
UNIPELT: A Unified Framework for Parameter-Efficient
Language Model Tuning

Anonymous ACL submission

Abstract

Recent parameter-efficient language model001
tuning (PELT) methods manage to match the002
performance of fine-tuning with much fewer003
trainable parameters and perform especially004
well when training data is limited. However,005
different PELT methods may perform rather006
differently on the same task, making it non-007
trivial to select the most appropriate method008
for a specific task, especially considering the009
fast-growing number of new PELT methods010
and tasks. In light of model diversity and011
the difficulty of model selection, we propose a012
unified framework, UNIPELT, which incorpo-013
rates different PELT methods as submodules014
and learns to activate the ones that best suit015
the current data or task setup via gating mech-016
anism. On the GLUE benchmark, UNIPELT017
consistently achieves 1~4% gains compared to018
the best individual PELT method that it incor-019
porates and even outperforms fine-tuning un-020
der different setups. Moreover, UNIPELT gen-021
erally surpasses the upper bound that takes the022
best performance of all its submodules used in-023
dividually on each task, indicating that a mix-024
ture of multiple PELT methods may be inher-025
ently more effective than single methods.1026

1 Introduction027

As pre-trained language models (PLMs) (Devlin028

et al., 2019) grow larger and larger (Brown et al.,029

2020), it becomes increasingly infeasible to per-030

form conventional fine-tuning, where separate repli-031

cas of the model parameters are modified per single032

task. To solve the issue, there has recently been033

a surge of studies on parameter-efficient language034

model tuning (PELT), namely how to effectively035

tune the PLMs with fewer trainable parameters.036

Existing PELT research generally aims at achiev-037

ing performance comparable to fine-tuning with038

as few trainable parameters as possible, which has039

1Our code will be released to facilitate future work.

Adapter

Multi-Head Attention

Add & Norm

Feedforward

Add & Norm

Add & Norm

+

Prefix-tuning

hin

hFN

hA

hF

LoRA + +

Q K V

WQ WVWK

WDown

WUp

PK PV

WUpWUp

WDown WDown

GL

GA

GP

Figure 1: Illustration of UNIPELT, which subsumes
existing PELT methods as submodules and controls
them via gating mechanism G. Different (combinations
of) submodules can be activated for different samples.
The trainable parameters are shown in blue.

seen significant progress – the task-specific train- 040

able parameters used in most recent approaches 041

(Lester et al., 2021; Guo et al., 2021) are almost 042

negligible compared to the total parameters of the 043

PLM (<1%). A more challenging yet less studied 044

problem is whether one can achieve better perfor- 045

mance than fine-tuning with fewer parameters. Re- 046

cent studies (He et al., 2021; Li and Liang, 2021; 047

Karimi Mahabadi et al., 2021b) find that some 048

PELT methods could be more effective than fine- 049

tuning on certain tasks when training data is lim- 050

ited, possibly due to the reduced risk of overfitting. 051

However, as found in our experiments (Table 1), 052

different PELT methods exhibit diverse character- 053

istics and perform rather differently on the same 054

task, which makes it nontrivial to select the most 055

appropriate method for a specific task, especially 056

1

considering the fast-growing number of new PELT057

methods and tasks (Ding and Hu, 2021).058

In light of the diverse performance of PELT059

methods and the cost of selecting the best method,060

we propose a unified PELT framework, named061

UNIPELT, which incorporates different PELT062

methods as submodules and learns to dynamically063

activate the submodules that best suit the current064

data or task setup. As a result, model selection is no065

longer needed and consistently better performance066

is achieved under different setups. The activation067

of each submodule in UNIPELT is controlled by068

gating mechanism, which learns to favor (assign069

more weight to) the submodules that perform well070

on a given task. In addition, since the number of071

parameters introduced by each submodule is gen-072

erally small, combining multiple methods leads to073

negligible losses in model efficiency.074

We select four representative PELT methods for075

our study – adapter (Houlsby et al., 2019), prefix-076

tuning (Li and Liang, 2021), BitFit (Ben Zaken077

et al., 2021), and LoRA (Hu et al., 2021), which078

largely cover the major categories of PELT meth-079

ods. We perform two sets of analysis that carefully080

examines (i) the characteristics of individual PELT081

methods and (ii) their effectiveness when coordi-082

nated together by UNIPELT under various setups.083

Extensive experiments on the GLUE benchmark084

(Wang et al., 2019), with 32 task×data setups085

(8×4) and 1,000+ runs, not only reveal the di-086

verse behavior of PELT methods, but also show that087

UNIPELT is more effective and robust than using088

each method alone in various task and data setups.089

Specifically, UNIPELT consistently improves the090

best submodule that it incorporates by 1~4 points091

and even outperforms fine-tuning, achieving the092

best average performance on the GLUE benchmark093

under different setups. Moreover, UNIPELT gen-094

erally surpasses the upper bound that takes the best095

performance of all its submodules used individu-096

ally on each task, which suggests that UNIPELT097

maintains (near) optimal performance under differ-098

ent setups. The fact that UNIPELT outperforms the099

upper bound also implies that a mixture of PELT100

methods that involve different parts of the PLM101

architecture may be inherently more effective than102

individual methods.103

Contributions. (1) We conduct a comprehensive104

study of representative PELT methods and care-105

fully examine their differences and commonalities106

in terms of performance and characteristics. (2)107

We propose a unified PELT framework that can 108

incorporate existing methods as submodules and 109

automatically learn to activate the most appropri- 110

ate submodules for a given task. (3) Our proposed 111

framework achieves better average performance 112

than fine-tuning and the PELT methods that it in- 113

corporates under various setups, often performing 114

the best and never the worst at per-task level, ex- 115

hibiting superior effectiveness and robustness with 116

negligible losses in model efficiency. 117

2 Preliminaries 118

2.1 PELT methods w/o Additional 119

Parameters 120

PLMs can be used as feature extractors where only 121

the top layers or prediction head are fine-tuned 122

without additional parameters (Lee et al., 2019). 123

However, such fine-tuning approaches generally 124

lead to degenerate model performance that is much 125

worse than fine-tuning all parameters (Lee et al., 126

2019; Pfeiffer et al., 2021). A recent method BitFit 127

(Ben Zaken et al., 2021) only tunes the bias terms 128

of the PLM and is shown to achieve performance 129

comparable to fine-tuning on certain tasks when 130

training data is limited. Therefore, we select BitFit 131

as the representative of this category. 132

2.2 PELT methods w/ Additional Parameters 133

Alternatively, one may fix the entire PLM and intro- 134

duce a small number of new trainable parameters. 135

Notable examples in this category include adapter 136

(Houlsby et al., 2019) and its extensions (Pfeif- 137

fer et al., 2021; Karimi Mahabadi et al., 2021b), 138

prefix-tuning (Li and Liang, 2021) and its exten- 139

sions (Lester et al., 2021), and additive methods 140

(Guo et al., 2021; Hu et al., 2021). 141

Next, we will briefly describe these methods to 142

facilitate the introduction of our proposed frame- 143

work. An illustration is shown in Fig. 1 for better 144

understanding. 145

Adapter. Adapter (Houlsby et al., 2019) adds a 146

trainable bottleneck layer after the feedforward net- 147

work in each Transformer layer of the PLM. A bot- 148

tleneck layer consists of a down+up projection pair 149

that shrinks and recovers the size of token hidden 150

states. Mathematically, if we denote the output of 151

the feedforward network after residual connection 152

and layer normalization as hFN with hidden size 153

Dhidden and bottleneck size Dmid, then the output 154

of a bottleneck layer hA is: 155

hA = W ᵀ
upφ(W

ᵀ
downhFN), (1) 156

2

where Wdown ∈ RDhidden×Dmid , Wup ∈157

RDmid×Dhidden , φ is a nonlinear activation function,158

and the bias terms are omitted for brevity. The pa-159

rameters in layer normalization and the final predic-160

tion head sometimes are also fine-tuned depending161

on the specific adapter variants.162

Adapter has shown to be on par with fine-tuning163

and sometimes exhibits better effectiveness in the164

low-resource setting (He et al., 2021). Later stud-165

ies extend adapter to multi-lingual (Pfeiffer et al.,166

2020b) and multi-task (Karimi Mahabadi et al.,167

2021b) settings, or further reduce its trainable pa-168

rameters (Karimi Mahabadi et al., 2021a), which169

can be easily incorporated into UNIPELT as a re-170

placement of the vanilla adapter.171

Prefix-tuning. Prefix-tuning (Li and Liang, 2021)172

prepends a number of task-specific trainable vec-173

tors to the input of multi-head attention in each174

Transformer layer, which the original tokens can at-175

tend to as if they were virtual tokens. Specifically,176

we denote the original sequence length L0, the177

number of trainable vectors (i.e., prefix length) L,178

and the Transformer layer input hin ∈ RDhidden×L0 .179

First, three linear projections WQ, WK , WV ∈180

RDhidden×Dhidden transform hin into Query Q, Key181

K, and Value V . Then, two prefix matrices PK182

and PV ∈ RDhidden×L are prepended to K and V .183

To allow for more expressiveness, the prefix matrix184

P is reparameterized by a feedforward network:185

P = W ᵀ
upφ(W

ᵀ
downP), (2)186

where Wdown ∈ RDhidden×Dmid , Wup ∈187

RDmid×2NlayerDhidden , and Nlayer denotes the number188

of Transformer layers. The parameters of this189

network can be discarded after training, and only190

2Nlayer prefix matrices ∈ RDhidden×L are needed (2191

matrices for each layer).192

Prefix-tuning is originally evaluated on natural193

language generation and we adapt it to understand-194

ing tasks. A follow-up method named prompt-195

tuning (Lester et al., 2021) further reduces task-196

specific parameters by limiting the prefix to the197

first layer but only performs competitively with198

very large model sizes (billions of total parame-199

ters), and is thus not considered in our study. Note200

that prefix-tuning (or prompt-tuning) is different201

from prompt-based fine-tuning methods (Schick202

and Schütze, 2021; Gao et al., 2021) in multiple203

ways. Please see App. A for specific differences.204

Additive Methods. Additive PELT methods treat205

the model parameters after fine-tuning as an ad-206

dition of the pre-trained parameters θpre-trained and207

task-specific differences δtask, where θpre-trained is 208

fixed and a new (sub)set of model parameters are 209

added on top: θtask = θpre-trained + δtask. There are 210

various ways to parameterize δtask, leading to dif- 211

ferent additive methods such as LoRA (Hu et al., 212

2021), diff pruning (Guo et al., 2021), and side- 213

tuning (Zhang et al., 2020). We take LoRA as a 214

representative and incorporate it into UNIPELT. 215

Other methods are conceptually similar and can be 216

incorporated in the same fashion. 217

LoRA introduces trainable low-rank matrices 218

and combines them with the original matrices 219

in the multi-head attention. Specifically, two 220

matrices Wdown ∈ RDhidden×Dmid and Wup ∈ 221

RDmid×Dhidden are added for the query and key pro- 222

jections along with the original matrix WQ and 223

WK ∈ RDhidden×Dhidden : 224

Q = (W ᵀ
Q + αW ᵀ

upW
ᵀ
down)hin, (3) 225

where α is a fixed scalar hyperparameter for scaling 226

the task-specific differences. The form of the train- 227

able matrices is quite similar to those in adapter or 228

prefix-tuning, but there is no activation function φ 229

in between. 230

3 Unifying PELT Methods 231

3.1 Task Formulation 232

Given a large PLMMwith size |M| that cannot be 233

fine-tuned directly due to computational or storage 234

cost, suppose that we have a list of PELT methods 235

{mi}, the trainable parameters of which are negli- 236

gible (i.e.,
∑

i |mi| � |M|), our goal is to design a 237

unified PELT framework that incorporates {mi} as 238

submodules and learns to dynamically activate (up- 239

weight) different submodules when appropriate un- 240

der different scenarios, such that one could achieve 241

satisfactory results in terms of both model effective- 242

ness and robustness without the hassle of permuting 243

all the method×task×data combinations. 244

3.2 Proposed Method 245

Motivation & Intuition. During the analysis of 246

individual PELT methods, we observe that differ- 247

ent PELT methods exhibit diverse characteristics 248

and perform rather differently on the same task. 249

For example, prefix-tuning generally performs well 250

on natural language inference tasks regardless of 251

the size of training data. Also, as can be seen in 252

Fig. 1 and Sec. 2, different PELT methods often in- 253

volve different parts of the PLM architecture (e.g., 254

before multi-head attention for prefix-tuning and 255

3

after feedforward layer for adapter), making it fea-256

sible to combine multiple PELT methods without257

(directly) interfering with each other.258

In light of the two observations above, we pro-259

pose a unified PELT framework, UNIPELT, which260

takes a hybrid approach by incorporating multi-261

ple PELT methods as submodules. At a high level,262

UNIPELT improves over single PELT methods due263

to two factors. First, UNIPELT learns to activate264

(upweight) the submodules that best suit the current265

task or specific data sample and deactivate (down-266

weight) the rest. Second, we find that UNIPELT267

generally performs better than taking the best per-268

formance of all its submodules used individually269

on each task, suggesting that there could be some270

compounding effects that lead to better model effec-271

tiveness when multiple PELT methods (that modify272

different parts of the PLM) are used.273

Next, we will introduce how different PELT274

methods can be incorporated into UNIPELT via275

gating mechanism.2276

Gating Mechanism. To achieve fine-grained con-277

trol of submodule (de)activation, we add a trainable278

gate Gmi for each submodule mi ∈ {A,P, L} in279

every Transformer layer (see Fig. 1). The letters A,280

P, L stand for Adapter, Prefix-tuning, and LoRA,281

respectively. Intuitively, if mi is useful for a given282

data or task setup, the gate output for mi would be283

high such that mi plays a more important role (al-284

though the actual interactions could be more com-285

plicated given the compounding effects of multiple286

layers and submodules).287

Specifically, for adapter, there is a residual con-288

nection between the feedforward network and the289

adapter submodule that sums the adapter input (be-290

fore normalization) hF and output hA as its final291

output: hA = hA + hF . We design a gating func-292

tion GA ∈ (0, 1) that estimates the importance of293

adapter by its direct input hFN using a feedforward294

network with sigmoid activation and then scales its295

output: hA = GAhA+hF . The adapter submodule296

is effectively bypassed if GA ≈ 0.297

Similarly, for prefix-tuning, we design a gating298

function GP ∈ (0, 1) that is applied to the prefix299

vectors (PK and PV) with the representation of the300

original tokens (K and V) intact. In this way, the301

impact of the prefix would be diminished if the gate302

output of the prefix-tuning submodule is low.3 The303

2BitFit is not included in UNIPELT as it does not perform
very well in our experiments.

3Prefix-tuning cannot be fully eliminated as adapter or
LoRA due to the softmax operation in multi-head attention.

gating function GP is estimated by the Transformer 304

layer input hin with another feedforward network. 305

As for LoRA, we note that there is already a 306

constant scaling factor α in its original design that 307

resembles the purpose of our gating mechanism. 308

We thus simply make the factor learnable per layer 309

by a third feedforward network that takes hin as 310

input instead of specifying a constant manually: 311

θtask = θpre-trained + GLδtask. 312

Despite the seeming simplicity of UNIPELT, 313

we note that it is nontrivial for a unified approach 314

to work well under different scenarios. Naively 315

combining different PELT methods as a hybrid 316

approach may lead to mixed or worse performance 317

than using individual methods, as observed in both 318

our experiments and prior studies (Hu et al., 2021). 319

4 Experiments 320

We conduct extensive experiments with 8 tasks × 321

4 data sizes × 7 methods × 5 runs per setup, along 322

with additional analysis for particular methods, re- 323

sulting in 1,000+ runs in total. 324

4.1 Experiment Setup 325

Task Setup. We conduct experiments on the Gen- 326

eral Language Understanding Evaluation (GLUE) 327

benchmark (Wang et al., 2019), which involves 328

four types of natural language understanding tasks 329

including linguistic acceptability (CoLA), senti- 330

ment analysis (SST-2), similarity and paraphrase 331

tasks (MRPC, STS-B, QQP), and natural language 332

inference (MNLI, QNLI, RTE). WNLI is omitted 333

following prior studies (Houlsby et al., 2019; De- 334

vlin et al., 2019; He et al., 2021; Ben Zaken et al., 335

2021) due to its adversarial nature. 336

Data Setup. We mainly consider a low-resource 337

setting where training data is limited and the per- 338

formance of different methods varies much. We 339

sample a small subset of the training set for each 340

task with size K = {100, 500, 1000}. As it is in- 341

feasible to submit considerable runs to the GLUE 342

leaderboard (2 submissions/day), we take 1,000 343

samples on the training set as the development set 344

to select the best checkpoint and use the original 345

development set as the test set (He et al., 2021). To 346

reduce variance, we shuffle the data with 5 random 347

seeds and report the average performance. Addi- 348

tionally, we consider a high-resource setting where 349

the whole training set is used and the best perfor- 350

mance on the GLUE development set is reported. 351

Compared Methods. We mainly compare 352

4

Method SST-2 MRPC CoLA RTE QNLI STS-B MNLI QQP Avg.

[K = 100] Test Performance
Fine-tuning 79.614.25 81.810.35 16.564.34 55.881.64 69.255.94 74.076.51 42.563.43 60.416.42 60.021.84
BitFit 62.944.85 81.090.17 2.711.57 47.653.56 42.461.37 54.530.56 38.160.53 59.560.39 48.640.78
Adapter 80.482.94 81.400.19 2.024.04 52.780.27 72.250.49 77.321.54 38.813.64 60.884.00 58.240.99
Prefix-tuning 60.8712.47 81.220.00 0.000.00 55.962.00 71.912.69 57.690.02 40.582.49 15.680.12 47.991.77

→L = 50 79.521.21 81.220.00 5.198.62 49.242.08 66.332.45 7.1510.37 33.662.21 58.323.18 47.561.37
LoRA 81.560.94 81.660.81 13.3110.00 55.021.75 73.521.20 49.3521.87 39.604.98 0.090.02 49.262.19
UNIPELT (AP) 77.223.75 81.860.70 14.4210.24 55.522.16 72.260.89 79.141.97 42.591.20 63.411.44 60.801.53
UNIPELT (APL) 82.360.86 81.710.72 23.628.83 55.451.28 73.190.93 79.371.07 42.301.88 62.702.55 62.591.44
[K = 500] Test Performance
Fine-tuning 85.670.97 83.340.55 36.472.69 59.641.10 77.300.49 84.961.19 55.840.85 68.231.39 68.930.65
BitFit 83.440.63 82.160.37 3.322.59 61.882.75 69.159.91 76.300.36 40.823.30 65.293.66 60.301.91
Adapter 84.541.37 82.530.36 38.653.97 59.353.09 77.390.84 83.520.33 50.041.72 68.120.95 68.020.77
Prefix-tuning 83.650.69 82.961.63 38.162.25 63.182.70 78.501.12 79.751.49 58.061.04 54.3425.91 67.323.42
LoRA 84.981.10 82.530.70 39.862.71 63.032.57 79.460.66 65.0526.31 56.542.05 55.4627.74 65.864.18
UNIPELT (AP) 84.840.28 83.250.51 39.845.01 63.321.72 78.361.06 84.530.48 56.083.26 68.141.39 69.791.02
UNIPELT (APL) 84.911.41 83.560.59 39.812.55 64.122.45 79.280.63 85.260.70 54.073.74 68.870.41 69.980.42
[K = 1000] Test Performance
Fine-tuning 86.541.01 84.870.64 43.262.60 62.312.10 79.031.11 86.390.34 61.951.20 71.090.77 71.930.37
BitFit 83.990.39 83.950.81 22.4417.10 62.891.40 77.430.53 79.040.61 52.870.72 69.500.16 66.512.22
Adapter 85.600.63 84.490.60 42.331.98 61.811.57 79.680.23 85.520.29 57.862.44 70.320.71 70.950.55
Prefix-tuning 85.090.99 83.661.82 44.072.90 66.712.72 80.340.70 82.381.25 63.591.12 68.580.35 71.810.52
LoRA 86.261.22 86.040.99 45.501.11 65.632.11 81.000.98 81.561.97 61.321.65 70.890.81 72.280.69
UNIPELT (AP) 86.170.37 85.861.05 44.333.55 64.911.92 80.650.57 86.820.23 62.170.99 69.950.90 72.610.53
UNIPELT (APL) 87.060.81 86.651.10 45.441.97 65.491.92 81.220.51 87.100.21 62.490.94 70.990.95 73.310.52

Table 1: Results on the GLUE benchmark with K = {100, 500, 1000} training samples. The evaluation metrics
are Matthew’s Correlation for CoLA, F1 for MRPC and QQP, Spearman’s correlation for STS-B, and accuracy for
the rest. For MNLI, we evaluate on the matched dataset. We report average performance on five random seeds
with standard deviation as the subscript. Best and 2nd best methods under each setup are bold and underlined.

UNIPELT with fine-tuning and four representa-353

tive PELT methods: adapter (Houlsby et al., 2019),354

prefix-tuning (Li and Liang, 2021), BitFit (Ben Za-355

ken et al., 2021), and LoRA (Hu et al., 2021).356

For completeness, we consider two model vari-357

ants UNIPELT (AP) and UNIPELT (APL), which358

incorporate 2 and 3 PELT methods, respectively.359

Implementation Details. We use BERTbase as the360

base model in the experiments. We implement and361

evaluate all the methods in the same codebase to362

ensure a fair comparison. We largely follow the363

default hyperparameters of different methods and364

keep them the same on all the tasks for generaliz-365

ability. We set the prefix length L = 10, adapter366

bottleneck size Dmid = 48, LoRA rank Dmid = 8367

if not specified otherwise.4 More implementation368

and hyperparameter details can be found in App. B.369

4.2 Analysis of Individual PELT Methods370

In Table 1, we show the performance of different371

methods on the GLUE benchmark with various372

4While these hyperparameters may lead to differences in
trainable parameters, we keep them for analysis as they are
used by the official implementation. Also, we observe that
more trainable parameters do not guarantee better results.

sizes of training data. The results on the develop- 373

ment sets are generally consistent with the test sets 374

and provided in App. C due to space limit. As one 375

can see, although the average performance of differ- 376

ent methods over 8 tasks is sometimes similar, the 377

differences are quite significant under certain se- 378

tups and can be as large as 5~9 points on a specific 379

task (e.g., STS-B and MNLI, K = 500) even when 380

excluding cases where some methods fail to learn 381

effectively (e.g., prefix-tuning on QQP, K = 100). 382

Next, we will analyze and examine each individ- 383

ual PELT method more closely. 384

Analysis of Adapter. The performance of adapter 385

is relatively stable – there is no significantly bet- 386

ter or worse result than fine-tuning consistent on 387

different tasks or sizes of training data. In gen- 388

eral, adapter is slightly worse than fine-tuning in 389

most cases. We do not observe that adapter consis- 390

tently outperforms fine-tuning in the low-resource 391

setting as in He et al. (2021), possibly because they 392

tune model hyperparameters on each task, which 393

could be computationally prohibitive when there 394

are considerable tasks. For example, they tune the 395

bottleneck size Dmid from {64, 128, 256}, while 396

Dmid = 48 is fixed across tasks in our experiments. 397

5

Also, we only add one adapter in each Transformer398

layer instead of two following Pfeiffer et al. (2021).399

These two differences result in 62.4%~90.5% fewer400

parameters than the adapter used in He et al. (2021).401

48 64 128 256
Bottleneck size Dmid

0

5

10

15

20

25

30

S
co

re

UniPELT (APL)
UniPELT (AP)
Adapter

Figure 2: Performance changes when the bottleneck
size of adapter is increased (on CoLA, K = 100).

To further study the effect of bottleneck size402

Dmid in adapter, we increase Dmid and re-evaluate403

adapter on a setup that it performs poorly (CoLA,404

K = 100). As shown in Fig. 2, the performance405

of adapter is increased gradually and becomes sig-406

nificantly better only when Dmid = 256, which in-407

volves 5.3× trainable parameters than the adapter408

used originally (Dmid = 48), 4.3× than UNIPELT409

(AP), and 3.4× than UNIPELT (APL), suggest-410

ing that a larger bottleneck size could be beneficial411

when adapter learns ineffectively.412

On the other hand, there are certain tasks (e.g.,413

STS-B) that adapter largely outperforms compet-414

itive methods such as prefix-tuning and LoRA re-415

gardless of the size of training data, suggesting that416

one should favor adapter over other PELT methods417

under certain scenarios as well.418

Analysis of Prefix-tuning. Prefix-tuning performs419

poorly with K = {100, 500} and becomes on par420

with fine-tuning whenK reaches 1000. We also ob-421

serve that prefix-tuning fails to learn effectively on422

certain tasks when the training data is limited (e.g.,423

K = 100 on SST-2 and K = 500 on QQP), lead-424

ing to unsatisfactory performance and (or) large425

variance across different runs. Similar phenomena426

have been observed in a concurrent study (Gu et al.,427

2021) on few-shot prompt-tuning.428

To ensure that the poor performance of prefix-429

tuning is not due to its fewer trainable parameters430

(based on its default setting), we further increase431

the prefix length to L = 50 such that its train-432

able parameters are comparable to adapter, and re-433

evaluate prefix-tuning on all 8 tasks with K = 100.434

For the 4 tasks where prefix-tuning (L = 10) per-435

forms poorly (SST2, CoLA, STS-B, and QQP),436

while its performance is significantly improved on 437

3 tasks, it also performs significantly worse on the 438

other task (STS-B), which suggests that training 439

instability in the low-resource regime is still an 440

issue for prefix-tuning even with more trainable 441

parameters.5 Besides, prefix-tuning (L = 50) still 442

lags behind adapter or UNIPELT (AP) on 3 of the 443

4 tasks. Furthermore, the average performance of 444

prefix-tuning (L = 50) on 8 tasks is even slightly 445

worse than with L = 10, which indicates that in- 446

creasing prefix length may not be a panacea for 447

all the scenarios. A larger L also leads to signifi- 448

cant training/inference slowdown due to the costly 449

multi-head attention. More broadly, such results 450

suggest that using more trainable parameters does 451

not guarantee better performance. 452

On the bright side, prefix-tuning performs es- 453

pecially well on certain tasks such as natural lan- 454

guage inference (QNLI and MNLI) with various 455

sizes of training data, which suggests that a hybrid 456

approach that learns to activate prefix-tuning on 457

these tasks is likely to yield decent results. 458

Analysis of BitFit & LoRA. Tuning only the bias 459

terms of the model does not lead to very satisfac- 460

tory results in our experiments – BitFit never per- 461

forms the best and generally performs the worst in 462

different data and task setups. Therefore, we do 463

not consider BitFit in the following experiments 464

and exclude BitFit as a submodule of UNIPELT. 465

As for LoRA, There are a few setups where LoRA 466

fails to learn effectively as well, such as STS-B 467

and QQP (K = {100, 500}), leading to high vari- 468

ance across runs. Apart from that, LoRA performs 469

quite competitively despite using fewer trainable 470

parameters than methods like adapter, especially 471

when K = 1000, achieving the best or 2nd best 472

performance on 4 of 8 tasks. 473

As LoRA has a scaling factor α that can be seen 474

as a static gating function under our formulation, 475

we further investigate its importance by evaluating 476

LoRA with different α. As shown in Fig. 3, LoRA 477

is quite sensitive to the scaling factor and there 478

seems to be no single optimal value that works 479

well across multiple task and data setups. Such 480

findings suggest that gating is critical and motivate 481

us to use more fine-grained and dynamic control 482

for UNIPELT. Besides, we observe that increasing 483

α consistently results in faster convergence, possi- 484

bly because the trainable parameters would receive 485

5Tuning other hyperparameters like learning rate does not
appear to alleviate the issue either.

6

0.5 1 2 3 4
Scaling factor

80

82

84

86

88

90
S

co
re

SST-2 (K = 100)
SST-2 (K = 500)

MRPC (K = 100)
MRPC (K = 500)

Figure 3: Performance comparison of various scaling
factors for LoRA on 2×2 task and data setups.

larger gradient updates with a larger α.486

4.3 Analysis of UNIPELT487

Next, we will turn to our proposed framework488

UNIPELT, which incorporates multiple existing489

PELT methods as submodules.490

Low-Resource Performance. Overall, UNIPELT491

(APL) and UNIPELT (AP) consistently achieve the492

best and 2nd best average performance on both the493

development and test sets regardless of the number494

of training samples. The gains are generally 1~4%495

over the submodule that performs the best (when496

used individually). Such results demonstrate the497

advantages of our hybrid approach regarding model498

effectiveness and generalizability.499

At the per-task level, UNIPELT (APL) and500

UNIPELT (AP) perform the best or 2nd best on501

7/6/7 of 8 tasks when trained with 100/500/1,000502

samples, and never perform the worst in any setup.503

When comparing the two variants, UNIPELT504

(APL) outperforms UNIPELT (AP) on 4/6/8 of505

8 tasks when trained with 100/500/1,000 samples.506

Such results indicate that UNIPELT is quite ro-507

bust and performs reliably under different scenar-508

ios. The improvements of UNIPELT over its sub-509

modules are generally larger when having fewer510

training samples, suggesting that UNIPELT per-511

forms especially well in the low-resource regime.512

In particular, on the tasks where other PELT meth-513

ods fail to learn effectively such as CoLA and QQP514

(K = 100), UNIPELT manages to achieve perfor-515

mance better than fine-tuning.516

UNIPELT vs. Upper Bound. In Table 2, we517

show the comparison of UNIPELT and the up-518

per bound that takes the best performance of its519

submodules on each task. We observe that both520

UNIPELT (AP) and UNIPELT (APL) perform521

similarly or even better than their upper bound, 522

which suggests that UNIPELT successfully learns 523

to leverage different submodules and maintains 524

(near) optimal performance under different setups. 525

The fact that UNIPELT can outperform the upper 526

bound also hints that a mixture of PELT methods 527

(involving different parts of the PLM) might be in- 528

herently more effective than single methods (with 529

a limited scope of the PLM architecture). 530

K max({A,P}) UNIPELT max({A,P, L}) UNIPELT

100 58.86 60.80 60.60 62.59
500 69.69 69.79 70.02 69.98
1000 72.58 72.61 73.19 73.31

Table 2: Comparison of average test performance be-
tween UNIPELT and the upper bound that takes the
best performance of its submodules on each task.

High-Resource Performance. In Table 3, we 531

list the performance of different methods when 532

all training samples are used. UNIPELT again 533

achieves the best overall performance. The gains 534

are not as significant as in the low-resource set- 535

ting, which is somewhat expected as existing PELT 536

methods typically perform on par with fine-tuning 537

given abundant training data and the potential of 538

improvement is not as high. That said, the perfor- 539

mance of UNIPELT is still the best or 2nd best 540

on all 8 tasks, and generally comparable to the 541

best submodule used individually on each task. Be- 542

sides, simply combining multiple PELT methods 543

without gating may not work very well – although 544

UNIPELT-NoGate never performs the worst in 545

each task, its overall performance is unsatisfactory 546

(-0.89), which suggests that a more careful mixture 547

of PELT methods is important for achieving better 548

model effectiveness. 549

4.4 Efficiency of PELT Methods 550

We benchmark the efficiency of PELT methods and 551

list in Table 4 their number of trainable parameters 552

and training/inference time relative to fine-tuning. 553

Parameter Efficiency. As the trainable parame- 554

ters in PELT methods are almost negligible, com- 555

bining multiple methods does not lead to significant 556

losses in parameter efficiency. UNIPELT still has 557

few trainable parameters compared to fine-tuning 558

(0.99%~1.26%). The number can be further re- 559

duced (to e.g., <0.1%) if one uses more parameter- 560

efficient variants, which can be easily swapped 561

with the vanilla version used in our current frame- 562

work. Also, note that more trainable parameters do 563

not always lead to better performance, as shown in 564

7

Method SST-2 MRPC CoLA RTE QNLI STS-B MNLI QQP Avg.

[K = all] Best Performance on GLUE Dev
Fine-tuning 91.63 90.94 62.08 66.43 89.95 89.76 83.23 87.35 82.67
Adapter 91.86 89.86 61.51 71.84 90.55 88.63 83.14 86.78 83.02
Prefix-tuning 90.94 91.29 55.37 76.90 90.39 87.19 81.15 83.30 82.07
LoRA 91.51 90.03 60.47 71.48 89.93 85.65 82.51 85.98 82.20
UNIPELT (AP) 91.86 90.28 61.15 71.84 90.77 88.86 83.41 86.74 83.12

-NoGate 91.74 90.18 58.63 71.12 90.30 88.76 81.58 85.53 82.23
UNIPELT (APL) 91.51 90.94 61.53 73.65 90.50 88.93 83.89 87.12 83.50

Table 3: Results on the GLUE benchmark when all training samples are used.

Method #Param. TimeT TimeI
Fine-tuning 110M (100%) 100% 100%
BitFit 103K (0.09%) 65% 102%
Prefix-tuning 184K (0.17%) 56% 114%
LoRA 295K (0.27%) 53% 105%
Adapter 895K (0.81%) 55% 107%
UNIPELT (AP) 1.1M (0.99%) 55% 118%
UNIPELT (APL) 1.4M (1.26%) 67% 127%

Table 4: Number of trainable parameters and
T raining/Inference time relative to fine-tuning.

our experiments and prior studies (He et al., 2021;565

Pfeiffer et al., 2021).566

Training and Inference Efficiency. Due to567

parameter efficiency, all PELT methods train568

30%~50% faster than fine-tuning and incorporating569

multiple PELT methods into UNIPELT does not570

suffer from slower training. On the other hand, the571

inference time of PELT methods is generally longer572

since they involve more FLOPs. UNIPELT has a573

slightly larger inference overhead (4%~11% com-574

pared to its slowest submodule), which we argue is575

insignificant since larger models that may achieve576

similar performance gains (e.g., BERTlarge) need577

around 300% inference time (Wolf et al., 2020).578

5 Related Work579

Parameter-Efficient Tuning of PLMs. As it is580

increasingly infeasible to train and store full copies581

of large PLMs for various downstream tasks, how582

to efficiently tune the PLMs with few trainable pa-583

rameters becomes critical. Existing PELT methods584

can be largely divided into two categories based on585

whether new trainable parameters are introduced.586

Specifically, one may either train a subset of the587

model parameters such as the prediction head (Lee588

et al., 2019) and bias terms (Ben Zaken et al., 2021),589

or introduce task-specific parameters to different590

parts of the PLM such as before multi-head at-591

tention (Li and Liang, 2021) or after feedforward592

layer (Houlsby et al., 2019). As the number of593

PELT methods keeps increasing, the purpose of 594

UNIPELT is to better understand and leverage the 595

distinctions of various methods instead of propos- 596

ing yet another method. 597

Mixture-of-Experts. UNIPELT is also related to 598

approaches that involve a high-capacity network 599

and activate (upweight) different parts of the net- 600

work given different inputs. One notable example 601

is Mixture-of-Experts (MoE) (Shazeer et al., 2017; 602

Hazimeh et al., 2021), which maintains a set of 603

experts (neural networks) and one or more train- 604

able gates that select a combination of the experts 605

specific to each input. Despite being conceptually 606

similar, UNIPELT is different from MoE: the sub- 607

modules in UNIPELT are not combined explicitly 608

by summation like MoE but in sequential order 609

and affect each other implicitly. Moreover, the 610

“experts” are diverse in UNIPELT while usually 611

homogeneous or identical in MoE methods. 612

6 Conclusion 613

In this paper, we present a comprehensive study of 614

representative parameter-efficient language model 615

tuning (PELT) methods and propose a unified 616

framework, which incorporates different PELT 617

methods as submodules and learns to activate the 618

most appropriate submodules for a given task or 619

data setup. Our proposed framework consistently 620

outperforms conventional fine-tuning as well as the 621

submodules that it incorporates under different se- 622

tups, and generally surpasses the upper bound that 623

takes the best performance of each submodule used 624

individually on each task. Our findings suggest that 625

a mixture of multiple PELT methods that involve 626

different parts of the PLM may be favorable regard- 627

ing both model effectiveness and robustness. For 628

future work, we will try to better understand the 629

discrepancy of various PELT methods in different 630

scenarios. We also plan to investigate a multi-task 631

setting where multiple submodules can be activated 632

and cooperate at the task level. 633

8

References634

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-635
berg. 2021. Bitfit: Simple parameter-efficient636
fine-tuning for transformer-based masked language-637
models. arXiv e-prints, pages arXiv–2106.638

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie639
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind640
Neelakantan, Pranav Shyam, Girish Sastry, Amanda641
Askell, et al. 2020. Language models are few-shot642
learners. arXiv preprint arXiv:2005.14165.643

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and644
Kristina Toutanova. 2019. BERT: Pre-training of645
deep bidirectional transformers for language under-646
standing. In Proceedings of the 2019 Conference647
of the North American Chapter of the Association648
for Computational Linguistics: Human Language649
Technologies, Volume 1 (Long and Short Papers),650
pages 4171–4186, Minneapolis, Minnesota. Associ-651
ation for Computational Linguistics.652

Ning Ding and Shengding Hu. 2021. Must-read653
papers on prompt-based tuning for pre-trained654
language models. https://github.com/655
thunlp/PromptPapers.656

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.657
Making pre-trained language models better few-shot658
learners. In Proceedings of the 59th Annual Meet-659
ing of the Association for Computational Linguistics660
and the 11th International Joint Conference on Nat-661
ural Language Processing (Volume 1: Long Papers),662
pages 3816–3830, Online. Association for Computa-663
tional Linguistics.664

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.665
2021. Ppt: Pre-trained prompt tuning for few-shot666
learning. arXiv preprint arXiv:2109.04332.667

Demi Guo, Alexander Rush, and Yoon Kim. 2021.668
Parameter-efficient transfer learning with diff prun-669
ing. In Proceedings of the 59th Annual Meeting of670
the Association for Computational Linguistics and671
the 11th International Joint Conference on Natu-672
ral Language Processing (Volume 1: Long Papers),673
pages 4884–4896, Online. Association for Computa-674
tional Linguistics.675

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdh-676
ery, Maheswaran Sathiamoorthy, Yihua Chen, Rahul677
Mazumder, Lichan Hong, and Ed H Chi. 2021.678
Dselect-k: Differentiable selection in the mixture679
of experts with applications to multi-task learning.680
arXiv preprint arXiv:2106.03760.681

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng682
Ding, Liying Cheng, Jiawei Low, Lidong Bing, and683
Luo Si. 2021. On the effectiveness of adapter-684
based tuning for pretrained language model adap-685
tation. In Proceedings of the 59th Annual Meet-686
ing of the Association for Computational Linguistics687
and the 11th International Joint Conference on Nat-688
ural Language Processing (Volume 1: Long Papers),689

pages 2208–2222, Online. Association for Computa- 690
tional Linguistics. 691

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 692
Bruna Morrone, Quentin De Laroussilhe, Andrea 693
Gesmundo, Mona Attariyan, and Sylvain Gelly. 694
2019. Parameter-efficient transfer learning for nlp. 695
In International Conference on Machine Learning, 696
pages 2790–2799. PMLR. 697

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 698
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu 699
Chen. 2021. Lora: Low-rank adaptation of large lan- 700
guage models. arXiv preprint arXiv:2106.09685. 701

Rabeeh Karimi Mahabadi, James Henderson, and Se- 702
bastian Ruder. 2021a. Compacter: Efficient low- 703
rank hypercomplex adapter layers. arXiv preprint 704
arXiv:2106.04647. 705

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa 706
Dehghani, and James Henderson. 2021b. Parameter- 707
efficient multi-task fine-tuning for transformers via 708
shared hypernetworks. In Proceedings of the 59th 709
Annual Meeting of the Association for Computa- 710
tional Linguistics and the 11th International Joint 711
Conference on Natural Language Processing (Vol- 712
ume 1: Long Papers), pages 565–576, Online. As- 713
sociation for Computational Linguistics. 714

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What 715
would elsa do? freezing layers during transformer 716
fine-tuning. arXiv preprint arXiv:1911.03090. 717

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 718
The power of scale for parameter-efficient prompt 719
tuning. arXiv preprint arXiv:2104.08691. 720

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 721
Optimizing continuous prompts for generation. In 722
Proceedings of the 59th Annual Meeting of the 723
Association for Computational Linguistics and the 724
11th International Joint Conference on Natural Lan- 725
guage Processing (Volume 1: Long Papers), pages 726
4582–4597, Online. Association for Computational 727
Linguistics. 728

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 729
Kyunghyun Cho, and Iryna Gurevych. 2021. 730
AdapterFusion: Non-destructive task composition 731
for transfer learning. In Proceedings of the 16th 732
Conference of the European Chapter of the Associ- 733
ation for Computational Linguistics: Main Volume, 734
pages 487–503, Online. Association for Computa- 735
tional Linguistics. 736

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish- 737
warya Kamath, Ivan Vulić, Sebastian Ruder, 738
Kyunghyun Cho, and Iryna Gurevych. 2020a. 739
Adapterhub: A framework for adapting transform- 740
ers. In Proceedings of the 2020 Conference on 741
Empirical Methods in Natural Language Processing 742
(EMNLP 2020): Systems Demonstrations, pages 46– 743
54, Online. Association for Computational Linguis- 744
tics. 745

9

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://github.com/thunlp/PromptPapers
https://github.com/thunlp/PromptPapers
https://github.com/thunlp/PromptPapers
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-746
bastian Ruder. 2020b. MAD-X: An Adapter-Based747
Framework for Multi-Task Cross-Lingual Transfer.748
In Proceedings of the 2020 Conference on Empirical749
Methods in Natural Language Processing (EMNLP),750
pages 7654–7673, Online. Association for Computa-751
tional Linguistics.752

Timo Schick and Hinrich Schütze. 2021. Exploiting753
cloze-questions for few-shot text classification and754
natural language inference. In Proceedings of the755
16th Conference of the European Chapter of the As-756
sociation for Computational Linguistics: Main Vol-757
ume, pages 255–269, Online. Association for Com-758
putational Linguistics.759

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,760
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff761
Dean. 2017. Outrageously large neural networks:762
The sparsely-gated mixture-of-experts layer. arXiv763
preprint arXiv:1701.06538.764

Alex Wang, Amanpreet Singh, Julian Michael, Felix765
Hill, Omer Levy, and Samuel R Bowman. 2019.766
Glue: A multi-task benchmark and analysis platform767
for natural language understanding. In International768
Conference on Learning Representations.769

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien770
Chaumond, Clement Delangue, Anthony Moi, Pier-771
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-772
towicz, et al. 2019. Huggingface’s transformers:773
State-of-the-art natural language processing. arXiv774
preprint arXiv:1910.03771.775

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien776
Chaumond, Clement Delangue, Anthony Moi, Pier-777
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-778
towicz, Joe Davison, Sam Shleifer, Patrick von779
Platen, Clara Ma, Yacine Jernite, Julien Plu,780
Canwen Xu, Teven Le Scao, Sylvain Gugger,781
Mariama Drame, Quentin Lhoest, and Alexan-782
der M. Rush. 2020. How to benchmark trans-783
former models. https://huggingface.co/784
transformers/benchmarks.html.785

Jeffrey O Zhang, Alexander Sax, Amir Zamir,786
Leonidas Guibas, and Jitendra Malik. 2020. Side-787
tuning: A baseline for network adaptation via ad-788
ditive side networks. In Computer Vision–ECCV789
2020: 16th European Conference, Glasgow, UK, Au-790
gust 23–28, 2020, Proceedings, Part III 16, pages791
698–714. Springer.792

10

https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://huggingface.co/transformers/benchmarks.html
https://huggingface.co/transformers/benchmarks.html
https://huggingface.co/transformers/benchmarks.html

A Prefix-tuning vs. Prompt-based793

Fine-tuning794

We note that prefix-tuning (or prompt-tuning) is795

different from prompt-based fine-tuning methods796

(Schick and Schütze, 2021; Gao et al., 2021) in797

many ways: (1) Prompt-based fine-tuning is not798

parameter-efficient as it updates all model param-799

eters while prefix-tuning only updates the prefix800

matrix P . (2) The prompts are only used in model801

input for prompt-based fine-tuning but added to802

every Transformer layer in prefix-tuning (stored as803

different vectors). (3) Prompt-based fine-tuning804

typically leverages carefully designed natural lan-805

guage prompts while prefix-tuning uses continuous806

prompts (virtual tokens).807

B Implementation Details808

Data Preparation. We shuffle the training set with809

seed s, take the first K samples as the new training810

set, and the next 1,000 samples as the development811

set. We use s = {111, 222, 333, 444, 555} as the812

data seeds and the same seed (s = 42) for model813

training. We also conduct another set of prelim-814

inary experiments by fixing the data and using 5815

different random seeds for model training, the re-816

sults of which are similar.817

Hyperparameters. We adopt AdapterHub (Pfeif-818

fer et al., 2020a), a library based on HuggingFace819

Transformers (Wolf et al., 2019), as our codebase.820

We largely follow the recommended hyperparame-821

ters used in different methods for a fair comparison.822

We set the input length to 128 and the training823

batch size to 16. We set the number of epochs to824

50 and adopt early stopping with a patience of 10825

non-increasing epochs. We set the learning rate of826

fine-tuning and adapter to 2e-5 and 1e-4 according827

to the findings in prior studies (Pfeiffer et al., 2020a;828

He et al., 2021). For prefix-tuning and UNIPELT,829

as they are not previously evaluated on NLU tasks,830

we tune their learning rates from {1e-4, 2e-4, 5e-4}831

on the development set and set to 2e-4 and 5e-4,832

respectively. For BitFit and LoRA, we choose the833

learning rates commonly used in their own experi-834

ments (1e-4 and 5e-4, respectively). We set α = 2835

and r = 8 in LoRA according to its official scripts.836

C Detailed Performance837

In Table 5, we list the detailed results on both devel-838

opment and test sets of the GLUE benchmark. The839

observations and findings are largely consistent on840

the two evaluation splits.841

11

Method SST-2 MRPC CoLA RTE QNLI STS-B MNLI QQP Avg.

[K = 100] Dev Performance
Fine-tuning 81.240.98 81.460.78 16.942.38 58.081.63 69.665.03 60.646.97 43.183.13 61.636.30 59.101.87
BitFit 62.064.62 80.660.39 5.731.46 50.260.91 42.022.29 31.182.47 38.400.84 61.550.52 46.480.66
Adapter 80.600.85 81.110.78 2.194.38 53.161.99 72.580.66 66.003.66 40.302.82 62.323.20 57.280.60
Prefix-tuning 66.2412.03 80.510.31 0.000.00 56.601.25 71.942.58 42.811.93 42.261.89 15.140.95 46.941.43
LoRA 82.540.84 80.820.50 14.388.57 56.622.01 74.260.89 47.8714.05 41.384.59 0.000.00 49.731.29
UNIPELT (AP) 80.401.95 81.020.54 15.076.46 57.681.63 73.500.54 68.193.97 44.501.11 64.890.86 60.661.16
UNIPELT (APL) 83.080.54 81.080.53 23.525.71 57.961.49 74.000.46 68.293.01 43.101.13 63.412.93 61.800.77
[K = 100] Test Performance
Fine-tuning 79.614.25 81.810.35 16.564.34 55.881.64 69.255.94 74.076.51 42.563.43 60.416.42 60.021.84
BitFit 62.944.85 81.090.17 2.711.57 47.653.56 42.461.37 54.530.56 38.160.53 59.560.39 48.640.78
Adapter 80.482.94 81.400.19 2.024.04 52.780.27 72.250.49 77.321.54 38.813.64 60.884.00 58.240.99
Prefix-tuning 60.8712.47 81.220.00 0.000.00 55.962.00 71.912.69 57.690.02 40.582.49 15.680.12 47.991.77

→L = 50 79.521.21 81.220.00 5.198.62 49.242.08 66.332.45 7.1510.37 33.662.21 58.323.18 47.561.37
LoRA 81.560.94 81.660.81 13.3110.00 55.021.75 73.521.20 49.3521.87 39.604.98 0.090.02 49.262.19
UNIPELT (AP) 77.223.75 81.860.70 14.4210.24 55.522.16 72.260.89 79.141.97 42.591.20 63.411.44 60.801.53
UNIPELT (APL) 82.360.86 81.710.72 23.628.83 55.451.28 73.190.93 79.371.07 42.301.88 62.702.55 62.591.44
[K = 500] Dev Performance
Fine-tuning 86.661.40 82.560.88 37.473.06 62.881.79 77.581.64 77.342.03 58.501.53 69.401.32 69.050.38
BitFit 84.661.28 81.800.96 5.661.87 61.880.95 69.328.90 59.551.41 42.623.23 66.062.99 58.941.65
Adapter 85.741.03 82.740.87 38.224.14 63.521.98 78.201.64 76.151.18 51.302.65 69.231.30 68.140.66
Prefix-tuning 86.721.46 82.261.16 40.255.45 66.080.83 78.441.48 71.412.30 60.701.47 54.4725.86 67.543.45
LoRA 86.361.37 82.381.35 42.603.13 65.461.74 79.341.23 60.5816.76 58.702.17 56.3928.20 66.484.02
UNIPELT (AP) 86.261.90 82.771.09 42.483.38 65.081.65 78.861.45 77.831.29 59.463.71 68.952.14 70.210.78
UNIPELT (APL) 86.101.28 83.160.92 43.834.73 64.022.99 79.561.49 78.541.95 57.083.87 69.560.89 70.230.55
[K = 500] Test Performance
Fine-tuning 85.670.97 83.340.55 36.472.69 59.641.10 77.300.49 84.961.19 55.840.85 68.231.39 68.930.65
BitFit 83.440.63 82.160.37 3.322.59 61.882.75 69.159.91 76.300.36 40.823.30 65.293.66 60.301.91
Adapter 84.541.37 82.530.36 38.653.97 59.353.09 77.390.84 83.520.33 50.041.72 68.120.95 68.020.77
Prefix-tuning 83.650.69 82.961.63 38.162.25 63.182.70 78.501.12 79.751.49 58.061.04 54.3425.91 67.323.42
LoRA 84.981.10 82.530.70 39.862.71 63.032.57 79.460.66 65.0526.31 56.542.05 55.4627.74 65.864.18
UNIPELT (AP) 84.840.28 83.250.51 39.845.01 63.321.72 78.361.06 84.530.48 56.083.26 68.141.39 69.791.02
UNIPELT (APL) 84.911.41 83.560.59 39.812.55 64.122.45 79.280.63 85.260.70 54.073.74 68.870.41 69.980.42
[K = 1000] Dev Performance
Fine-tuning 87.700.89 84.730.61 42.612.62 64.902.01 78.862.00 81.311.39 63.741.59 71.991.59 71.980.59
BitFit 86.301.36 83.630.18 20.4516.56 64.241.55 76.760.84 66.650.87 53.221.73 68.952.32 65.022.12
Adapter 87.061.44 84.790.42 43.481.46 65.620.93 79.881.26 80.881.89 59.562.46 70.521.48 71.470.33
Prefix-tuning 87.861.23 83.481.15 44.042.74 68.080.81 79.601.61 75.472.92 65.480.48 68.940.93 71.620.54
LoRA 87.501.01 85.091.02 47.113.02 67.200.78 80.861.88 76.331.28 62.861.53 71.481.45 72.300.52
UNIPELT (AP) 87.321.73 85.520.63 45.483.52 66.600.99 80.701.59 82.961.47 65.562.09 70.581.44 73.090.46
UNIPELT (APL) 88.021.28 86.050.73 45.702.47 66.861.32 80.501.76 83.091.55 64.600.72 70.640.77 73.180.27
[K = 1000] Test Performance
Fine-tuning 86.541.01 84.870.64 43.262.60 62.312.10 79.031.11 86.390.34 61.951.20 71.090.77 71.930.37
BitFit 83.990.39 83.950.81 22.4417.10 62.891.40 77.430.53 79.040.61 52.870.72 69.500.16 66.512.22
Adapter 85.600.63 84.490.60 42.331.98 61.811.57 79.680.23 85.520.29 57.862.44 70.320.71 70.950.55
Prefix-tuning 85.090.99 83.661.82 44.072.90 66.712.72 80.340.70 82.381.25 63.591.12 68.580.35 71.810.52
LoRA 86.261.22 86.040.99 45.501.11 65.632.11 81.000.98 81.561.97 61.321.65 70.890.81 72.280.69
UNIPELT (AP) 86.170.37 85.861.05 44.333.55 64.911.92 80.650.57 86.820.23 62.170.99 69.950.90 72.610.53
UNIPELT (APL) 87.060.81 86.651.10 45.441.97 65.491.92 81.220.51 87.100.21 62.490.94 70.990.95 73.310.52

Table 5: Results on the GLUE benchmark with K = {100, 500, 1000} training samples. The evaluation metrics
are Matthew’s Correlation for CoLA, F1 for MRPC and QQP, Spearman’s correlation for STS-B, and accuracy for
the rest. For MNLI, we evaluate on the matched dataset. We report average performance on five random seeds
with standard deviation as the subscript. Best and 2nd best methods under each setup are bold and underlined.

12

