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Abstract
High-quality and high-coverage rule sets are001
imperative to the success of Neuro-Symbolic002
Knowledge Graph Completion (NS-KGC)003
models, because they form the basis of all sym-004
bolic inferences. Recent literature builds neu-005
ral models for generating rule sets, however,006
preliminary experiments show that they strug-007
gle with maintaining high coverage. In this008
work, we suggest three simple augmentations009
to existing rule sets: (1) transforming rules to010
their abductive forms, (2) generating equivalent011
rules that use inverse forms of constituent rela-012
tions and (3) random walks that propose new013
rules. Finally, we prune potentially low quality014
rules. Experiments over four datasets and four015
ruleset-baseline settings suggest that these sim-016
ple augmentations consistently improve results,017
and obtain up to 7.1 pt MRR and 8.5 pt Hits@1018
gains over using rules without augmentations.019

1 Introduction020

Knowledge Graphs (KGs) comprise important021

world knowledge facts, but are typically incom-022

plete, due to their ever-increasing size. KG em-023

beddings (Wang et al., 2017) has been the domi-024

nant methodology for knowledge graph completion025

(KGC). A KG embedding approach represents en-026

tities and relations as learnable dense vectors and027

computes a score for an unseen fact as a function028

over them. These generally have state-of-the-art029

performance, especially for large KGs.030

Recently, neuro-symbolic (NS-KGC) ap-031

proaches for the task have been proposed, where032

KG embeddings are enhanced by inferences over033

an explicit first-order logic rule set (Zhang et al.,034

2020; Qu et al., 2021). The resulting models bring035

together best of both worlds – generalizability036

and interpretability of explicit logical rules,037

and the scalability and representation power of038

embeddings. Unfortunately, a key roadblock039

for success of NS-KGC is the availability of a040

high-coverage rule set.041

Early NS-KGC methods, such as Neu- 042

ralLP (Yang et al., 2017) and DRUM (Sadeghian 043

et al., 2019), learn rules as part of a single model, 044

but do not have performance competitive with 045

embedding models such as RotatE (Sun et al., 046

2019). A recent NS-KGC model, RNNLogic (Qu 047

et al., 2021), matches empirical performance with 048

embedding approaches. It has a separate neural 049

component that outputs a set of rules, which is then 050

used to train inference parameters, in an EM-based 051

approach. Preliminary experiments on RNNLogic 052

suggest that its ruleset has limited coverage, due 053

to which symbolic inferences do not fire for many 054

queries, and the model gets limited to using its 055

embedding part only. The goal of this work is to 056

strengthen the symbolic inferences in NS-KGC 057

models for better overall performance. 058

In this work, we propose simple augmentations 059

that takes an existing ruleset (such as one output 060

by RNNLogic) and proposes additional (related) 061

rules to improve coverage and quality. We pro- 062

pose three augmentations. First, we convert each 063

deductive rule into its abductive counterparts. Sec- 064

ond, we supplement each rule via an equivalent 065

rule that uses inverses for all constituent relations. 066

Third, we generate additional high-quality rules 067

independently by local random walks and subse- 068

quent PCA filtering (Galárraga et al., 2013). These 069

increase size of ruleset drastically; we balance run- 070

times by additionally pruning rules from existing 071

set using our filtering approach. Overall, this re- 072

sults in a comparable number of high-quality and 073

high-coverage rules, for use in NS-KGC. 074

On four KGC datasets, using two starting rule- 075

sets and over two RNNLogic based models, we find 076

that our augmentations consistently improve KGC 077

performance, outperforming no augmentation base- 078

lines by up to 7.1 MRR and 8.5 Hits@1 pts. We 079

believe that our augmentations should become stan- 080

dard pre-processing practice for all NS-KGC ap- 081

proaches. We release our code and rulesets. 082
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2 Background and Related Work083

We are given an incomplete KG K = (E ,R, T )084

consisting of entities E , relation set R and set T =085

{(h, r, t)} of triples. Our goal is to predict the086

validity of any triple not present in T .087

Related Work: Existing work on NS-KGC can088

roughly be characterized into four types. One ap-089

proach is to use attention over relations to learn090

end-to-end differentiable models (Yang et al., 2017;091

Sadeghian et al., 2019). A second approach, which092

includes Minerva (Das et al., 2018) and Deep-093

Path (Xiong et al., 2017), uses RL to train an agent094

to find reasoning paths for KG completion. These095

approaches are not yet competitive to KG embed-096

ding models for large datasets. Thirdly, models like097

ExpressGNN (Zhang et al., 2020) and RNNLogic098

use variational inference to assess plausibility of a099

given triple. We build on RNNLogic, as it scales100

better with large rulesets. The final type includes101

UNIKER (Cheng et al., 2021) and RUGE (Guo102

et al., 2018), which integrate embeddings along-103

side traditional rules learnt via ILP models. We104

believe that our augmented rules can benefit these105

works too. Since our experiments are based on106

RNNLogic and we utilize PCA scores for filtering,107

we describe these in some detail next.108

RNNLogic+: As a pre-processing step, for every109

r ∈ R, RNNLogic adds a relation r−1 to R, and110

corresponding facts using inverse relations to T .111

RNNLogic first produces a set of first order rules112

(L) using an LSTM. which are used by the RNN-113

Logic+ predictor to compute the score of a given114

triple. Given a query (h, r, ?), the candidate answer115

o is scored by RNNLogic+ as:116

scor(o) = MLP
(
PNA({vl |#(h, l, o)}l∈L)

)
(1)117

where the learnable embedding vl of a given rule118

l ∈ L is weighted by the number of groundings119

(#) that triple (h, r, o) satisfies in the rule l’s body.120

The resulting weighted embeddings of all rules are121

aggregated by employing PNA aggregator (Corso122

et al., 2020) and this aggregated embedding is123

passed through an MLP to obtain a final score.124

The authors designed another scoring function125

that incorporates RotatE (Sun et al., 2019) into the126

scoring function, scor(o), in equation (1) where127

the goal is to exploit the knowledge encoded in the128

KG embeddings. The resulting scoring function is:129

130
scoreKGE(o) = scor(o)+η RotatE (h, r, o) (2)131

where RotatE (h, r, o) is the score of the triple132

obtained from RotatE, and η is a hyper-parameter.133

PCA Score: It is a symbolic rule confidence met- 134

ric proposed in AMIE (2013) – see Appendix G 135

for details. Broadly, it is the number of positive 136

examples satisfied by a rule, divided by the total 137

number of tails reached by the rule from heads oc- 138

curring in the training dataset. Its performance in 139

the context of AMIE was not as good due to its 140

purely symbolic approach, and we are the first to 141

show its utility in the context of NS-KGC. 142

3 Rule Augmentation in NS-KGC Models 143

With the aim of maximal utilization of a given rule 144

l ∈ L, we first propose two rule augmentation 145

techniques, abduction and rule inversion. The other 146

two techniques prune low-quality rules from L, and 147

independently add new rules to increase coverage. 148

All rule augmentations are generic and can be inte- 149

grated with any existing ruleset, and any NS-KGC 150

model. 151

Abduction: The goal of abductive reasoning (or 152

abduction) is to find the best explanation from a 153

given set of observations (Pierce, 1935). It has 154

seen limited use in the context of KBs (Yoshikawa 155

et al., 2019). In our approach, for every rule in L, 156

we introduce several abductive rules with one of 157

the antecedants, appearing as a consequent. As an 158

example, consider the rule: 159

R1(X, Y) ∧ R2(Y, Z) ∧ R3(Z, W) ⇒ RH(X, W) 160

Our augmentation will generate abductive rules, 161

one for each relation in the body, as: 162

R2(Y, Z) ∧ R3(Z, W) ∧ RH−1(W, X) ⇒ R1−1(Y, X) 163

R3(Z, W) ∧ RH−1(W, X) ∧ R1(X, Y) ⇒ R2−1(Z, Y) 164

RH−1(W, X) ∧ R1(X, Y) ∧ R2(Y, Z) ⇒ R3−1(W, Z) 165

As an example, let’s say a learned rule is 166

BornIn(X, U) ∧ PlaceInCountry(U, Y) ⇒Natio 167

nality(X, Y). If in the KG, we know that Oprah 168

has nationality U.S., and that she is born in 169

Mississippi, then abduction allows the model to 170

hypothesize that Mississippi might be in U.S. 171

Of course, not all abductions are accurate, for 172

instance, just because Alabama is known to be 173

in U.S., does not mean that Oprah was born in 174

Alabama. Abductive rules increase rule coverage 175

at the cost of precision. We expect predictor scorer 176

to automatically handle which (abductive) rules 177

can and cannot be trusted. 178

Rule Inversion: Our second rule augmen- 179

tation takes an existing rule and rewrites 180

it by referring to inverses of all relations. 181
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Table 1: Results of reasoning on four datasets with RNNLogic+ (RNN). Orig represent RNNLogic rules. RotE
represents RotatE. AUG represents our proposed augmentations. RW denotes rules discovered by random walks.

Algorithm WN18RR FB15K-237 Kinship UMLS
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

[RNN]-(RW) 44.2 41.6 48.7 26.4 19.8 39.9 63.2 47.8 93.7 74.7 63.1 93.0
[RNN]-(RW+AUG) 47.7 44.3 54.3 29.5 21.5 45.3 65.7 50.9 94.8 79.7 69.5 95.7
[RNN+RotE]-(RW) 48.7 45.1 55.9 30.8 22.8 46.9 71.4 58.0 95.7 82.0 73.5 95.3
[RNN+RotE]-(RW+AUG) 51.1 47.4 58.5 31.4 23.3 47.9 71.9 58.9 96.2 83.8 75.8 96.4
[RNN]-(Orig) 49.6 45.5 57.4 32.9 24.0 50.6 61.6 46.3 91.8 81.4 71.2 95.7
[RNN]-(Orig+AUG) 52.7 48.3 61.3 34.5 25.7 51.9 68.7 54.8 95.7 84.0 75.2 96.4
[RNN+RotE]-(Orig) 51.6 47.4 60.2 34.3 25.6 52.4 68.9 54.9 94.6 81.5 71.2 96.0
[RNN+RotE]-(Orig+AUG) 55.0 51.0 63.5 35.3 26.5 52.9 72.9 59.9 96.4 84.2 76.1 96.5

As an example, if a rule uses the path182

Oprah BornIn−−−−−→ Mississippi
PlaceInCountry−−−−−−−−−−→ US,183

then it could also use the equivalent path184

US
PlaceInCountry−1

−−−−−−−−−−−−→ Mississippi BornIn−1
−−−−−−→185

Oprah. Formally, for every original rule:186

R1(X, Y) ∧ R2(Y, Z) ∧ R3(Z, W) ⇒ RH(X, W)187

we add to the ruleset the following inverted rule:188

R3−1(W, Z) ∧ R2−1(Z, Y) ∧ R1−1(Y, X) ⇒ RH−1(W, X)189

Rule Filtering: Augmentations increase the size190

of the ruleset. In order to reduce the number of191

parameters and the training/test times of the NS-192

KGC model, we prune seemingly low-quality rules193

from the augmented rulebase. For this, we compute194

the PCA score for each original and augmented195

rule and prune all the rules that have score less196

than a threshold (set at 0.01 in experiments) and197

have less than 10 groundings. So, all low-coverage198

rules with seemingly low quality are pruned out.199

As experiments show, this results in up to 70%200

reduction in the number of rules, while preserving201

KGC performance.202

Random Walk Augmentation: Motivated by the203

empirical success of PCA scores for finding good204

rules in the previous step, we further augment our205

ruleset with new, high scoring rules generated in-206

dependently via local random walks. Starting at207

each entity in the KG, we perform a number of208

random walks of fixed length. Each such random209

walk constitutes the body of the rule and the rela-210

tion connecting the end entities in the KG form the211

head of the discovered rule. We score these rules212

by the PCA score and retain all such rules that have213

PCA score above the threshold (of 0.1).214

4 Experiments215

Datasets: We use four datasets for evalua-216

tion: WN18RR (Dettmers et al., 2018), FB15k-217

237 (Toutanova and Chen, 2015), Kinship and218

UMLS (Kok and Domingos, 2007). For each 219

triple in test set, we answer queries (h, r, ?) and 220

(t, r−1, ?) with answers t and h. We report the 221

Mean Reciprocal Rank (MRR) and Hit@k (H@1, 222

H@10) under the filtered measures (Bordes et al., 223

2013). Details and data stats are in Appendix A. 224

Baselines: We experiment with two base mod- 225

els: RNNLogic+ ([RNN] in tables), and RNNLogic+ 226

with RotatE ([RNN+RotE]) (Eqn 2). We run these 227

models with two rulesets: (1) Orig, rules generated 228

by RNNLogic (around 300 rules per relation for 229

WN18RR and FB15k-237, and 1000 rules per rela- 230

tion for Kinship and UMLS), and (2) RW, only the 231

rules discovered by our random walks. This second 232

setting can only evaluate the value of abduction, 233

inversion, and pruning since random walks are any- 234

ways used in generating rules. We also tried rule- 235

sets from NeuralLP (2017), but they are too small 236

to be useful with RNNLogic+. The only other NS- 237

KGC model that has reported performance similar 238

to RNNLogic+ is RLogic (2022). Unfortunately, 239

their code is not available.1 We use AUG to denote 240

the performance of rule augmentations. More de- 241

tails in appendix B and C. 242

Results: We report the results in Table 1 (further 243

details in appendix D). We observe that in all set- 244

tings, there is a notable increase in performance 245

using augmented rules. In particular, we obtain 246

7.1 pt and 8.5 pt increase in MRR and Hits@1 in 247

[RNN]-(Orig) setting on Kinship, and 3.5 pt and 248

5.6 pt increase in MRR and Hits@10 in [RNN]-(RW) 249

setting for WN18RR dataset. We also find that 250

rule augmentations complement RotatE scores in 251

capturing more information about the KG, lead- 252

ing to improved performance in those settings too. 253

To the best of our knowledge, our best results for 254

WN18RR are state-of-the-art for NS-KGC models. 255

1Our reimplementation could not match reported results,
and sending several emails to original authors was not helpful.
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5 Analysis of Augmented Rules256

We perform three further analyses to answer the257

following questions. Q1. Are the rules created by258

abduction and rule inversion of high quality? Q2.259

What is the individual effect of each type of aug-260

mentation on the performance? Q3. Can we get the261

same performance as augmentation by generating262

more rules from the LSTM in RNNLogic?263

Quality of New Rules: To answer Q1, we employ264

two metrics to assess quality of rules, (PCA-metric265

and FOIL-metric) before and after abduction and266

rule inversion. The rules obtained from random267

walks have high scores by construction since they268

are filtered based on PCA score. Therefore, they269

are of high quality as per our definition. (Details in270

Appendix G and H)271

Table 2: Number of high quality rules before and after
augmentations on rules generated by RNNLogic.

Rule Set WN18RR UMLS
FOIL PCA FOIL PCA

Original 2286 2647 25079 28982
Original w/ INV 3157 3577 42188 46908
Original w/ ABD 7141 7607 68693 84554

Original w/ INV + ABD 8502 9155 100146 125019

Table 2 presents the number of rules that have a272

score of at least 0.1 according to each metric, which273

we regard as criteria for defining a high-quality274

rule. We observe that there is a large increase in275

the number of high-quality rules after abduction276

and rule inversion, nearly tripling in the case of277

abduction (row 1 vs row 3). This is because the278

augmented rules exploit the same groundings as279

the original rules, in the form of new rules. Thus,280

augmented counterparts of high-quality rules are281

likely to be high-quality. Overall, we find that282

abduction and rule inversion does indeed produce283

high-quality rules.284

Ablation: To answer Q2, we perform an ablation285

study for inversion (INV), abduction (ABD), random286

walk augmentation (RW) and rule filtering (FIL)287

on [RNN+RotE]-(Orig) setting for WN18RR and288

Kinship datasets to observe the impact of each type289

of augmentation. The results are presented in Table290

3 (Details in Appendix E)291

In general, abduction (row 3) gives larger im-292

provements than rule inversion (row 2) because293

as we noticed in the previous section, abduction294

adds a larger number of high-quality rules to the295

rule set. We also find that adding the PCA-based296

random walk rules results in performance improve-297

ment, even with only 5% new rules being added (as298

in the case of Kinship) as compared to original rule299

set. Finally, we find that filtering the rules based 300

on the PCA metric results in marginal performance 301

improvement, along with lower running times. 302

Table 3: Ablation study on WN18RR and Kinship for
filtering (FIL), inversion (INV), abduction (ABD) and
PCA-filtered random walk augmentation (RW).

Algorithm WN18RR Kinship
MRR H@1 H@10 MRR H@1 H@10

AUG 55.0 51.0 63.5 72.9 59.9 96.4
AUG minus ABD 52.2 47.8 61.0 71.3 57.8 96.2
AUG minus INV 54.4 50.0 62.7 71.3 57.7 96.4
AUG minus FIL 55.0 50.6 63.3 72.5 59.5 96.4
AUG minus RW 54.6 50.1 63.2 70.7 57.1 95.6

Rule Generation vs Rule Augmentation: Our 303

augmentations result in 100-200% increase in the 304

number of rules across datasets after filtering. 305

Since the training time of RNNLogic+ scales nearly 306

linearly with the number of rules, there is a com- 307

mensurate increase in training time. As a control 308

experiment, we train RNNLogic to generate 80 309

rules per relation (R/R) and augment the resulting 310

rules without filtering (for fair comparison). We 311

further train RNNLogic with 500 rules per rela- 312

tion without augmentation and compare the per- 313

formance of both rulesets (which have comparable 314

size) using [RNN+RotE] on WN18RR and Kinship 315

data in Table 4 (see Appendix F). 316

Table 4: Performance of augmentation on WN18RR
and Kinship. R/R and TR is number of rules per relation
and total rules generated from RNNLogic respectively.

Dataset R/R TR AUG MRR H@1 H@10

WN18RR 80 9867 Yes 49.0 44.9 56.7
500 11000 No 47.7 43.7 55.2

Kinship 80 18432 Yes 69.5 56.1 94.6
500 25000 No 66.1 52.1 93.1

We observe that rule augmentations lead to large 317

improvement over rule generation in all cases. 318

Thus, we find that rule augmentation is more ben- 319

eficial than simply using more rules from the rule 320

generator. Augmentations exploit a small number 321

of high-quality rules to their full potential. 322

6 Conclusion and Future Work 323

We present simple rule augmentation techniques in 324

the context of Neuro-Symbolic Knowledge Graph 325

models and obtain substantial increase in perfor- 326

mance over strong base models. We hope our aug- 327

mentations become standard for all subsequent NS- 328

KGC models. We release code and rulesets for 329

further research. Future work includes directly 330

using augmentation within RNNLogic’s rule gen- 331

eration procedure. Moreover, adding scoring func- 332

tions such as FOIL and PCA into the rule generator 333

could also help in determining yet better rules. 334
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Limitations335

Since rule abduction and inversion utilize the same336

groundings as the original rules, Neuro-Symbolic337

KGC models that are based on grounding the en-338

tire rule will not benefit from these augmentations.339

Abduction and inversion also require the model340

to be trained on a knowledge graph that contains341

the inverse relations r−1 for each relation r. Fi-342

nally, since RNNLogic+ has a separate rule embed-343

ding for each rule, performing rule augmentation344

increases the number of parameters in the model345

and leads to longer training times and larger GPU346

memory consumption.347

Ethics Statement348

We anticipate no substantial ethical issues arising349

due to our work on rule augmentation for Neuro-350

Symbolic KGC. Our work relies on a set of rules351

generated from another source to perform augmen-352

tation. This may result in the augmented rule set353

exaggerating the effect of malicious or biased rules354

in the original rule set.355
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A Data Statistics and Evaluation Metrics454

Table 5 summarizes the statistics of the data used455

in the experiments of our work. We utilize the stan-456

dard train, validation and test splits for WN18RR457

and FB15k-237 datasets. Since there are no stan-458

dard splits for UMLS and Kinship datasets, for459

consistency, we employ the splits used by RNN-460

Logic (2021) for evaluation (created by randomly461

sampling 30% triplets for training, 20% for valida-462

tion and the rest 50% for testing).463

Metrics: For each triplet (h, r, t) in the test464

set, traditionally queries of the form (h, r, ?) and465

(?, r, t) are created for evaluation, with answers t466

and h respectively. We model the (?, r, t) query467

as (t, r−1, ?) with the same answer h, where r−1468

is the inverse relation for r. In order to train the469

model over the inverse relations, we similarly aug-470

ment the training data with an additional (t, r−1, h)471

triple for every triple (h, r, t) present in KG.472

Given ranks for all queries, we report the Mean473

Reciprocal Rank (MRR) and Hit@k (H@k, k =474

1, 10) under the filtered setting in the main pa-475

per and two additional metrics: Mean Rank (MR)476

and Hits@3 in the appendices. MRR and Hits@k477

metrics are reported after multiplying with 100.478

To maintain consistency with RNNLogic, in cases479

where the model assigns same probability to other480

entities along with the answer, we compute the481

rank as (m + (n+1)
2 ) where m is the number of482

entities with higher probabilities than the correct483

answer and n is the number of entities with same484

probability as the answer.485

B Experimental Setup for RNNLogic486

In order to obtain main results in Table 1, we487

train the rule generator in RNNLogic with opti-488

mal hyperparameters provided in the paper and489

generate a set of high quality Horn rules to use 490

for training RNNLogic+. For our best results, we 491

utilize optimal rules provided by the authors of 492

RNNLogic2. We augment these rules by abduc- 493

tion (ABD), and then rule inversion (INV) on both 494

the original rules and the rules formed after abduc- 495

tion. We further augment the rulebase with the 496

rules discovered by random walks (RW). Finally, 497

we filter (FIL) superior rules from these rules by 498

PCA score. We present statistics detailing the num- 499

ber of rules used per dataset after each augmen- 500

tation step in Table 6. These rules are utilized in 501

RNNogic+ ([RNN]-(Orig)) and RNNLogic+ with 502

RotatE ([RNN+RotE]-(Orig)) baselines. For the 503

other results: [RNN]-(RW) and [RNN+RotE]-(RW), we 504

employ only the rules obtained by RW augmenta- 505

tion and train RNNLogic+ model with them. The 506

goal of these set of results is to test the utility of 507

abduction and rule inversion with a different set of 508

rules. The details of training RNNLogic+ model is 509

provided in Appendix C. 510

C RNNLogic+ Training and 511

Hyperparameter Setting 512

Here we describe the training of RNNLogic+ 513

model that is utilized in Table 1 and complementary 514

Table 7. We use the same methodology for train- 515

ing RNNLogic+ model as in the original work (Qu 516

et al., 2021). New rule embeddings are created for 517

all the rules that are added to the rule set after rule 518

augmentation. Rule embedding dimension is set to 519

16 (compared to 32 in original RNNLogic+) across 520

datasets to mitigate the effect of the increased num- 521

ber of parameters in the model due to new rule 522

embeddings. Results reported are for a single run 523

with fixed seed over 5 epochs of training. 524

For RNNLogic+ with RotatE (equation 2), we 525

use the following formulation of RotatE (h, r, t) : 526

RotatE (h, r, t) = −d(xh ◦ xr, xt) (3) 527

where d is the distance in complex vector space, Ro- 528

tatE embedding of r is xr, and ◦ is the Hadamard 529

product. Intuitively, we rotate xh by the rotation 530

defined by xr and consider the distance between 531

the result and xt. The hyperparameter η in equation 532

(2) representing the relative weight is set to 0.01, 533

0.05, 0.1 and 0.5 for WN18RR, FB15k-237, UMLS 534

and Kinship respectively. The RotatE embedding 535

dimension is set to 200, 500, 1000 and 2000 for 536

2https://github.com/DeepGraphLearning/RNNLogic
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Table 5: Statistics of Knowledge Graph datasets
Datasets #Entities #Relations #Training #Validation #Test

FB15k-237 14541 237 272,115 17,535 20,446
WN18RR 40,943 11 86,835 3,034 3,134
Kinship 104 25 3,206 2,137 5,343
UMLS 135 46 1,959 1,306 3,264

Table 6: RNNLogic Rules used per Dataset. INV and ABD, RW represent rule inversion and abduction and PCA-based
walk rule augmentation respectively. The last column represents the rule filtering (FIL) applied on all the rules.

Datasets #Rules #Rules #Rules #Rules + #Rules +INV #Rules +INV+
+ INV + ABD INV + ABD + ABD + RW ABD + RW + FIL

FB15k-237 126137 174658 295403 392280 394967 298446
WN18RR 6135 8742 18251 23304 25729 20053
Kinship 49994 91544 171302 301646 315865 97331
UMLS 91908 171526 322464 564374 574687 204504

Table 7: Results of reasoning on four datasets: WN18RR, FB15K-237, Kinship and UMLS with RNNLogic+
(RNN). Orig represents rules acquired from RNNLogic. RotE represents RotatE. AUG represents all the proposed
approaches in our work. RW represents rules obtained only from PCA-filtered random walk augmentation.

Algorithm WN18RR FB15K-237
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

[RNN]-(RW) 8218.73 44.2 41.6 45.5 48.7 808.32 26.4 19.8 28.9 39.9
[RNN]-(RW+AUG) 7241.14 47.7 44.3 49.2 54.3 481.58 29.5 21.5 32.3 45.3
[RNN+RotE]-(RW) 4679.70 48.7 45.1 49.8 55.9 521.06 30.8 22.8 33.5 46.9
[RNN+RotE]-(RW+AUG) 4431.75 51.1 47.4 52.6 58.5 279.65 31.4 23.3 34.3 47.9
[RNN]-(Orig) 5857.65 49.6 45.5 51.4 57.4 256.14 32.9 24.0 36.1 50.6
[RNN]-(Orig+AUG) 5156.38 52.7 48.3 54.9 61.3 218.11 34.5 25.7 37.9 51.9
[RNN+RotE]-(Orig) 4445.79 51.6 47.4 53.4 60.2 217.30 34.3 25.6 37.5 52.4
[RNN+RotE]-(Orig+AUG) 4231.77 55.0 51.0 57.2 63.5 198.81 35.3 26.5 38.7 52.9

Algorithm Kinship UMLS
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

[RNN]-(RW) 3.6 63.2 47.8 73.5 93.7 5.17 74.7 63.1 83.6 93.0
[RNN]-(RW+AUG) 3.36 65.7 50.9 75.8 94.8 3.65 79.7 69.5 87.8 95.7
[RNN+RotE]-(RW) 2.99 71.4 58.0 81.6 95.7 3.46 82.0 73.5 88.9 95.3
[RNN+RotE]-(RW+AUG) 2.89 71.9 58.9 81.7 96.2 3.20 83.8 75.8 90.0 96.4
[RNN]-(Orig) 4.45 61.6 46.3 71.7 91.8 3.66 81.4 71.2 90.3 95.7
[RNN]-(Orig+AUG) 3.15 68.7 54.8 78.9 95.7 2.81 84.0 75.2 91.5 96.4
[RNN+RotE]-(Orig) 3.28 68.9 54.9 78.8 94.6 3.17 81.5 71.2 90.1 96.0
[RNN+RotE]-(Orig+AUG) 2.80 72.9 59.9 82.6 96.4 2.83 84.2 76.1 91.3 96.5

Table 8: Ablation study performed on Kinship and UMLS for filtering (FIL), inversion (INV), abduction (ABD) and
random walk augmentation (RW). AUG represents all proposed approaches in our work taken together.

Algorithm Kinship UMLS
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

AUG 2.80 72.9 59.9 82.6 96.4 2.83 84.2 76.1 91.3 96.5
AUG minus ABD 2.90 71.3 57.8 81.4 96.2 3.16 82.6 72.9 90.8 96.5
AUG minus INV 2.89 71.3 57.7 81.5 96.4 2.98 83.8 74.8 91.9 96.5
AUG minus FIL 2.84 72.5 59.5 82.3 96.4 3.01 83.9 75.1 91.5 96.5
AUG minus RW 2.99 70.7 57.1 80.8 95.6 3.05 82.8 73.2 91.1 96.5

Table 9: Ablation study performed on WN18RR for abduction (ABD), inversion (INV), filtering (FIL) and PCA-based
random walk augmentation (RW). AUG represents represents all the approaches proposed in our work.

Algorithm WN18RR
MR MRR H@1 H@3 H@10

AUG 4231.77 55.0 51.0 57.2 63.5
AUG minus ABD 4406.95 52.2 47.8 54.1 61.0
AUG minus INV 4302.04 54.4 50.0 56.8 62.7
AUG minus FIL 4224.20 55.0 50.6 57.1 63.3
AUG minus RW 4263.43 54.6 50.1 57.0 63.2
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WN18RR, FB15k-237, UMLS and Kinship respec-537

tively. We keep a consistent batch size of 8, 4,538

32 and 16 for WN18RR, FB15k-237, UMLS and539

Kinship respectively. The number of parameters540

for RNNLogic+ scales with the rule embedding541

size and the number of rules, reaching a maximum542

of 16*298446 = 4775136 for FB15k-237 (leading543

to a training time of around 23 hours) after aug-544

mentations and filtering. Since augmentation adds545

new rules, it also increases the parameters of the546

model. All training was carried out on a single547

Tesla V100 GPU. The optimal values of all the548

hyper-parameters was found by tuning on valida-549

tion set on each dataset.550

D Detailed Results on Proposed551

Augmentations552

Results in Table 7 are supplementary to results al-553

ready presented in Table 1. In addition to MRR,554

Hits@1 and Hits@10 presented in the Table 1 in555

the Experiment section, we also present Mean Rank556

(MR) and Hits@3 here. As discussed already in557

Section 4, AUG includes abduction (ABD), inversion558

(INV), rule filtering (FIL) and random walk aug-559

mentation (RW).560

In Table 7, we observe that there is a consistent561

improvement in the performance of the model for562

all the metrics after rule augmentation and filtering563

(AUG). Notably, for the two new metrics introduced564

in Table 7, we obtain a performance gain of 3.7565

point on Hits@3 and 40.4% on MR for FB15K-237566

dataset and [RNN]-(RW) baseline. Since the original567

rules for the random walk baseline are lesser in568

number, [RNN]-(RW) and [RNN + RotE] - (RW) ben-569

efit more from augmentation. We also see that570

for Kinship and UMLS, [RNN + RotE] - (RW) gives571

better performance than [RNN + RotE] - (Orig),572

highlighting the quality of the rules discovered by573

local random walks followed by PCA filtering.574

E Detailed Results of Ablation Study575

Results in Table 8 are supplementary to results576

already presented in Table 3. Besides the three met-577

rics presented in Table 3, we present Hits@3 and578

MR in these tables. Additionally, we also demon-579

strate results of ablation on UMLS dataset in Table580

9. Ablation is not performed on FB15k-237 due581

to computational constraints. As with the other582

metrics, Hits@3 and MR is affected by the most by583

abductive rules in UMLS and WN18RR because584

abduction results in augmenting the ruleset with a585

large number of high-quality rules (see Table 2). 586

Furthermore, Hits@3 and MR gets most affected 587

by PCA-based random walk augmentation in Kin- 588

ship dataset. This is because Kinship is a dense 589

dataset, and a large number of high-quality rules 590

are quickly discovered by the random walks. 591

F Detailed Results of Rule Augmentation 592

vs Rule Generation 593

Results in Table 10 are supplementary to the re- 594

sults already presented in Table 4. Here we present 595

Hits@3 and MR as two additional metrics for ana- 596

lyzing the need for rule augmentation. 597

We generate rules by training RNNLogic model. 598

We consider 80 rules per relation for each dataset 599

from these rules and expand them by performing 600

three augmentations and filtering. This results in to- 601

tal of 9867 rules for WN18RR and 18432 rules for 602

Kinship data. We train RNNLogic+ with RotatE 603

on these rules and compare the results with RNN- 604

Logic+ with RotatE model trained on 500 rules per 605

relation without augmentations. We observe that 606

model trained with augmented rules consistently 607

performs better than model trained by merely in- 608

creasing the number of rules generated, even for 609

a comparable number of rules. Specifically, we 610

observe that model trained with augmented rules 611

shows 4 point Hit@1 gain in Kinship dataset over 612

the model trained with merely increased rules. This 613

strengthens the hypothesis that it is more helpful to 614

leverage a few high-quality augmented rules rather 615

than exploiting a plethora of lower-quality rules for 616

Neuro-Symbolic KG Completion. 617

G PCA-Confidence Metric 618

In this section, we explain in detail, the PCA- 619

confidence metric that has been employed to score 620

the rules discovered through random walk in our 621

third augmentation approach. This metric has also 622

been used to score the augmented rules in Table 2. 623

PCA: The calculation of the metric utilizes a Par- 624

tial Closed World assumption and assumes that 625

if we know one t for a given r and h in r(h, t), 626

then we know all t′ for that h and r. Let the 627

rules under consideration be of the form B ⇒ 628

r(h, t). Then the PCA-score PCAConf(B ⇒ r) is: 629

#(h, t) : |Path(h, B, t)| > 0 ∧ r(h, t) ∈ P
#(h, t) : |Path(h, B, t)| > 0 ∧ ∃t′ : r(h, t′) ∈ P

630

Essentially, it is the number of positive examples, 631

P, satisfied by the rule divided by the total number 632
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Table 10: Comparison of performance by rule augmentation with performance on the original rules on WN18RR
and Kinship. R/R and TR is number of rules per relation and total rules generated from RNNLogic respectively.
ABD represents abduction performed on original rules.

Dataset R/R TR ABD MR MRR Hits@1 Hits@3 Hits@10

WN18RR 80 9867 Yes 4701.61 49.0 44.9 50.5 56.7
500 11000 No 4848.39 47.7 43.7 49.8 55.2

Kinship 80 18432 Yes 3.21 69.5 56.1 79.4 94.6
500 25000 No 3.62 66.1 52.1 75.3 93.1

of (h, t) satisfied by the rule such that r(h, t′) is a633

positive example for some t′.634

H FOIL-Score Metric635

We employ a modification of FOIL as one of the636

evaluation metrics to assess the quality of rules pro-637

duced by augmentation techniques (Q1) in Table 2.638

FOIL-scoring metric is discussed in detail below.639

FOIL: Let the rules be of the form B ⇒ r(h, t).640

Let Path(h, B, t) be the set of paths from h to t641

that act as groundings for the rule body B. Un-642

der the Closed World assumption, we assume that643

all triples not in the training and test set are false.644

Inspired by the First-Order Inductive Learner al-645

gorithm (Quinlan, 1990), we define FOIL score to646

assess the quality of a rule as follows:647

FOIL(B ⇒ r) =

∑
r(h,t)∈P |Path(h, B, t)|∑
(h,t) |Path(h, B, t)|

648

The key difference between the FOIL score pro-649

posed originally (Quinlan, 1990) and ours is that650

instead of considering the number of examples651

satisfied by the rule, we calculate the number of652

groundings of the rule. This is more in line with653

the score calculated by RNNLogic+, which consid-654

ers the number of groundings as well. Ideally the655

rules should have larger number of groundings for656

positive triples in comparison to the other triples.657

Typically, negative sampling is used to calculate658

these metrics (PCA in Appendix G and FOIL here)659

as it is computationally expensive to compute ex-660

haustive negative examples. However, we calculate661

these metrics by considering the entire knowledge662

graph, which is enabled by utilizing batching and663

sparse matrix operations on the adjacency graph.664
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