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Abstract

We present a general method for lossless compression of unordered data structures,
including multisets and graphs. It is a variant of shuffle coding that is many orders
of magnitude faster than the original and enables ‘one-shot’ compression of single
unordered objects. Our method achieves state-of-the-art compression rates on
various large-scale network graphs at speeds of megabytes per second, efficiently
handling even a multi-gigabyte plain graph with one billion edges. We release an
implementation that can be easily adapted to different data types and statistical
models.

1 Introduction

Big data is often contained in unordered objects, such as sets, multisets, graphs, or hypergraphs.
Unlike ordered data types like text, audio, and video, the order of elements in these structures is
irrelevant and represents redundant information. Recent work by Kunze et al. (2024) shows that
eliminating this redundancy can lead to significant storage and transmission savings. It proposed
shuffle coding, an entropy coding method based on bits-back (Townsend et al., 2019) with asymmetric
numeral systems (ANS; Duda, 2009) that approaches optimal compression rates for sequences of
unordered objects. However, their specific method, which we will refer to as complete joint shuffle
coding, has two major limitations that make it impractical for large unordered data structures: It
incurs a prohibitive initial bit cost in one-shot scenarios where only a single unordered object needs
to be compressed, and it requires the exact computation of automorphism groups which is often slow
or completely intractable, for example for large graphs.

To overcome these limitations, we propose two new variants, autoregressive and incomplete shuffle
coding. Autoregressive shuffle coding builds on recent work by Severo et al. (2023a), which
constructed an optimal one-shot codec for multisets from a codec of vectors by storing information in
an ordering. This method depends on the simple structure of multisets’ automorphism groups, and
does not extend to other unordered objects such as unlabeled graphs. Autoregressive shuffle coding
generalizes this method to arbitrary unordered objects. Incomplete shuffle coding approximates an
object’s symmetries, enabling compression despite intractable automorphism groups. These two
variants can be combined into a method allowing one-shot compression of large unordered data
structures at practical speeds.

Our experiments show that our high-performance implementation matches the optimal compression
rates from Severo et al. (2023a) for multisets, but is orders of magnitude faster. Similarly, it is many
orders of magnitude faster than joint shuffle coding for medium-sized graphs of various types with
minimal rate increase. We also compress much larger unordered graphs, including social network
graphs and random graphs with up to a billion edges, which are infeasible for complete shuffle
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coding. We show that the rate discount from removing order information is large, as previously
shown for joint shuffle coding on many smaller graph datasets, and that we achieve state-of-the-art
graph compression rates at practical speeds when using models with minimal parameters. We release
source code1 which can be extended easily to new models and classes of unordered objects other than
multisets and graphs.

The structure of the paper is as follows: Section 2 reviews the necessary background, including
permutable classes, unordered objects and codecs. Sections 3 and 4 detail our incomplete and
autoregressive shuffle coding variants. We discuss related work in Section 5, our experimental results
in Section 6, and conclude in Section 7 with future research directions. Proofs are in Appendix B.

2 Background

Table 1: Examples for key concepts from Section 2 for the permutable class F of ASCII strings of
length 5. {{. . .}} denotes a multiset, and we use cycle notation for permutations.

Concept Example

Permutation (0, 2)(1, 3) ∈ S5

Permutable class F = {aaaaa, aaaab, ...}
Ordered object sense ∈ F (0, 2) · sense = nesse

Quotient class
If SENSE ∼ Sense ∼ sense ∼ . . . (∼ is equality up to case),
sense∼ = {SENSE, Sense, sense, . . . } ∈ F∼ (0, 2) · sense∼ = nesse∼

Unordered object sense = {{s, e, n, s, e}} = {sense, esnse, ensse, enses, snese, . . . } ∈ F
Automorphisms Aut(sense) = {(0), (0, 3), (1, 4), (0, 3)(1, 4)}

This paper is concerned with compression of unordered objects. Kunze et al. (2024) define these
in terms of equivalence classes which comprise ordered objects that are identical up to re-ordering.
We introduce ordered and unordered objects in Section 2.1, as well as how equivalence classes of
ordered objects can form ordered objects themselves, a central idea of this paper. We review codecs
in Section 2.2 and the optimal compression rate for unordered objects in Section 2.3. We provide a
summary of concepts through examples in Table 1.

2.1 Permutable classes

Concepts from group theory, including subgroups, actions, stabilizers, and orbits are used throughout.
We provide a brief introduction in Appendix A.

For n ∈ N, we let [n] := {0, 1, . . . , n− 1}, with [0] = ∅. For this paper, it is convenient to identify
permutations purely by their cycle notation, such that we can apply a permutation of order i to any
objects of order ≥ i. This can be achieved by defining the symmetric group Sn on the subset of
bijections f : N → N with f(i) = i for all i ∈ N \ [n], leading to

Si = StabSi+1
(i) ≤ Si+1. (1)

From here on, we use the shorthand H ≤ G to mean that H is a subgroup of G. StabG(i) denotes
the stabilizer with respect to i ∈ [n] of a group G ≤ Sn acting on the indices [n].

We will consider objects which can be ‘re-ordered’ by applying permutations. This is captured in the
following definition from Kunze et al. (2024):
Definition 2.1 (Permutable class). For n ∈ N, a permutable class F of order n is a pair of a set F
and a left group action of the permutation group Sn on F , which we denote with the · binary operator.
We also use F to refer to the underlying set F . We refer to the elements of F as ordered objects.

Strings are ordered objects, and so are labeled graphs because their vertices can be re-ordered.
Equivalence classes of ordered objects can themselves form a permutable class. For example, case-
insensitive ASCII strings naturally are ordered objects, and can be defined as the equivalence classes

1Source code, data and results are available at https://github.com/juliuskunze/shuffle-coding.
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of such strings under an equivalence relation ∼ that indicates equality up to character case, as
illustrated in Table 1. As shown in Appendix B.1, this happens whenever the equivalence relation is
preserved under permutations, in the following sense:

Definition 2.2 (Congruence, quotient class). We say an equivalence relation ∼ on a permutable
class F = (F, ·) of order n is a congruence if s · f ∼ s · g holds if f ∼ g for all f, g ∈ F and
s ∈ Sn. Then, the quotient set F/∼ equipped with the operator · : Sn × (F/∼) → F/∼ with
s · f∼ := {s · f | f ∈ f∼} forms a permutable class of order n, which we refer to as the quotient
class of F by ∼, denoted as F/∼. For f ∈ F we use f∼ to denote the equivalence class under ∼
containing f .

We define unordered objects as equivalence classes comprising ordered objects that are identical up
to re-ordering, an important special case of Definition 2.2:

Definition 2.3 (Isomorphism, unordered objects). For two objects f and g in a permutable class F ,
we say that f is isomorphic to g, and write f ≃ g, if there exists s ∈ Sn such that g = s · f . The
isomorphism relation ≃ is a congruence, inducing a quotient class of unordered objects that we will
denote as F := F/≃, and the unordered object containing some f ∈ F as f̄ := f≃.

Unordered strings then correspond to multisets (for example see = {{e, e, s}} = {see, ese, ees})
and unordered graphs to unlabeled graphs. The set of permutations that, when applied to an ordered
object, do not change it, forms a group indicating its ‘symmetries’:

Definition 2.4 (Automorphism group). For an element f of a permutable class F , we let Aut(f)
denote the automorphism group of f , defined by Aut(f) := {s ∈ Sn | s · f = f}.

For the example of unordered objects, every element’s automorphism group comprises all permuta-
tions, Aut(f̄) = Sn.

2.2 Codecs

Shuffle coding requires stack-like (LIFO) codecs, such as those based on the range variant of
asymmetric numeral systems (rANS; Duda, 2009), to save bits corresponding to the redundant
order using bits-back (Townsend et al., 2019). To define these, we fix a set M of prefix-free binary
messages, and a length function l : M → [0,∞), which measures the number of physical bits required
to represent values in M . We rely on the following definition from Kunze et al. (2024):

Definition 2.5 (Codec). A stack-like codec (or simply codec) for a set X is an invertible function
encode : M ×X → M. We call a codec optimal for a probability distribution over X with mass
function P if for any m ∈ M and x ∈ X , the message length l satisfies2 l(encode(m,x)) ≈
l(m) + log 1

P (x) . We refer to log 1
P (x) as the optimal rate and to the inverse of encode as decode.

Since decode has to be implemented in practice, we treat it as an explicit part of a codec below.

The encode function requires a pre-existing message as its first input. Therefore, at the beginning of
encoding we set m equal to some fixed, short initial message m0, with length less than 64 bits. As in
other entropy coding methods, which invariably have some small constant overhead, this ‘initial bit
cost’ is amortized as we compress more data.

2.3 Optimal rate for unordered objects

Our codec will be based on a probability distribution with mass function P over ordered objects
from a permutable class F . Then, for any equivalence relation ∼ on F , a joint distribution P (f∼, g)
with equivalence classes f∼ ∈ F/∼ is induced by sampling an ordered object g ∈ F from P , and
returning its corresponding equivalence class, resulting in

P (f∼) =
∑
g∈f∼

P (g). (2)

2This condition, with a suitable definition of ≈, is equivalent to rate-optimality in the usual Shannon sense,
see Townsend (2020).
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We will implicitly assume this induced distribution over quotient classes, even in nested cases. Kunze
et al. (2024) specify the optimal rate of any codec for unordered objects f̄ ,

log
1

P (f̄)
= log

1

P (f)

Ordered rate

− log
n!

|Aut(f)|
Discount

, (3)

assuming, without loss of modeling power, that P (f) is exchangeable, meaning invariant under
permutations of f .

3 Incomplete shuffle coding

Table 2: Example for color refinement as defined in Appendix C on plain graphs with 0 and 1
convolutions, and the resulting incompletely ordered graphs according to Definition 3.1. Colors only
visualize correspondence to the resulting hashes, they are not materialized in the graph. The actual
hashes, characters in the example, depend on the specific hash function used. C0 bases each vertexes’
hash on its degree only, while C1 also takes the multiset of neighboring hashes from C0 into account.
The automorphism group of the incompletely ordered graph is the same as that for the string of vertex
hashes, and color partitions correspond to their orbits.

Coloring Incompletely ordered graph

C0


0

1
2

3 4

 = aaacd


0

1
2

3 4


∼C0

=

 0
1

2
3 4 ,

0
1

2
3 4 ,

0
1

2
3 4


C1


0

1
2

3 4

 = babcd


0

1
2

3 4


∼C1

=

 0
1

2
3 4


Complete joint shuffle coding, as presented in Kunze et al. (2024), relies on a function to retrieve
(a list of generators of) the automorphism group Aut(f), as well as the canonization for any given
ordered object f . No polynomial-time algorithm is known to compute this function for graphs.3
Accordingly, their results show that the method is impractically slow even for moderately sized
graphs.

In this section, we will introduce a method that gives shuffle coding a reliably fast runtime for graphs.
To achieve this, we will in return accept slightly suboptimal compression rates. Instead of recovering
the exact order and therefore realizing the complete bit discount, we can ignore some hard-to-compute
information about the order to improve runtime. Specifically, we can treat isomorphic objects that are
hard to distinguish as elements of the same ‘incompletely ordered’ object, formalized as follows:
Definition 3.1 (Incompletely ordered objects). We refer to the elements of a quotient class F/∼ as
incompletely ordered objects if f∼ ⊆ f̄ for all f ∈ F .

We show in Appendix B.3 that their unordered objects F/∼ correspond to the original unordered
objects F through the bijection f̄ =

⋃
f∼, leading to

log
1

P (f)
− log

1

P (f∼)
= log

|Aut(f∼)|
|Aut(f)|

(4)

Equation (4) reveals the rate increase compared to the optimal rate if we suboptimally code f∼ by
representing it by an arbitrary f ∈ f∼ and using a codec optimal for P (f).

We can apply joint shuffle coding to incompletely ordered objects, an approach we refer to as
incomplete joint shuffle coding.We are then not recovering the ‘hard-to-compute’ bits to distinguish

3Libraries commonly used in practice such as nauty and Traces (McKay and Piperno, 2014) have exponen-
tial worst-case runtime. An algorithm with quasi-polynomial runtime complexity is known (Babai, 2016, 2019;
Helfgott et al., 2017), but is so complicated that it has never been implemented.

4



elements within f∼, leading to a rate increase given by Equation (4) over the optimal rate. This
requires two functions determining the automorphism group Aut(f∼) and a canonization f̂∼ for
any given such f∼. In the next section, we introduce a choice for ∼ that makes these functions and
therefore incomplete joint shuffle coding practical for graphs.

Any function C on F with the relation defined by C(f) = C(g) being a congruence has an associated
class of incompletely ordered objects F/∼C through f ∼C g exactly if f ≃ g and C(f) = C(g).
The color refinement algorithm, also known as the 1-dimensional version of the algorithm of Leman
and Weisfeiler (1968), is a practical choice for such a function for graphs. It returns a string of n
vertex ‘colors’ that were iteratively refined by hashing local features through a graph convolution,
starting from the vertex degrees, as visualized in Table 2, and formalized in Appendix C. As discussed
there, any k > 0 convolutions suffice to find the exact automorphism group Aut(g∼Ck

) = Aut(g) for
almost all simple graphs for large enough n (Babai et al., 1980), and thus in practice the compression
rate of incomplete shuffle coding with color refinement is usually optimal or near-optimal.

When used for incomplete joint shuffle coding, color refinement yields a string of vertex ‘colors’ that
assigns a graph to a specific incomplete ordered graph g∼Ck

. Since these vertex colors form a string,
we can apply complete joint shuffle coding which is fast for multisets, to approximately canonize
graphs and code string cosets. As shown in Appendix B.3, for a fixed number of convolutions k, the
resulting, much improved overall runtime complexity is

O(m+ n log n), (5)
where m denotes the number of edges in the graph.

4 Autoregressive shuffle coding

{{a, b, c, c}} pin−→
pop−→{{a, c, c}}b

{{a, c, c}} −→

−→{{a, c}}c

{{a, c}} −→

−→{{c}}a

{{c}} −→

−→c

(a)

· ·

··
pin−→
pop−→

· ·

·3· ·

·3 −→

−→

· ·

23· ·

23 −→

−→

· 1

23· 1

23 −→

−→

0 1

230 1

23

(b)

Figure 1: Iterations for autoregressive shuffle coding during encoding of (a) a multiset and (b) an
unlabeled undirected graph. Dotted placeholders indicate deleted information. Decoding an orbit
allows to ‘pin’ an element in the last position. The pinned element is subsequently ‘popped‘ from the
object and encoded, and the process is repeated recursively on the remaining unordered prefix.

Joint shuffle coding, both complete and incomplete, incurs a prohibitive initial bit cost in one-shot
scenarios where only a single unordered object needs to be compressed. This is because it constructs
an encoder by decoding all order information from the message (the bits-back step) before the ordered
object is encoded with a given ‘ordered’ codec optimal for P (f). Therefore, other information has to
be encoded into the message m before an unordered object. At the very beginning of encoding, these
‘initial bits’ can be generated at random, but they are unavoidably encoded into the message. While
for sequences of such objects, this constant initialization overhead is amortized and the rate tends to
the optimal rate with more objects being compressed, it means that joint shuffle coding realizes no
discount when coding a single unordered object, rendering it useless in the one-shot case.

Specifically, joint shuffle coding realizes the discount from Equation (3) in the net rate completely
(or incompletely if using the variant from Section 3), but none of it in the (one-shot) rate. We now
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aim to realize most of the discount in the rate by progressively decoding the permutation while
autoregressively encoding the object. Severo et al. (2023a) implement this idea for the special case
of multisets, as visualized in Figure 1(a). However, it exploits the simple structure of a string’s
automorphism group and does not extend to other unordered objects such as graphs. In this section,
we will generalize this codec to arbitrary unordered objects, including graphs, as shown in Figure 1(b).

Table 3: Examples of key concepts from Section 4 for the permutable class F of ASCII strings of
length 5 and the prefixing chain given by Example 4.1. {{. . .}} denotes a multiset, and indicates an
arbitrary ASCII character. We visualize the same concepts for graphs in Table 4 in Appendix D.

Concept Example

Unordered derivative sense′ = {{s, e, n, s}}e = {ensse, esnse, . . . , ssnee} ∈ F ′

Unordered i-th derivative sense(3) = {{s, e}}nse = {sense, esnse} ∈ F (3)

Prefix sense[3] = sen = {senaa, senab, . . . , senba, senbb, . . . } ∈ F[3]

Slice sense2 = {{s, e}}n , represented by n in context of {{s, e}}
Pop pop(sen ) = (se , {{s, e}}n )

Push push((se , {{s, e}}n )) = sen

Orbit of index i OrbAut(sense)(1) = {1, 4}
Orbits OrbsAut(sense) = {{0, 3}, {1, 4}, {2}}
Orbit function orbits(sense) = (2, 0, 1, 2, 0) implies orbits(eenss) = (0, 0, 1, 2, 2)

4.1 Prefixes of ordered objects

A general notion of ‘pinning’ objects such as graphs, as visualized in Figure 1, can be formalized by
disallowing any permutations involving the last position, exploiting Equation (1):
Definition 4.1 (Derivative). For a permutable class F = (F, ·) of order n > 0, the pair of F and
·′ : Sn−1 × F → F with s ·′ f := s · f forms a permutable class of order n− 1, which we refer to as
the derivative of F , denoted as F ′. We say that the unordered object of this class containing f is
the unordered derivative of f , denoted as f ′. By applying the derivative i ∈ [n] times, we obtain a
permutable class of order n− i, which we refer to as the i-th derivative of F , denoted as F (i). We
define the unordered i-th derivative of f in the same way, denoted as f (i).

The derivative F ′ has the same elements as F , but its unordered objects f ′ are different: seen′ =
{{s, e, e}}n = {seen, esen, eesn} ̸= seen. While the derivative F ′ pins the last position, the i-th
derivative F (i) pins the last i positions.

Length i string prefixes are ordered objects of order i, which we formalize as follows:
Example 4.1 (String prefixes). For i ∈ [n+ 1] and a set of elements X , let ∼[i] be the equivalence
relation on strings Xn with f ∼[i] g exactly if the first i elements of f and g are equal for f, g ∈ Xn.
We denote the equivalence class of f ∈ Xn under ∼[i] as f[i] and refer to it as (string) prefix of f
of length i. While ∼[i] is not a congruence on Xn, it is on the (n− i)-th derivative (Xn)(n−i), and
(Xn)(n−i)/∼[i] therefore forms a quotient class.

While a string naturally has ‘prefixes’ and ‘elements’, it is not obvious what the equivalent notions
should be for graphs, and more generally, ordered objects. The conditions our method requires are
captured in the following generalized definition of prefixes, for which Example 4.1 is a special case.
Importantly, the notion of a ‘slice’ will be used in place of ‘string element’, as visualized in Table 3:
Definition 4.2 (Prefixes of ordered objects). For a permutable class F of order n and all i ∈ [n+ 1],
let ∼[i] be a congruence on F (n−i). We then refer to the tuple of quotient classes F[i] := F (n−i)/∼[i]

as a prefixing chain on F if the equivalence class of f ∈ F under ∼[i], referred to as prefix of f of
length i and denoted as f[i], and fi :=

⋃
f ′
[i+1], referred to as the slice of f at index i, fulfill

f[n] = {f}, (6)
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meaning that an object of order n is uniquely determined by its prefix of length n, and

f[i+1] = f[i] ∩ fi, (7)

meaning that a prefix of length i+ 1 is uniquely determined by the prefix of length i and the slice
at index i. The latter condition ensures the existence of an invertible function pop : F[i+1] →
{(f[i], fi) | f ∈ F} with pop(f[i+1]) = (f[i], fi). We will denote its inverse as push.

For strings, the slice fi uniquely determines the element at index i. In practice, we can represent a
string slice fi simply as the string element at index i since we only ever use it in context of a prefix
f[i]. This definition of prefixes is general enough to apply to graphs, , as visualized in Table 4:

Example 4.2 (Graph prefixes). For i ∈ {0, . . . , n}, let ∼[i] be the relation on simple graphs Gn

with f ∼[i] g exactly if f and g are equal up to the edges between the last n − i vertices for
f, g ∈ Gn. The quotient classes G(n−i)

n /∼[i] then form a prefixing chain. Graph prefixes f[i] can then
be represented as graphs without any edges between the last n− i vertices. Because a graph slice fi
for i ∈ [n] is only ever used in context of a prefix f[i], we represent it as the subset of edges from
{(i, i+ 1), (i, i+ 2), . . . , (i, n− 1)} in practice.

Given a prefixing chain and an exchangeable probability distribution P over F , the optimal rate for
an unordered prefix f[i] is

log
1

P (f[i])
= log

1

P (g[i−1])
+ log

1

P (gi−1 | g[i−1])

Slice rate

− log
i

|OrbAut(f[i])(j)|
Orbit discount

, (8)

where g[i] = (j, i− 1) · f[i] for any j ∈ [i]. For proof see Appendix B.2.

4.2 Achieving the target rate

The recursive structure in Equation (8) hints at how to construct a recursive codec for unordered
prefixes optimal for P (f[i]). To obtain g[i], we require a function swap(f[i], j, k) := (j, k) · f[i] that
swaps two positions of a prefix f[i]. To realize the slice rate term from Equation (8), we require
an (autoregressive) codec for slices fi parameterized by g[i] that is optimal for P (fi | g[i]), denoted
as Slice. For simplicity, we assume that there is only a single unique ‘empty’ prefix of length 0,
denoted as f0 below, as is the case for Examples 4.1 and 4.2. We will realize the orbit discount by
recovering the bits for the orbit of j in Aut(f[i]). For that, we need a way to identify the orbits of any
f ∈ F in a way that is invariant under permutations, formalized through the following definition:
Definition 4.3 (Orbit function). For a permutable class F of order n, let ≤ be a total order on
the orbits O = OrbsAut(f) := {OrbAut(f)(i) | i ∈ [n]} of all indices i ∈ [n]. This induces a
unique function I : O → [|O|] with I(o) ≤ I(o′) exactly if o ≤ o′ for all o, o′ ∈ O. We then refer
to the function orbits(f) :=

(
I(OrbsAut(f)(j))

)
j∈[n]

for all f ∈ F as an orbit function of F if
orbits(s · f)s·j = orbits(f)j for all s ∈ Si, f ∈ F and j ∈ [n].

An orbit function for string prefixes ranks its elements according to some order over the alphabet,
as visualized in Table 3. For graph prefixes f[i], we can implement an orbit function by distinctly
coloring the last n− i vertices of the graph f , deleting the edges between them, and passing it to the
nauty and Traces library (McKay and Piperno, 2014), which provides an orbit function for graphs.

We require an orbit function orbitsi on prefixes F[i] of all lengths i ∈ [n]. This defines a corre-
sponding probability distribution over orbit indices [|OrbsAut(f[i])|] with mass function Po s.t. for all
i ∈ [n] and j ∈ [i], Po(orbitsi(f[i])j)) := |OrbAut(f[i])(j)|/i. We construct a codec Orbit optimal
for Po by using a categorical codec with masses proportional to the counts of each orbit index
orbitsi(f[i]).

We list the autoregressive codec UnorderedPrefix, parameterized by the prefix length i:

7



1 def encode(m, f): Effect on message length:
2 if i=0: return m
3 os = orbits(f)
4 m, o = Orbit(os).decode(m) − log i

|OrbAut(f[i])
(j)|

5 j = find(o, os)
6 g = swap(f, j, i-1)
7 g1, s = pop(g)
8 m = Slice(g1).encode(m, s) + log 1

P (gi|g[i−1])

9 m = UnorderedPrefix(i-1).encode(m, g1) + log 1
P (g[i−1])

10 return m
11

12 def decode(m):
13 if i=0: return m, f0
14 m, g1 = UnorderedPrefix(i-1).decode(m)
15 m, s = Slice(g1).decode(m)
16 g = push(g1, s)
17 os = orbits(g)
18 o = os[i-1]
19 m = Orbit(os).encode(m, o)
20 return m, g

Similarly to joint shuffle coding, we represent an unordered prefix f[i] by an arbitrary (ordered) prefix
f[i] ∈ f[i], denoted as f in the listing. In the encoder, we decode an orbit index o from the message m
according to Po, and let j be an arbitrary index within the corresponding orbit. We express this with
a function find(o, os) which returns the first index of a given element in a given tuple. Equation (6)
ensures that we can represent ordered objects f ∈ F as their prefixes f[n] = {f} of length n. This
allows us to recursively code unordered objects f̄ with UnorderedPrefix(n) optimal for P (f̄), a
method which we will refer to as autoregressive shuffle coding.

4.3 Achieving practical speeds

A naive implementation of autoregressive shuffle coding as shown in the listing above is impractically
slow on larger objects: for every prefix length i ∈ [n], the prefix orbits and the corresponding orbit
codec (as well as the slice codec), need to be recomputed. In the case of graphs, finding the exact
orbits for even one such graph prefix is slow, just like finding the automorphism group of a graph for
complete joint shuffle coding. This subsection presents three techniques critical to achieving practical
speeds with autoregressive shuffle coding.

Adaptive entropy coding. Instead of independently computing a new Slice and Orbit codec for
each iteration using orbits, as shown in the code listing for simplicity, we allow reuse between
iterations by updating their state during push, pop and swap. This allows to implement ‘adaptive
entropy coding’, used by Severo et al. (2023a) in the context of Orbit for multisets Xn, which
achieves fast updates of a mutable categorical codec based on an order statistic tree that is weighted
in the sense that it allows each element to be present some k ∈ N times. We will reuse the same
approach to efficiently implement autoregressive Slice codecs, where for multisets we use a custom
weighted AVL tree (Adelson-Velskii, 1962).

Incomplete autoregressive shuffle coding. Instead of computing the orbit function on prefixes f[i],
we can apply it to some incompletely ordered version (f[i])∼ instead, as defined in Definition 3.1.
Similarly to Equation (4), this reduces the realized discount from Equation (8), increasing the rate by

log
|OrbAut((f[i])∼)(j)|
|OrbAut(f[i])(j)|

, (9)

bits in each recursive step. We refer to this variant as incomplete autoregressive shuffle coding. We
can apply color refinement to graph prefixes by distinctly coloring the last n− i vertices of the graph
f , deleting the edges between them, and then applying it to graphs as usual (discarding the last n− i
vertex hashes). Applying incomplete autoregressive shuffle coding with color refinement by using
the graph prefixing chain from Example 4.2 greatly improves runtime complexity compared to the
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complete version. However, it still results in a runtime of at least Ω(ne) that is impractical for larger
graphs, since color refinement has to be run for every prefix f[i] ∈ [n] times. Thus, it would be
helpful to reduce the number of required color refinement runs to reduce runtime further, motivating
the next technique.

Chunking. Instead of encoding order information after every slice, we can decode slices in a small
fixed number c of chunks, with a sequence C of sizes adding up to n. For graphs, we can apply
color refinement to the graph prefix after decoding the next chunk, and iteratively code the new order
information according to the resulting vector of vertex colors. We then repeat this process until the
complete graph is decoded. In Appendix E we formalize this generalized approach as (incomplete)
autoregressive shuffle coding with a ‘chunked’ prefixing chain, where prefixes code more slices than
usual to complete the respective chunk. For graphs, we then require only c color refinement runs
(instead of n for the ‘full’ prefixing chain), resulting in a practical runtime of

O(c ·m+ n log n) (10)

Coarser chunks generally lead to better runtimes but also higher initial bits overhead. The extreme
case of using only a single chunk of size n leads to a method sharing many properties with joint
shuffle coding. Chunking allows using a Fenwick tree (Ryabko, 1989) for adaptive entropy coding
since all possible values for vertex hashes in a chunk are known in advance, leading to better memory
layout and faster runtimes. For a detailed discussion, see Appendix E.

5 Related work

Complete joint shuffle coding. Unlike joint shuffle coding introduced in Kunze et al. (2024),
autoregressive shuffle coding allows one-shot compression of unordered objects. This is achieved by
interleaving encoding and decoding steps while coding a single object, an approach first proposed
in the context of ‘Bit-Swap’ (Kingma et al., 2019). Our method requires an autoregressive model
for slices instead of a joint model. Unlike complete shuffle coding, incomplete shuffle coding does
not require the automorphism group of an object and therefore does not depend on libraries such as
nauty and Traces (McKay and Piperno, 2014).

Graphs. Choi and Szpankowski (2012) present a compression method called ‘structural ZIP’ (SZIP),
which asymptotically achieves the rate

log
1

PER(g)
− n log n+O(n), (11)

where PER is the Erdős-Rényi G(n, p) model. Compared to our method, SZIP is less flexible in
the sense that it only applies to simple graphs (without vertex or edge attributes), and it is not an
entropy coding method, thus the model PER cannot be changed easily. The ‘Partition and Code’
(PnC; Bouritsas et al., 2021) method uses neural networks to compress unordered graphs. Unlike PnC,
we achieve state-of-the-art compression rates when using simple models with minimal parameters,
which amortize better when compressed along with a single graph.

Multisets. Our method generalizes Severo et al. (2023a) from multisets to arbitrary unordered objects,
including graphs.

6 Experiments

To demonstrate our methods experimentally, we applied them to multisets and graphs. We report
multiset compression results in Appendix G where we compare our implementation of full autore-
gressive shuffle coding to Severo et al. (2023a) on multisets of varying lengths, showing that while
(one-shot) rates are matched, our implementation is well over two orders of magnitude faster and
scaling to large multisets. Further multiset experiments show that joint shuffle coding is even faster
while achieving the same net rates.

For graphs we applied incomplete joint and autoregressive shuffle coding with color refinement
according to Definition C.1 to various graph datasets. We use the simple Erdős-Rényi (ER) G(n, p)
model for P , which is straightforward to convert into an autoregressive model P (fi | f[i]). Kunze
et al. (2024) observe that the Pólya urn (PU) preferential attachment model proposed by Severo
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et al. (2023b) drastically improves the compression rate on SZIP graphs from Choi and Szpankowski
(2012). Motivated by this, we also use a variational approximation to obtain a tractable autoregressive
model that we refer to as autoregressive Pólya urn (AP), described in Appendix F. We favored AP for
larger graphs over PU because AP scaled better in terms of runtime, with similar rates.

Joint. We report results for incomplete joint shuffle coding on graphs in Appendix H. We first apply
it to SZIP graphs with varying k and report how this affects compression rate in Figure 4, to find
a practical number of convolutions k. The results show that k = 3 is sufficient to get close to the
optimal rate, which we therefore use for all other graph experiments in this paper. In Tables 8 and 9,
we compare complete and incomplete joint shuffle coding on the TU (Morris et al., 2020) and SZIP
datasets.4 We observe that incomplete shuffle coding leads to dramatic speedups of up to a factor of
one million on some of these graphs, with a minimal increase in compression rate across all datasets.
We also evaluate incomplete joint shuffle coding using the AP codec on the large graphs used by
Severo et al. (2023b) in Table 10, which we refer to as the ‘REC’ graph dataset, where complete
joint shuffle coding is too slow to finish on any graphs. In the same table, we report compression
speeds when run on a single thread and 8 threads, both on the SZIP and REC graphs, confirming an
advantage with multiple threads.

Autoregressive. For incomplete autoregressive graph shuffle coding, we apply chunking to the
prefixing chain from Example 4.2. We first evaluate the effect of chunk size in Appendix I on SZIP
graphs, and find that c = 16 uniformly sized chunks lead to a good balance between runtime and rate,
which we will use in all following experiments.

We apply incomplete autoregressive shuffle coding to the SZIP graphs based on ER and AP, and
compare it to the SZIP method in Table 11. The results show that the advantage of a preferential
attachment model over Erdős-Rényi carries over from the joint PU codec to the autoregressive
approximation AP, demonstrating the value of shuffle coding being an entropy coder where the
model can be changed easily. This results in significantly better rates compared to SZIP, at practical
compression speeds that appear to be largely independent of graph size, whereas speeds for the SZIP
codec seem to drop with graph size (SZIP graph sizes are shown in Table 10).

We evaluate autoregressive shuffle coding on REC graphs in Table 12, and compare it to the ordered
rate without shuffle coding, demonstrating its practicality and rate advantage on large graphs. These
results also confirm that the discount unrealized due to initial bits, visible as the difference between
net rate and rate, is relatively small, highlighting the effectiveness of autoregressive shuffle coding for
one-shot compression.

Finally, we evaluate autoregressive shuffle coding with the AP model on very large plain random
graphs drawn from G(n,m) Erdős-Rényi models and report rates and speeds in Table 13. The largest
graph has one billion edges and an uncompressed size of 3.4 gigabytes, with our compression method
saving 0.8 gigabytes. The speed results confirm the near-linear runtime predicted by Equation (10)
across many orders of magnitude.

7 Conclusion

We proposed a general entropy coding method for unordered objects, achieving state-of-the-art
compression rates at practical speeds for multisets and graphs up to gigabyte-scale. It is a combination
of two new shuffle coding variants, as summarized in Table 5.

We believe that there is significant room for optimization. On REC graphs, we observed that
roughly half of the runtime is spent on the ordered autoregressive model which has not yet been
optimized. Chunking invites parallelization, for example with vectorized ANS (Giesen, 2014). Non-
uniform chunk sizes C are likely also beneficial for graphs, as already demonstrated for multisets in
Appendix G. Unlike competing methods like SZIP and PnC, shuffle coding is an entropy method
that can be easily adapted to specific domain models, and benefits from advances in generative graph
modeling, such as recent work on neural (autoregressive) graph models (Kong et al., 2023; Zhu et al.,
2022). We leave these promising research directions for future work.

4The TU dataset features vertex and edge attributes. Here, maximum-likelihood parameters for categorical
attribute distributions are inferred for and coded along with each dataset, as described in Kunze et al. (2024).
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A Group actions, orbits and stabilizers

This appendix gives the definitions of group actions, orbits and stabilizers as well as a statement and
proof of the orbit-stabilizer theorem, which we make use of in Section 4. We use the shorthand H ≤ G
to mean that H is a subgroup of G, and for g ∈ G, we use the usual notation, gH := {gh | h ∈ H}
and Hg := {hg | h ∈ H} for left and right cosets, respectively. For any two subgroups G,H ≤ S,
we denote the group of their intersection as G ∩H .
Definition A.1 (Group action). For a set X and a group G, a group action, or simply action, is a
binary operator

·G : G×X → X (12)
which respects the structure of G in the following sense:

1. The identity element e ∈ G is neutral, that is e ·G x = x.

2. The operator ·G respects composition. That is, for g, h ∈ G,

g ·G (h ·G x) = (gh) ·G x. (13)

We will often drop the subscript G and use infix · alone where the action is clear from the context.
Definition A.2 (Orbit). An action of a group G on a set X induces an equivalence relation ∼G on X ,
defined by

x ∼G y if and only if there exists g ∈ G such that y = g · x. (14)
We refer to the equivalence classes induced by ∼G as orbits, and use OrbG(x) to denote the orbit
containing an element x ∈ X . We use X/G to denote the set of orbits, so for each x ∈ X ,
OrbG(x) ∈ X/G.
Definition A.3 (Stabilizer subgroup). For an action of a group G on a set X , for each x ∈ X , the
stabilizer

StabG(x) := {g ∈ G | g · x = x} (15)
forms a subgroup of G.

Here, we give a statement and brief proof of the well-known orbit-stabilizer theorem.
Theorem A.4 (Orbit-stabilizer theorem). For an action of a finite group G on a set X , for each
x ∈ X , the function θx : G → X defined by

θx(g) := g · x (16)

induces a bijection from the left cosets of StabG(x) to OrbG(x). This implies that the orbit OrbG(x)
is finite and

|OrbG(x)| =
|G|

|StabG(x)|
. (17)

Proof. We show that θf induces a well defined function on the left-cosets of StabG(x), which we
call θ̃f . Specifically, we define

θ̃f (g StabG(x)) := g · x, (18)

and show that θ̃f is injective and surjective.

To see that θ̃f is well defined and injective, note that

h ∈ g StabG(x) ⇐⇒ g−1h ∈ StabG(x) (19)

⇐⇒ g−1h · x = x (20)
⇐⇒ g · x = h · x, (21)

using the definition of StabG.

For surjectivity, we have

y ∈ OrbG(x) =⇒ ∃g ∈ G s.t. y = g · x (22)

=⇒ y = θ̃f (g StabG(x)) (23)

using the definition of OrbG.
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B Proofs

B.1 Background (Section 2)

Proof for Definition 2.2. We first prove s · f∼ ∈ F∼ for all s ∈ Sn and f∼ ∈ F∼. Let s ∈ Sn

and f, g ∈ F . Now s · f∼ ∼ s · g∼ exactly if f ∼ g because ∼ is exchangeable, and the inverse
permutation s−1 ∈ Sn of s exists. Since F∼ is a partition of F , this implies {s · f | f ∈ f∼} ∈ F∼
and therefore s · f∼ ∈ F∼. It is left to show that the operator · : Sn × F∼ → F∼ is a left group
action. This follows from · : Sn ×F → F associated with the permutable class F being a left group
action.

B.2 Autoregressive shuffle coding (Section 4)

Definition B.1 (Exchangeable function). We say a function a on a permutable class F is exchangeable
if a(f) = a(g) for all f, g ∈ F with f ≃ g.

Lemma B.2. If f → P (f) on F is exchangeable then the functions f[i] → P (f[i]) on F[i] for
i ∈ [n+ 1] are exchangeable.

Proof. If f → P (f) is exchangeable, then for any i ∈ [n + 1] and s ∈ Si, Equation (2) implies
P (s · f[i]) =

∑
f∈f[i]

P (s · f) =
∑

f∈f[i]
P (f) = P (f[i]), and therefore f → P (f[i]) on F[i] is

exchangeable.

Lemma B.3. If f → P (f) on F is exchangeable, then for i ∈ [n], gi ∈ F[i], the function f[i] →
P (gi | f[i]) on F[i] is exchangeable, and P (gi | f[i]) = P (gi | f[i]) for f[i] ∈ f[i].

Proof. Assume P (f) is exchangeable. We will use induction over i starting at n down to 0, for
the statement that f[i] → P ((gj)j∈[n]\[i] | f[i]) is exchangeable for any given gj , and implies the
lemma. P ((gj)j∈[n]\[n] | f[n]) = P (() | f[n]) is exchangeable, covering the base case. Assume for
i ∈ [n] that f[i+1] → P ((gj)j∈[n]\[i+1] | f[i+1]) is exchangeable. For all i ∈ [n] and f ∈ F , we have
P (f) = P (f[i])P (fi | f[i])P ((fj)j∈[n]\[i+1] | f[i+1]). Therefore, the function mapping from f : F
to P (fi | f[i]) = P (f[i])P ((fj)j∈[n]\[i+1] | f[i+1])/P (f) is also exchangeable due to Lemma B.2
and the inductive assumption. This further implies that the function mapping from f[i] : F[i]

to P ((gj)j∈[n]\[i] | f[i]) = P ((gj)j∈[n]\[i+1] | f[i+1])P (gi | f[i]) is exchangeable, completing the
induction.

Lemma B.4. For a prefixing chain given by F[i], StabAut(f[i+1])(i) = Aut(f[i]) for all i ∈ [n −
1], f ∈ F .

Proof. We have StabAut(f[i+1])(i) = {s ∈ Si+1 | s · i = i ∧ s · f ∼[i+1] f}, which is = {s ∈
Si | s · f ∼[i+1] f} due to Equation (1) and = {s ∈ Si | s · f ∼[i] f ∧

⋃
(s · f)′[i+1] =

⋃
f ′
[i+1]}

through Equation (7). Since (s · f)[i+1] is isomorphic to f in F ′
[i+1], this is in turn = {s ∈ Si |

s · f ∼[i] f} = Aut(f[i]).

Proof of Equation (8). The optimal rate is given by Equation (3):

log
1

P (f[i])
= log

1

P (f[i])

Ordered rate

− log
i!

|Aut(f[i])|
Discount

. (24)

The optimal rate for g[i−1] is given by Equation (24):

log
1

P (g[i−1])
= log

1

P (g[i−1])

Ordered rate

− log
(i− 1)!

|Aut(g[i−1])|
Discount

. (25)

14



It is informative to rewrite Equation (24) in terms of Equation (25):

log
1

P (f[i])
= log

1

P (g[i−1])
+ log

P (g[i−1])

P (f[i])

− log
i · |Aut(g[i−1])|

|Aut(f[i])|
.

(26)

Definition 4.2 and Lemma B.3 imply P (f[i]) = P ((s · f)i) = P (g[i]) = P (gi−1 | g[i−1]) · P (g[i−1]).

Additionally, we have |Aut(f[i])| = |Aut
(
s · f[i]

)
| = |Aut(g[i])| since permuting f results in a

conjugated automorphism group which is isomorphic to Aut(f[i]). Lemma B.4 together with the orbit-
stabilizer theorem A.4 implies |Aut(g[i])| = |OrbAut(g[i])(i− 1)| · |Aut(g[i−1])|. Finally, we have
|OrbAut(g[i])(i− 1)| = |OrbAut(f[i])(j)|. We can now rewrite Equation (26) into Equation (8).

Lemma B.5. UnorderedPrefix forms a valid codec, with encode and decode being inverses of
each other.

Proof. This is mostly straightforward, but notably, the swap operation of the encoder is not reversed.
Here, we exploited that output of the function h[i−1] → orbitsi(push(h[i−1], gi−1))i−1 on F[i+1]

does not change when permuting the input, and therefore the decoder recovers the correct orbit index
o = orbitsi(g[i])i−1 = orbitsi(f[i])j for any decoded h[i−1] ∈ g[i−1].

B.3 Incomplete shuffle coding (Section 3)

Proof for Equation (4). The condition in Definition 3.1 is equivalent to f ≃ g for all f, g ∈ F with
f ∼ g. We show f̄ =

⋃
f∼ by proving that for g∼ ∈ F/∼, we have g∼ ∈ f∼ exactly if g∼ ⊆ f̄ .

g∼ ∈ f∼ means ∃s ∈ Sn : g∼ = s · f∼, which is equivalent to ∃s ∈ Sn : g ∼ s · f . On the other
hand, g∼ ⊆ f̄ holds exactly if g∼ ⊆ {t · f∼ | t ∈ Sn}, meaning that ∃t ∈ Sn : g = t · f . It is
left to show that ∃s ∈ Sn : g ∼ s · f exactly if ∃t ∈ Sn : g = t · f . The implication ⇐ is proved
with s := t. To show the implication ⇒, assume ∃s ∈ Sn : g ∼ s · f . Definition 3.1 now implies
∃s ∈ Sn : g ≃ s · f , and therefore ∃s, u ∈ Sn : g = u · s · f . t := u · s implies ∃t ∈ Sn : g = t · f ,
completing the proof.

This leads to P (f̄) = P (f∼) for any given distribution P (f) over F , and Equation (4) follows from
applying Equation (3) on both sides.

Proof for Equation (5). To achieve this runtime, we implicitly assumed that our ordered graph model
is fast enough. We can hash a multiset represented as a string in linear time by accumulating
hashes using a bitwise ‘xor’ operation, which is associative and commutative, making the overall
hash permutation-invariant. This results in an overall runtime of O(

∑
i∈[n] |ni(g)|) = O(m). The

remaining computation has the runtime O(n log n) of joint shuffle coding on multisets, leading to the
given overall runtime complexity.
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C Color refinement details

We here state the formal definition of color refinement, as described in Section 3, that we use for the
paper:
Definition C.1. For an (ordered) simple graph g ∈ Gn, let ni(g) denote the set of indices of the
neighbors of the vertex at index i. Let the coloring of a graph g ∈ Gn with k ∈ N iterations be the
tuple Ck(g) with C0(g) = (|ni(g)|)i∈[n] and

Ck+1(g) = (h({{Ck(g)j | j ∈ ni(g)}}))i∈[n], (27)

for a ‘hashing’ function h : M → N on multisets M = ∪i∈[n+1]Ni of up to n natural numbers
N. We then obtain a congruence corresponding to Ck(f) = Ck(g) and Gn/∼Ck

forms a class of
incompletely ordered objects for k ∈ N.

Color refinement is often run to convergence of vertex partitions (Huang and Villar, 2021). This
happens after at most [n] iterations and is therefore equivalent to Cn. It can be naturally extended to
graphs with vertex and edge attributes, by hashing each vertex attribute together with the multiset of
neighboring edge attributes in the initial C0, and then convolving multisets of pairs of neighboring
edges attributes and hashes in subsequent iterations. The corresponding Weisfeiler Leman graph iso-
morphism test is based on the fact that Ck(f) ̸= Ck(g) implies f ̸≃ g and successfully distinguishes
almost all pairs of non-isomorphic graphs (Babai and Kučera, 1979).

Similarly, color refinement with k > 0 convolutions finds the exact automorphism group
Aut(g∼Ck

) = Aut(g) for almost all simple graphs for large enough n.

Proof. Babai et al. (1980) show that with probability of at least 1− 1
n7 , there is a set U of vertices

whose degrees are distinct in U , and no other vertices have the same set of neighbors within U . Since
color refinement starts with the vertex degrees, a single convolution will assign pairwise distinct
hashes for almost all graphs.

We assumed here that no hash collisions occur (h(a) = h(b) with a ̸= b), for simplicity. In practice,
we use an off-the-shelf 64-bit hash function h, where hash collisions are extremely improbable. Even
if such a collision occurs, it results only in a marginal rate increase.
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D Conceptual visualizations

We visualize key concept for autoregressive shuffle coding for the example of graphs in Table 4, and
summarize the variants of shuffle coding proposed in Table 5.

Table 4: Examples of key concepts from Section 4 for the permutable class F of simple graphs with
5 vertices and the prefixing chain given by Example 4.2. Dotted edges indicate deleted information.

Concept Example

Unordered
derivative

0 1

2
3

4

′

=

· ·

·
·

4 ∈ F ′

Unordered
i-th derivative

0 1

2
3

4

(3)

=

· ·

2
3

4 =


0 1

2
3

4 ,

0 1

2
3

4

 ∈ F (3)

Prefix

 0 1

2
3

4


[3]

=

0 1

2
3

4 =


0 1

2
3

4 ,

0 1

2
3

4

 ∈ F[2]

Slice

 0 1

2
3

4


2

=

· ·

2
3

4 , represented by 2
3

4 in context of
· ·

2
3

4

Pop pop

 0 1

2
3

4

 =

 0 1

2
3

4 ,

· ·

2
3

4



Push push


 0 1

2
3

4 ,

· ·

2
3

4


 =

0 1

2
3

4

Orbit of
index i

Orb
Aut

 0 1

2
3

4

(1) = {1, 3}

Orbits Orbs
Aut

 0 1

2
3

4

= {{0}, {1, 3}, {2, 4}}

Orbit function orbits

 0 1

2
3

4

 = (2, 0, 1, 0, 1) implies orbits

 0 1

2
3

4

 = (0, 0, 1, 2, 1)
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Table 5: Comparison between variants of shuffle coding.

Shuffle Coding Variant Not One-Shot &
Allows Any Model

One-Shot &
Requires Autoregressive Model

Optimal Rate &
Requires Automorphism Group

Complete Joint
(Kunze et al., 2024) Complete Autoregressive

Near-Optimal Rate &
Allows Approx. Automorphism Group Incomplete Joint Incomplete Autoregressive

E Chunking

no chunking (‘full’) single chunk (‘joint’)
C [1, 1, 1, 1, 1] [2, 2, 1] [5]

f[1] a ab abacb
f[2] ab ab abacb
f[3] aba abac abacb
f[4] abac abac abacb
f[5] abacb abacb abacb

Table 6: Prefixes for the string f = abacb according to chunked prefixing chains of Example 4.1,
for various chunk size sequences C. When used with autoregressive shuffle coding, the prefix f[i]
resembles the information decoded after i iterations during decoding.

Autoregressive shuffle coding with chunking, as described in Section 4.3 refers to autoregressive
shuffle coding using the following ‘chunked’ prefixing chain:

Definition E.1 (Chunked prefixing chain). Let (F[i])i∈[n] be a prefixing chain on F with F[i] :=

F (n−i)/∼i and let C = (cj)j∈[c] be a sequence of c chunk sizes with
∑

j∈[c] cj = n. In this context,
we refer to pj :=

∑
k∈[j+1] ck as the prefix size for chunk j ∈ [c], and C(i) := min{j ∈ [c]|i ∈ [pj ]}

as chunk for index i ∈ [n]. Another prefixing chain is now formed on F by (F (n−i)/∼pC(i)
)i∈[n],

which we refer to as the chunked prefixing chain of (F[i])i∈[n] with chunk sizes C.

Then, the slice at the first position of a chunk codes a complete chunk from the original prefixing chain,
and all its remaining slices have no additional information about the object. To apply incomplete
autoregressive shuffle coding according to some incompletely ordered prefixes (f[i])∼ ∈ F[i]/∼,
formally, we will require a prefixing chain to be defined for each F[i]/∼. Then, we code orbits of
chunked prefixes of length i according to Aut(((f[pC(i)])∼)[i]). This means that we approximate the
orbit based on the full chunked prefix, and then use a prefix of that approximation of length i.

E.1 Runtime

For graphs, we will use color refinement to map to incompletely ordered prefixes (f[i])∼Ck
and use

the string prefixes according to Example 4.1 of the resulting hashes within a given chunk. This choice
requires c color refinement runs (instead of one as in Equation (5)), and additionally has the runtime
complexity of (full) autoregressive shuffle coding on strings O(n log n), resulting in the overall
runtime O(c ·m+n log n) stated in Equation (10), which achieves the goal of a practical runtime for
a fixed number of chunks c. Although not affecting runtime complexity, we can also switch adaptive
entropy coding to a Fenwick tree to achieve better memory layout and therefore runtime, as described
in Section 4.3, since all possible vertex colors within a chunk are known immediately after color
refinement.
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E.2 Choosing chunk sizes

Larger chunks soften the restriction for our ordered model to be autoregressive but increase the
(one-shot) compression rate due to more required initial bits. For chunking on graphs as discussed
above, larger chunks additionally can expect a speedup due to fewer rehashings with color refinement,
and a slightly worse net rate, since chunk borders soften the restriction of the automorphism group to
be factored.

The degenerate case of c = n chunks is equivalent to not using chunking at all, a setting we refer
to as ‘full’ autoregressive shuffle coding, shown in the second column of Table 6. The last column
shows the other extreme with only c = 1 chunk, where autoregressive shuffle coding degenerates into
a method behaving very much like joint shuffle coding, in the sense that we can employ a joint model,
and the method is not suitable for one-shot coding since the complete discount would stay unrealized
in the rate due to initial bits. We therefore refer to this setting as ‘joint’ autoregressive shuffle coding.
Joint shuffle coding still has a reason to exist: It typically allows more batched and parallel coding of
order information and accordingly, it can be significantly faster, as we show in our experiments.

The unrealized discount in the rate due to initial bits is influenced by the distribution of the object’s
information among slices, as visualized in Figure 2. With the usual prefixing chain from Example 4.1
for i.i.d. multisets, information is distributed equally across slices, as pictured in Figure 2(a), and all
but O(log n) of the O(n log n) discount should be realized in the rate. For simple graphs sampled
from an Erdős-Rényi model and the prefixing chain from Example 4.2, each slice fi contains
information about n− 1− i edges, so the expected slice rate drops linearly with i down to 0 for the
last slice, as visualized in Figure 2(b). In effect, the last slices (that are encoded onto the stack first)
have the least amount of information, canceling out fewer initial bits. For graphs, we can thus expect
less of the discount realized in the rate.

E logP (fi)

0 n− 1 i

(a)

E logP (fi)

0 n− 1 i

(b)

Figure 2: Expected slice information E logP (fi) by slice index i for (a) i.i.d. strings using the
prefixing chain from Example 4.1 and (b) simple Erdős-Rényi graphs using Example 4.2.

Assuming that all slices have the same rate, which is met in expectation for i.i.d. strings as shown in
Figure 2(a), that each coded orbit has the same rate (which is only slightly inaccurate), and given that
we want to use exactly c chunks, the chunk sizes that minimize the rate have the following property:
For each pair of neighboring chunks with sizes ci and ci+1, the ratio of the two latter by the form size
should be approximately equal to the relative discount, meaning the discount log n!

Aut(f) of the object
f per ordered net rate logP (f),

ci+1

ci
≈

log n!
Aut(f)

logP (f)
, (28)

leading to a geometric series of chunk sizes with the given base, with the first chunk being the largest.5
For simple Erdős-Rényi graphs, as shown in Figure 2(b), the slice rate is not uniform, making it more
difficult to model the condition required for the minimal rate. For our experiments on graphs, we will
simply choose (approximately) equally sized chunks, and leave optimizing relative chunk sizes for
future work.

5During encoding, this condition causes the ANS stack to be exactly emptied by the initial bits of the next
chunk. It can be shown that this is optimal under the given assumptions.
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F Autoregressive Pólya urn model details

Kunze et al. (2024) use the Pólya urn (PU) preferential attachment model proposed by Severo et al.
(2023b) to drastically improve compression rate on SZIP graphs with joint shuffle coding. Motivated
by this, we use a variational approximation to obtain a tractable autoregressive model that we refer to
as autoregressive Pólya urn (AP). The task of predicting the next graph slice fi given the prefix f[i] can
be broken down into two parts: Given the prefix f[i], predict the number of edges ki ∈ [n− i] within
the next slice fi, and then from that, predict the edge positions within the slice. For the Pólya urn
(PU) model P (f), assuming the slice representation from Example 4.2, the distribution for the first
part, P (ki|f[i]), is not tractable, and in order to obtain a tractable variational autoregressive model,
we instead approximate it based on a Zipf distribution. Specifically, we use the Zipf distribution
Q(ki) ∝ 1

(ki+1)2 , except for smaller graphs up to 100000 edges (which includes all SZIP graphs),
for which we use Q(ki) ∝ 1

k2
i

for ki > 1 and Q(ki = 0) = Q(ki = 1) ≈ 1
3 . The distribution of the

second part, P (fi|f[i], ki), is tractable. The generative process for P (fi|f[i], ki) is as following: Given
the graph of the prefix f[i] and the number of edges ki in the next slice fi, iteratively insert ki edges,
with probabilities proportional to the neighbor count +1 of the adjacent vertices {i+1, i+2, . . . n−1}
without allowing repetition (i.e. zeroing out the probabilities where edges were already inserted). Our
overall autoregressive model is then given by Q(fi | f[i]) =

∑i
ki=0 P (fi | f[i], ki)Q(ki | f[i]).

In general, it is not important for an autoregressive to exactly match or even approximate recognizable
joint models. Instead, they can be designed or learned on their own. In our case, however, a
joint model inspired a reasonable autoregressive model through approximating the original with the
derivation above.
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G Multiset compression results

All shuffle coding speeds in this paper were measured on a MacBook Pro 2018 with a 2.7GHz Intel
Core i7 CPU.

We compare our implementation of full autoregressive shuffle coding to Severo et al. (2023a) on
multisets of varying lengths, sampled from an i.i.d. categorical distribution with probabilities sampled
according to a Dirichlet distribution, as described in Severo et al. (2023a). We show compression
rates in Table 7, and speeds in Figure 3. The results confirm that our implementation matches the rate
of Severo et al. (2023a), but is well over two orders of magnitude faster, and scales to large multisets.
We observe that the rate is within 64 bits of the optimal rate across all multiset sizes, likely mostly
caused by the fixed overhead of ANS. This is consistent with our prediction from Appendix E.2 that
the unrealized discount should be very small at O(log n).

We also evaluate joint shuffle coding using the same data and i.i.d. model, as well as ‘joint’ autoregres-
sive shuffle coding (with a single chunk). While both result in the same net rate as full autoregressive
shuffle coding, joint shuffle coding leads to the fastest runtime over a wide range of multiset sizes.

In Table 7, we also report the rates of autoregressive shuffle coding with 10 chunks using a geometric
series of chunk sizes with varying choices for the base, compared to equally-sized chunks (base
1). The results confirm the prediction of Appendix E.2 that on multisets, a geometric series of
(unequal) chunk sizes can lead to better rates over equally sized chunks. For our experiments, our
chunked autoregressive ordered model simply codes multiple slices per chunk using the underlying
fully autoregressive model. On multisets, this results in autoregressive shuffle coding with larger
chunks having no benefits over the fully autoregressive variant. Improved speeds can be expected for
specialized chunked autoregressive models that are parallelized, similar to joint shuffle coding. We
leave this for future work.
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Figure 3: Compression speeds (dotted lines) and decompression speeds (solid lines) of multisets of
varying size using joint and autoregressive shuffle coding with 1 chunk (‘joint AR’) and n chunks
(‘full AR’), compared to the full autoregressive implementation from Severo et al. (2023a). All results
are based on the (ordered) string rate as the reference uncompressed size averaged across 10 runs
(100 runs for sizes <1M for our implementations).
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Table 7: Compression rates in bits for one-shot compression of multisets with full autoregressive
shuffle coding, compared to the implementation from Severo et al. (2023a), as well as the optimal
(net) rate. We also show the effect rates when using 10 chunks with a geometric series of sizes, with
varying bases. The last but one column uses the relative discount from Equation (28) of each graph
as the base (shown in parentheses).

Full 10 Chunks (Geometric with given Base)

Size Net Ours Severo 1 (unif.) (log n!
Aut(f) )/ logP (f) 93%

1k 1769 1833 1856 2707 2487 (18%) 2443
10k 8683 8744 8768 17598 15219 (49%) 14988

100k 68852 68912 68960 157690 131782 (82%) 131782
1M 663046 663104 – 1550754 1295534 (91%) 1295534

10M 6597373 6597432 – 15473751 12935710 (93%) 12935710

H Joint graph shuffle coding results

We report experimental results for incomplete joint shuffle coding on graphs in Figure 4 and Tables 8
to 10.
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Figure 4: Rate increase from Equation (4) relative to the (optimal) discount from Equation (3) for
incomplete shuffle coding on graphs, depending on the number of color refinement convolutions k,
for each SZIP graph. The results are independent of the employed ordered model.
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Table 8: Incomplete joint shuffle coding with color refinement using 3 convolutions on the TUDatasets
(Morris et al., 2020), compared to complete joint shuffle coding from Kunze et al. (2024), both using
the Erdős-Rényi (ER) model. Since complete joint shuffle coding is too slow for three of the 24
social network datasets, REDDIT-BINARY, REDDIT-MULTI-5K, REDDIT-MULTI-12K, they were
evaluated separately in the category ‘Reddit’. Compression rates are measured in bits per edge, and
encoding and decoding speeds are for a single thread, in kB/s.

Speed (1 Thread)

Rate Complete Incompl.

Graph type Compl. Incompl. Increase Enc. Dec. Enc. Dec.

Small molecules 1.14 1.19 4.0% 54 56 167 179
Bioinformatics 6.50 6.51 0.1% 51 66 426 421
Computer vision 4.49 4.56 1.5% 25 28 163 162
Social networks 2.97 2.97 0.3% 0.44 0.47 215 284
Synthetic 2.99 2.99 0.1% 98 110 317 323
Reddit – 5.38 – – – 129 123

Table 9: Incomplete joint shuffle coding with color refinement using 3 convolutions on the SZIP
dataset, compared to complete joint shuffle coding from Kunze et al. (2024), both using the autore-
gressive Pólya urn (AP) model. We report the net compression rate, that is the additional cost of
compressing that graph assuming there is already some compressed data to append to, measured in
bits per edge, as well as compression and decompression speeds on 8 threads in kB/s. All results are
means across multiple runs, 3 for complete, and 100 for incomplete shuffle coding.

Speed (8 Threads)

Net rate Complete Incompl.

SZIP graph Compl. Incompl. Incr. Enc. Dec. Enc. Dec.

Airports (USAir97) 3.12 3.13 0.2% 98 111 1025 1151
Protein (YeastS) 5.89 5.91 0.2% 2.834 2.852 1636 1697
Collaboration (geom) 4.57 4.84 7.1% 0.004 0.004 2289 2372
Collaboration (Erdos) 4.45 4.45 0.2% 0.024 0.023 1951 1979
Genetic (homo) 6.95 6.98 0.5% 0.249 0.261 2238 2358
Internet (as) 4.52 4.53 0.2% 0.002 0.003 2459 2537

I Autoregressive graph shuffle coding results

To evaluate the effect of chunk size, we run autoregressive shuffle coding with varying numbers
of equally sized chunks on the SZIP dataset. We report discount unrealized by the net rate, which
is independent of the ordered model6, as well as results on the AP model in Figure 5. The results
confirm that finer chunks lead to better one-shot rates, with most of the discount realized in the rate
for roughly 16 chunks or more, with practical runtimes. We therefore use a default of 16 equally-sized
chunks in further experiments.

The results also confirm that finer chunks lead to slightly better net rates, an effect predicted in
Appendix E.2 caused by the corresponding softening of the restriction of a factored approximate
automorphism group retrieved through color refinement. Remarkably, we observe that the net rate
of autoregressive shuffle coding with 512 chunks is only 2 bits above the optimal rate given by
Equation (3) for the SZIP graph dataset in total, leaving only 0.00002% of the discount unrealized
in the net rate, practically matching the optimal net rate from Equation (3), and outperforming
incomplete joint shuffle coding. For a more practical 16 chunks, 0.05% of the discount is unrealized
in the net rate.

Further results, discussed in Section 6, are shown in Tables 11 to 13.

6It has been evaluated based on results from the deterministic ER codec to avoid stochasticity.
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Table 10: Incomplete joint shuffle coding with the autoregressive Pólya urn model (AP), compared to
just ordered AP, on SZIP and REC graphs. We report mean net rates and compression speeds based
on 10 compression runs (100 for SZIP graphs) with varying initial message seeds. All net rates are
in bits per edge, with empirical standard deviations below 0.02 bits per edge except where shown.
Single-threaded and multi-threaded compression speeds with 8 logical cores are reported, all in MB/s.

Speed

Net rate 1 Thread 8 Threads

Graph Vertices Edges Ord. Incompl. Enc. Dec. Enc. Dec.

SZIP
USAir97 0.3k 2.1k 4.17 3.13 1.2 1.3 1.0 1.2
YeastS 2.3k 6.6k 9.17 5.91 1.6 1.6 1.6 1.7
geom 6.2k 21.5k 7.51±.10 4.84±.07 2.0 2.1 2.3 2.4
Erdos 6.9k 11.9k 9.88 4.45 1.8 1.8 2.0 2.0
homo 8.6k 26.1k 10.65 6.98 1.1 1.2 2.2 2.4
as 25.9k 52.4k 10.24 4.53 2.1 2.2 2.5 2.5

REC
YouTube 3.2M 9.3M 15.34 8.97 1.7 1.5 2.3 1.9
FourSquare 0.6M 3.2M 9.95 6.61 1.6 1.5 2.1 2.0
Digg 0.8M 5.9M 10.69 8.56 1.8 1.7 2.4 2.2
Gowalla 0.2M 1.0M 13.09 9.82 2.1 2.1 2.7 2.6
Skitter 1.6M 11.1M 14.44 11.59 2.1 1.9 2.9 2.5
DBLP 0.2M 1.0M 16.21 11.24 2.3 2.3 2.8 2.7

Table 11: Compression rates and speeds between incomplete autoregressive shuffle coding with 16 (or
200) chunks and 3 color refinement convolutions using an Erdős-Rényi (ER) and our autoregressive
Pólya urn (AP) model, compared to the best results obtained by SZIP (Choi and Szpankowski, 2012)
for each graph (on different hardware). We report means and standard deviations based on 100
compression runs with varying initial message seeds. All rates are in bits per edge, and all speeds are
for 8 threads, in kB/s.

Incomplete Autoregressive Shuffle Coding

Rate ER AP AP, c = 200 SZIP

Airports (USAir97) 5.27±.02 3.32±.03 3.27±.03 3.81
Protein (YeastS) 7.41±.04 6.46±.04 6.27±.04 7.05
Collaboration (geom) 8.73±.09 5.24±.19 5.10±.21 5.28
Collaboration (Erdos) 8.05±.08 5.55±.08 5.24±.08 5.08
Genetic (homo) 8.81±.03 7.55±.02 7.32±.03 8.49
Internet (as) 9.42±.11 5.75±.08 5.46±.08 5.75

Speed (8 Thread) Enc. Dec. Enc. Dec. Enc. Dec. Enc.

Airports (USAir97) 301 390 282 433 29 53 (164)
Protein (YeastS) 145 147 576 795 56 89 (77)
Collaboration (geom) 93 86 916 1253 113 201 (64)
Collaboration (Erdos) 46 42 724 983 81 123 (18)
Genetic (homo) 63 58 854 1140 119 215 (32)
Internet (as) 17 15 1025 1408 152 277 (7)
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Figure 5: Results for incomplete autoregressive shuffle coding for various numbers of chunks on
SZIP graphs, based on the AP model and color refinement with 3 convolutions, averaged across 100
repeated runs per data point. The top and middle plots respectively show the increase of the net rate
and rate over the optimal rate, relative to the discount given by Equation (3). The bottom plots shows
compression speeds (dotted lines) and decompression speeds (solid lines), based on the (ordered)
Erdős-Rényi rate as the reference uncompressed size.
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Table 12: Compression rates and speeds of incomplete autoregressive shuffle coding with 16 chunks
and 3 color refinement convolutions based on the AP model, for the REC graph dataset. All rates
are reported in bits per edge. We show the ordered rate for AP for comparison. Single-threaded and
multi-threaded compression speeds are reported in MB/s.

Speed

Ord. 1 Thread 8 Threads

Graph Vertices Edges Rate Rate Net rate Enc. Dec. Enc. Dec.

YouTube 3.2M 9.3M 15.34 10.05 8.93 0.5 0.7 0.9 1.3
FourSquare 0.6M 3.2M 9.95 7.12 6.61 0.6 1.0 1.0 1.6
Digg 0.8M 5.9M 10.69 8.81 8.56 0.7 1.3 1.2 2.0
Gowalla 0.2M 1.0M 13.09 10.26 9.81 0.9 1.5 1.4 2.2
Skitter 1.6M 11.1M 14.44 11.92 11.58 0.8 1.2 1.3 2.1
DBLP 0.2M 1.0M 16.21 11.98 11.23 0.9 1.4 1.5 2.3

Table 13: Compression rates and speeds of incomplete autoregressive shuffle coding with 16 chunks
and 3 color refinement convolutions based on the AP model, on random graphs sampled from G(n,m)
Erdős-Rényi models with large numbers of edges m up to one billion, and n = 3/10 ·m vertices.
We show the uncompressed size, meaning the ordered rate for the model it was sampled from, both in
megabytes total and bits per edge. Rates and net rates are reported in bits per edge, and multi-threaded
compression speeds in MB/s.

Ord. Rate Rate Speed (8 Threads)

Vertices Edges ER/MB ER AP Net AP Enc. Dec.

30k 100k 0.2 13.6 10.7 10.1 1.2 1.4
300k 1M 2.1 16.9 13.3 12.5 1.4 1.7

3M 10M 25 20.2 15.7 14.9 1.2 1.3
30M 100M 294 23.5 18.2 17.2 0.8 0.9

300M 1B 3358 26.9 20.6 19.5 0.4 0.6
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims are backed by an open-source implementation, with results reported
in Section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Theory developed in Sections 2 to 4 is backed by proofs in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide an open-source implementation including instructions to replicate
all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code, data and instructions to replicate experiments are openly available at
https://github.com/juliuskunze/shuffle-coding.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper thoroughly describes experimental details in Section 6. Additionally,
all code and data is open-sourced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Stochastic experiments are repeated an appropriate amount of times, and
number of runs, means and averages are reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The type of hardware used in all experiments is described in Appendix G.
Runtimes can be inferred from reported compression speeds and sizes of the respective data.
Further hints are given in the provided source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have concluded that there are no potential harms caused by this
work. All data is insensitive and was already publicly available previously.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The presented compression method is foundational without direct societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Data used in this paper is insensitive.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Original owners of data and code are properly credited in our repository and
their licenses mentioned and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All published code and data is properly documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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