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Abstract

High-quality and high-coverage rule sets are
imperative to the success of Neuro-Symbolic
Knowledge Graph Completion (NS-KGC)
models, because they form the basis of all sym-
bolic inferences. Recent literature builds neu-
ral models for generating rule sets, however,
preliminary experiments show that they strug-
gle with maintaining high coverage. In this
work, we suggest three simple augmentations
to existing rule sets: (1) transforming rules to
their abductive forms, (2) generating equivalent
rules that use inverse forms of constituent rela-
tions and (3) random walks that propose new
rules. Finally, we prune potentially low quality
rules. Experiments over four datasets and four
ruleset-baseline settings suggest that these sim-
ple augmentations consistently improve results,
and obtain up to 7.1 pt MRR and 8.5 pt Hits@1
gains over using rules without augmentations.

1 Introduction

Knowledge Graphs (KGs) comprise important
world knowledge facts, but are typically incom-
plete, due to their ever-increasing size. KG em-
beddings (Wang et al., 2017) has been the domi-
nant methodology for knowledge graph completion
(KGC). A KG embedding approach represents en-
tities and relations as learnable dense vectors and
computes a score for an unseen fact as a function
over them. These generally have state-of-the-art
performance, especially for large KGs.

Recently, neuro-symbolic (NS-KGC) ap-
proaches for the task have been proposed, where
KG embeddings are enhanced by inferences over
an explicit first-order logic rule set (Zhang et al.,
2020; Qu et al., 2021). The resulting models bring
together best of both worlds — generalizability
and interpretability of explicit logical rules,
and the scalability and representation power of
embeddings. Unfortunately, a key roadblock
for success of NS-KGC is the availability of a
high-coverage rule set.

Early NS-KGC methods, such as Neu-
ralLP (Yang et al., 2017) and DRUM (Sadeghian
et al., 2019), learn rules as part of a single model,
but do not have performance competitive with
embedding models such as RotatE (Sun et al.,
2019). A recent NS-KGC model, RNNLogic (Qu
et al., 2021), matches empirical performance with
embedding approaches. It has a separate neural
component that outputs a set of rules, which is then
used to train inference parameters, in an EM-based
approach. Preliminary experiments on RNNLogic
suggest that its ruleset has limited coverage, due
to which symbolic inferences do not fire for many
queries, and the model gets limited to using its
embedding part only. The goal of this work is to
strengthen the symbolic inferences in NS-KGC
models for better overall performance.

In this work, we propose simple augmentations
that takes an existing ruleset (such as one output
by RNNLogic) and proposes additional (related)
rules to improve coverage and quality. We pro-
pose three augmentations. First, we convert each
deductive rule into its abductive counterparts. Sec-
ond, we supplement each rule via an equivalent
rule that uses inverses for all constituent relations.
Third, we generate additional high-quality rules
independently by local random walks and subse-
quent PCA filtering (Galarraga et al., 2013). These
increase size of ruleset drastically; we balance run-
times by additionally pruning rules from existing
set using our filtering approach. Overall, this re-
sults in a comparable number of high-quality and
high-coverage rules, for use in NS-KGC.

On four KGC datasets, using two starting rule-
sets and over two RNNLogic based models, we find
that our augmentations consistently improve KGC
performance, outperforming no augmentation base-
lines by up to 7.1 MRR and 8.5 Hits@1 pts. We
believe that our augmentations should become stan-
dard pre-processing practice for all NS-KGC ap-
proaches. We release our code and rulesets.



2 Background and Related Work

We are given an incomplete KG K = (£, R, T)
consisting of entities &£, relation set R and set 7 =
{(h,r,t)} of triples. Our goal is to predict the
validity of any triple not present in 7.

Related Work: Existing work on NS-KGC can
roughly be characterized into four types. One ap-
proach is to use attention over relations to learn
end-to-end differentiable models (Yang et al., 2017,
Sadeghian et al., 2019). A second approach, which
includes Minerva (Das et al., 2018) and Deep-
Path (Xiong et al., 2017), uses RL to train an agent
to find reasoning paths for KG completion. These
approaches are not yet competitive to KG embed-
ding models for large datasets. Thirdly, models like
ExpressGNN (Zhang et al., 2020) and RNNLogic
use variational inference to assess plausibility of a
given triple. We build on RNNLogic, as it scales
better with large rulesets. The final type includes
UNIKER (Cheng et al., 2021) and RUGE (Guo
et al., 2018), which integrate embeddings along-
side traditional rules learnt via ILP models. We
believe that our augmented rules can benefit these
works too. Since our experiments are based on
RNNLogic and we utilize PCA scores for filtering,
we describe these in some detail next.

RNNLogic+: As a pre-processing step, for every
r € R, RNNLogic adds a relation ~! to R, and
corresponding facts using inverse relations to 7.
RNNLogic first produces a set of first order rules
(£) using an LSTM. which are used by the RNN-
Logic+ predictor to compute the score of a given
triple. Given a query (h, r, 7), the candidate answer
o is scored by RNNLogic+ as:
scor(o) = MLP(PNA({v1 | #(h,1,0)}1c2)) (1)
where the learnable embedding v, of a given rule
1 € L is weighted by the number of groundings
(#) that triple (h, r, o) satisfies in the rule 1’s body.
The resulting weighted embeddings of all rules are
aggregated by employing PNA aggregator (Corso
et al., 2020) and this aggregated embedding is
passed through an MLP to obtain a final score.
The authors designed another scoring function
that incorporates RotatE (Sun et al., 2019) into the
scoring function, scor(o), in equation (1) where
the goal is to exploit the knowledge encoded in the
KG embeddings. The resulting scoring function is:

scoreggg(o) = scor(o)+nRotatE (h,r,0) (2)

where RotatE (h, r,0) is the score of the triple
obtained from RotatE, and 7 is a hyper-parameter.

PCA Score: It is a symbolic rule confidence met-
ric proposed in AMIE (2013) — see Appendix G
for details. Broadly, it is the number of positive
examples satisfied by a rule, divided by the total
number of tails reached by the rule from heads oc-
curring in the training dataset. Its performance in
the context of AMIE was not as good due to its
purely symbolic approach, and we are the first to
show its utility in the context of NS-KGC.

3 Rule Augmentation in NS-KGC Models

With the aim of maximal utilization of a given rule
1 € L, we first propose two rule augmentation
techniques, abduction and rule inversion. The other
two techniques prune low-quality rules from £, and
independently add new rules to increase coverage.
All rule augmentations are generic and can be inte-
grated with any existing ruleset, and any NS-KGC
model.

Abduction: The goal of abductive reasoning (or
abduction) is to find the best explanation from a
given set of observations (Pierce, 1935). It has
seen limited use in the context of KBs (Yoshikawa
et al., 2019). In our approach, for every rule in £,
we introduce several abductive rules with one of
the antecedants, appearing as a consequent. As an
example, consider the rule:

R1(X,Y) AR2(Y,Z) AR3(Z,W) = RH(X, W)

Our augmentation will generate abductive rules,
one for each relation in the body, as:

R2(Y,Z) AR3(Z,W) ARH ' (W,X) = R17(Y,X)
R3(Z,W) ARH ' (W,X) ARL(X,Y) = R27%(Z,Y)
RH'(W,X) ARL(X,Y) AR2(Y,Z) = R3™ (W, 2)

As an example, let’s say a learned rule is
BornIn(X,U) A PlaceInCountry(U,Y) =-Natio
nality(X,Y). If in the KG, we know that Oprah
has nationality U.S., and that she is born in
Mississippi, then abduction allows the model to
hypothesize that Mississippi might be in U.S.
Of course, not all abductions are accurate, for
instance, just because Alabama is known to be
in U.S., does not mean that Oprah was born in
Alabama. Abductive rules increase rule coverage
at the cost of precision. We expect predictor scorer
to automatically handle which (abductive) rules
can and cannot be trusted.

Rule Inversion: Our second rule augmen-

tation takes an existing rule and rewrites
it by referring to inverses of all relations.



Table 1: Results of reasoning on four datasets with RNNLogic+ (RNN). Orig represent RNNLogic rules. RotE
represents RotatE. AUG represents our proposed augmentations. RW denotes rules discovered by random walks.

Algorithm WNI18RR FB15K-237 Kinship UMLS
MRR H@l H@l0] MRR H@l H@10] MRR H@l H@10| MRR H@l1 H®@10

RNN|-(RW) 442 416 487 | 264 198 399 | 632 478 937 | 747 63.1 930
RNN]-(RW+AUG) 477 443 543 | 295 215 453 | 657 509 948 | 797 69.5 957
RNN+RotE]-(RW) 487 451 559 | 30.8 228 469 | 714 58.0 957 | 820 735 953
RNN+RotE|-(RW+AUG) 51.1 474 585 | 314 233 479 | 719 589 962 | 838 758 96.4
RNN]-(Orig) 49.6 455 574 | 329 240 50.6 | 61.6 463 91.8 | 814 712 957
RNN]-(Orig+AUG) 527 483 613 | 345 257 519 | 687 548 957 | 840 752 96.4
RNN+RotE]-(Orig) 51.6 474 602 | 343 256 524 | 689 549 946 | 815 712 96.0
RNN+RotE|-(Orig+AUG) | 550 51.0 63.5 | 353 265 529 | 729 599 964 | 842 761 96.5

As an example,

if a rule uses the path

UMLS (Kok and Domingos, 2007).

For each

BornIn PlaceInCountry

Oprah ——— Mississippi Us,

then it could also use the equivalent path
! . . . . BornIn!

Us Mississippi ———

Oprah. Formally, for every original rule:

PlaceInCountry™

R1(X,Y) AR2(Y,Z) AR3(Z,W) = RH(X,W)
we add to the ruleset the following inverted rule:
R37}(W,Z) AR27Y(Z,Y) ARL™}(Y,X) = RH }(W,X)

Rule Filtering: Augmentations increase the size
of the ruleset. In order to reduce the number of
parameters and the training/test times of the NS-
KGC model, we prune seemingly low-quality rules
from the augmented rulebase. For this, we compute
the PCA score for each original and augmented
rule and prune all the rules that have score less
than a threshold (set at 0.01 in experiments) and
have less than 10 groundings. So, all low-coverage
rules with seemingly low quality are pruned out.
As experiments show, this results in up to 70%
reduction in the number of rules, while preserving
KGC performance.

Random Walk Augmentation: Motivated by the
empirical success of PCA scores for finding good
rules in the previous step, we further augment our
ruleset with new, high scoring rules generated in-
dependently via local random walks. Starting at
each entity in the KG, we perform a number of
random walks of fixed length. Each such random
walk constitutes the body of the rule and the rela-
tion connecting the end entities in the KG form the
head of the discovered rule. We score these rules
by the PCA score and retain all such rules that have
PCA score above the threshold (of 0.1).

4 Experiments

Datasets: We use four datasets for evalua-
tion: WNI18RR (Dettmers et al., 2018), FB15k-
237 (Toutanova and Chen, 2015), Kinship and

triple in test set, we answer queries (h,r,?) and
(t,r~%,7) with answers t and h. We report the
Mean Reciprocal Rank (MRR) and Hit@k (H@1,
H@10) under the filtered measures (Bordes et al.,
2013). Details and data stats are in Appendix A.

Baselines: We experiment with two base mod-
els: RNNLogic—+ ([RNN] in tables), and RNNLogic+
with RotatE ([RNN+RotE|) (Eqn 2). We run these
models with two rulesets: (1) Orig, rules generated
by RNNLogic (around 300 rules per relation for
WNI18RR and FB15k-237, and 1000 rules per rela-
tion for Kinship and UMLS), and (2) RW, only the
rules discovered by our random walks. This second
setting can only evaluate the value of abduction,
inversion, and pruning since random walks are any-
ways used in generating rules. We also tried rule-
sets from NeuralLP (2017), but they are too small
to be useful with RNNLogic+. The only other NS-
KGC model that has reported performance similar
to RNNLogic+ is RLogic (2022). Unfortunately,
their code is not available.! We use AUG to denote
the performance of rule augmentations. More de-
tails in appendix B and C.

Results: We report the results in Table 1 (further
details in appendix D). We observe that in all set-
tings, there is a notable increase in performance
using augmented rules. In particular, we obtain
7.1 pt and 8.5 pt increase in MRR and Hits@1 in
[RNN]-(Orig) setting on Kinship, and 3.5 pt and
5.6 pt increase in MRR and Hits@ 10 in [RNN]-(RW)
setting for WN18RR dataset. We also find that
rule augmentations complement RotatE scores in
capturing more information about the KG, lead-
ing to improved performance in those settings too.
To the best of our knowledge, our best results for
WNI18RR are state-of-the-art for NS-KGC models.

'Our reimplementation could not match reported results,
and sending several emails to original authors was not helpful.



5 Analysis of Augmented Rules

We perform three further analyses to answer the
following questions. Q1. Are the rules created by
abduction and rule inversion of high quality? Q2.
What is the individual effect of each type of aug-
mentation on the performance? Q3. Can we get the
same performance as augmentation by generating
more rules from the LSTM in RNNLogic?

Quality of New Rules: To answer Q1, we employ
two metrics to assess quality of rules, (PCA-metric
and FOIL-metric) before and after abduction and
rule inversion. The rules obtained from random
walks have high scores by construction since they
are filtered based on PCA score. Therefore, they
are of high quality as per our definition. (Details in
Appendix G and H)

Table 2: Number of high quality rules before and after
augmentations on rules generated by RNNLogic.

Rule Set WN18RR UMLS
FOIL PCA | FOIL PCA
Original 2286 2647 | 25079 28982
Original w/ INV 3157 3577 | 42188 46908
Original w/ ABD 7141 7607 | 68693 84554
Original w/ INV + ABD | 8502 9155 | 100146 125019

Table 2 presents the number of rules that have a

score of at least 0.1 according to each metric, which
we regard as criteria for defining a high-quality
rule. We observe that there is a large increase in
the number of high-quality rules after abduction
and rule inversion, nearly tripling in the case of
abduction (row 1 vs row 3). This is because the
augmented rules exploit the same groundings as
the original rules, in the form of new rules. Thus,
augmented counterparts of high-quality rules are
likely to be high-quality. Overall, we find that
abduction and rule inversion does indeed produce
high-quality rules.
Ablation: To answer Q2, we perform an ablation
study for inversion (INV), abduction (ABD), random
walk augmentation (RW) and rule filtering (FIL)
on [RNN+RotE]-(Orig) setting for WN18RR and
Kinship datasets to observe the impact of each type
of augmentation. The results are presented in Table
3 (Details in Appendix E)

In general, abduction (row 3) gives larger im-
provements than rule inversion (row 2) because
as we noticed in the previous section, abduction
adds a larger number of high-quality rules to the
rule set. We also find that adding the PCA-based
random walk rules results in performance improve-
ment, even with only 5% new rules being added (as
in the case of Kinship) as compared to original rule

set. Finally, we find that filtering the rules based
on the PCA metric results in marginal performance
improvement, along with lower running times.

Table 3: Ablation study on WN18RR and Kinship for
filtering (FIL), inversion (INV), abduction (ABD) and
PCA-filtered random walk augmentation (RW).

Algorithm WNI18RR Kinship
8 MRR H@l H@10] MRR H@1 H@I10
AUG 550 51.0 635 | 729 599 964

AUG minus ABD| 52.2 478 61.0 | 71.3 57.8 96.2
AUG minus INV| 544 500 627 | 71.3 57.7 964
AUG minus FIL| 55.0 506 633 | 725 595 964
AUG minus RW | 54.6 50.1 632 | 70.7 57.1 95.6

Rule Generation vs Rule Augmentation: Our
augmentations result in 100-200% increase in the
number of rules across datasets after filtering.
Since the training time of RNNLogic+ scales nearly
linearly with the number of rules, there is a com-
mensurate increase in training time. As a control
experiment, we train RNNLogic to generate 80
rules per relation (R/R) and augment the resulting
rules without filtering (for fair comparison). We
further train RNNLogic with 500 rules per rela-
tion without augmentation and compare the per-
formance of both rulesets (which have comparable
size) using [RNN+RotE] on WN18RR and Kinship
data in Table 4 (see Appendix F).

Table 4: Performance of augmentation on WN18RR
and Kinship. R/R and TR is number of rules per relation
and total rules generated from RNNLogic respectively.

Damset [RR TR AUG MRR H@l He@I0
80 0867  Yes 490 449 567
WNISRR| 500 11000 No 477 437 552
80 18432  Yes 695 561 94.6
500 25000 No 661 521 931

Kinship

We observe that rule augmentations lead to large
improvement over rule generation in all cases.
Thus, we find that rule augmentation is more ben-
eficial than simply using more rules from the rule
generator. Augmentations exploit a small number
of high-quality rules to their full potential.

6 Conclusion and Future Work

We present simple rule augmentation techniques in
the context of Neuro-Symbolic Knowledge Graph
models and obtain substantial increase in perfor-
mance over strong base models. We hope our aug-
mentations become standard for all subsequent NS-
KGC models. We release code and rulesets for
further research. Future work includes directly
using augmentation within RNNLogic’s rule gen-
eration procedure. Moreover, adding scoring func-
tions such as FOIL and PCA into the rule generator
could also help in determining yet better rules.



Limitations

Since rule abduction and inversion utilize the same
groundings as the original rules, Neuro-Symbolic
KGC models that are based on grounding the en-
tire rule will not benefit from these augmentations.
Abduction and inversion also require the model
to be trained on a knowledge graph that contains
the inverse relations r~! for each relation r. Fi-
nally, since RNNLogic+ has a separate rule embed-
ding for each rule, performing rule augmentation
increases the number of parameters in the model
and leads to longer training times and larger GPU
memory consumption.

Ethics Statement

We anticipate no substantial ethical issues arising
due to our work on rule augmentation for Neuro-
Symbolic KGC. Our work relies on a set of rules
generated from another source to perform augmen-
tation. This may result in the augmented rule set
exaggerating the effect of malicious or biased rules
in the original rule set.
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A Data Statistics and Evaluation Metrics

Table 5 summarizes the statistics of the data used
in the experiments of our work. We utilize the stan-
dard train, validation and test splits for WN18RR
and FB15k-237 datasets. Since there are no stan-
dard splits for UMLS and Kinship datasets, for
consistency, we employ the splits used by RNN-
Logic (2021) for evaluation (created by randomly
sampling 30% triplets for training, 20% for valida-
tion and the rest 50% for testing).

Metrics: For each triplet (h,r,t) in the test
set, traditionally queries of the form (h, r,?) and
(7, x,t) are created for evaluation, with answers t
and h respectively. We model the (7, r,t) query
as (t,r~ !, ?) with the same answer h, where r !
is the inverse relation for r. In order to train the
model over the inverse relations, we similarly aug-
ment the training data with an additional (t,r~*,h)
triple for every triple (h, r,t) present in KG.

Given ranks for all queries, we report the Mean
Reciprocal Rank (MRR) and Hit@k (H@k, k =
1, 10) under the filtered setting in the main pa-
per and two additional metrics: Mean Rank (MR)
and Hits@3 in the appendices. MRR and Hits@k
metrics are reported after multiplying with 100.
To maintain consistency with RNNLogic, in cases
where the model assigns same probability to other
entities along with the answer, we compute the
rank as (m + ("QLl)) where m is the number of
entities with higher probabilities than the correct
answer and n is the number of entities with same
probability as the answer.

B Experimental Setup for RNNLogic

In order to obtain main results in Table 1, we
train the rule generator in RNNLogic with opti-
mal hyperparameters provided in the paper and

generate a set of high quality Horn rules to use
for training RNNLogic+. For our best results, we
utilize optimal rules provided by the authors of
RNNLogic?>. We augment these rules by abduc-
tion (ABD), and then rule inversion (INV) on both
the original rules and the rules formed after abduc-
tion. We further augment the rulebase with the
rules discovered by random walks (RW). Finally,
we filter (FIL) superior rules from these rules by
PCA score. We present statistics detailing the num-
ber of rules used per dataset after each augmen-
tation step in Table 6. These rules are utilized in
RNNogic+ ([RNN]-(0rig)) and RNNLogic+ with
RotatE ([RNN+RotE|-(0Orig)) baselines. For the
other results: [RNN]-(RW) and [RNN+RotE|-(RW), we
employ only the rules obtained by RW augmenta-
tion and train RNNLogic+ model with them. The
goal of these set of results is to test the utility of
abduction and rule inversion with a different set of
rules. The details of training RNNLogic+ model is
provided in Appendix C.

C RNNLogic+ Training and
Hyperparameter Setting

Here we describe the training of RNNLogic+
model that is utilized in Table 1 and complementary
Table 7. We use the same methodology for train-
ing RNNLogic+ model as in the original work (Qu
et al., 2021). New rule embeddings are created for
all the rules that are added to the rule set after rule
augmentation. Rule embedding dimension is set to
16 (compared to 32 in original RNNLogic+) across
datasets to mitigate the effect of the increased num-
ber of parameters in the model due to new rule
embeddings. Results reported are for a single run
with fixed seed over 5 epochs of training.
For RNNLogic+ with RotatE (equation 2), we

use the following formulation of RotatE (h, r,t) :

RotatE(h,r,t) = —d(Xp 0 X, X¢)  (3)

where d is the distance in complex vector space, Ro-
tatE embedding of r is X,, and o is the Hadamard
product. Intuitively, we rotate x;, by the rotation
defined by x,- and consider the distance between
the result and x;. The hyperparameter 7 in equation
(2) representing the relative weight is set to 0.01,
0.05, 0.1 and 0.5 for WN18RR, FB15k-237, UMLS
and Kinship respectively. The RotatE embedding
dimension is set to 200, 500, 1000 and 2000 for

2https: //github.com/DeepGraphLearning/RNNLogic
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Table 5: Statistics of Knowledge Graph datasets

Datasets #Entities #Relations #Training #Validation  #Test
FB15k-237 14541 237 272,115 17,535 20,446
WN18RR 40,943 11 86,835 3,034 3,134
Kinship 104 25 3,206 2,137 5,343

UMLS 135 46 1,959 1,306 3,264

Table 6: RNNLogic Rules used per Dataset. INV and ABD, RW represent rule inversion and abduction and PCA-based
walk rule augmentation respectively. The last column represents the rule filtering (FIL) applied on all the rules.

Datasets #Rules #Rules #Rules #Rules+ #Rules +INV  #Rules +INV+
+ INV + ABD INV + ABD + ABD + RW ABD + RW + FIL
FB15k-237 126137 174658 295403 392280 394967 298446
WNI8RR 6135 8742 18251 23304 25729 20053
Kinship 49994 91544 171302 301646 315865 97331
UMLS 91908 171526 322464 564374 574687 204504

Table 7: Results of reasoning on four datasets: WNI18RR, FB15K-237, Kinship and UMLS with RNNLogic+
(RNN). Orig represents rules acquired from RNNLogic. RotE represents RotatE. AUG represents all the proposed

approaches in our work. RW represents rules obtained only from PCA-filtered random walk augmentation.

Algorithm WN18RR FB15K-237
MR MRR H@l H@3 H@I10 MR MRR H@l H@3 H®@I0
RNN]-(RW) 8218.73 442 41.6 45.5 48.7 808.32 264 19.8 28.9 39.9
RNN]-(RW+AUG) 7241.14 477 443 492 543 | 48158 295 215 323 453
RNN+RotE]-(RW) 4679.70  48.7 45.1 49.8 55.9 521.06  30.8 22.8 33.5 46.9
RNN+RotE|-(RW+AUG) 4431775 51.1 474 526 585 | 279.65 314 233 343 479
RNN]-(Orig) 5857.65  49.6 45.5 51.4 57.4 256.14 329 24.0 36.1 50.6
RNN]-(Orig+AUG) 515638 527 483 549 613 | 218.11 345 257 379 51.9
RNN+RotE|-(Orig) 444579  51.6 474 53.4 60.2 217.30 343 25.6 37.5 52.4
RNN+RotE|-(0rig+AUG) 423177 550 51.0 572 635 | 198.81 353 26,5 387 52.9
Algorithm Kinship UMLS
MR MRR H@l H@3 He@I0 MR MRR H@l H@3 H@I10

RNN]-(RW) 3.6 63.2 47.8 73.5 93.7 5.17 74.7 63.1 83.6 93.0
RNN]-(RW+AUG) 3.36 657 509 758 94.8 3.65 797 695 878 95.7
RNN+RotE]-(RW) 2.99 71.4 58.0 81.6 95.7 3.46 82.0 73.5 88.9 95.3
RNN+RotE|-(RW+AUG) 2.89 719 589 817 96.2 3.20 838 758  90.0 96.4
RNN]-(Orig) 4.45 61.6 46.3 71.7 91.8 3.66 81.4 71.2 90.3 95.7
RNN]-(Orig+AUG) 3.15 68.7 548 789 95.7 2.81 840 752 915 96.4
RNN+RotE|-(Orig) 3.28 68.9 54.9 78.8 94.6 3.17 81.5 71.2 90.1 96.0
RNN+RotE]-(Orig+AUG) 2.80 729 599  82.6 96.4 2.83 842 761 913 96.5

Table 8: Ablation study performed on Kinship and UMLS for filtering (FIL), inversion (INV), abduction (ABD) and
random walk augmentation (RW). AUG represents all proposed approaches in our work taken together.

Algorithm Kinship UMLS

MR MRR H@l H@3 H@l0 | MR MRR H@l H@3 H@I0
AUG 280 729 599  82.6 964 | 2.83 842 761 913 96.5
AUG minus ABD | 290 713 578 814 962 | 3.16 826 729 90.8 96.5
AUG minus INV 289 713 57.7 81.5 96.4 298 838 74.8 91.9 96.5
AUG minus FIL | 2.84 725 595 823 96.4 | 3.01 839 751 915 96.5
AUG minus RW 299  70.7 57.1 80.8 95.6 305 828 73.2 91.1 96.5

Table 9: Ablation study performed on WN18RR for abduction (ABD), inversion (INV), filtering (FIL) and PCA-based
random walk augmentation (RW). AUG represents represents all the approaches proposed in our work.

Algorithm WNISRR
MR MRR H@1 H@3 H@I0
AUG 4231.77 55.0 51.0 57.2 63.5
AUG minus ABD | 4406.95 522 47.8 54.1 61.0
AUG minus INV | 4302.04 544 50.0 56.8 62.7
AUG minus FIL | 422420 55.0 50.6 57.1 63.3
AUG minus RW | 4263.43 54.6 50.1 57.0 63.2




WNI18RR, FB15k-237, UMLS and Kinship respec-
tively. We keep a consistent batch size of §, 4,
32 and 16 for WN18RR, FB15k-237, UMLS and
Kinship respectively. The number of parameters
for RNNLogic+ scales with the rule embedding
size and the number of rules, reaching a maximum
of 16%298446 = 4775136 for FB15k-237 (leading
to a training time of around 23 hours) after aug-
mentations and filtering. Since augmentation adds
new rules, it also increases the parameters of the
model. All training was carried out on a single
Tesla V100 GPU. The optimal values of all the
hyper-parameters was found by tuning on valida-
tion set on each dataset.

D Detailed Results on Proposed
Augmentations

Results in Table 7 are supplementary to results al-
ready presented in Table 1. In addition to MRR,
Hits@1 and Hits@ 10 presented in the Table 1 in
the Experiment section, we also present Mean Rank
(MR) and Hits@3 here. As discussed already in
Section 4, AUG includes abduction (ABD), inversion
(INV), rule filtering (FIL) and random walk aug-
mentation (RW).

In Table 7, we observe that there is a consistent
improvement in the performance of the model for
all the metrics after rule augmentation and filtering
(AUG). Notably, for the two new metrics introduced
in Table 7, we obtain a performance gain of 3.7
point on Hits@3 and 40.4% on MR for FB15K-237
dataset and [RNN|-(RW) baseline. Since the original
rules for the random walk baseline are lesser in
number, [RNN|-(RW) and [RNN + RotE| - (RW) ben-
efit more from augmentation. We also see that
for Kinship and UMLS, [RNN + RotE| - (RW) gives
better performance than [RNN + RotE| - (Orig),
highlighting the quality of the rules discovered by
local random walks followed by PCA filtering.

E Detailed Results of Ablation Study

Results in Table 8 are supplementary to results
already presented in Table 3. Besides the three met-
rics presented in Table 3, we present Hits@3 and
MR in these tables. Additionally, we also demon-
strate results of ablation on UMLS dataset in Table
9. Ablation is not performed on FB15k-237 due
to computational constraints. As with the other
metrics, Hits@3 and MR is affected by the most by
abductive rules in UMLS and WN18RR because
abduction results in augmenting the ruleset with a

large number of high-quality rules (see Table 2).
Furthermore, Hits@3 and MR gets most affected
by PCA-based random walk augmentation in Kin-
ship dataset. This is because Kinship is a dense
dataset, and a large number of high-quality rules
are quickly discovered by the random walks.

F Detailed Results of Rule Augmentation
vs Rule Generation

Results in Table 10 are supplementary to the re-
sults already presented in Table 4. Here we present
Hits@3 and MR as two additional metrics for ana-
lyzing the need for rule augmentation.

We generate rules by training RNNLogic model.
We consider 80 rules per relation for each dataset
from these rules and expand them by performing
three augmentations and filtering. This results in to-
tal of 9867 rules for WN18RR and 18432 rules for
Kinship data. We train RNNLogic+ with RotatE
on these rules and compare the results with RNN-
Logic+ with RotatE model trained on 500 rules per
relation without augmentations. We observe that
model trained with augmented rules consistently
performs better than model trained by merely in-
creasing the number of rules generated, even for
a comparable number of rules. Specifically, we
observe that model trained with augmented rules
shows 4 point Hit@1 gain in Kinship dataset over
the model trained with merely increased rules. This
strengthens the hypothesis that it is more helpful to
leverage a few high-quality augmented rules rather
than exploiting a plethora of lower-quality rules for
Neuro-Symbolic KG Completion.

G PCA-Confidence Metric

In this section, we explain in detail, the PCA-
confidence metric that has been employed to score
the rules discovered through random walk in our
third augmentation approach. This metric has also
been used to score the augmented rules in Table 2.

PCA: The calculation of the metric utilizes a Par-
tial Closed World assumption and assumes that
if we know one t for a given r and h in r(h, t),
then we know all t’ for that h and r. Let the
rules under consideration be of the form B =
r(h,t). Then the PCA-score PCAConf (B = r) is:

#(h,t) : [Path(h,B,t)| > 0Ar(h,t) €EP
#(h,t) : [Path(h,B,t)| > 0A3t' : r(h,t/) €P

Essentially, it is the number of positive examples,
P, satisfied by the rule divided by the total number



Table 10: Comparison of performance by rule augmentation with performance on the original rules on WN18RR
and Kinship. R/R and TR is number of rules per relation and total rules generated from RNNLogic respectively.
ABD represents abduction performed on original rules.

Dataset R/R TR ABD MR MRR Hits@1 Hits@3 Hits@10
80 9867  Yes 470161 49.0 449 50.5 36.7
WNISBRR | 500 11000 No 4848390 477 437 498 55.2
o 80 18432 Yes 321 695  56.1 79.4 94.6
MS™MP- | 500 25000  No 3.62 66.1 52.1 75.3 93.1

of (h, t) satisfied by the rule such that r(h,t’) is a
positive example for some t'.

H FOIL-Score Metric

We employ a modification of FOIL as one of the
evaluation metrics to assess the quality of rules pro-
duced by augmentation techniques (Q1) in Table 2.
FOIL-scoring metric is discussed in detail below.
FOIL: Let the rules be of the form B = r(h,t).
Let Path(h, B, t) be the set of paths from h to t
that act as groundings for the rule body B. Un-
der the Closed World assumption, we assume that
all triples not in the training and test set are false.
Inspired by the First-Order Inductive Learner al-
gorithm (Quinlan, 1990), we define FOIL score to
assess the quality of a rule as follows:

Zr(h,t)eP |Path(h, B, t)|
> (n+) |Path(h, B, t)]

FOILB=r) =

The key difference between the FOIL score pro-
posed originally (Quinlan, 1990) and ours is that
instead of considering the number of examples
satisfied by the rule, we calculate the number of
groundings of the rule. This is more in line with
the score calculated by RNNLogic+, which consid-
ers the number of groundings as well. Ideally the
rules should have larger number of groundings for
positive triples in comparison to the other triples.

Typically, negative sampling is used to calculate
these metrics (PCA in Appendix G and FOIL here)
as it is computationally expensive to compute ex-
haustive negative examples. However, we calculate
these metrics by considering the entire knowledge
graph, which is enabled by utilizing batching and
sparse matrix operations on the adjacency graph.



