
Teaching Responsible Machine Learning to Engineers

Hilde J.P. Weerts 1 Mykola Pechenizkiy 1

Abstract

With the increasing application of machine learn-
ing in practice, there is a growing need to incor-
porate ethical considerations in engineering cur-
ricula. In this paper, we reflect upon the develop-
ment of a course on responsible machine learning
for undergraduate engineering students. We found
that technical material was relatively easy to grasp
when it was directly linked to prior knowledge on
machine learning. However, it was non-trivial
for engineering students to make a deeper con-
nection between real-world outcomes and ethical
considerations such as fairness. Moving forward,
we call upon educators to focus on the develop-
ment of realistic case studies that invite students
to interrogate the role of an engineer.

1. Introduction
As machine learning models are increasingly applied in
practice, there is a growing interest in their responsible
development and use. Although humanities scholars have
studied the ethical implications of artificial intelligence for
decades, the widespread application of machine learning
techniques has opened up new avenues for studying the
interaction between intelligent systems and society. At the
same time, major machine learning venues have attracted
manuscripts that address technical challenges of formulating
and achieving fairness and explainability.

Within and across research communities there is an in-
creased understanding that applying machine learning re-
sponsibly is a sociotechnical challenge that should be ad-
dressed from a multidisciplinary perspective (e.g., Raji et al.,
2021). This sentiment is illustrated in an emergence of
new cross-disciplinary conferences (most notably FAccT1,
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FORC2, and AIES3) and specialized workshops (e.g., Bias
and Fairness in AI (Calders et al., 2021)).

It seems imperative that practitioners understand in what
ways machine learning models may pose ethical risks and
how these risks can be mitigated. Indeed, there is a growing
interest to incorporate responsible design in computer sci-
ence education (Zegura et al., 2020; Raji et al., 2021; Fiesler
et al., 2021). However, education on topics of fairness,
accountability, confidentiality, and transparency (FACT)
geared toward engineers is still in its infancy.

Responsible Machine Learning Education In some pro-
grams, ethical considerations are covered as a stand-alone
course, emphasizing normative ethical theories. In other pro-
grams, ethics may be incorporated as a seminar following
a more technical module. While these classes are valuable,
they are at risk of divorcing ethical considerations from
technical practice (Malazita & Resetar, 2019; Fiesler et al.,
2021). As a result, students may have a hard time applying
ethical considerations in their daily professional practice
(Fiesler et al., 2021).

Instead, we believe there is a need to teach responsible
machine learning in a way that (1) encourages students to
engage with ethical considerations of machine learning sys-
tems, (2) is applicable to the daily practice of engineers,
i.e., provides concrete and actionable pointers. With these
goals in mind, we have designed a new course, Responsi-
ble Machine Learning (RML), at Eindhoven University of
Technology in the Netherlands, targeted primarily at final-
stage undergraduate engineering students majoring in either
data science or computer science. We expect the course
to be equally suitable for students of other technical dis-
ciplines, such as statistics or theoretical computer science,
provided they have prior experience with machine learning
and programming.

In this paper, we detail the instructional design of the course
and reflect upon our experiences. Although RML covered
various topics, we will limit our discussion mostly to teach-
ing algorithmic fairness. In the remainder of this paper, we
assume the reader is familiar with basic concepts of algo-
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rithmic fairness (see e.g., Chouldechova & Roth (2020) for
a recent survey).

Lessons Learned After the first course iteration, we
found that technical material was relatively easy to grasp
for our target audience when it was directly linked to prior
knowledge on machine learning. In particular, we found toy
examples, demos, and tutorials to be useful tools to foster
student understanding.

However, we have also noticed that it was non-trivial for
our students to make a deeper connection between real-
world outcomes and algorithmic fairness. One of the main
challenges in teaching RML was to simplify a complex topic
to facilitate understanding, without reducing it to a narrow,
technical perspective. To this end, realistic and concrete
case studies as well as invited lectures were helpful.

Moving Forward Despite the raising level of public and
academic discourse, high-quality educational resources suit-
able for undergraduate engineering students are scarce.
Moving forward, we call upon educators to develop more
realistic and concrete case studies, allowing engineering
students to connect ethical considerations and technical
decision-making in a more meaningful way.

Outline The remainder of this paper is structured as fol-
lows. In Section 2, we describe our course design and reflect
upon our experiences. In Section 3, we sketch paths for fu-
ture work.

2. Course Design
Following the principles of constructive alignment (Kan-
dlbinder et al., 2014), our course design consists of three
components: learning objectives, learning activities, and
assessment. Due to COVID-19 restrictions, the course was
taught fully online.

2.1. Learning Objectives

RML is structured around four main themes: Fairness, Ac-
countability, Confidentiality, and Transparency (FACT). Of
these themes, fairness and transparency are covered most
extensively. The learning objectives of the course were as
follows.

At the end of the course, students will be able to:

1. Evaluate and communicate trade-offs between (so-
cio)technical desiderata of machine learning applications,
taking into account diverse stakeholders’ perspectives.

2. Explain technical and organizational strategies for ad-
vancing FACT throughout the machine learning develop-
ment process.

3. Select and implement appropriate strategies for enhanc-
ing algorithmic fairness and interpretable/explainable ma-
chine learning.

We would like to highlight a few aspects of these objec-
tives. First of all, learning objective 1 emphasizes communi-
cating trade-offs. Even well-intentioned practitioners can
contribute to harmful technology through implicit design
choices. By making trade-offs more explicit, they can be
discussed with other stakeholders, fostering accountability.
Second, learning objective 1 emphasizes engaging diverse
stakeholders, the importance of which as been stressed pre-
viously by e.g., Raji et al. (2021). Third, learning objective
2 highlights how different strategies can be applied through-
out the machine learning development process - not just as
an afterthought. And finally, learning objective 3 requires
students to implement technical evaluation and mitigation
strategies, marrying ethical considerations with the daily
practice of an engineer.

2.2. Teaching Materials

We have found that high-quality teaching materials geared
towards undergraduate engineering students are scarce. Al-
though there exist several graduate-level courses that cover
FACT topics in a research seminar format, we consider this
format less suitable for undergraduate students. First of all,
undergraduate students may not be able to fully grasp highly
technical papers. Second, critical position papers typically
assume a level of familiarity with the research field that
cannot be expected from undergraduate students.

For RML, we have tried to fill this gap through the develop-
ment of lectures, lecture notes (Weerts, 2021), and tutorials4.
Additionally, assigned reading included several chapters of
Barocas et al. (2019) (an incomplete work in progress at the
time) and Kamiran et al. (2013a).

2.2.1. SYLLABUS

We start the course with an introduction to a responsible
machine learning process, structured around the CRISP-DM
process model (Wirth & Hipp, 2000). In accordance to learn-
ing objective 1, our introduction emphasizes the importance
of the machine learning problem understanding stage. Is
this the right problem to solve? Who are the stakeholders of
the envisioned system? In particular, we exemplify different
types of harm, structured against the moral values they go
against (e.g., safety, fairness, transparency, autonomy).

The second module of the course revolves around fairness of
machine learning algorithms and the challenges associated
with this (learning objectives 2 and 3). We cover several
fairness metrics and mitigation algorithms coined by the
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machine learning community and discuss their limitations.
To facilitate a deeper understanding of the relationship be-
tween fairness and technical design choices, we have also
developed several tutorials in the form of Jupyter notebook
(Kluyver et al., 2016), revolving around a case study of
Propublica’s analysis of COMPAS (Angwin et al., 2016)
leveraging modules of the Python library Fairlearn (Bird
et al., 2020). Although these notebooks contain code, their
primary purpose is to help students consider the applicability
and limitations of fairness metrics and mitigation algorithms.
Finally, invited lectures of both researchers and practitioners
engaged students with contemporary research discussions
and showcased challenges data scientists face in practice.

2.2.2. FAIRNESS AS AN OPTIMIZATION PROBLEM

We found that connecting fairness metrics and algorithms
with prior knowledge on machine learning helped students
to understand technical details. In particular, the usage of
toy examples, demos, and code tutorials seemed to increase
student understanding.

Many technical approaches aimed at achieving fairness can
be framed as an optimization problem (Zafar et al., 2019).
Through this lens, the goal is to maintain good predictive
performance while satisfying fairness constraints. This can
be achieved via several techniques including fairness-aware
representation learning (Zemel et al., 2013; Hu et al., 2020),
regularization, or post-processing of specific (Kamiran et al.,
2010) or any (Hardt et al., 2016) trained models or model
outputs. Mastering these topics becomes easier if a student
has recently learned about concepts such as cost-sensitive
learning. Similarly, prior understanding of trade-offs be-
tween predictive performance metrics (e.g., ROC-curve anal-
ysis) helps to better understand other trade-offs, such as a
fairness-accuracy trade-off or conflicting notions of fairness.

We experienced difficulty in teaching counterfactual fairness
(Kusner et al., 2017) in a compact way, as the majority of
our students have not previously studied causal inference.
However, exemplifying Simpson’s paradox5 in the context
of measuring and reasoning about group fairness, and intro-
ducing the notion of explainable discrimination (Kamiran
et al., 2013b) helped students to understand the limitations
of purely statistical approaches and the need for taking a
causal perspective.

2.2.3. FAIRNESS AS A SOCIOTECHNICAL CHALLENGE

As we will expand upon in Section 2.3, it was non-trivial
for students to connect technical design choices and real-
world outcomes. As such, one of the main challenges in

5Simpson’s paradox (Simpson, 1951) is a phenomenon in
which an association between two variables in a population disap-
pears or reverses when it is analyzed within subgroups.

developing teaching materials was to simplify a complex,
sociotechnical challenge like fairness into something that
can be understood by our target audience, without reducing
it to a narrow, technical perspective.

For example, historical biases may be encoded in data,
which can result in downstream allocation harms. While this
is important to understand, reducing unfairness to “bias in,
bias out” foregoes many more fundamental questions, such
as whether a predictive model should exist at all. Similarly,
after covering fairness metrics, an often-heard question is
“which fairness metric should I use?”. The answer to this
question highly depends on the context of an application.
To some extent, reducing the complexity of these challenges
through general frameworks seems unavoidable, but risks
only a surface-level student engagement with a context.

2.3. Assessment

The assessment of RML consisted of three components, an
individual assignment (20%), three quizzes (15%), and a
final group project (65%). As most of our findings relate to
the individual assignment and group project, we will limit
our discussion to these.

2.3.1. INDIVIDUAL ASSIGNMENT

Following the first module, students practiced identifying
risks and balancing trade-offs of machine learning systems
(learning objective 1) in the form of an individual assign-
ment. The assignment was inspired by Zegura et al. (2020),
who developed two role playing activities in which students
need to decide upon the deployment of a system. In RML,
the individual assignment was in the form of an individual
report covering two scenarios, complemented by two group
discussions after which students could revise their report.

The group discussions served to practice communicating
trade-offs and exchanging views with peers. As our target
audience is generally not familiar with instructional formats
involving group discussions, we provided students with a
suggested timing, meeting roles, and discussion guidelines.

The majority of students appreciated the group discussion
format, as it allowed them to gain new insights. This was
reflected in their reports: most students were able to iden-
tify relevant stakeholders and high-level benefits and risks.
However, students had more difficulty with the precise for-
mulation of risks and mitigation strategies. For example,
students would write that the system “should be fair for all
patients” or “without bias against minority groups” with-
out exemplifying what “fair” or “without bias” entailed in
this specific scenario. Similarly, students sometimes had
difficulty connecting RML design choices to the identified
risks, reflected in ambiguous phrasing of how mitigation
strategies might alleviate some of the risks.
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2.3.2. GROUP PROJECT

For the final assessment, we have taken a problem-based
learning approach (De Graaf & Kolmos, 2003). In teams
of five, students went through all stages of the machine
learning development process (except for deployment) and
implemented techniques for enhancing fairness and explain-
ability (learning objective 3).

The development of a suitable project was highly non-trivial.
We believe that developing a realistic prototype is crucial
for students to fully appreciate the challenges of responsible
design from the perspective of an engineer. As such, we set
out to find a suitable real-world data set accompanied by
a realistic scenario. Fairness assessments involve sensitive
data, which made it challenging to find an external part-
ner willing to collaborate in the context of undergraduate
course work. Additionally, bench-marking data sets that are
routinely used in fairness research often lack the necessary
context (e.g., the UCI Adult data set) or relate to contested
applications of machine learning (e.g., Propublica’s COM-
PAS data set, see Bao et al. (2021)).

Eventually, we settled upon the MIMIC-Extract data set
(Wang et al., 2020), a partly preprocessed data set built
upon the critical care database MIMIC-III (Johnson et al.,
2016). The associated task was the development of an ICU
mortality prediction model that could be used as decision-
support tool for physicians. In the assignment, the tool was
positioned as a potential alternative to the well-established
Sequential Organ Failure Assessment (SOFA) scores.

By design, the assignment was relatively open-ended. Al-
though the scenario hinted towards fairness and trans-
parency, no explicit requirements were given. Instead, stu-
dents were required to identify requirements through their
analysis of the context. To emphasize the importance of
the problem formulation, a large proportion of points was
awarded to this part of the assignment (learning objective
1). To teach the importance of fostering accountability, stu-
dents were also required to fill out a data sheet (Gebru et al.,
2018) and model card (Mitchell et al., 2019). Finally, stu-
dents were asked to reflect upon their findings and (ethical)
implications of limitations of their developed model.

In the course evaluation, some students indicated that they
struggled with the open-ended nature and independent plan-
ning of the project. For future course iterations, we plan to
provide more guidance regarding the planning and report.
Nevertheless, we found that many students highly appre-
ciated the project. Most groups were able to successfully
apply various machine learning techniques, including fair-
ness assessment and techniques for enhancing explainability.
However, some groups were not able to articulate the rel-
evance of these approaches precisely in the given context.
For example, students were able to successfully compute a

set of fairness metrics, but did not explain convincingly why
the metrics were suitable for the problem at hand.

3. Moving Forward
With the design of RML, we set out to build a bridge be-
tween ethical and technical perspectives, in a way that
speaks to engineers. In this paper, we have showcased
our approach and reflected upon our experiences. However,
much work remains to be done.

3.1. Realistic Case Studies

Although there is an increasing number of examples that
showcase how machine learning models can be harmful, it
can be difficult for students to connect technical decision-
making with ethical implications beyond surface-level obser-
vations. As such, we believe realistic, detailed, and concrete
case studies are crucial to facilitate student learning.

However, it has proven difficult to develop these materials
within the context of a single university course. Publicly
available data sets often lack the required contextualization,
such as a datasheet (Gebru et al., 2018) or a realistic use
case. Some of these issues might be alleviated through the
use of carefully crafted synthetic data. However, that would
still not allow students to engage with stakeholders’ perspec-
tives in a meaningful way and instead leave them to rely
on their own assumptions. One way forward would be to
expand a case study not only with a description of the sce-
nario, but also with direct input from (potentially fictional)
stakeholders. For example, we could provide students with
video-recorded or transcribed interviews.

3.2. Interrogating the Role of an Engineer

Ethical development of machine learning is a sociotechnical
challenge that cannot be solved by engineers alone. In our
view, engineering students should not be expected to be
well-versed in all these different disciplines. Instead, we
believe it is important to show students the limitations of
the computer science lens and present concrete approaches
to invite other perspectives.

Therefore, we call on educators to develop more examples of
multidisciplinary work that showcase the role of an engineer
in relation to other actors. For example, Raji et al. (2021)
suggest to develop frameworks to cooperate with peers from
other disciplines and to engage with affected populations. At
engineering universities, organizing team work with other
disciplines can be impractical. A different way to reflect
the importance of other disciplines in course work would be
to give students the opportunity to consult external experts,
possibly in the form of auxiliary materials that are only
provided on demand.



Teaching Responsible Machine Learning to Engineers

References
Angwin, J., Larson, J., Mattu, S., and Kirchner, L. Machine

bias. ProPublica, May, 23(2016):139–159, 2016.

Bao, M., Zhou, A., Zottola, S., Brubach, B., Desmarais,
S., Horowitz, A., Lum, K., and Venkatasubramanian, S.
It’s compaslicated: The messy relationship between rai
datasets and algorithmic fairness benchmarks, 2021.

Barocas, S., Hardt, M., and Narayanan, A. Fairness and
Machine Learning. fairmlbook.org, 2019. http://
www.fairmlbook.org.

Bird, S., Dudı́k, M., Edgar, R., Horn, B., Lutz, R., Milan,
V., Sameki, M., Wallach, H., and Walker, K. Fairlearn: A
toolkit for assessing and improving fairness in AI. Tech-
nical Report MSR-TR-2020-32, Microsoft, May 2020.

Calders, T., Ntoutsi, E., Pechenizkiy, M., Rosenhahn, B.,
and Ruggieri, S. Introduction to the special section on
bias and fairness in AI. SIGKDD Explor., 23(1):1–3,
2021. doi: 10.1145/3468507.3468509. URL https:
//doi.org/10.1145/3468507.3468509.

Chouldechova, A. and Roth, A. A snapshot of the
frontiers of fairness in machine learning. Commun.
ACM, 63(5):82–89, April 2020. ISSN 0001-0782.
doi: 10.1145/3376898. URL https://doi.org/10.
1145/3376898.

De Graaf, E. and Kolmos, A. Characteristics of problem-
based learning. International Journal of Engineering
Education, 19(5):657–662, 2003.

Fiesler, C., Friske, M., Garrett, N., Muzny, F., Smith,
J. J., and Zietz, J. Integrating Ethics into Introduc-
tory Programming Classes, pp. 1027–1033. Association
for Computing Machinery, New York, NY, USA, 2021.
ISBN 9781450380621. URL https://doi.org/10.
1145/3408877.3432510.

Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W.,
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