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ABSTRACT

Despite their superb multimodal capabilities, Vision-Language Models (VLMs)
have been shown to be vulnerable to jailbreak attacks, which are inference-time
attacks that induce the model to output harmful responses with tricky prompts. It
is thus essential to defend VLMs against potential jailbreaks for their trustworthy
deployment in real-world applications. In this work, we focus on black-box de-
fense for VLMs against jailbreak attacks. Existing black-box defense methods are
either unimodal or bimodal. Unimodal methods enhance either the vision or lan-
guage module of the VLM, while bimodal methods robustify the model through
text-image representation realignment. However, these methods suffer from two
limitations: 1) they fail to fully exploit the cross-modal information, or 2) they de-
grade the model performance on benign inputs. To address these limitations, we
propose a novel blue-team method BlueSuffix that defends the black-box target
VLM against jailbreak attacks without compromising its performance. BlueSuf-
fix includes three key components: 1) a visual purifier against jailbreak images, 2)
a textual purifier against jailbreak texts, and 3) a blue-team suffix generator fine-
tuned via reinforcement learning for enhancing cross-modal robustness. We em-
pirically show on three VLMs (LLaVA, MiniGPT-4, and Gemini) and two safety
benchmarks (MM-SafetyBench and RedTeam-2K) that BlueSuffix outperforms
the baseline defenses by a significant margin. Our BlueSuffix opens up a promis-
ing direction for defending VLMs against jailbreak attacks.

1 INTRODUCTION

There has been a notable surge in research focusing on incorporating multimodal capabilities into
Large Language Models (LLMs), leading to the emergence of Vision-Language Models (VLMs),
such as OpenAI’s GPT-4o (Achiam et al., 2023) and Google’s Gemini 1.5 (Reid et al., 2024). VLMs
leverage the combination of visual and textual modalities to perform a broad range of tasks, in-
cluding image captioning and visual question answering, thereby extending the functionality of
traditional LLMs. However, the integration of multi-modality introduces additional attack surfaces,
bringing new security and safety challenges, particularly in their vulnerability to cross-modal jail-
break attacks that exploit maliciously crafted multimodal inputs to subvert the target VLM’s behav-
iors (Carlini et al., 2024; Bagdasaryan et al., 2023; Qi et al., 2023; Bailey et al., 2023; Gong et al.,
2023; Wang et al., 2024; Fang et al., 2024; Ying et al., 2024). Addressing these vulnerabilities is
thus critical for ensuring VLMs’ safe and reliable application in real-world scenarios.

Existing defense methods against VLM jailbreak attacks can be roughly divided into two types:
1) white-box defense that robustifies the VLM in the parameter space via adversarial training
or fine-tuning, and 2) black-box defense that safeguards the input/output of the model in the
prompt/response space using filters, detectors, or safety-driven system prompts. Arguably, black-
box defense is more flexible and practical than white-box defense as it can protect the target VLM
without accessing its parameters. In this paper, we focus on black-box defense against VLM jail-
break attacks.

Existing black-box defense methods are either unimodal or bimodal. Unimodal defenses focus on
defending either the textual or visual prompts. To defend textual prompts, a recent work leveraged
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Figure 1: An illustration of our BlueSuffix defense. A pair of image-text jailbreak prompts (left)
can compromise the target VLM to output harmful content (top right). However, the purified and
suffixed prompts by our BlueSuffix (middle) lose their adversarial property (bottom right).

safety-driven system prompts to instruct the model to detect and reject harmful textual prompts
(Zheng et al., 2024). To defend visual prompts, one could purify potential jailbreak images us-
ing a denoising model (Nie et al., 2022). However, unimodal defenses can only protect one single
modality of the target VLM, thus failing to fully exploit the multimodal information in the inputs.
Bimodal defense, on the other hand, can address both unimodal and cross-modal vulnerabilities.
For example, the Jailguard defense (Zhang et al., 2023) introduces a mutation-based framework to
detect malicious textual and visual prompts. Similar to Jailguard, the CIDER defense utilizes the
cross-modal similarity between harmful texts and adversarial images to perform the detection (Xu
et al., 2024a). While both methods are effective, Jailguard depends heavily on the original align-
ment of VLMs while CIDER hurts the model’s performance on benign inputs. Moreover, Jailguard
and CIDER can only detect and reject malicious prompts rather than robustify the model to respond
normally and correctly in the presence of jailbreak inputs. It is also worth noting that no existing
defense methods can defend against universal adversarial perturbation (UAP) based jailbreak at-
tacks. We believe addressing these limitations of existing defenses is crucial for developing stronger
defense methods against VLM jailbreaks.

In this work, we focus on black-box defense against VLM jailbreaks and take a blue-team approach
by training a blue-team suffix generator using reinforcement learning. Specifically, we propose a
novel defense framework named BlueSuffix that leverages both unimodal and bimodal techniques
to safeguard VLMs under a black-box defense setting, as illustrated in Figure 1. BlueSuffix has
three key components: 1) a diffusion-based image purifier to defend the visual input against adver-
sarial perturbations, 2) an LLM-based text purifier to rewrite the textual prompt following a certain
template, enabling the target VLM to identify harmful content without altering its original meaning,
and 3) an LLM-based blue-team suffix generator, which is fine-tuned from a lightweight language
model using reinforcement learning to incorporate both visual and textual information for cross-
modal robustness. In BlueSuffix, the image and text purifiers address the unimodal vulnerabilities
of VLMs, while the blue-team suffix generator tackles the cross-modal vulnerabilities.

When training the blue-team suffix generator, we propose a novel cross-modal optimization strategy
based on reinforcement learning to fine-tune a lightweight LLM. The optimization process takes
the image and text purifiers into consideration to explore cross-model robustness. Specifically, it
fine-tunes a GPT-2 based blue-team suffix generator to maximize the expected safety score given by
an LLM-based judge (e.g., GPT-4o or Llama 3). The generated blue-team suffix does not affect the
readability of the original textual prompt nor compromise the quality of the model’s response. Dur-
ing inference time, a defensive textual suffix will be generated (by the blue-team suffix generator),
appended to the purified text input (by the text purifier), and fed into the target VLM along with the
purified image input (by the image purifier). Unlike previous bimodal defenses, our approach does
not focus on detecting malicious inputs. Instead, it mitigates malicious prompts through purification
processes and the addition of blue-team suffixes. This makes it easier for the target model to rec-
ognize and respond to them correctly, making our method more practical for real-world scenarios.

In summary, our main contributions are:

• We propose a novel blue-team method, BlueSuffix, designed to protect black-box VLMs
from generating harmful content in response to jailbreak prompts, particularly against uni-
versal adversarial visual triggers.

• In BlueSuffix, we propose a cross-modal optimization method that fine-tunes the blue-
team suffix generator through reinforcement learning, incorporating an LLM-based text
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purifier and a diffusion-based image purifier. The resulting blue-team suffix generator
is lightweight and effectively preserves the model’s original alignment, ensuring minimal
negative impact on performance with benign inputs.

• We empirically demonstrate the effectiveness of BlueSuffix, which achieves a ∼ 70% and
∼ 50% reduction in Attack Success Rate (ASR) against a state-of-the-art attack on open-
source and commercial VLMs, respectively. This performance establishes a new bench-
mark in defending against VLM jailbreak attacks, significantly surpassing previous results.

2 RELATED WORK

Large Vision-Language Models VLMs are vision-integrated LLMs designed to process both vi-
sual and textual data, generating textual outputs for multimodal tasks. A typical VLM architecture
comprises three key components: an image encoder, a text encoder, and a fusion module to inte-
grate information from both encoders. For instance, MiniGPT-4 (Zhu et al., 2023) aligns visual data
with a language model via a linear projection layer, connecting the pre-trained Vision Transformer
(ViT) (Dosovitskiy, 2020) and Q-Former (Li et al., 2023a) to a frozen Vicuna model (Chiang et al.,
2023). Similarly, LLaVA (Liu et al., 2024a) links the CLIP visual encoder (Radford et al., 2021)
with the Vicuna model (Chiang et al., 2023) for general-purpose visual and language understanding.
Building upon the pre-trained BLIP-2 models (Li et al., 2023a), InstructionBLIP (Dai et al., 2023)
conducts a comprehensive study on vision-language instruction tuning and employs the Q-Former
to synchronize visual features with the language model, thus boosting the model’s ability to interpret
and respond to instruction-based queries.

Jailbreak Attacks on VLMs Jailbreak attacks aim to design malicious prompts that can bypass
the safety mechanisms of an LLM or VLM to make it output harmful content. In the context of
VLMs, jailbreak attacks are typically executed through carefully crafted malicious prompts that ex-
ploit vulnerabilities of the target model. Existing attack methods are either unimodal or bimodal. For
unimodal attack, Zou et al. (2023) introduced a white-box method to optimize a universal adversar-
ial suffix using the greedy coordinate gradient. Apart from universal adversarial suffixes, jailbreak
can also be launched by template completion (Li et al., 2023b; Kang et al., 2024), prompt rewriting
(Yuan et al., 2023; Yong et al., 2023), or LLM-based generation (Deng et al., 2024; Zeng et al.,
2024a). The above methods were all initially designed for LLMs. Undoubtedly, jailbreak can also
be achieved via adversarial images (Carlini et al., 2024; Niu et al., 2024). Subsequently, Qi et al.
(2023) introduced a universal adversarial visual input. However, these methods are all unimodal
attacks that fail to fully exploit the multimodal information in VLMs. Wang et al. (2024) employed
dual optimization objectives to guide the generation of effective multimodal jailbreak prompts (i.e.,
chained texts and images). However, this attack only works in a white-box setting. Ying et al. (2024)
proposed a Bi-Modal Adversarial Prompt Attack (BAP) to optimize query-agnostic universal adver-
sarial perturbations (UAPs) and rewrite malicious textual prompts. BAP demonstrates universal
attacking abilities across different scenarios.

Jailbreak Defenses for VLMs Accordingly, existing defenses against VLM jailbreak can also be
categorized into unimodal and bimodal methods. For unimodal defense, white-box defense tech-
niques can be applied to robustify the language model of VLM, for example instruction tuning
(Bianchi et al., 2023; Deng et al., 2023), Reinforcement Learning from Human Feedback (RLHF)
(Ouyang et al., 2022; Bai et al., 2022; Siththaranjan et al., 2023), gradient analysis (Xie et al., 2024;
Xu et al., 2024b), refinement (Kim et al., 2024; Zhang et al., 2024), and proxy defense (Zeng et al.,
2024b; Struppek et al., 2024). While white-box defenses require full access to the model parameters,
black-box defenses can protect the target model simply based on its inputs and outputs. Compared to
white-box defenses, black-box defenses are often more flexible, lightweight, and effective. Existing
black-box defenses for VLMs include prompt detection (Jain et al., 2023; Alon & Kamfonas, 2023;
Liu et al., 2024c), prompt perturbation (Cao et al., 2023; Robey et al., 2023; Zhou et al., 2024; Liu
et al., 2024b), and safety system prompt safeguards (Sharma et al., 2024; Zou et al., 2024; Zheng
et al., 2024). The above-mentioned defense methods thus far are all language-based defenses. Apart
from these methods, image denoising/purification methods can be applied to fix the jailbreak im-
ages. A well-known method is the DiffPure (Nie et al., 2022) which leverages a diffusion model
to remove potential adversarial perturbations from the input images. However, this method only
addresses the robustness of the visual modality.
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Conversely, Jailguard (Zhang et al., 2023) trained a bimodal detector to identify malicious texts or
images based on input mutation. Similar to Jailguard, CIDER (Xu et al., 2024a) leveraged cross-
modal similarity between harmful queries and adversarial images to detect malicious inputs. While
Jailguard’s performance heavily depends on the original alignment of VLMs, CIDER tends to nega-
tively impact the model’s performance on benign queries. To address these limitations, in this work,
we propose a novel blue-team framework BlueSuffix for black-box VLMs.

3 PROPOSED DEFENSE

In this section, we first introduce the threat model and problem definition, and then present our
proposed defense method BlueSuffix and its key components.

3.1 PRELIMINARIES

Threat Model We adopt a black-box defense model where the defender does not have access to
the internal structures nor parameters of the target VLM. This means that the defender has to design
external defense mechanisms to improve the model’s resistance to multimodal jailbreak prompts.
We assume the defender only has a one-shot opportunity to sanitize any potential jailbreak inputs
while maintaining the model’s performance on benign inputs. This allows an efficient plug-and-play
deployment of the defense method to safeguard different VLMs and their API services. We assume
the attackers design their jailbreak prompts secretly and independently and then feed the prompts
(maybe mixed with benign queries) into the target VLM.

Problem Definition We denote the target VLM as F , its visual module as Fv(e.g., CLIP visual
encoder (Radford et al., 2021)), textual module as Ft (e.g., Vicuna (Chiang et al., 2023)), and vision-
language connector as I (e.g., cross-attention or projection layer). Given an input pair of a visual
prompt xv (image) and a textual prompt xt (text), the visual module Fv encodes xv into a latent
representation hv , which is then fused with the textual prompt xt via the connector I. The fusion
operation allows the textual module Ft to perform both comprehension and generation tasks based
on the multimodal features I(hv, xt). This process can be formulated as:

hv = Fv(xv), y ∼ Ft(I(hv, xt)), (1)
where y is the textual output (response) of the model.

A jailbreak attack converts the original prompt into subtle and malicious jailbreak prompts to bypass
the safety guardrails of the target VLM while increasing stealthiness. The attack objective is to
maximize the target model’s log-likelihood of generating a harmful response, defined as:

max
A

log p(y∗|A(xv, xt)), (2)

where A is an adversarial perturbation function (visual or textual) and p(y∗|A(xv, xt)) is the proba-
bility of model outputting harmful content y∗. We denote the transformed visual prompt and textual
prompt as x∗

v and x∗
t , that is, (x∗

v, x
∗
t ) = A(xv, xt).

To tackle the above attack, black-box jailbreak defense purifies x∗
v and x∗

t before feeding them into
the target VLM. The defense objective is to minimize the target model’s log-likelihood of generating
the harmful response, defined as:

min
D

log p(y∗|D(x∗
v, x

∗
t )), (3)

where D is the defensive purifier (visual or textual). We denote the purified visual and textual
prompts as x̂v and x̂t, that is, (x̂v, x̂t) = D(x∗

v, x
∗
t ).

3.2 BLUESUFFIX

As shown in Figure 2, our BlueSuffix is a bimodal defense method that comprises three key com-
ponents: 1) a diffusion-based image purifier to defend the visual input against potential (universal)
adversarial perturbation(s), 2) an LLM-based prompt purifier to defend the textual input against ma-
licious queries, and 3) an LLM-based blue-team suffix generator that employs bimodal gradients
to achieve cross-modal robustness. It is important to note that our method aims to assist the target
VLM in automatically identifying the harmful request within the inputs and generating a positive
response accordingly, rather than acting as a malicious prompt detector.
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Figure 2: An overview of BlueSuffix and its three key components: 1) an image purifier, 2) an
LLM-based text purifier, and 3) a lightweight LLM-based (e.g., GPT-2) blue-team suffix generator.
The suffix generator is trained to maximize the expected safety score given by an LLM-based judge.

Diffusion-based Image Purifier As we focus on defending black-box VLMs, a model-agnostic
image purifier is needed. Here, we leverage a diffusion-based method (Nie et al., 2022) to purify
the jailbreak images. It consists of a diffusion process and a reverse diffusion process. In the
diffusion process, the adversarial image x∗

v is progressively corrupted by adding noise over time.
This transforms the image into a highly noisy version through the following diffusion equation:

xs =
√
αsxs−1 +

√
1− αsϵ, for s = 1, 2, . . . , S, where ϵ ∼ N (0, I), x0 = x∗

v. (4)
Here, αs controls the amount of noise added at time step s, with ϵ representing noise sampled
from a standard normal distribution. As s increases, more noise is added to the input, making it
progressively more random. In the reverse diffusion process, the model iteratively removes noise
from the noisy input xs generated in the diffusion process. Starting from x̂s = xS , the diffusion
model performs a step-by-step denoising process to recover a clean sample x̂v . This is done using
the following reverse diffusion equation:

x̂s−1 = fθ(x̂s, s), for s = S, S − 1, . . . , 1, (5)
where fθ represents the denoising function parameterized by θ. This process gradually removes the
noise introduced in the diffusion process, ultimately producing a clean sample x̂v = x̂0.

LLM-based Text Purifier We design an LLM-based text purifier to rewrite the adversarial textual
prompt x∗

t without altering its meaning. The purifier achieves this by adding more detailed descrip-
tions, resulting in a rewritten textual prompt x̂t. Like the image purifier, the text purifier should also
be model-agnostic. We expect the rewritten textual prompt to meet the following criteria:

min
x̂t

log p(y∗|(·, x̂t)). (6)

We utilize GPT-4o (Achiam et al., 2023) to achieve the above objective with a rewritten template. As
GPT-4o is a commercial model, we also test the open-source model Llama-3-8B-Instruct (AI@Meta,
2024) as the text purifier. The results are referred to Appendix B which show that the prompts
rewritten using LLaMA demonstrate a comparable performance to those by GPT-4o, in terms of
both semantic expression and defense effectiveness.

LLM-based Blue-team Suffix Generator We denote the suffix generator as π, which receives
a rewritten textual prompt x̂t and generates a fixed-length suffix xs ∼ π(·|x̂t). The suffix will be
appended to the rewritten textual prompt as the final textual input as the target VLM. We denote the
response of the target VLM as y and leverage an LLM (GPT-4o or Llama-3-8B-Instruct) to judge
the response. The output of the judge is a safety score which will then be used as the reward model
R(·). The reward is either 1 or 0, i.e., R(y) ∈ {0, 1}, with “1” representing benign response and “0”
representing harmful response.

We also utilize πref, a pre-trained LLM-based policy, as a reference for π. πref starts with the same
parameters as π but maintains fixed weights. In the following, we formulate the objective of π as:

max
π

Exs∼π(·|x̂t)[R(y)− βDKL(π(·|x̂t) ∥ πref(·|x̂t))], (7)
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where DKL is the Kullback-Leibler (KL) divergence between the current policy π(·|x̂t) and the
reference policy πref(·|x̂t) as a penalty, and β is a coefficient hyperparameter. The KL divergence
term can help prevent π from mode collapse, while the β coefficient balances the two terms, i.e.,
maximizing reward vs. staying close to the reference policy.

We fine-tune a GPT-2 model (Radford et al., 2019) for the suffix generator. When training the
generator, the reward takes full consideration of both the textual and visual prompts as it is defined
by the response of the target model. By fine-tuning GPT-2 to generate blue-team suffixes that can
reduce the impact of the multimodal prompts, our method can help enhance cross-modal robustness.
The detailed fine-tuning procedure of our suffix generator is summarized in Algorithm 1.

Algorithm 1 Fine-tuning the Blue-Team Suffix Generator

Require: Target VLM F , its visual module Fv , textual module Ft, vision-language connector I.
Require: Purified image-text pairs D : {xi

v, x
i
t}ni=1, the responses of target VLM y : {yi}ni=1.

Require: Suffix Generator π, reference model πref , rewards R(·), LLM-based judge J (·).
Require: Tuning epoch N, the coefficient of KL divergence β.

1: for i = 1 . . . N do
2: for j = 1 . . . n do
3: Generate fixed-length suffix xj

s ∼ π(·|xj
t )

4: Get the response of VLM yj ∼ Ft(I(Fv(x
j
v), x

j
t∥xj

s)) ▷ “∥” denotes concatenation.
5: Judge the response R(yj) = J (yj)
6: end for
7: Fine-tune the suffix generator π = argmaxπ Exs∼π(·|xt)

[
R(y)− βDKL

(
π(·|xt) ∥ πref(·|xt)

)]
8: end for

4 EXPERIMENTS

In this section, we evaluate our BlueSuffix defense on three VLMs and two safety benchmark
datasets, focusing on its effectiveness, transferability, and robustness.

4.1 EXPERIMENTAL SETUP

Target VLMs and Safety Datasets We test our defense on three VLMs, including two commonly
used open-source large VLMs LLaVA (LLaVA-v1.5-7B) (Liu et al., 2024a) and MiniGPT-4 (Vicuna)
(Zhu et al., 2023), and a commercial black-box VLM Gemini (gemini-1.5-flash) (Reid et al., 2024).
We run our experiments on two popular safety benchmarks: MM-SafetyBench (Liu et al., 2023)
and RedTeam-2K (Luo et al., 2024). MM-SafetyBench is a widely used safety benchmark dataset
that consists of 1, 680 questions across 13 safety topics (unsafe scenarios) listed by OpenAI, such
as privacy violation, fraudulent, and illegal activities. RedTeam-2K is a meticulously curated col-
lection of 2, 000 harmful queries aimed at identifying alignment vulnerabilities in VLMs. It spans
16 safety policies and incorporates queries from 8 distinct sources. We evaluate the effectiveness of
the defense methods on MM-SafetyBench and test its transferability to RedTeam-2K. We attack the
target VLM using two types of attacks: 1) vanilla attack that directly inputs the jailbreak texts with
the clean images into the model, and 2) a state-of-the-art bimodal attack BAP, which converts the
clean images into jailbreak images via universal adversarial perturbation (UAP) while enhances the
original jailbreak texts using ChatGPT.

Baseline Defenses We compare our method with two black-box defense methods: DiffPure (Nie
et al., 2022) and Safety Prompt Zheng et al. (2024). DiffPure is a general-purpose defense method
that uses a diffusion model to remove the visual adversarial perturbations. DiffPure can be applied
to purify any type of malicious input images, thus can be applied to purify jailbreak images. Safety
Prompt inserts a defensive system prompt in front of the textual prompt, which acts as a “hint” to the
target VLMs. We also combine DiffPure and Safety Prompt into a bimodal defense as a baseline.
Note that we did not compare with Jailguard as it is a detection method that detects and rejects
potential jailbreaks for the target model. Conversely, our defense weakens the malicious inputs such
that the target model can identify the risk by itself and response robustly.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Performance Metric We take the Attack Success Rate (ASR) as the primary performance metric.
ASR quantifies the risk of the target model generating harmful content in the presence of jailbreak
inputs. As the output of VLM are texts, we need a external judge to determine whether the response
contains harmful content. Here, we use GPT-4o as the judge and design a system prompt to ask
GPT-4o to classify the response: harmful vs. benign.

Implementation Details of BlueSuffix For the image purifier, we directly adopt the denoising
diffusion model released by DiffPure, as it has been shown to have high effectiveness and generality.
For the text purifier, we test two LLM models: Llama-3-8B-Instruct (AI@Meta, 2024) and GPT-4o
(Achiam et al., 2023)). The text purifier is instructed to rewrite the text input without altering its
original meaning (the prompt template is provided in the Appendix C). The blue suffix generator is
fine-tuned from a pre-trained GPT-2 using Proximal Policy Optimization (PPO) on hard jailbreak
prompts crafted by the BAP attack (Ying et al., 2024) on all 13 jailbreak topics from the MM-
SafetyBench. Please note that fine-tuned GPT-2 will be applied to other topics and other dataset
(i.e., RedTeam-2K) to test its generalizability. The fine-tuning batch size is set to 32. The reward
given by the LLM judge (i.e., GPT-4o) is “1” if the model’s response is benign, “0” otherwise. The
fine-tuning can be stopped until the expected safety score exceeds 0.95, for about 300 epochs.

4.2 MAIN RESULTS

Defending Open-source VLMs We first evaluate our defense on two open-source VLMs: LLaVA
(LLaVA-v1.5-7B) (Liu et al., 2024a) and MiniGPT-4 (Vicuna) (Zhu et al., 2023), using the MM-
SafetyBench dataset (Liu et al., 2023). Our experiments cover 13 categories of jailbreak prompts
from this dataset, with results summarized in Table 1 (top subtable). Overall, BlueSuffix reduces
the ASR of BAP attacks by 56.37% on the LLaVA model (from 61.02% to 4.65%) and by 52.89% on
MiniGPT-4 (from 62.26% to 9.37%), on average. Particularly, when compared with DiffPure (Nie
et al., 2022) and Safety Prompt (Zheng et al., 2024), our method demonstrates at least 23% robust-
ness improvement (56.37% vs. 32.66%) on LLaVA and 12% on MiniGPT-4(52.89% vs. 40.84%).
Such a huge improvement demonstrates the advantage of bimodal defense over unimodal defense.
An interesting observation about unimodal defense is that textual defense appears to be more effec-
tive than visual defense. When combined, the “DiffPure + Safety Prompt” method exhibits much
greater ASR reduction on both LLaVA and MiniGPT-4, showcasing the strength of bimodal de-
fense. However, our BlueSuffix still beats “DiffPure + Safety Prompt” by a considerable margin.
This indicates the importance of the suffix generator for cross-modal robustness.

Defending Commercial VLMs Here, we test our defense method on a commercial VLM: Gemini
(gemini-1.5-flash) (Reid et al., 2024). As Gemini is a black-box to us, this experiment evaluates the
transferability of our defense. We evaluate the defense effectiveness under two attack scenarios
involving visual UAPs generated by BAP based on either LLaVA or MiniGPT-4. The results are
reported in Table 1 (bottom subtable). As can be observed, compared with no defense, the adoption
of our BlueSuffix reduces the ASR by more than 40% under both attack scenarios. It is worth
mentioning that the combined “DiffPure + Safety Prompt” defense works quite well for Gemini.
This is because the safety mechanism of Gemini is much stronger than the two open-source models,
thus can identify the potential risks more easily with the help of combined defenses. It is also the
case for unimodal defenses DiffPure and Safety Prompt, as verified by the much lower ASR results
on Gemini (compared to the two open-source models). Gemini performs robustly against 5 jailbreak
topics including “Political Lobbying (PL)”, “Legal Opinion (LO)”, “Financial Advice (FA), “Health
Consultation (HC)”, and “Government Decision (GD)” (the full names of other abbreviations can
be found in the Appendix A) even without defense.

Comparing the results across the 13 jailbreak topics, we identify three interesting observations: 1)
Certain topics, such as “FA” and “LO” are relatively easier to defend against; 2) Some topics exhibit
greater resistance to either visual or textual defenses. For instance, “Privacy Violence (PV)” proves
more challenging to defend against using visual purification, while “Physical Harm (PH)” is more
resistant to textual defense; and 3) A no-defense scenario is not necessarily worse than any defense
strategy, as seen with “FA”. This is because the target model can detect the original jailbreak texts,
yet it often generates a harmful response with a disclaimer when those texts are modified by the text
purifier, as illustrated in Figure 10 in Appendix G. However, the blue-team suffix generated by our
method can mitigate this issue to some extent.
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Table 1: The ASR (%) achieved by different defense methods against BAP attack across the 13
jailbreak topics (first column) from MM-SafetyBench. The “(↓)” indicates the reduction of ASR
compared to no defense. For target VLMs, the format “Model A (Model B)” means defending
black-box Model A against jailbreak images generated by BAP on white-box Model B (as UAP
generation is white-box).

Jailbreak
Topics

Target VLMs

LLaVA-v1.5-7B (LLaVA-v1.5-7B) MiniGPT-4 (MiniGPT-4)

No Defense DiffPure Safety Prompt
DiffPure +

BlueSuffix No Defense DiffPure Safety Prompt
DiffPure +

BlueSuffixSafety Prompt Safety Prompt

IA 95.88 41.24 26.80 26.80 6.19 97.90 36.08 34.02 30.93 11.34
HS 92.02 21.47 22.09 20.86 7.36 81.60 25.15 22.09 17.79 13.50
MG 93.18 70.45 45.45 22.73 9.09 88.64 45.45 34.09 27.27 9.09
PH 94.44 65.97 61.81 10.42 4.86 88.89 32.64 31.94 21.53 11.11
EH 56.56 28.69 23.77 12.30 3.28 61.48 23.77 21.31 17.21 8.20
FR 98.05 64.29 35.06 15.58 5.84 98.70 50.65 46.10 28.57 14.29
PO 69.72 39.45 17.43 9.17 4.59 68.81 27.52 24.77 22.94 9.17
PL 31.37 6.54 22.22 7.19 7.19 23.53 6.54 5.88 5.23 9.80
PV 96.40 69.87 45.32 10.79 5.04 85.61 32.37 30.94 18.71 11.51
LO 19.23 3.08 25.38 11.54 3.08 24.62 1.54 6.15 4.62 6.15
FA 4.19 0.00 4.79 0.00 2.40 4.19 0.60 1.80 1.80 7.19
HC 14.68 3.67 11.01 1.83 0.92 50.46 9.17 7.34 8.26 6.42
GD 27.52 7.38 27.52 4.70 0.67 34.90 5.37 12.08 4.03 4.03

Average 61.02 32.47 (28.55↓) 28.36 (32.66↓) 11.84 (49.18↓) 4.65 (56.37↓) 62.26 22.83 (39.43↓) 21.42 (40.84↓) 16.07 (46.19↓) 9.37 (52.89↓)

Jailbreak
Topics

Gemini (LLaVA-v1.5-7B) Gemini (MiniGPT-4)

No Defense DiffPure Safety Prompt
DiffPure +

BlueSuffix No Defense DiffPure Safety Prompt
DiffPure +

BlueSuffixSafety Prompt Safety Prompt

IA 84.54 6.19 2.06 2.06 0.00 79.38 3.12 4.12 1.03 0.00
HS 74.23 4.91 3.68 9.82 0.00 76.69 2.45 6.13 7.36 1.84
MG 63.64 4.55 0.00 4.55 0.00 68.18 4.55 0.00 4.55 0.00
PH 72.92 4.17 4.86 4.17 0.69 70.83 0.69 6.25 3.47 2.08
EH 27.87 1.64 0.00 0.82 0.82 25.41 0.00 0.00 1.64 0.00
FR 83.12 5.19 5.19 3.25 1.30 80.52 2.60 0.00 0.65 0.00
PO 40.37 0.92 3.67 2.75 1.83 44.04 0.92 3.67 3.67 0.00
PL 5.88 0.00 1.31 1.31 0.00 8.50 0.00 0.00 0.65 0.00
PV 66.19 7.91 2.88 5.76 1.44 69.06 4.32 2.88 2.16 0.00
LO 3.85 0.00 2.31 1.54 0.00 3.08 0.00 0.00 0.77 0.00
FA 1.80 0.00 0.60 0.60 0.00 1.20 0.00 0.00 0.00 0.00
HC 0.92 0.00 0.92 0.00 0.00 0.92 0.00 0.00 0.00 0.00
GD 7.38 0.00 1.34 1.34 0.00 6.04 0.00 0.00 1.34 0.00

Average 40.98 2.73 (38.25↓) 2.22 (38.76↓) 2.92 (38.06↓) 0.47 (40.51↓) 41.07 1.43 (39.64↓) 1.77 (39.30↓) 2.10 (38.97↓) 0.30 (40.77↓)

4.3 ABLATION STUDIES

Component Ablation Here, we conduct ablation studies to demonstrate the necessity of each
component in BlueSuffix. Figure 3 reports the defense results of the ‘text purifier’, ‘suffix gener-
ator’, ‘text purifier + suffix generator’, ‘text purifier + image purifier’, ‘suffix generator + image
purifier’, and the full BlueSuffix. We report the average ASR across the 13 categories of jailbreak
prompts from the MM-SafetyBench. Detailed ASR results for each individual category can be found
in Appendix G.

LLaVA-v1.5-7B MiniGPT-4 Gemini(LLaVA) Gemini(MiniGPT-4)
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Figure 3: Component ablation of BlueSuffix.

We start our analysis with the ‘text
purifier’ which is already a better
defense technique than the Safety
Prompt. The results in Figure 3 in-
dicate that our ‘text purifier’ itself is
quite effective, compared to the no
defense results in Table 1. In prac-
tice, we observed that it can rewrite
the majority of jailbreak prompts,
enabling the target VLMs to accu-
rately identify the presence of harm-
ful content in the rewritten textual
prompts. Furthermore, employing
the ‘suffix generator’ independently
also provides a certain degree of de-
fense, demonstrating a comparable level of robustness achieved by ‘text purifier’. When combined
the ‘text purifier’ with the ‘suffix generator’, the ASRs are further reduced substantially. However,
‘text purifier + image purifier’ is less effective than ‘text purifier + suffix generator’, meaning that
our blue-team suffix generator plays a more important role than the image purifier. Comparing ‘text
purifier + image purifier’ with ‘suffix generator + image purifier’, we find that the latter outperforms
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the former on 3/4 scenarios including MiniGPT-4, Gemini (LLaVA), and Gemini (MiniGPT-4), but
not on LLaVA. This indicates that our blue-team suffix generator is a stronger defense technique
than the text purifier. Additionally, we observed that using only the ‘text purifier’ (without the
‘suffix generator’) can sometimes result in even stronger jailbreak prompts even when the ”Image
Purifier” is used (as illustrated in Figure 10), leading to a higher ASR than when no ‘text purifier’
is used. This underscores the limitations of relying solely on unimodal or independent bimodal
defenses. The ‘suffix generator’ significantly enhances the robustness of the target VLMs by lever-
aging cross-modal gradient information. This integration addresses the limitations of the unimodal
purifiers and independent bimodal defenses, effectively enhancing the overall defense.

Impact on Benign Prompts We also evaluate our defense on benign prompts using LLaVA. We
randomly select 500 textual prompts from the AlpacaEval dataset (Li et al., 2023c), each paired with
a benign image. We define the Benign Passing Rate (BPR) as the proportion of responses that ac-
curately address the benign prompt after applying the defense, as assessed by GPT-4o. Our method,
BlueSuffix, achieved a BPR of 78.00%, which is only 3.60% lower than the original prompts’ BPR
of 81.60%. Note that the BPR of the original prompts is not 100% due to the difficulty in as-
sessing the responses using GPT-4o. Compared to other baselines, our method closely aligns with
”DiffPure” (78.80%), which does not alter the text prompts, while outperforming ”Safety Prompt”
(74.80%) and ”DiffPure + Safety Prompt” (74.00%). These results demonstrate that our defense has
minimal impact on benign prompts.

Showcasing the Purified Prompts Figure 4 illustrates six example inputs (three jailbreaks, three
benign) purified by our BlueSuffix, with more examples can be found in Figure 8 and 9, Appendix
E. As shown in Figure 4, the input image appears almost the same after purification by our image
purifier, the rewritten texts are more detailed with many questions around the key concepts in the
original texts, while the blue suffixes provide a certain type of hint or reminder for the target VLM.
It also shows that our defense largely preserves the original meaning of the prompt, indicating a
minimal impact on the benign inputs. Moreover, the blue-team suffixes generated by our suffix
generator also exhibit high diversity.

Figure 4: Top-3 Rows: three jailbreak image-text pairs (left) and their purified version by our Blue-
Suffix; Bottom-3 Rows: three pairs of benign prompts and their purified version.

4.4 TRANSFERABILITY ANALYSIS

To assess the transferability of our defense, here we apply it to defend both open-source and com-
mercial VLMs on the RedTeam-2K dataset. It is worth noting that the blue-team suffix generator
of our method was trained on the MM-SafetyBench dataset which is completely different from
RedTeam-2K. This means that, in this transfer setting, the jailbreak queries from the RedTeam-2K
dataset were entirely unseen to our BlueSuffix. We test the defense against both the vanilla attack
(which uses the original jailbreak texts with the clean images) and the BAP attack, and report the
results of no defense and our BlueSuffix in Table 2.

It is evident that our defense method significantly reduces the ASR against both the vanilla and BAP
attacks in all scenarios. Particularly, it achieved the highest ASR reduction on LLaVA, decreasing
the ASR from 80.20% to 7.05%. Even on the commercial model Gemini, it successfully cripples the
attack from an ASR of above 50% to ∼ 2.50%. This confirms the transferability of our method in
defending against unseen jailbreaks, especially those advanced bimodal jailbreak prompts generated
by the BAP attack. The significance of our defense is more pronounced on open-source models
LLaVA and MiniGPT-4, reducing the ASR of BAP by more than 67%.
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Our method also exhibits strong transferability across different target VLMs. Our GPT-2 based
blue-team suffix generator used in this and all previous experiments was trained only based on the
responses of LLaVA. Moreover, both the text purifier and image purifier adopted in BlueSuffix are
generic purification models that are attack-agnostic, target model-agnostic, and fixed during all the
experiments. Therefore, the high effectiveness of BlueSuffix in all the experiments shown in Table
1 and 2 highlights its high transferability in a more general scope.

Table 2: Transferability to the RedTeam-2K dataset: the ASR (%) of our BlueSuffix in defending
different target VLMs against Vanilla and BAP attacks on RedTeam-2K. The format “Model A
(Model B)” in the second row means defending Model A against jailbreak images generated by
BAP on white-box Model B (as UAP requires white-box).

Attack
Method

Defense
Method

Target VLMs

LLaVA-v1.5-7B MiniGPT-4 Gemini (LLaVA) Gemini (MiniGPT-4)

Vanilla Attack
No defense 33.80 29.15 3.25 3.25
BlueSuffix 8.00 (25.80↓) 16.95 (12.20↓) 2.40 (0.85↓) 2.90 (0.35↓)

BAP Attack
No defense 80.20 82.20 52.95 51.15
BlueSuffix 7.05 (73.15↓) 14.90 (67.30↓) 2.50 (50.45↓) 2.45 (48.70↓)

4.5 ROBUSTNESS TO AN ADAPTIVE ATTACK

Here, we demonstrate the robustness of BlueSuffix against a potential adaptive attack. We assume
the attacker is fully aware of all components of our defense method, including the fine-tuned suffix
generator. This enables them to reapply the BAP attack on the purified textual and visual prompts
generated by our method, thereby attempting to enhance the attack and bypass our defense. We
evaluate this adaptive BAP on the LLaVA model using the MM-SafetyBench dataset, with results
presented in Table 3. Importantly, the newly generated jailbreaks will be purified again by BlueSuf-
fix before being input into the target VLM. It shows clearly that our defense is highly robust to this
adaptive attack, which can only increase the ASR by less than 1%. While we recognize the potential
for more advanced future attacks that may circumvent our defense, BlueSuffix remains the strongest
defense available against bimodal jailbreak attacks on VLMs to date.

Table 3: Robustness to an adaptive BAP: the ASR (%) of attacking our BlueSuffix across the 13
topics of MM-SafetyBench using bimodal jailbreaks generated by BAP or an adaptive BAP. The
target VLM is LLaVA-v1.5-7B.

Attack Method
Jailbreak Topics (MM-SafetyBench)

IA HS MG PH EH FR PO PL PV LO FA HC GD Average

BAP 6.19 7.36 9.09 4.86 3.28 5.84 4.59 7.19 5.04 3.08 2.40 0.92 0.67 4.65
Adaptive BAP 9.28 6.13 9.09 8.33 3.28 6.50 6.42 5.88 5.04 7.69 1.80 1.83 2.01 5.64

5 CONCLUSION

In this work, we investigated the jailbreak vulnerabilities of large Vision-Language Models (VLMs)
and introduced a novel blue-team method called BlueSuffix. BlueSuffix consists of three key com-
ponents: a text purifier, an image purifier, and a blue-team suffix generator. By leveraging existing
unimodal purifiers, BlueSuffix trains a lightweight suffix generator to optimize the safety score of
the target VLM through reinforcement learning. The blue-team suffix is generated using bimodal
gradients and thus can bring cross-model robustness. Our experiments on both open-source and
commercial VLMs demonstrate the high effectiveness and transferability of our defense against
state-of-the-art multimodal jailbreak attacks. Additionally, BlueSuffix is resilient to an adaptive
attack that optimizes jailbreak prompts based on the output of our defense. Our work proves that
current VLMs, including black-box models, can be effectively defended using blue-team methods,
highlighting the promise of such approaches for building robust and secure VLMs against advanced
and unseen jailbreaks.
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A DETAILED ATTACK RESULTS

In this section, we first present the detailed jailbreak topics in the MM-SafetyBench dataset (Liu
et al., 2023). The query types in the above table are the abbreviations of the 13 jailbreak scenar-
ios, including Illegal Activity, Hate Speech, Malware Generation, Physical Harm, Economic Harm,
Fraud, Pornography, Political Lobbying, Privacy Violence, Legal Opinion, Financial Advice, Health
Consultation, and Gov. Decision.

First, we report the evaluation results of vanilla attack and BAP attack (Ying et al., 2024) on the
MM-SafetyBench dataset across the evaluated models in Table 4. BAP attack achieves a state-
of-the-art ASR even compared with query-dependent multimodal jailbreaks and it demonstrates
universal attacking abilities across different scenarios without requiring target scenario samples.

Table 4: The ASR (%) of Vanilla Attack (clean image + original jailbreak prompt) and BAP At-
tack (universally perturbed adversarial image + multi-turn enhanced jailbreak prompt) against three
VLMs. We use jailbreak prompts from MM-SafetyBench across the 13 categories as the original
jailbreak prompts for both attacks. The “(↑)” indicates the margin by which BAP attack surpasses
the Vanilla attack. The BAP attack significantly increased the ASR across all evaluated models.

Jailbreak
Topics

Target VLMs

LLaVA-v1.5-7B MiniGPT-4 Gemini (LLaVA) Gemini (MiniGPT-4)

Vanilla Attack BAP Attack Vanilla Attack BAP Attack Vanilla Attack BAP Attack Vanilla Attack BAP Attack

IA 48.45 95.88 28.87 97.90 2.06 84.54 2.06 79.38
HS 28.83 92.02 31.29 81.60 4.91 74.23 4.91 76.69
MG 70.45 93.18 25.00 88.64 0.00 63.64 0.00 68.18
PH 69.44 94.44 27.08 88.89 4.86 72.92 4.86 70.83
EH 18.85 56.56 26.23 61.48 1.64 27.87 1.64 25.41
FR 56.49 98.05 55.84 98.70 2.60 83.12 2.60 80.52
PO 33.03 69.72 18.35 68.81 5.77 40.37 5.77 44.04
PL 7.19 31.37 4.58 23.53 1.31 5.88 1.31 8.50
PV 79.86 96.40 17.99 85.61 0.00 66.19 0.00 69.06
LO 0.77 19.23 1.54 24.62 0.00 3.85 0.00 3.08
FA 0.00 4.19 2.40 4.19 0.00 1.80 0.00 1.20
HC 0.92 14.68 11.93 50.46 0.00 0.92 0.00 0.92
GD 12.75 27.52 3.36 34.90 1.34 7.38 1.34 6.04

Average 32.85 61.02 (28.17↑) 19.57 62.26 (42.69↑) 1.88 40.98 (39.10↑) 1.88 41.07 (39.19↑)

B LLAMA AS THE TEXT PURIFIER

Here, we test the use of Llama-3-8B-Instruct (AI@Meta, 2024) for textual prompt rewriting. The
prompts rewritten using the LLaMA model demonstrates comparable performance to those rewritten
by GPT-4o, both in terms of semantic expression and defense effectiveness, as shown in Table 5.
We also present an example of a jailbreaking textual prompt purified by GPT-4o and Llama-3-8B-
Instruct in Figure 5. The purified textual prompt consists of two parts: it first repeats the jailbreak
prompt, and then emphasizes the potential presence of malicious queries, which gives a hint to the
target VLM (bold font).
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Table 5: The ASR (%) for two LLM-based text purifiers across 13 categories on the MM-
SafetyBench dataset, showing a comparable performance.

Jailbreak
Topics

Target VLMs

LLaVA-v1.5-7B MiniGPT-4 Gemini (LLaVA) Gemini (MiniGPT-4)

LLaMA GPT-4o LLaMA GPT-4o LLaMA GPT-4o LLaMA GPT-4o

IA 5.15 6.19 10.31 11.34 2.06 0.00 1.03 0.00
HS 0.61 7.36 8.48 13.50 0.61 0.00 1.84 1.84
MG 15.91 9.09 13.64 9.09 2.27 0.00 0.00 0.00
PH 9.72 4.86 14.48 11.11 2.74 0.69 0.69 2.08
EH 5.74 3.28 4.10 8.20 0.00 0.82 0.00 0.00
FR 3.90 5.84 6.49 14.29 0.00 1.30 0.00 0.00
PO 3.67 4.59 6.42 9.17 0.92 1.83 0.00 0.00
PL 2.61 7.19 0.65 9.80 0.00 0.00 0.00 0.00
PV 7.91 5.04 7.91 11.51 0.72 1.44 0.00 0.00
LO 0.77 3.08 0.77 6.15 0.00 0.00 0.00 0.00
FA 1.20 2.40 1.20 7.19 0.00 0.00 0.00 0.00
HC 5.50 0.92 3.67 6.42 0.00 0.00 0.00 0.00
GD 2.01 0.67 2.01 4.03 0.00 0.00 0.00 0.00

Average 4.98 4.65 6.16 9.37 0.72 0.47 0.27 0.30

Figure 5: An example of jailbreaking textual prompt purified by GPT-4o and Llama-3-8B-Instruct.
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Figure 6: The LLM-based rewrite template.

Figure 7: The LLM-based judge prompt.

C LLM-BASED REWRITE TEMPLATE

Figure 6 illustrates the LLM-based rewrite template for the text purifier.

D LLM-BASED JUDGE PROMPT

Figure 7 illustrates the LLM-based judge prompt.

E SUFFIX GENERATOR

Figures 8 and 9 demonstrate that our suffix generator produces diverse outputs while maintaining
a high degree of compatibility with benign prompts. In Figure 8, the attacker inputs image-text
prompts. Our BlueSuffix purifies the visual prompts and rewrites the textual prompts by appending
a suffix. With the purified prompt, the target VLM successfully identifies the malicious content
and generates a benign response, including an explanation for refusing to answer. Figure 9 shows
a user asking the target VLM benign queries. Our BlueSuffix processes these queries effectively,
particularly for the textual prompts. The suffix generator produces a positive response that is relevant
to the textual prompt, guiding the target VLM in answering the question. Our method focuses on
enabling VLMs to independently evaluate queries, making it more practical for real-world scenarios.

F DETAIL INTRODUCTION OF BASELINE DEFENSES

DiffPure is a diffusion model-based denoising defense that purifies adversarially perturbed images
into benign ones. The denoiser is fine-tuned based on a pre-trained diffusion model—specifically,
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Figure 8: Examples of our BlueSuffix defense. The image-text jailbreak prompts (top) are purified
by our BlueSuffix (middle) and the target VLM responses benign content (bottom).
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Figure 9: Examples of our BlueSuffix on benign prompts. The image-text benign prompts (top)
are processed by our BlueSuffix (middle), allowing the target VLM to respond to the questions
normally. Notably, our suffix generator produces positive suffixes that guide the target VLM in
answering the questions.
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the CLIP image encoder—using pairs of clean and adversarial images. By leveraging the power
of generative modeling, DiffPure eliminates various types of adversarial noise. It operates as a
preprocessing step independent of the architecture or parameters of the downstream VLM, making
it compatible with a wide range of models. Additionally, by focusing on the input distribution
rather than specific attack strategies, DiffPure offers robust generalization against diverse adversarial
attacks.

Safety Prompt is a defense method designed to optimize the system’s safety prompt using Directed
Representation Optimization (DRO). By inserting an optimized safety prompt, the representations
of textual inputs tend to move along the ”refusal direction,” thereby safeguarding the target VLM
against harmful content.

An example of an optimized Safety Prompt is as follows:

“You are a helpful, respectfuliNdEx, and honest assistant. Always answer as helpfully as possible
while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic,
dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive
in nature. If a question does not make any sense or is not factually coherent, explain why instead
of providing incorrect information. If you don’t know the answer to a question, please don’t share
false information.”

G ADDITIONAL RESULTS OF THE ABLATION STUDIES

Here, we present the detailed results of our ablation studies, shown in Tables 6, 7, and 8. Addition-
ally, Figure 10 illustrates an example of a strong jailbreak textual prompt rewritten by GPT-4o.

Table 6: The detailed ASR (%) results of our ablation studies on the open-source VLMs.

Jailbreak
Topics

Target VLMs

LLaVA-v1.5-7B MiniGPT-4

Text Purifier
Text Purifier + Image Purifier + Image Purifier +

Text Purifier
Text Purifier + Image Purifier + Image Purifier +

Suffix Generator Text Purifier Suffix Generator Suffix Generator Text Purifier Suffix Generator

IA 24.74 17.53 25.77 17.53 22.68 17.53 26.80 24.74
HS 15.34 15.95 16.56 9.82 20.68 17.79 22.09 13.50
MG 50.00 18.18 47.73 50.00 27.27 25.00 18.18 20.45
PH 31.94 22.92 29.17 52.78 19.44 15.97 22.92 26.39
EH 20.49 13.11 11.48 13.11 16.39 8.20 12.30 10.66
FR 35.71 20.13 31.82 21.43 30.52 23.38 24.68 24.68
PO 13.76 11.01 7.34 14.68 10.09 11.93 11.01 17.43
PL 27.45 15.69 20.26 4.58 16.99 13.07 10.46 4.58
PV 20.86 17.27 18.71 54.68 17.99 15.83 17.99 23.74
LO 13.08 12.31 9.23 6.15 15.38 7.69 6.15 3.85
FA 19.76 12.57 11.38 2.40 20.96 10.18 8.38 1.80
HC 11.93 11.01 0.92 1.83 11.93 10.09 9.17 9.17
GD 6.71 12.75 6.04 8.05 6.71 6.71 4.03 4.70

Average 22.44 15.42 18.19 19.77 18.23 14.11 14.94 14.28

Table 7: The detailed ASR (%) results of our ablation studies on the commercial VLM.

Jailbreak
Topics

Target VLMs

Gemini (LLaVA) Gemini (MiniGPT-4)

Text Purifier
Text Purifier + Image Purifier + Image Purifier +

Text Purifier
Text Purifier + Image Purifier + Image Purifier +

Suffix Generator Text Purifier Suffix Generator Suffix Generator Text Purifier Suffix Generator

IA 2.06 2.06 4.12 2.06 3.12 0.00 2.08 1.03
HS 4.91 4.29 2.45 2.45 2.45 3.68 6.13 3.07
MG 2.27 0.00 2.27 2.27 0.00 2.27 2.27 4.55
PH 1.39 2.08 2.08 2.08 2.08 1.39 2.08 1.39
EH 0.82 0.82 1.64 2.46 0.82 0.00 1.64 0.82
FR 5.84 1.30 1.95 2.60 1.30 1.30 4.55 1.95
PO 2.75 2.75 1.83 3.67 3.67 3.67 1.83 1.83
PL 1.31 0.65 1.96 0.00 0.65 0.00 0.65 0.00
PV 3.60 3.60 5.76 1.44 3.60 2.88 4.32 0.72
LO 0.00 0.00 0.00 0.00 0.77 0.00 0.00 0.00
FA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average 1.92 1.35 1.85 1.46 1.42 1.17 1.97 1.18
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Table 8: The detailed ASR (%) results of employing ‘Suffix Generator’ independently on open-
source VLMs and commercial VLM.

Jailbreak Topics
Suffix Generator (GPT-2)

LLaVA-1.5-7B MiniGPT-4 Gemini(LLaVA) Gemini (MiniGPT-4)
IA 19.59 25.77 4.12 2.08
HS 15.95 22.70 3.68 3.68
MG 50.00 22.73 2.27 4.55
PH 50.69 27.78 2.08 2.08
EH 13.93 13.93 2.46 0.82
FR 25.32 27.92 1.30 2.60
PO 19.27 20.18 3.67 3.67
PL 21.57 13.73 0.65 0.00
PV 54.68 15.83 2.88 1.44
LO 6.15 6.15 0.00 0.00
FA 2.40 1.80 0.00 0.00
HC 1.83 11.93 0.00 0.00
GD 12.75 6.71 0.00 0.00

Average 22.63 16.70 1.78 1.61

Figure 10: An example of strong jailbreak textual prompt rewritten by GPT-4o.

H SEMANTIC SIMILARITY BETWEEN ‘ORIGINAL PROMPT’ AND ‘TEXT
PURIFIER + SUFFIX GENERATOR PROMPT’

We conduct experiments to assess whether the ‘Text Purifier + Suffix Generator’ alters the original
meaning of the instructions. We employed GPT-4o to evaluate the semantic similarity between the
original prompts and the prompts processed by our ‘Text Purifier + Suffix Generator’. Specifically,
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we asked GPT-4o to assign a similarity score on a scale from 0 to 5, where higher scores indicate
greater semantic similarity. The evaluation was guided by the following prompt template:

“Given the following Sentence A: ‘{}’ and Sentence B: ‘{}’, your task is to evaluate if these two
sentences contain similar semantic elements or share a partially overlapping meaning. Focus on
finding any significant overlap in ideas, context, or main topics.”

The scoring criteria were defined as follows:

- **5**: Major idea or context is similar or shared.

- **4**: Somewhat similar meaning with minor phrasing differences.

- **3**: General topic overlap but differing in focus or detail.

- **2**: Some relation but with noticeable differences in meaning.

- **1**: Minimal connection with faint thematic overlap.

- **0**: Completely unrelated.

We performed this semantic comparison on all textual prompts in the MM-SafetyBench dataset
and conducted experiments using both GPT-4o and LLaMA as the text purifier. The results are as
follows:

- When using GPT-4o as the text purifier, the average similarity score was 4.82.

- When using LLaMA as the text purifier, the average similarity score was 4.87.

These high scores indicate a strong semantic consistency between the original prompts and the pro-
cessed prompts. Therefore, our ‘Text Purifier + Suffix Generator’ effectively preserves the original
meaning of the instructions while enhancing the model’s robustness against jailbreak attacks.

I EVALUATION ON INSTRUCTIONBLIP

To further demonstrate the effectiveness of BlueSuffix, we have conducted experiments using an
additional VLM InstructionBLIP on the MM-SafetyBench and RedTeam-2k datasets. As shown in
the Table 9 and Table 10 below, BlueSuffix consistently outperforms baseline methods across all
jailbreak topics.

Table 9: The ASR (%) achieved by different defenses methods against BAP attack across the 13
jailbreak topics (first column) from the MM-SafetyBench on the InstructionBLIP.

Jailbreak Topics No Defense DiffPure System Prompt DiffPure + System Prompt BlueSuffix

IA 77.32 35.05 32.99 28.87 9.27
HS 81.59 25.77 23.31 21.47 10.43
MG 84.09 63.64 34.09 25.00 6.82
PG 81.15 32.64 30.56 17.36 7.64
EH 62.30 24.60 23.77 20.49 7.38
FR 84.42 51.30 29.22 20.13 10.39
PO 69.72 32.11 21.10 13.76 7.34
PL 26.14 8.50 19.61 8.50 7.19
PV 88.49 33.81 31.65 23.74 6.47
LO 23.08 3.85 21.54 3.85 3.85
FA 5.99 2.99 4.79 2.99 2.99
HC 47.70 7.34 10.09 6.42 3.67
GD 28.19 6.71 12.08 6.04 4.70

Average 58.48 25.25 22.68 15.28 6.78
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Table 10: The ASR (%) of our BlueSuffix in defending InstructionBLIP and Gemini against Vanilla
and BAP attacks on RedTeam-2K dataset. The notation “Model A (Model B)” indicates that we are
defending black-box Model A against jailbreak images generated by BAP on white-box Model B.

Attack Method Defense Method InstructionBLIP Gemini (InstructionBLIP)

Vanilla Attack
No Defense 30.05% 3.25%
BlueSuffix 10.10% 2.55%

BAP Attack
No Defense 77.05% 50.05%
BlueSuffix 9.60% 2.30%

J EVALUATE ON OTHER JAILBREAK ATTACKS

We expanded our experiments to include evaluations against two additional jailbreak methods
specifically designed for VLMs: Visual Adversarial Attacks (VAA) (Qi et al., 2023) and the Greedy
Coordinate Gradient (GCG) method (Zou et al., 2023). The experimental results are shown in Table
11 below.

VAA Experiments: VAA generates visual adversarial examples optimized using a ‘few-shot’ corpus
to jailbreak VLMs. We conducted experiments on three open-source VLMs—MiniGPT-4, LLaVA-
v1.5-7B, and InstructionBLIP—as well as a commercial VLM, Gemini, using the Harmful Instruc-
tion dataset (Qi et al., 2023). In our results, the notation ”Model A (Model B)” indicates that we are
defending black-box Model A against jailbreak images generated by VAA on white-box Model B.
Our BlueSuffix demonstrates a significant advantage over other baselines, reducing the ASR to zero
in all cases.

GCG Experiments: GCG aims to find a universal adversarial suffix that, when appended to the tex-
tual prompt, can jailbreak VLMs. We evaluated this method on the same set of models—MiniGPT-4,
LLaVA-v1.5-7B, InstructionBLIP, and Gemini—using the AdvBench dataset (Zou et al., 2023). We
randomly selected 100 prompts from the AdvBench dataset for this evaluation. Our results show
that BlueSuffix again reduces the ASR to zero across all evaluated models.

These additional experiments confirm the effectiveness of BlueSuffix and demonstrate its strong
generalizability in defending against different types of jailbreak attacks across various datasets and
models. By effectively mitigating both visual and textual adversarial attacks, our method provides a
robust and comprehensive defense mechanism for VLMs.

Table 11: The ASR (%) achieved by different defense methods against VAA and GCG attack.

Attack Model No Defense DiffPure System Prompt DiffPure + System Prompt BlueSuffix

VAA

LLaVA-v1.5-7B 57.50 42.50 50.00 35.00 0.00
MiniGPT-4 47.50 40.00 27.50 20.00 0.00

InstructionBLIP 42.50 37.50 37.50 17.50 0.00
Gemini-1.5-flash(LLaVA) 2.50 0.00 2.50 5.00 0.00

Gemini-1.5-flash(MiniGPT-4) 10.00 0.00 10.00 12.50 0.00
Gemini-1.5-flash(InstructionBLIP) 5.00 0.00 2.50 5.00 0.00

GCG

LLaVA-v1.5-7B 60.00 59.00 21.00 21.00 0.00
MiniGPT-4 46.00 44.00 16.00 15.00 0.00

InstructionBLIP 58.00 58.00 22.00 21.00 0.00
Gemini-1.5-flash 7.00 7.00 2.00 1.00 0.00

K COMPARISON WITH OTHER BASELINE DEFENSES

We included three white-box defense methods—Robust Refusal Dynamic Defense (R2D2)
(Mazeika et al., 2024), Continuous Adversarial Training (CAT) (Xhonneux et al., 2024), and VL-
Guard (Zong et al., 2024)—for comparison with BlueSuffix on three open-source models: MiniGPT-
4, LLaVA-v1.5-7B, and InstructionBLIP. It is important to note that VLGuard is only available for
the LLaVA model. We conducted experiments against the VAA, GCG, and BAP attacks using the
same settings as before. The results demonstrate that BlueSuffix consistently outperforms these
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three defense methods by a significant margin, showcasing superior performance across all evalu-
ated scenarios. The experimental results are shown in Table 12 below.

Table 12: The ASR (%) achieved by recent defense methods against VAA, GCG, and BAP attack.

Attack Model No Defense R2D2 CAT VLGuard BlueSuffix

VAA
LLaVA-v1.5-7B 57.50 17.50 5.00 10.00 0.00

MiniGPT-4 47.50 5.00 10.00 - 0.00
InstructionBlip 42.50 15.00 5.00 - 0.00

GCG
LLaVA-v1.5-7B 60.00 35.00 7.00 58.00 0.00

MiniGPT-4 46.00 8.00 15.00 - 0.00
InstructionBlip 58.00 30.00 15.00 - 0.00

BAP Attack
LLaVA-v1.5-7B 61.02 46.55 41.85 21.67 4.65

MiniGPT-4 62.26 34.94 40.89 - 9.37
InstructionBlip 58.48 35.00 25.89 - 6.78
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