that148

outputs the parameters of a Gaussian distribution with a diagonal covariance matrix. The main (more149

flexible) generative model we use is the sigmoidal flow (Huang et al., 2018), which has been shown150

to be a universal density model capable of fitting arbitrary distributions.151

For mixed random variables, we parameterize the likelihood as a mixture distribution: P (Y ) =152

π01Y 6∈APc(Y ) +
∑K
j=1 πj1Y=aj where A = {a1, ..., aK} is the set of (discrete) atoms, πj for153

j = 0, ...,K forms a convex sum, and Pc is the density function of the continuous component. We154

have dropped the conditioning to simplify the notation.155

Optimization For all the datasets, we use a 50/10/40 split for the training set, validation set, and156

test set. To preprocess the covariate (W ) and the outcome (Y ), we either standardize the data to157

have zero mean and unit variance or normalize it so that the training data ranges from 0 to 1. We158

use the Adam optimizer to maximize the likelihood of the training data, and save the model with159

the best validation likelihood for evaluation and model selection. We perform grid search on the160

hyperparameters and select the model with the best (early-stopped) validation likelihood and with a161

p-value passing 0.05 on the validation set.162

Tunable knobs After we fit a generative model to a dataset, we might like to get other models that163

are very similar but differ along important dimensions of interest. For example, this will allow us164

to test estimators in settings where there are positivity/overlap violations, where the causal effect is165

large/small, or where there is a lot of heterogeneity, no heterogeneity, etc. To do this, RealCause166

supports the following 3 knobs that we can turn to generate new but related distributions, after we’ve167

fit a model to a real dataset.168

Positivity/overlap knob Let pi be the probability of treatment for example i (i.e. pi = P (T = 1 |169

W = wi)). The value of this knob β can be set to anywhere between 0 and 1 inclusive. We use170

β to linearly interpolate between pi and the the extreme that pi is closer to (0 or 1). Namely, we171

change pi to p′i according to the following equation: p′i = βpi+(1−β) 1pi≥0.5. For example, β = 1172

corresponds to the regular data, β = 0 corresponds to the setting where treatment selection is fully173

deterministic, and all other values of 0 < β < 1 correspond to somewhere in between.174

Heterogeneity knob The value γ of the heterogeneity knob can be any real value between 0 and 1175

inclusive. If γ is set to 1, the CATEs are the same as the regular dataset. If γ is set to 0, the CATEs176

are all equal to the ATE. If γ is somewhere between 0 and 1, the CATEs are the corresponding linear177

interpolation of the original CATE and the ATE.178

Causal effect scale knob The value s of the causal effect scale knob can be any real number. This179

knob sets the scale of the causal effects by changing the potential outcomes according to the following180

equations: Yi(1)′ = s Yi(1)
τ and Yi(0)′ = s Yi(0)

τ .181

5 How realistic is RealCause?182

In this section, we show that RealCause produces realistic datasets that are very close to the real183

ones. For all datasets, we show that the distribution of our generative model Pmodel(W,T, Y ) is184
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(a) Marginal distributions P (T ) and Pmodel(T ) on the
left and marginal distributions P (Y ) and Pmodel(Y ) on
the right.

(b) Histogram and kernel density estimate visualiza-
tion of P (Y | T ) and Pmodel(Y | T ), sharing the same
y-axis.

Figure 1: Visualizations of how well the generative model models the real LaLonde PSID data.

very close to the true distribution P (W,T, Y ). We show this by providing both visual comparisons185

and quantitative evaluations. We visually compare Pmodel(T, Y ) and P (T, Y ) using histograms and186

Gaussian kernel density estimation (see, e.g., Figure 1). We quantitatively compare Pmodel(W,T, Y )187

and P (W,T, Y ) by running two-sample tests (Table 1).188

Two-sample tests evaluate the probability that a sample from Pmodel(W,T, Y ) and a sample from189

P (W,T, Y ) came from the same distribution, under the null hypothesis that Pmodel(W,T, Y ) =190

P (W,T, Y ) (that the model distribution matches the true distribution). If that probability (p-value)191

is less than some small value α such as 0.05, we say we have sufficient evidence to reject the null192

hypothesis that Pmodel(W,T, Y ) = P (W,T, Y ) (i.e. the generative model is not as realistic as we193

would like it to be). This is how we operationalize the hypothesis that our modeled distributions are194

“realistic.” Two-sample tests give us a way to falsify the hypothesis that our generative models are195

realistic.196

However, two-sample tests do not work well in high-dimensions. Importantly, the power1 of two-197

sample tests can decay with dimensionality (Ramdas et al., 2015) and W can have many dimensions198

in the datasets we consider. On the bright side, the treatment T and the outcome Y are each one-199

dimensional, so evaluating the statistical relationship between them is only a two-dimensional problem.200

This means that we might get more power from testing the hypothesis that Pmodel(T, Y ) = P (T, Y )201

because it’s a lower-dimensional problem, even though this test will ignore W and its relationship202

to T and Y . Tests that use P (W,T, Y ) could have more power because they use information about203

P (T, Y |W ) (recall that P (W ) = Pmodel(W ), by construction). Therefore, we run two-sample tests204

for both P (T, Y ) and P (W,T, Y ) (and the marginals). Finally, we stress that passing the marginal205

tests is not trivial, since we learn the conditional P (T, Y |W ) and marginalize out P (W ), instead of206

learning P (T, Y ), P (T ), or P (Y ) directly.207

Datasets We fit eight datasets in total. We fit generative models to three real datasets: LaLonde208

PSID, LaLonde CPS (LaLonde, 1986) (we use Dehejia & Wahba (1999)’s version), and Twins2209

(Louizos et al., 2017). We additionally fit generative models to five popular semi-synthetic datasets:210

IHDP (Hill, 2011) and four LBIDD datasets (Shimoni et al., 2018). On all of these datasets, we can211

fit generative models to model the observational distribution. Then, with the semi-synthetic datasets,212

we can also check that our generative models give roughly the same ground-truth causal effects as213

existing popular synthetic benchmarks.214

Visualization of modeled LaLonde PSID Consider the LaLonde PSID dataset as our first example.215

We visualize Pmodel(T ) vs. P (T ) and Pmodel(Y ) vs. P (Y ) in Figure 1a. Pmodel(W ) and P (W ) are216

known to be the same distributions, by construction. We visualize Pmodel(T, Y ) vs. P (T, Y ) in217

Figure 1b. We provide similar visualizations of the other real datasets and corresponding similar218

models in Appendix B.219

Univariate statistical tests The Kolmogorov-Smirnov (KS) test is the most popular way to test220

the hypothesis that two samples come from the same distribution. The Epps-Singleton (ES) test221

is more well-suited for discrete distributions and can have higher power than the KS test (Epps &222

1For a fixed value of α, power is the probability of rejecting the null hypothesis, given that the null hypothesis
is false.

2The treatment selection mechanism for the Twins dataset is simulated. This is to ensure that there is some
confounding, as the regular dataset might be unconfounded.
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Singleton, 1986). We use the implementations of the KS and ES tests from SciPy (Virtanen et al.,223

2020). For all datasets, we report the p-values of the KS and ES tests for comparing the marginal224

distributions Pmodel(Y ) and P (Y ) and for comparing the marginal distributions Pmodel(T ) and P (T )225

in the first section of Table 1. In all tests, the p-values are much larger than any reasonable value of α,226

so we fail to reject the null hypothesis that the generated data and the true data come from the same227

distribution. This means that our generative models are reasonably realistic, at least if we only look228

at the marginals.229

Multivariate statistical tests Extending the KS test to multiple dimensions is difficult. However,230

there are several multivariate tests such as the Friedman-Rafsky test (Friedman & Rafsky, 1979),231

k-nearest neighbor (kNN) test (Friedman & Rafsky, 1983), and energy test (Székely & Rizzo, 2013).232

We use the implementations of these tests in the torch-two-sample Python library (Djolonga, 2017).233

These are just permutation tests and can be conducted with any statistic, so we additionally run234

permutation tests with the Wasserstein-1 and Wasserstein-2 distance metrics. We run each test with235

1000 permutations. We display the corresponding p-values in the last two sections of Table 1. For all236

tests except the FR and kNN (T, Y ) test on the LaLonde PSID dataset, the p-values are much larger237

than any reasonable value of α. However, we might be worried that these multivariate two-sample238

tests don’t have enough power when we include the higher-dimensional W .239

Demonstration of statistical power via linear baselines We demonstrate that these tests do have240

a decent amount of statistical power (probability of rejecting the null when Pmodel and P differ) by241

fitting a linear Gaussian model to the data and displaying the corresponding p-values in Table 2.242

Even when W is high-dimensional, we are still able to reject the linear models as realistic. For243

example, we clearly have p-values that are below most reasonable values of α for the LaLonde PSID,244

and all three nonlinear LBIDD datasets. As we might expect, for high-dimensional W such as in245

the LBIDD datasets, the (T, Y ) tests have enough power to reject the null hypothesis because they246

operate in only two dimensions, whereas the (W,T, Y ) tests do not because their power suffers247

from the high-dimensionality (179 dimensions). The LaLonde CPS dataset is an example where it248

can be useful to include W in the statistical test; all of the p-values for the (T, Y ) tests are above249

α = .075, whereas all but one of the p-values for the (W,T, Y ) tests are below α = .075. Our250

p-values for the Twins dataset are quite high, but this is not due to these tests not having enough251

power. Rather, it is because the Twins dataset is well modeled by a linear model: T and Y are both252

binary (two parameters) and W is 75-dimensional, so it makes sense that we can linearly predict253

these two parameters from 75 dimensions. We demonstrate how well the linear model fits Twins in254

Table 1: Table of p-values for the various statistical hypothesis tests we run to test the null hypothesis that
real data samples and samples from the generative model come from the same distribution. Large values (e.g.
> 0.05) mean that we don’t have statistically significant evidence that the real and generated data come from
different distributions, so we want to see large values. The first section is univariate tests. The second section is
2-dimensional tests to capture the dependence of Y on T . The third section can be much higher dimensional tests
whose power may suffer from the high dimensionality, but these tests may be able to pick up on the dependence
of T and Y on W that the 2-dimensional tests cannot pick up on.

LALONDE LBIDD
TEST PSID CPS TWINS IHDP QUAD EXP LOG LINEAR

T KS 0.9995 1.0 0.9837 0.9290 0.5935 0.9772 0.4781 0.3912
T ES 0.6971 0.3325 0.7576 0.5587 0.8772 0.6975 0.4157 0.3815
Y KS 0.4968 1.0 0.8914 0.3058 0.2204 0.9146 0.4855 0.4084
Y ES 0.3069 0.1516 0.4466 0.3565 0.2264 0.7223 0.3971 0.1649
(T, Y ) Wass1 0.6914 0.435 0.5088 0.2894 0.3617 0.4391 0.3899 0.5046
(T, Y ) Wass2 0.6638 0.4356 0.4960 0.3365 0.4353 0.4709 0.4205 0.5063
(T, Y ) FR 0.0 0.4004 0.5549 0.4761 0.8610 0.5773 0.5132 0.8355
(T, Y ) kNN 0.0 0.4120 0.4318 0.5978 0.3166 0.3735 0.4902 0.4838
(T, Y ) Energy 0.6311 0.4396 0.5053 0.3186 0.2371 0.4453 0.3988 0.5086
(W,T, Y ) Wass1 0.4210 0.3854 0.4782 1.0 0.5191 0.4219 0.4866 0.5393
(W,T, Y ) Wass2 0.5347 0.3660 0.4728 1.0 0.5182 0.4160 0.4807 0.5381
(W,T, Y ) FR 0.2569 0.4033 0.5068 1.0 0.4829 0.4989 0.5027 0.4893
(W,T, Y ) kNN 0.2270 0.4343 0.4919 1.0 0.5104 0.5101 0.5223 0.4988
(W,T, Y ) Energy 0.5671 0.4177 0.5263 0.9409 0.5104 0.4423 0.5031 0.5421
|W | (n covariates) 8 8 75 25 177 177 177 177
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Table 2: Table of p-values for the various statistical hypothesis tests we run to test the null hypothesis that real
data samples and samples from a linear Gaussian generative model come from the same distribution. Small
values (e.g. < 0.05) mean that these tests have enough power to detect that the real data comes from a different
distribution than the distribution generated by our linear Gaussian generative model.

LALONDE LBIDD
TEST PSID CPS TWINS IHDP QUAD EXP LOG LINEAR

(T, Y ) Wass1 0.0304 0.1500 0.5004 0.2019 0.2009 0.0456 0.1510 0.2832
(T, Y ) Wass2 0.0123 0.0797 0.4924 0.1636 0.4277 0.1314 0.2380 0.3172
(T, Y ) FR 0.0 0.0776 0.5581 0.2825 0.0 0.0014 0.0140 0.7946
(T, Y ) kNN 0.0 0.1808 0.4541 0.4183 0.0 0.0023 0.0013 0.4070
(T, Y ) Energy 0.0482 0.1620 0.5094 0.2249 0.0002 0.0551 0.2020 0.3409
(W,T, Y ) Wass1 0.0470 0.0671 1.0 1.0 0.4917 0.5245 0.8230 0.6777
(W,T, Y ) Wass2 0.4001 0.0624 0.9966 1.0 0.4782 0.5204 0.7840 0.6257
(W,T, Y ) FR 0.1333 0.0525 0.9992 1.0 0.7655 0.6979 0.3651 0.7369
(W,T, Y ) kNN 0.5136 0.0711 1.0 1.0 0.8953 0.8416 0.4510 0.7968
(W,T, Y ) Energy 0.1080 0.2863 0.7389 0.8935 0.5099 0.5142 0.7429 0.7144
|W | (n covariates) 8 8 75 25 177 177 177 177

Figures 5c and 5d in Appendix B. Similarly, the p-values for IHDP are so high because the IHDP255

data is reasonably well fit by the linear model (see Figures 6d to 6f), and the IHDP tests have less256

power since the IHDP dataset is much smaller than the other datasets.257

Realistic causal effects We also show that our generative model admits causal effect estimates that258

roughly match those of the popular semi-synthetic benchmarks IHDP and LBIDD. For each of these259

datasets, we report the true ATE, our generative model’s ATE estimate, the corresponding absolute260

bias, and the PEHE. We report these values in Table 3. The values in the table indicate that our model261

accurately models the causal effects. The one number that is relatively high relative to the others is262

the PEHE for IHDP; this is because the training sample for IHDP is only 374 examples.263

Limitations Although we can statistically test how well RealCause fits the observed distribution264

P (W,T, Y ), we cannot test how well RealCause fits the interventional distributions P (Y | do(T =265

t), w) without making the no unobserved confounding assumption. Due to the fundamental problem266

of causal inference, there is no way of getting around this for arbitrary distributions. Fortunately, we267

can test the interventional distributions of synthetic data such as IHDP and LBIDD; this is why we268

include Table 3. That said, RealCause (or any realistic benchmark) could potentially not model the269

interventional distributions well on other datasets, resulting in suboptimal interventional distributions.270

Additionally, RealCause will be biased based on the specific architecture of the generative model271

it uses. Ideally, one would run RealCause benchmarks using many different generative model272

architectures.273

6 Results274

The reason we spent so much effort establishing that RealCause DGPs are realistic in Section 5 is that275

we can now trust the results that RealCause DGPs yield for important tasks such as the following: (a)276

benchmarking causal estimators and (b) evaluating whether predictive metrics can be used for model277

selection of causal estimators. We first apply RealCause to benchmarking causal estimators. We then278

use these results to analyze correlation between predictive performance and causal performance in279

Section 6.1.280

Table 3: True causal effects, corresponding estimates from our generative model, and associated error.

IHDP LBIDD QUAD LBIDD EXP LBIDD LOG LBIDD LINEAR

True ATE 4.0161 2.5437 -0.6613 0.0549 1.8592
ATE estimate 4.1908 2.4910 -0.6608 0.0555 1.7177
ATE abs bias 0.1747 0.0527 0.0004 0.0005 0.1415
PEHE 51.5279 0.1554 0.0225 0.0151 0.1367
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Datasets and estimators In our evaluations in this section, we use 3 real datasets, 4 meta-estimators,281

15 machine learning models for each of the meta-estimators, and roughly 10 different settings of282

the single most important hyperparameter for each of the machine learning models. Taking the283

Cartesian product over all of those yields over 1500 causal estimators. The 3 datasets we use are284

LaLonde PSID, LaLonde CPS, and Twins; we use RealCause to turn these into datasets where we285

know the ground-truth causal effects. The 4 meta-estimators from causallib (Shimoni et al., 2019)286

we use are standardization (or S-learner), stratified standardization (or T-learner), inverse probability287

weighting (IPW), and IPW with weight trimming. We use a variety of machine learning models from288

scikit-learn (Pedregosa et al., 2011) to plug in to these meta-estimators. For each model, we use a289

grid of values for the most important hyperparameter (according to van Rijn & Hutter (2018)). See290

Appendix E for more info on our estimators.291

Benchmarking causal estimators As one would expect, different causal estimators perform better292

on different datasets. We choose causal estimators within a given model class according to the293

best cross-validated RMSE for standardization estimators and according to the best cross-validated294

average precision for IPW estimators. We divide the ATE RMSEs by each dataset’s ATE and show295

those weighted averages in Figure 2. Interestingly, most of our standardization estimators don’t296

perform very well, but then standardization pair with an RBF-SVM achieves the lowest ATE RMSE.297

While this estimator also achieves the lowest weighted averaged PEHE, it doesn’t have the lowest298

weighted averaged absolute bias. We provide the corresponding plots for ATE absolute bias and299

PEHE along with the more fine-grained full tables by dataset in Appendix C.300

6.1 Predicting causal performance from predictive performance301

The following is known and commonly stated: just because the model(s) used in a causal estimator302

are highly predictive does not mean that the causal estimator will perform well at estimating a causal303

parameter such as τ or τ(w). Then, the following questions naturally arise: (1) How can I choose304

hyperparameters for causal estimators? (2) How can I inform model selection for causal problems?305

In machine learning, the answer is simple: run cross-validation using the relevant predictive metric306

for hyperparameter and model selection. However, we can’t do the analog in causal inference because307

we don’t have access to a corresponding causal metric, due to the fundamental problem of causal308

inference.309

What if it turns out that the hyperparameters and models that yield the best predictive performance also310

yield the best causal performance? Then, hyperparameter and model selection for causal inference311

would be the same as it is for machine learning. We can measure if this is the case by measuring how312

correlated predictive metrics and causal metrics are.313

Correlation measures While Pearson’s correlation coefficient is the most common method for314

measuring correlation, it only captures linear relationships. We are more interested in general315

monotonic relationships (e.g. if the prediction performance of model A is better than the predictive316

performance of model B, then will the causal performance of model A also be better than the causal317

performance of model B?). Therefore, we use Spearman’s rank correlation coefficient (equivalent to318

Pearson’s correlation coefficient on the rank of the random variables) and Kendall’s rank correlation319

coefficient. We also report a more intuitive measure: the probability that the causal performance320

of model A is at least as good as the causal performance of model B, given that the predictive321

performance of model A is at least as good as the predictive performance of model B.322
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Figure 2: ATE RMSE of the different estimators, weighted averaged (by their inverse ATEs) over three datasets
and color-coded by meta-estimator.
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Metrics The main predictive metric we consider for outcome models (predict Y from T and W )323

is the corresponding RMSE (root mean squared error). The main predictive metrics we consider324

for propensity score models (predict binary T from W ) are scikit-learn’s balanced F score, average325

precision, and balanced accuracy. The main causal metric is the PEHE (Hill, 2011).326

Selecting model hyperparameters For a given dataset, meta-estimator, and machine learning327

model class, we must choose the hyperparameters for that specific model class. We show the328

full table of correlation coefficients for how predictive RMSE is of ATE RMSE and PEHE within329

every model class in Appendix D.1. We summarize this with just the median Spearman correlation330

coefficient and the median probability of better or equal causal performance given better or equal331

predictive performance in Table 4; these medians are taken over all models for standardization and332

stratified standardization estimators fit to a given dataset. Importantly, these results show that,333

in this setting, it is a fairly good idea to select hyperparameters for causal estimators based334

on predictive performance. For example, the median probabilities that a better predictive model335

corresponds to a better causal model hover around 80-95% in this summary table. We do the same336

for IPW and propensity score models in Appendix D.2.337

Table 4: Median correlation of predictive RMSE with PEHE in standardization estimators.

DATASET SPEARMAN PROB BETTER

PSID 0.92 0.92
CPS 0.80 0.87
Twins 0.91 0.96

Model selection We just saw that predictive performance is indicative of causal performance when338

choosing hyperparameters within a model class, but what about selecting between model classes after339

choosing hyperparameters via predictive cross-validation? The results are much less positive and340

more dataset-specific. For standardization estimators, there isn’t much correlation on the LaLonde341

datasets, but there is a great deal of correlation on the Twins dataset. For IPW estimators, it is roughly342

the same, except for the fact that average precision has a modest correlation with ATE RMSE on the343

LaLonde CPS dataset. See Appendix D.3 for details.344

Open-source dataset for exploration We created a dataset with 1568 rows (estimators) and 77345

columns (predictive metrics, causal metrics, and estimator specification). Importantly, this dataset346

contains all the predictive metrics that scikit-learn provides and many different causal metrics that we347

compute using RealCause. In this section, we chose one line of analysis for this dataset, but there348

are many others. For example, one can use any machine learning model for predicting any subset of349

causal metrics from any subset of predictive metrics, one can cross-validate over different predictive350

metrics than the ones we used, one can group the data differently, etc. We already see that different351

predictive metrics correlate quite differently with ATE RMSE, depending on the model and dataset in352

Appendix D.2. This suggests that more value might be gained in doing more complex analyses on this353

dataset. We open-source our dataset at https://github.com/bradyneal/causal-benchmark/354

blob/master/causal-predictive-analysis.csv.355

7 Conclusion and future work356

Now that we’ve rigorously shown that RealCause produces realistic DGPs, we are hopeful that others357

will use it. We open-source default benchmark datasets, our trained RealCause generative models, and358

the code to train new generative models on other datasets at https://github.com/bradyneal/359

causal-benchmark.360

There are many important extensions of RealCause that can be done. Adding even more causal361

estimators and more real datasets would be valuable to expand the open-source dataset of predictive362

and causal metrics that we started. Similarly, running the benchmarking suite with various non-default363

settings of RealCause’s knobs (e.g. zero overlap) could lead to useful empirical results about when to364

use various estimators. RealCause’s realism gives us confidence in our evidence that hyperparameters365

for causal estimators can be selected using cross-validation on a predictive metric. There is much366

potential for further analysis of our open-source dataset of predictive and causal metrics. For example,367

future papers or a Kaggle competition to predict causal metrics from predictive metrics would be368

valuable.369
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