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Abstract

Nature has likely sampled only a fraction of all protein sequences and structures
allowed by the laws of biophysics. However, the combinatorial scale of amino-acid
sequence-space has traditionally precluded substantive study of the full protein
sequence-structure map. In particular, it remains unknown how much of the vast
uncharted landscape of far-from-natural sequences consists of alternate ways to en-
code the familiar ensemble of natural folds; proteins in this category also represent
an opportunity to diversify candidates for downstream applications. Here, we char-
acterize sequence-structure mapping in far-from-natural regions of sequence-space
guided by the capacity of protein language models (pLMs) to explore sequences
outside their natural training data through generation. We demonstrate that pre-
trained generative pLMs sample a limited structural snapshot of the natural protein
universe, including >300 common (sub)domain elements. Incorporating pLM,
structure prediction, and structure-based search techniques, we surpass this limi-
tation by developing a novel "foldtuning" strategy that pushes a pretrained pLM
into a generative regime that maintains structural similarity to a target protein
fold (e.g. TIM barrel, thioredoxin, etc) while maximizing dissimilarity to natural
amino-acid sequences. We apply "foldtuning" to build a library of pLMs for >700
naturally-abundant folds in the SCOP database, accessing swaths of proteins that
take familiar structures yet lie far from known sequences, spanning targets that
include enzymes, immune ligands, and signaling proteins. By revealing protein
sequence-structure information at scale outside of the context of evolution, we
anticipate that this work will enable future systematic searches for wholly novel
folds and facilitate more immediate protein design goals in catalysis and medicine.

1 Introduction

The collection of naturally occurring protein structural motifs (“protein folds”) cataloged to date
cannot reflect exhaustive sampling of all possible sequence-structure pairs – there are 20100 ≈ 10130

choices for a small domain of length 100, dwarfing even the exploratory capacity of a few billion
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years of evolutionary time. Faced with such a daunting scale, biophysicists have long contemplated
what sequences and structures fill the unseen parts of protein-space. One pervasive question is that of
which protein folds are most “designable,” that is, which structures tolerate the greatest sequence
variation, and moreover, the most substantial departure from natural sequence space [Fontana, 2002,
England and Shakhnovich, 2003]? The hidden degeneracy of the protein sequence-to-structure
mapping (Figure 1a) holds implications for determining fundamental "rules" distinguishing stable
well-folded proteins from gibberish amino-acid strings, accessing diverse candidates for protein
design tasks, and even demystifying the roles of certain classes of proteins at the origins of life
[Dupont et al., 2010, Alva et al., 2015].

Attempts to probe the designability question have historically been stymied by both the combinatorial
complexity of sequence-space and the time-consuming nature of experimental protein structure
determination. However, advances in deep learning methods for proteins now place characterizing
the structural ensemble of far-from-natural sequences within reach. Transformer-based protein
language models (pLMs) such as ProtGPT2, ProtT5-XL, and the ESM2 family can generalize to
novel sequences and structures beyond their natural training data, suggesting that they might serve as
guides into meaningful regions of far-from-natural sequence-space, skirting the high-dimensional
sampling problem. [Ferruz et al., 2022, Elnaggar et al., 2022, Lin et al., 2022, Verkuil et al., 2022].
Likewise, rapid structure prediction via models such as AlphaFold2 and ESMFold makes assaying
the structure side of the sequence-structure map computationally tractable [Jumper et al., 2021, Lin
et al., 2022]. Combining pLMs with rapid protein structure prediction (ESMFold), we show that
"off-the-shelf," pretrained pLMs possess a latent capacity to generate sequences beyond the natural
protein universe that map onto roughly 300 known structural motifs; however, the resulting structure
distributions are skewed relative to the natural case. Building on these findings, we introduce a new
"foldtuning" algorithm that modifies a PLM to preserve generative fidelity to a target fold while
moving progressively further into far-from-natural sequence-space; we apply this approach for >700
common folds, uncovering well-folded regions of sequence-space and offering preliminary insight
into how designability varies between folds.

2 Results

2.1 Untuned pLMs access a subset of known protein structures

We initially assess the ability of two commonly-used pLMs, ProtGPT2 and ESM2-150M, to sample
from the full global sequence-structure landscape [Ferruz et al., 2022, Lin et al., 2022]. We generate
∼ 106 sequences of 100aa from each model, via L-to-R next-token prediction and Gibbs sampling
for ProtGPT2 and ESM2-150M respectively. Generated sequences are fed into an ESMFold structure
prediction step and predicted structures are queried against a custom Foldseek database comprised
of the 36,900 representative experimental structures (covering 1579 labeled protein folds, each a
structurally conserved unit) of the Structural Classification Of Proteins (SCOP) dataset in TMalign
mode [van Kempen et al., 2023, Andreeva et al., 2020]. We validate this structure prediction
and assignment workflow by assessing the capacity of ESMFold to generalize to far-from-natural
sequences with recent experimental structures deposited in the Protein Data Bank, finding a median
backbone alignment RMSD of 0.92 ± 0.14 Å on n = 122 sequences/structures satisfying basic
quality control filters (Figure S1). Among ProtGPT2- and ESM2-150M-generated sequences, just
385 (24.4%) and 309 (19.6%) unique SCOP folds are represented respectively according to structure
prediction and assignment (Figure 1d).

To determine where pLM-generated sequences lie with respect to natural sequence space, we extract
the internal representations ("embeddings") of these sequences with the ESM2-650M model, reduce
dimensionality to 2D using UMAP, and apply a rule-of-thumb that the embeddings of qualitatively
similar sequences should co-localize [McInnes et al., 2018]. We observe that a subpopulation
of ProtGPT2-generated sequences and most ESM2-150M-generated sequences co-localize more
substantially with random amino-acid sequences than with a set of ≈ 1.5 million natural proteins
(Figure 1b-c). Furthermore, many of the pLM-generated sequences that are assignable to SCOP
folds do not co-localize with natural sequences (Figure 1c). In contrast, ∼ 106 sequences generated
with a SOTA inverse-folding model, ESM-IF1, achieve high predicted structural fidelity but remain
ensconced in natural sequence space, co-localizing almost perfectly with natural sequences (Figure
1b) [Hsu et al., 2022]. Taken together, it is clear that, unlike off-the-shelf inverse-folding models,
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Figure 1: Structural ensembles generated by pretrained language models are imperfect reflec-
tions of natural protein-space. a) Subview of the global protein sequence-structure map; a given
structure is encoded by multiple sequences, possibly "connected" in some informative space. b)
Dimension-reduced UMAP representation of ESM2-150M embeddings of natural, random, inverse-
folded, and pLM-generated sequences. c) UMAP representation of random and pLM-generated
sequences assignable to a SCOP fold. d) Rank-ordered fold abundance plots for natural and pLM-
generated sequences. e) The 6 most-common SCOP folds among ProtGPT2 outputs; representative
structures are of far-from-natural sequences (no pBLAST hit with E-value < 10)

both pLMs generate sequences that are appreciably distinct in some statistical sense compared to
natural sequences yet able to fold into many of the same 3D structures. Notably, the structural
distributions emitted by the two pLMs indicate strong preferences for small subsets of folds at rates
far exceeding their natural frequencies (Figure 1d-e). For ProtGPT2, which has a higher overall
structural hit rate – 20.0% vs. 2.9% for ESM2-150M – overrepresented folds include α-α superhelices,
Rossmann(2x3)oids, and immunoglobulin-like domains (Figure 1e).

2.1.1 Loosening pLM sampling constraints increases sequence novelty at the cost of structure
hit rates and diversity

Foundational results from natural language processing suggest that protein structure and sequence
diversity might be unlocked by changing sampling hyperparameters to increase generative options
at each next-token prediction step. To determine whether this hypothesis holds for pLMs, we
systematically varied two key sampling hyperparameters of ProtGPT2 – sampling temperature and
top_k (the number of highest-probability tokens available to sample from at a given step) – and
repeated the generation, structure prediction, and structure assignment workflow from Section 2.1
for batches of ∼ 106 sequences. Consistent with the notion that "flattening the energy landscape" of
sequence generation should boost novelty, we find that the fraction of generated sequences lacking
detectable homology to natural protein sequences grows as temperature and top_k are increased
(Table S1-S6, Figure S5). However, we concurrently observe that any gains in sequence novelty are
obviated by marked losses on the structure generation front. As sampling temperature increases, the
generation frequency of fold-assignable structures falls by a factor of roughly 2x, from 34.5% to
15.1% for the default top_k value of 950, and the number of unique SCOP folds identified plummets
by > 25% (Table S1, Figure S2). Additionally, high-temperature generation dramatically favors
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generation of proteins with an all-α global topology, i.e. α-helical bundles, at the notable expense of
the functionally diverse α/β class (Figure S2-S4) [Choi and Kim, 2006]. While obtaining far-from-
natural sequences for α-helical bundle proteins is useful for protein design writ large, the extreme
structural biases introduced by pushing sampling hyperparameters into the regime necessary for
sequence novelty indicate that a more robust method is required to access far-from-natural sequences
for structurally diverse fold classes.

2.2 “Foldtuning” of a pLM maintains a target structure while escaping natural sequence
space

Finding the structural reach of pretrained pLMs to be distorted, particularly when sequence novelty
is an overriding goal, we introduce a new approach to push pLMs into far-from-natural sequence
space. In this approach, which we term "foldtuning," a pLM undergoes initial finetuning on natural
sequences corresponding to a given target fold, plus several rounds of finetuning on self-generated
batches of sequences that are predicted to adopt the target fold while differing maximally from
the natural training sequences (Algorithm 1). We achieve this by selecting for finetuning those
structurally-validated sequences that maximize semantic change – defined for a generated sequence
s
(i)
k as the smallest L1-distance between the ESM2-650M embeddings of s(i)k and any of the natural

training sequences [Hie et al., 2021]. Thus, foldtuning drives a pLM along a trajectory that accesses
pockets of far-from-natural sequences while preserving the "grammar" of a fixed target fold.

Algorithm 1 pLM "Foldtuning"
given a pretrained base model M−1 and target fold f
for round k = 0, 1, 2...N do

if k = 0 then
let training set Sk contain n (default: n = 100) natural examples of fold f

else
let training set Sk contain all s(i)k−1 s.t. z(i)

k−1 is among the n-largest values (highest semantic change) of the (k-1)-th round (see line
13)

end if
finetune Mk−1 on Sk for 1 epoch, outputting updated model Mk

generate N (default: N = 1000) sequences s(0)k , s
(1)
k , . . . from Mk

fold generated sequences (ESMFold)
assign fold labels by structure-based search (Foldseek)
for all {s(i)k } assigned to fold f do

let semantic change z
(i)
k = minj ∥x(i) − x

(j)
train∥1, where s

(i)
k 7→ x

(i)
k ∈ R1280 via embedding with ESM2-650M

end for
end for

2.2.1 "Foldtuned" models emit far-from-natural sequences for >700 target folds, including
enzymes, cytokines, and signaling proteins

We "foldtune" ProtGPT2 (the best-performing model from Section 2.1) as described in Algorithm 1 for
727 total target folds; 708 SCOP folds (out of the top 850 ranked by natural abundance, for an 83.3%
success rate), plus 19 cytokines/chemokines curated from InterPro. Model performance is assessed
via two metrics; the fraction of generated sequences predicted to fold to the target structure, aka
structure hit rate; and the fraction of structural hits with no sequence homology to any protein in the
UniRef50 database (per MMseqs2 search, max E = 0.01), aka sequence "escape rate". Considering
all 727 models, two rounds of "foldtuning" increase the median structure hit rate from to 0.565
from 0.203 after initial finetuning on the natural target fold; median sequence escape rate increases
markedly after four "foldtuning" rounds, to 0.211 from 0.134 after the initial finetuning phase (Figure
2a). As a second measure of sequence novelty, semantic change w.r.t. natural fold members increases
steadily with each "foldtuning" round (Figure 2b). With most models, exemplified by many of the
top-10 most-abundant SCOP folds, maximizing sequence escape rate does not require any significant
decline in structure hit rate (Figure 2c). Exceptions to this rule include the cytokine tumour necrosis
factor (TNF) and G protein-coupled receptors (GPCRs), which exhibit model performance tradeoff
between structural fidelity and sequence novelty (Figure 2d). Lastly, taking the product of structure
hit and sequence escape rates as a proxy for global designability splits the 727 folds into at least
three subpopulations, with the right-handed β-helix, ribbon-helix-helix domain, TIM β/α-barrel,
pleckstrin homology domain, and α/α toroid ranked as the most-designable folds (Figure 2e).
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Figure 2: 727 "foldtuned" models achieve high structure hit and sequence escape rates. a-b)
Structure hit rates after initial (’T’), 2, and 4 rounds of "foldtuning", paired with a, sequence "escape"
rates; b, sequence median semantic change w.r.t. natural fold members (embeddings extracted from
ESM2-650M model). c-d) Hit/escape rate trajectories over 4 rounds of "foldtuning" for c, the 10
most-common natural folds; d, selected enzymatic, immune modulation, and signaling examples. e)
Distribution of fold "designability" based on product of structure hit and sequence escape rates

3 Discussion

Knowing the features of the global protein sequence-structure map would unlock virtually limitless
possibilities for protein design. We demonstrated that protein language models trained on the natural
portions of this map can access far-from-natural sequence space, albeit with biases in preferred
structures. We developed and deployed a "foldtuning" strategy to systemically explore deep into
the far-from-natural corners of this map for 727 diverse targets including enzymes and signaling
ligands/receptors. Beyond serving translational goals in protein design for health and catalysis, we
expect that with tweaks to selection criteria, "foldtuning" will be readily repurposed to search for
novel protein structures unseen in nature and complete the sequence-structure map.
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4 Appendix

4.1 Methods

Except where otherwise noted, interfacing with all models was via the TRILL software package as
described in Martinez et al. [2023]. Sections 4.1.1-4.1.4 provide further implementation details for
the "foldtuning" steps described in Algorithm 1.

4.1.1 Sampling from Base Models

For ProtGPT2, we sampled 119,067 sequences by L-to-R next-token prediction with the default
best-performing hyperparameters from Ferruz et al. [2022]. (sampling temperature 1, top_k 950,
top_p 1.0, repetition penalty 1.2), terminating after 40 tokens or the first STOP token, whichever came
first, and truncating sequences to the first 100aa as necessary. For ESM2-150M, we sampled 148,500
sequences from L-to-R using Gibbs sampling for next-token prediction with a default sampling
temperature of 1, no repetition penalty, and allowing for sampling from all tokens, terminating after
100aa or the first STOP token, whichever came first.

The random-sequence control set was generated by position-independent sampling of 74,250 se-
quences of length 100aa from the 20 proteinogenic amino acids, with sampling probability for each
amino acid proportional to its natural abundance (first-order statistics). The inverse-folding control set
was constructed by generating three sequences from ESM-IF1 with each of the 36,900 representative
structures in the SCOP database as a backbone template, for 110,700 sequences in total. Default
hyperparameters for sampling were taken as in Hsu et al. [2022].

4.1.2 Finetuning of ProtGPT2 and Sampling from Finetuned Models

All finetuning of ProtGPT2 was performed with the Adam optimizer using a learning rate of 0.0001
and next-token prediction as the causal language modeling task. For "foldtuning" on a target fold
f , the base ProtGPT2 model was finetuned in the initial "T" round for 1-3 epochs on 100 natural
sequences belonging to fold f and selected randomly among deduplicated hits from a Foldseek-
TMalign search of the SCOP database of superfamily representative PDB structures (n = 36900)
against the AlphaFold-UniRef50 predicted structure database. Identical optimizer parameters were
used for subsequent foldtuning rounds, finetuning for 1 epoch on 100 semantic-change-maximizing
sequences assigned to fold f .

Sampling from finetuned ProtGPT2 models followed the same general procedures and hyperparame-
ters as in 4.1.1, with 1000 sequences generated per finetuned model. Inference batch size on a single
A100-80GB GPU ranged from 125-500 sequences per batch depending on target sequence length.

4.1.3 Structure Prediction and Assignment

Structures were predicted for all generated sequences – from control, base, and finetuned models –
that passed a quality control check for absence of rare or ambiguous amino acid characters (B, J, O,
U, X, Z). Sequences were truncated to a max length of 100aa (base or control models) or the median
length of natural sequences for target fold f (finetuned models). All structures were predicted with
ESMFold as described in Lin et al. [2022]. Inference batch size on a single A100-80GB GPU ranged
from 10-500 sequences per batch depending on target sequence length.

If possible, each predicted structure was assigned a fold label by searching against the SCOP database
of superfamily representative PDB structures (n = 36900) with Foldseek in accelerated TMalign
mode as described in van Kempen et al. [2023] and selecting the SCOP fold accounting for the most
hits satisfying TM-score > 0.5 and max(query coverage, target coverage) > 0.8 ("consensus hit").

4.1.4 Sequence Selection for Foldtuning

For each target fold f and foldtuning round k = 1, 2, ...N , the semantic change was calculated for all
sequences {s(i)k } assigned to fold f (as described in Section 4.1.3) as z(i)k = minj ∥x(i) − x

(j)
train∥1,

where s
(i)
k 7→ x

(i)
k ∈ R1280 via embedding with ESM2-650M. The finetuning sequence set for
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subsequent round k + 1, Sk, was constructed by ranking the {s(i)k } by their zk in descending-order
and taking the top 100 corresponding s

(i)
k ∈ Sk.

4.1.5 ESMFold Validation on Far-From-Natural Sequences

To assess the accuracy of ESMFold structural prediction on out-of-distribution samples, we evaluated
model performance on de novo proteins with structures deposited in the Protein Data Bank (PDB)
on-or-after the ESMFold training cutoff date of 05-01-2020. Mirroring the training set construction
process described in Lin et al. [2022], we filtered out structures with Resolution > 9 Å, length ≤ 20aa,
rare or ambiguous amino acids (BJOUXZ), or containing > 20% sequence composition of any one
amino acid, and clustered remaining sequences at the 40% identity level, obtaining a validation set of
n = 122 sequences. For each of the 122 sequences, the backbone RMSD was calculated between
the ESMFold predicted structure and the ground-truth PDB experimental structure, with a median
alignment RMSD of 0.92± 0.14 Å, indicating successful generalization of ESMFold beyond natural
training data (Figure S1).

4.2 Supplemental Figures

Figure S1: ESMFold achieves high structure prediction accuracy on far-from-natural sequences.
Backbone aligment RMSD for ESMFold structures of n = 122 de novo proteins vs. experimental
ground-truth structures, covering various global topologies. All sequences in the validation set had
experimental structures deposited in the Protein Data Bank on-or-after the ESMFold training cutoff
of 05-01-2020.
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Figure S2: Structure hit rates from base ProtGPT2 decrease as sampling temperature and top_k
increase. a-e) Structure hit rates from batches of 100k sequences generated from ProtGPT2 for
several sampling temperatures (0.8, 1, 1.2, 1.5, 2, 5) and top_k values (number of highest-probability
tokens considered in sampling out of 50,256 total) – a, 600, b, 950, c, 1500, d, 2400, e, 4000; broken
down by protein global topology class (α, β, α+ β, α/β, or "small / minimal 2° structure")
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Figure S3: Generated fold distributions shift towards all-α proteins and away from α/β proteins
as sampling temperature increases. a-e) Frequency of each protein global topology class (α, β,
α + β, α/β, or "small / minimal 2° structure") among all structure hits within batches of 100k
sequences generated from ProtGPT2 for several sampling temperatures (0.8, 1, 1.2, 1.5, 2, 5) and
top_k values (number of highest-probability tokens considered in sampling out of 50,256 total) – a,
600, b, 950, c, 1500, d, 2400, e, 4000
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Figure S4: Generated fold distributions differ substantially from the natural fold distribution
across sampling temperatures. a-c) Log-scale enrichment among ProtGPT2-generated sequences
assigned to the 30 most-abundant SCOP folds with top_k 950 and sampling temperature a, 1, b, 2, or
c, 5.
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Figure S5: Sequence escape rates increase across most folds as sampling temperature increases,
at the cost of a shift towards all-α topologies. Sequence escape rates for all assigned SCOP folds
generated from ProtGPT2 within batches of 100k sequences for several sampling temperatures (0.8,
1, 1.2, 1.5, 2, 5) x several top_k values (number of highest-probability tokens considered in sampling
out of 50,256 total; 600, 950, 1500, 2400, 4000.
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4.3 Supplemental Tables

Table S1: Base ProtGPT2 sequence and structure generation performance depends on sampling
hyperparameters.

Hyperparams Results

top_k temp Valid Seq. # Folds Struct. Hit Seq. Esc.

600 0.800 1.000 658 0.347 0.445
600 1.000 1.000 635 0.336 0.545
600 1.200 1.000 645 0.322 0.629
600 1.500 1.000 617 0.304 0.717
600 2.000 0.999 606 0.282 0.797
600 5.000 0.981 513 0.160 0.912
950 0.800 1.000 643 0.345 0.466
950 1.000 1.000 668 0.327 0.580
950 1.200 0.999 620 0.306 0.674
950 1.500 1.000 625 0.287 0.766
950 2.000 0.998 587 0.262 0.855
950 5.000 0.985 473 0.151 0.958
1500 0.800 1.000 649 0.340 0.484
1500 1.000 1.000 646 0.315 0.609
1500 1.200 0.999 627 0.290 0.708
1500 1.500 1.000 608 0.263 0.816
1500 2.000 0.998 577 0.239 0.903
1500 5.000 0.988 476 0.144 0.981
2400 0.800 1.000 634 0.334 0.493
2400 1.000 1.000 634 0.303 0.628
2400 1.200 1.000 617 0.277 0.742
2400 1.500 1.000 588 0.248 0.857
2400 2.000 0.998 542 0.222 0.944
2400 5.000 0.991 460 0.139 0.993
4000 0.800 1.000 662 0.334 0.510
4000 1.000 1.000 644 0.298 0.650
4000 1.200 0.999 618 0.271 0.778
4000 1.500 1.000 574 0.238 0.894
4000 2.000 0.998 540 0.212 0.968
4000 5.000 0.993 442 0.145 0.998
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Table S2: Top SCOP folds generated by base ProtGPT2 at various sampling temperatures with
top_k 600.

temp: 0.8

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.095 0.033 0.810
Spectrin repeat-like α 0.050 0.017 0.871
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.048 0.017 0.146
Immunoglobulin-like beta-sandwich β 0.036 0.012 0.510
alpha-alpha superhelix α 0.033 0.011 0.386

temp: 1

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.112 0.038 0.874
Spectrin repeat-like α 0.056 0.019 0.907
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.043 0.014 0.252
Immunoglobulin-like beta-sandwich β 0.034 0.012 0.596
Hemerythrin-type up-and-down 4-helical bundle α 0.032 0.011 0.903

temp: 1.2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.122 0.039 0.908
Spectrin repeat-like α 0.063 0.020 0.929
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.043 0.014 0.330
Hemerythrin-type up-and-down 4-helical bundle α 0.036 0.012 0.937
Immunoglobulin-like beta-sandwich β 0.030 0.010 0.696

temp: 1.5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.130 0.040 0.943
Spectrin repeat-like α 0.068 0.021 0.950
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.042 0.013 0.424
Hemerythrin-type up-and-down 4-helical bundle α 0.040 0.012 0.958
Immunoglobulin/albumin-binding domain-like α 0.033 0.010 0.955

temp: 2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.141 0.040 0.969
Spectrin repeat-like α 0.075 0.021 0.968
Hemerythrin-type up-and-down 4-helical bundle α 0.044 0.013 0.978
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.043 0.012 0.500
Immunoglobulin/albumin-binding domain-like α 0.032 0.009 0.966

temp: 5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.154 0.025 0.989
Spectrin repeat-like α 0.084 0.014 0.989
Hemerythrin-type up-and-down 4-helical bundle α 0.060 0.010 0.984
alpha-alpha superhelix α 0.040 0.006 0.905
Immunoglobulin/albumin-binding domain-like α 0.033 0.005 0.987
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Table S3: Top SCOP folds generated by base ProtGPT2 at various sampling temperatures with
top_k 950.

temp: 0.8

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.101 0.035 0.841
Spectrin repeat-like α 0.050 0.017 0.872
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.048 0.016 0.177
Immunoglobulin-like beta-sandwich β 0.032 0.011 0.534
Canonical WHD (winged helix domain) fold α+ β 0.031 0.011 0.342

temp: 1

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.111 0.036 0.893
Spectrin repeat-like α 0.058 0.019 0.918
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.042 0.014 0.273
Hemerythrin-type up-and-down 4-helical bundle α 0.034 0.011 0.926
alpha-alpha superhelix α 0.031 0.010 0.571

temp: 1.2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.126 0.039 0.930
Spectrin repeat-like α 0.065 0.020 0.946
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.041 0.013 0.345
Hemerythrin-type up-and-down 4-helical bundle α 0.038 0.012 0.948
Canonical WHD (winged helix domain) fold α+ β 0.030 0.009 0.530

temp: 1.5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.136 0.039 0.943
Spectrin repeat-like α 0.069 0.020 0.969
Hemerythrin-type up-and-down 4-helical bundle α 0.046 0.013 0.960
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.042 0.012 0.491
Immunoglobulin/albumin-binding domain-like α 0.030 0.009 0.960

temp: 2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.149 0.039 0.978
Spectrin repeat-like α 0.076 0.020 0.984
Hemerythrin-type up-and-down 4-helical bundle α 0.045 0.012 0.976
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.040 0.010 0.596
Immunoglobulin/albumin-binding domain-like α 0.035 0.009 0.974

temp: 5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.178 0.027 0.991
Spectrin repeat-like α 0.090 0.014 0.996
Hemerythrin-type up-and-down 4-helical bundle α 0.064 0.010 0.989
Immunoglobulin/albumin-binding domain-like α 0.038 0.006 0.986
alpha-alpha superhelix α 0.035 0.005 0.934
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Table S4: Top SCOP folds generated by base ProtGPT2 at various sampling temperatures with
top_k 1500.

temp: 0.8

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.101 0.035 0.847
Spectrin repeat-like α 0.052 0.018 0.878
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.045 0.015 0.210
Immunoglobulin-like beta-sandwich β 0.033 0.011 0.555
alpha-alpha superhelix α 0.031 0.010 0.426

temp: 1

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.119 0.037 0.895
Spectrin repeat-like α 0.059 0.019 0.918
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.040 0.013 0.304
Hemerythrin-type up-and-down 4-helical bundle α 0.035 0.011 0.930
Canonical WHD (winged helix domain) fold α+ β 0.029 0.009 0.472

temp: 1.2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.129 0.038 0.930
Spectrin repeat-like α 0.067 0.019 0.956
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.042 0.012 0.425
Hemerythrin-type up-and-down 4-helical bundle α 0.040 0.012 0.951
Canonical WHD (winged helix domain) fold α+ β 0.029 0.008 0.528

temp: 1.5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.145 0.038 0.963
Spectrin repeat-like α 0.077 0.020 0.984
Hemerythrin-type up-and-down 4-helical bundle α 0.047 0.012 0.976
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.040 0.011 0.566
Immunoglobulin/albumin-binding domain-like α 0.033 0.009 0.968

temp: 2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.158 0.038 0.988
Spectrin repeat-like α 0.078 0.019 0.989
Hemerythrin-type up-and-down 4-helical bundle α 0.050 0.012 0.986
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.039 0.009 0.708
Immunoglobulin/albumin-binding domain-like α 0.034 0.008 0.987

temp: 5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.182 0.026 0.993
Spectrin repeat-like α 0.094 0.014 0.999
Hemerythrin-type up-and-down 4-helical bundle α 0.070 0.010 0.994
Ferredoxin-like α+ β 0.040 0.006 0.984
Immunoglobulin/albumin-binding domain-like α 0.038 0.005 0.993
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Table S5: Top SCOP folds generated by base ProtGPT2 at various sampling temperatures with
top_k 2400.

temp: 0.8

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.106 0.036 0.850
Spectrin repeat-like α 0.052 0.018 0.894
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.043 0.014 0.210
alpha-alpha superhelix α 0.032 0.011 0.435
Canonical WHD (winged helix domain) fold α+ β 0.031 0.011 0.358

temp: 1

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.125 0.038 0.905
Spectrin repeat-like α 0.062 0.019 0.939
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.040 0.012 0.353
Hemerythrin-type up-and-down 4-helical bundle α 0.038 0.011 0.917
Canonical WHD (winged helix domain) fold α+ β 0.028 0.008 0.446

temp: 1.2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.138 0.038 0.945
Spectrin repeat-like α 0.071 0.020 0.959
Hemerythrin-type up-and-down 4-helical bundle α 0.043 0.012 0.957
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.041 0.011 0.456
Ferredoxin-like α+ β 0.030 0.008 0.792

temp: 1.5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.158 0.039 0.976
Spectrin repeat-like α 0.077 0.019 0.985
Hemerythrin-type up-and-down 4-helical bundle α 0.052 0.013 0.981
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.038 0.010 0.601
Ferredoxin-like α+ β 0.033 0.008 0.888

temp: 2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.167 0.037 0.994
Spectrin repeat-like α 0.086 0.019 0.992
Hemerythrin-type up-and-down 4-helical bundle α 0.056 0.012 0.991
Immunoglobulin/albumin-binding domain-like α 0.041 0.009 0.991
Ferredoxin-like α+ β 0.036 0.008 0.956

temp: 5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.190 0.027 0.998
Spectrin repeat-like α 0.095 0.013 0.998
Hemerythrin-type up-and-down 4-helical bundle α 0.069 0.010 0.998
Ferredoxin-like α+ β 0.041 0.006 0.993
Immunoglobulin/albumin-binding domain-like α 0.041 0.006 0.996
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Table S6: Top SCOP folds generated by base ProtGPT2 at various sampling temperatures with
top_k 4000.

temp: 0.8

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.108 0.036 0.855
Spectrin repeat-like α 0.054 0.018 0.892
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.042 0.014 0.217
alpha-alpha superhelix α 0.031 0.010 0.448
Hemerythrin-type up-and-down 4-helical bundle α 0.031 0.010 0.896

temp: 1

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.123 0.037 0.904
Spectrin repeat-like α 0.065 0.019 0.939
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.039 0.012 0.377
Hemerythrin-type up-and-down 4-helical bundle α 0.038 0.011 0.930
alpha-alpha superhelix α 0.028 0.008 0.609

temp: 1.2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.146 0.039 0.949
Spectrin repeat-like α 0.071 0.019 0.974
Hemerythrin-type up-and-down 4-helical bundle α 0.046 0.012 0.967
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.041 0.011 0.544
Ferredoxin-like α+ β 0.031 0.008 0.812

temp: 1.5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.161 0.038 0.981
Spectrin repeat-like α 0.086 0.020 0.991
Hemerythrin-type up-and-down 4-helical bundle α 0.054 0.013 0.982
Immunoglobulin/albumin-binding domain-like α 0.039 0.009 0.983
Rossmann(2x3)oid (Flavodoxin-like) α/β 0.035 0.008 0.699

temp: 2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.183 0.039 0.997
Spectrin repeat-like α 0.092 0.019 0.994
Hemerythrin-type up-and-down 4-helical bundle α 0.062 0.013 0.998
Immunoglobulin/albumin-binding domain-like α 0.038 0.008 0.995
Ferredoxin-like α+ β 0.038 0.008 0.970

temp: 5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin α 0.196 0.029 0.999
Spectrin repeat-like α 0.097 0.014 1.000
Hemerythrin-type up-and-down 4-helical bundle α 0.079 0.011 1.000
Ferredoxin-like α+ β 0.040 0.006 0.998
Immunoglobulin/albumin-binding domain-like α 0.038 0.005 1.000
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