
DiLQR: Differentiable Iterative Linear Quadratic Regulator via Implicit
Differentiation

Shuyuan Wang 1 Philip D. Loewen 1 Michael G. Forbes 2 R. Bhushan Gopaluni 1 Wei Pan 3

Abstract

While differentiable control has emerged as a
powerful paradigm combining model-free flex-
ibility with model-based efficiency, the iterative
Linear Quadratic Regulator (iLQR) remains un-
derexplored as a differentiable component. The
scalability of differentiating through extended it-
erations and horizons poses significant challenges,
hindering iLQR from being an effective differen-
tiable controller. This paper introduces DiLQR, a
framework that facilitates differentiation through
iLQR, allowing it to serve as a trainable and dif-
ferentiable module, either as or within a neural
network. A novel aspect of this framework is the
analytical solution that it provides for the gradient
of an iLQR controller through implicit differenti-
ation, which ensures a constant backward cost re-
gardless of iteration, while producing an accurate
gradient. We evaluate our framework on imitation
tasks on famous control benchmarks. Our analyti-
cal method demonstrates superior computational
performance, achieving up to 128x speedup and
a minimum of 21x speedup compared to auto-
matic differentiation. Our method also demon-
strates superior learning performance (106x) com-
pared to traditional neural network policies and
better model loss with differentiable controllers
that lack exact analytical gradients. Furthermore,
we integrate our module into a larger network
with visual inputs to demonstrate the capacity of
our method for high-dimensional, fully end-to-
end tasks. Codes can be found on the project
homepage https://sites.google.com/
view/dilqr/.

1The University of British Columbia, Vancouver, Canada
2Honeywell Process Solutions, Vancouver, Canada 3The Uni-
versity of Manchester, Manchester, England. Correspondence
to: Wei Pan <wei.pan@manchester.ac.uk>, Bhushan Gopaluni
<bhushan.gopaluni@ubc.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Differentiable control has emerged as a powerful approach
in the fields of reinforcement learning (RL) and imitation
learning, enabling significant improvements in sample ef-
ficiency and performance. By integrating control policies
into a differentiable framework, researchers can leverage
gradient-based optimization techniques to directly optimize
policy parameters. This integration allows for end-to-end
training, where both the control strategy and the underly-
ing model can be learned simultaneously, enhancing the
adaptability and precision of control systems.

As a numerical controller, the iterative Linear Quadratic Reg-
ulator (iLQR) (Todorov et al., 2012) has been extensively
adopted for trajectory optimization (Spielberg et al., 2021;
Choi et al., 2023; Zhao et al., 2020; Mastalli et al., 2020)
due to its computational efficiency (Tassa et al., 2014; Dean
et al., 2020; Collins et al., 2021) and excellent control per-
formance (Dantec et al., 2022; Xie et al., 2017; Chen et al.,
2017). To make iLQR trainable as a neural network module,
naively differentiating through an iLQR controller may be
a reasonable choice, but the scalability of differentiating
through hundreds of iterations steps poses a significant chal-
lenge, as the forward and backward passes during training
are coupled. The forward pass involves iteratively solving
an LQR optimization problem to converge on the optimal
trajectory. The backward pass computes gradients through
backpropagation, and becomes increasingly complex as it
needs to traverse through all the layers of the forward pass,
which requires significant computational resources (time
and memory), especially for tasks requiring long iterations
and long horizons. This coupling not only increases mem-
ory usage, but also significantly slows down the training
process, making it difficult to scale to larger problems.

Efficient differentiable controllers are especially valuable
in systems involving neural networks, such as multi-modal
frameworks (Mao et al., 2023; Xu et al., 2024b; Xiao et al.,
2022) and deep reinforcement learning (Ye et al., 2021; van
Hasselt et al., 2016), where an upstream neural network
module is required. Developing differentiable controllers
with efficient gradient propagation is crucial, as they greatly
enhance sample efficiency and reduce computational time
for online tuning.

1

https://sites.google.com/view/dilqr/
https://sites.google.com/view/dilqr/


DiLQR: Differentiabl ILQR via Implicit Differentiation

Figure 1: An overview of iLQR, and AutoDiff vs our proposed planner with implicit differentiation. As shown in the
flowchart, autodiff must backpropagate through each layer of the LQR process, which leads to significantly increased
memory usage to store intermediate gradients and computational load. In contrast, our proposed planner, using implicit
differentiation, only needs to handle the final layer. This results in constant computational costs and memory usage, making
our method much more efficient.

Developing analytical solutions would greatly alleviate
these challenges. DiffMPC (Amos et al., 2018) pioneered
the use of analytical gradients in LQR control, leading to
significant improvements in computational efficiency and
generalization of the learned controller. Its success has
inspired extensions in various planning and control applica-
tions (East et al., 2020; Romero et al., 2024b; Karkus et al.,
2023; Cheng et al., 2024; Soudbakhsh et al., 2023; Shrestha
et al., 2023). Numerous studies have since shown that ana-
lytical gradients significantly improve learning performance,
reducing computational costs, and improving scalability in
complex, long-horizon tasks (Jin et al., 2020; Xu et al.,
2024a; Jin et al., 2021; Böttcher et al., 2022; Zhao et al.,
2022).

In this paper, we introduce an innovative analytical frame-
work that leverages implicit differentiation to handle iLQR
at its fixed point. This approach effectively separates the
forward and backward computations, maintaining a constant
computational load during the backward pass, irrespective
of the iteration numbers for iLQR. By doing so, our method
significantly reduces computational time and the memory
usage needed for training, thereby enhancing scalability and
efficiency in handling non-convex control problems. See
Figure 1 for a conceptual comparison.

This paper makes the following contributions.

1. We develop an efficient method for analytical differ-
entiation. We derive analytical trajectory derivatives

for optimal control problems with tunable additive cost
functions and constrained dynamics described by first-
order difference equations, focusing on iLQR as the
controller. Our analytical solution is exact, considering
the entire iLQR graph. The method guarantees O(1)
computational complexity with respect to the number
of iteration steps.

2. We propose a forward method for differentiating
linearized dynamics with respect to nonlinear dy-
namics parameters, achieving speeds dozens of
times faster than auto-differentiation tools such as
torch.autograd.jacobian. Furthermore, we
exploit the sparsity of the tensor expressions to com-
pute some tensor derivatives that scale linearly with
trajectory length.

3. We demonstrate the effectiveness of our framework
in imitation and system identification tasks using the
inverted pendulum and cartpole examples, showcas-
ing superior sample efficiency and generalization com-
pared to traditional neural network policies. Finally,
we integrate our differentiable iLQR into a large net-
work for end-to-end learning and control from pixels,
demonstrating the extensibility and multimodal capa-
bilities of our method.

Notation For a function f(θ, g(θ)), where g depends on
θ, we distinguish between partial and total derivatives. The
partial derivative ∂f

∂θ treats g as independent, while the total

2



DiLQR: Differentiabl ILQR via Implicit Differentiation

derivative accounts for indirect dependencies via the chain
rule: df

dθ = ∂f
∂θ + ∂f

∂g
dg
dθ . For readability, we use ∇θf as a

shorthand for df
dθ , emphasizing the total variation. When f

and θ are vectors or tensors, ∂f
∂θ represents its Jacobian. See

eq. (2) for concrete examples.

2. Related work on differentiable planning
Pure model-free techniques for policy search have demon-
strated promising results in many domains by learning re-
active policies that directly map observations to actions
(Haarnoja et al., 2018; Sutton & Barto, 2018; Schulman
et al., 2017; Fujimoto et al., 2018). However, due to the
black box nature of these policies, model-free methods suf-
fer from a lack of interpretability, poor generalization, and
high sample complexity (Ye et al., 2021; Yu, 2018; Bacon
et al., 2017; Deisenroth & Rasmussen, 2011). Differentiable
planning integrates classical planning algorithms with mod-
ern deep learning techniques, enabling end-to-end training
of models and policies, thereby combining the complemen-
tary advantages of model-free and model-based methods.
Value Iteration Network (VIN) (Tamar et al., 2016) is a
representative work that performs value iteration using con-
volution on lattice grids and has been extended further (Niu
et al., 2018; Lee et al., 2018; Chaplot et al., 2021; Schleich
et al., 2019). These works have demonstrated significant
performance improvements on various tasks.

However, these works primarily focus on discrete action
and state spaces. In the field of continuous control, most
efforts have focused on differentiable LQR, including dif-
ferentiating through finite horizon LQR (Amos et al., 2018;
Shrestha et al., 2023), infinite horizon (East et al., 2020;
Brewer, 1977), and constrained LQR (Bounou et al., 2023).
References (Jin et al., 2020; 2021; Böttcher et al., 2022) pro-
pose frameworks that can differentiate through Pontryagin’s
Maximum Principle (PMP) conditions. However, the con-
vergence speed of PMP-based methods is slower than that
of iLQR (Jin et al., 2020), due to the 1.5 order convergence
rate of iLQR. More importantly, these methods and their
enhanced approach (Xu et al., 2024a) assume a broad range
of forward pass solutions and do not align the gradient in
the backward pass with the forward solution.

For iLQR, which is a powerful numerical control technique
(Todorov et al., 2012; Li & Todorov, 2004; Zhu et al., 2023),
(Tamar et al., 2017) differentiates through an iterative LQR
(iLQR) solver to learn a cost-shaping term offline. Other
methods based on numerical control techniques include
(Okada et al., 2017; Pereira et al., 2018), which provide
methods to differentiate through path integral optimal con-
trol, and (Srinivas et al., 2018), which shows how to embed
differentiable planning (unrolled gradient descent over ac-
tions) within a goal-directed policy.

However, all of these methods require differentiation

through planning procedures by explicitly unrolling the op-
timization algorithm itself, introducing drawbacks such as
increased memory and computational costs and reduced
computational stability (Zhao et al., 2022; Bai et al., 2019).
DiffMPC (Amos et al., 2018) is a representative work in
the field of differentiable MPC. Significant progress has
been made in the efficient differentiable LQR with box
constraints by (Amos et al., 2018). To differentiate iLQR,
(Amos et al., 2018) proposes a methodology that differen-
tiates through the last layer of iLQR to avoid unrolling the
entire iLQR graph. However, (Amos et al., 2018; Dinev
et al., 2022) treats the input to the last layer of LQR as a
constant, rather than a function of the learning parameters.
Using implicit differentiation, we develop a framework that
provides exact analytical solutions for iLQR gradients, im-
proving the gradient computation presented in (Amos et al.,
2018). Our approach not only addresses scalability issues,
but also improves learning performance.

3. Background
The Iterative Linear Quadratic Regulator (iLQR) addresses
the following control problem:

min
x1:T ,u1:T

T∑
t=1

gt(xt, ut)

s.t. xt+1 = ft(xt, ut), x1 = xinit; u ≤ u ≤ ū.

(1)

At each iteration step, it linearizes the dynamics and makes
a quadratic approximation of the cost function to produce
a finite-time Linear Quadratic Regulator (LQR) problem.
Solving this auxiliary problem produces updates for the
original trajectory. Here are some details.

3.1. The Approximate Problem

Iteration i begins with the trajectory τ i = {τ i1, . . . , τ iT },
where τ it = {xi

t, u
i
t}. For t = 1, 2, . . . , T , we linearize the

dynamics by defining

Dt = [At, Bt] =

[
∂ft
∂x

∣∣∣∣
τ i
t

,
∂ft
∂u

∣∣∣∣
τ i
t

]

dt = ft(x
i
t, u

i
t)−Dt

[
xi
t

ui
t

]
,

(2)

and form a quadratic approximation of the cost function
using

c⊤t = [ct,x, ct,u] =

[
∂gt
∂x

∣∣∣∣
τ i
t

,
∂gt
∂u

∣∣∣∣
τ i
t

]

Ct =

[
Ct,xx Ct,xu

Ct,ux Ct,uu

]
,

(3)

3



DiLQR: Differentiabl ILQR via Implicit Differentiation

where

Ct,xx =
∂2gt
∂x2

∣∣∣∣
τ i
t

, Ct,uu =
∂2gt
∂u2

∣∣∣∣
τ i
t

Ct,xu = C⊤
t,ux =

∂2gt
∂u∂x

∣∣∣∣
τ i
t

.

These elements lead to an approximate problem whose un-
knowns are δτt = τt − τ it :

min
δτ1:T

T∑
t=0

1

2
δτt

⊤Ctδτt + c⊤t δτt

s.t. δxt+1 = Dtδτt, δx1 = 0; u ≤ u ≤ ū.

(4)

3.2. The Trajectory Update

Problem (4) can be solved by the two-pass method detailed
in (Tassa et al., 2014). First, a backward pass is conducted,
using the Riccati-Mayne method (Mayne et al., 2000) to
obtain a quadratic value function and a projected-Newton
method to optimize the actions under box constraints. Then
a forward pass uses the linear control gains Kt, kt obtained
in the backward pass to roll out a new trajectory. Let δτ⋆

denote the minimizing trajectory in (4). We use the controls
in δτ∗ directly, but discard the states in favor of an update
based on the original dynamics, setting

ui+1
t = ui

t + δu⋆
t , xi+1

t+1 = f(xi+1
t , ui+1

t ). (5)

With these choices, defining τ i+1
t = {xi+1

t , ui+1
t } provides

a feasible trajectory for (1) that can serve as the starting
point for another iteration.

4. Differentiable iLQR
4.1. End-to-end learning framework

In the learning problem of interest here, the cost functions gt
and system dynamics ft involve structured uncertainty pa-
rameterized by a vector variable θ. For example, in a drone,
θ could represent physical parameters like mass or propeller
length, while in a humanoid robot, it might refer to limb
lengths or joint masses; additionally, θ can include refer-
ence trajectories for robot tracking, which help parametrize
the cost function for control. Suppressing θ in the notation
is typical when θ has a fixed value, but now we face the
challenge of choosing θ to optimize some scalar criterion.
This requires changing the notation to ft = ft(x, u, θ) and
gt = gt(x, u, θ). As such, the derivatives shown in (2) and
(3) must also be considered as functions of θ. So, along a
given reference trajectory τ , the dynamics in (1) will gener-
ate three θ-dependent matrices we must consider:

At(θ) =
∂ft
∂x

, Bt(θ) =
∂ft
∂u

, and
∂ft
∂θ

.

The same is true for the coefficients in the quadratic approx-
imation to the loss function in the original problem. Careful
accounting for the θ-dependence at every level is required
for accurate gradients.

Suppose the loss function L to be minimized by “learning”
θ is expressed entirely in terms of the trajectory τ . Then
the influence of θ on the observed L-values will be indirect,
and we will need the chain rule to express the gradient of
the composite function θ 7→ L(τ(θ)):

∇θ(L ◦ τ)(θ) = ∇τL(τ(θ))
∂τ

∂θ
. (6)

In practical implementations, the partial derivatives required
to form ∇τL are provided during the backward pass by
automatic differentiation tools (Paszke et al., 2019; Abadi
et al., 2015). The main challenge, however, is to determine
∂τ
∂θ , i.e., the derivative of the optimal trajectory with respect
to the learnable parameters. This is the focus of the next
section.

4.2. Fixed point differentiation

For a particular choice of θ, we can consider the sequence
of trajectories produced by iLQR:

τ0
LQR−−−→ τ1

LQR−−−→ τ2
LQR−−−→ · · · LQR−−−→ τ⋆

LQR−−−→ τ⋆
LQR−−−→ .

(7)
Each iteration includes the three steps noted above: lin-
earizing the system, conducting the backward pass, and
performing the forward pass. Iterations proceed until the
output τ⋆ from an iLQR step is indistinguishable from the
input, indicating that the process can no longer improve the
input trajectory. This trajectory τ⋆ is called a fixed point for
the iLQR. We expect the value of θ to influence the fixed
point produced above.

In general, an operator’s fixed point can be calculated by
various methods, typically iterative in nature. As pointed out
in (Bai et al., 2019), naively differentiating through such a
scheme would require intensive memory usage (Tamar et al.,
2016; Lee et al., 2018) and computational effort (Zhao et al.,
2022). Instead, we propose to use implicit differentiation di-
rectly on the defining identity. This gives direct access to the
derivatives required by decoupling the forward (fixed-point
iteration as the solver) and backward passes (differentiating
through the solver).

Let us write X = (x1, . . . , xT ) and U =
(u1, . . . , uT ) for the components of a trajectory
τ = (x1, u1, x2, u2, . . . , xT , uT ), and abuse notation
somewhat by identifying τ with (X,U). At a fixed point
(X⋆, U⋆) of the iLQR process for parameter θ, we have the
following:

X⋆ = F (X⋆, U⋆, θ), U⋆ = G(X⋆, U⋆, θ) (8)

where F and G summarize the operations that define a single

4



DiLQR: Differentiabl ILQR via Implicit Differentiation

iteration in the iLQR algorithm. (Thus eq. (8) formalizes
the graphical summary in eq. (7).)

In eq. (8), the solutions X⋆ and U⋆ depend on the parameter
θ. By treating both X⋆ and U⋆ explicitly as functions of
θ, we can interpret eq. (8) as an identity valid for all θ.
Differentiating through this identity yields a new one:

∇θX
⋆ =

∂F

∂X
∇θX

⋆ +
∂F

∂U
∇θU

⋆ +
∂F

∂θ
,

∇θU
⋆ =

∂G

∂X
∇θX

⋆ +
∂G

∂U
∇θU

⋆ +
∂G

∂θ
.

(9)

Here, the matrix-valued partial derivatives of F and G above
are evaluated at (X⋆(θ), U⋆(θ), θ). Likewise, ∇θX

⋆ and
∇θU

⋆ are the Jacobians (sensitivity matrices) that quantify
the θ-dependence of the optimal trajectory; both depend on
θ. Rearranging eq. (9) produces a system of linear equations
in which these two matrices provide the unknowns:

(I − ∂F

∂X
)∇θX

⋆ − ∂F

∂U
∇θU

⋆ =
∂F

∂θ
,

− ∂G

∂X
∇θX

⋆ + (I − ∂G

∂U
)∇θU

⋆ =
∂G

∂θ
.

(10)

The analytical solution for this system is given below.
Proposition 4.1. The Jacobians in eq. (10) are given by

∇θX
⋆ = M(Fθ + FU (K −GXMFU )

−1(GXMFθ −Gθ))

∇θU
⋆ = (K −GXMFU )

−1(GXMFθ +Gθ),
(11)

where we denote M = (I − FX)−1 and K = I −GU , and
use the condensed notation

FX =
∂F

∂X
, FU =

∂F

∂U
, Fθ =

∂F

∂θ
,

GX =
∂G

∂X
, GU =

∂G

∂U
, Gθ =

∂G

∂θ
.

(12)

See the Appendix A.1.

To be completely explicit, suppose a parameter θ is given.
Then eq. (8) defines a fixed point τ⋆ in terms of this
particular θ, and this τ⋆ provides the evaluation point
(X⋆(θ), U⋆(θ), θ) for all the Jacobian matrices involving F
and G in Equations (9) to (11).

4.3. Obtaining each term

The functions F and G whose Jacobians appear in eq. (12)
are defined by rather complicated arg min operations. The
Chain-Rule pattern below, which we can apply to either
H = F or H = G, suggests that

HX =
∂H

∂D

∂D

∂X
+

∂H

∂d

∂d

∂X
+

∂H

∂C

∂C

∂X
+

∂H

∂c

∂c

∂X
,

HU =
∂H

∂D

∂D

∂U
+

∂H

∂d

∂d

∂U
+

∂H

∂C

∂C

∂U
+

∂H

∂c

∂c

∂U
,

Hθ =
∂H

∂D

∂D

∂θ
+

∂H

∂d

∂d

∂θ
+

∂H

∂C

∂C

∂θ
+

∂H

∂c

∂c

∂θ
.

(13)

In each term on the right, the first matrix factor (e.g.,
∂H/∂D) expresses the sensitivity of the optimal LQR tra-
jectory with respect to the corresponding named ingredient
of the formulation in eq. (4). Efficient methods for calculat-
ing these terms are known: see (Amos et al., 2018; Amos
& Kolter, 2017). The second factor in each term of (13)
can be computed using automatic differentiation. The next
subsections detail how to calculate these terms efficiently.

4.4. Parallelization

(Amos et al., 2018) propose a method that directly calcu-
lates ∂L

∂D , ∂L
∂d , ∂L

∂C , and ∂L
∂c with a complexity of only O(T ).

We adopt these results in our framework. To facilitate par-
allelization, we construct batches of binary loss functions.
Specifically, to compute ∂Hi,j

∂D , we set the Li,j element in L
to 1, while all other elements are set to 0, and then calculate
∂L
∂D . Although this approach introduces more computations,
the computations can be fully parallelized since each opera-
tion is completely independent. As a result, the calculation
of ∂H

∂D can be parallelized efficiently. The same method also
applies to ∂H

∂d , ∂H
∂C , and ∂H

∂c .

4.5. Exploiting sparsity

Some care is required when coding the calculations
for which eq. (13) provides the models. With X =
(x1, . . . , xT ) as above, and the corresponding D =
(D1, . . . , DT ), the quantity ∂D

∂X suggests a huge structure in-
volving T 2 submatrices of the general form ∂Dt

∂xt′
. However,

the definitions in eq. (2) show that any such submatrix in
which t′ ̸= t will be zero. Thus the matrix ∂D

∂X shown above
is block diagonal. Our implementation never instantiates
it. Instead, we work directly with the information-bearing
diagonal blocks ∂Dt

∂xt
, 1 ≤ t ≤ T .

4.6. Forward algorithm

It can be costly to evaluate matrices like ∂D
∂θ .

In Pytorch, for example, such tools such as
torch.autograd.jacobian rely on backpropa-
gation, which means that gradient information from one
time step is not reused for the next time step. However, the
derivation above makes it clear that knowing ∂Dt−1

∂θ allows
for a direct calculation of ∂Dt

∂θ .

We now propose an efficient forward approach that uses
available information efficiently to accelerate later steps.
We refer to ∂Dt

∂θ from (13) as ∇θDt here for clarity and to
distinguish it from other gradient notations, a convention
we apply similarly to other gradients such as ∂dt

∂θ .

Given a trajectory satisfying xt+1 = ft(xt, ut, θ), the ma-
trices Dt and dt defined in eq. (2) are functions of xt, ut,

5



DiLQR: Differentiabl ILQR via Implicit Differentiation

and θ. For time step t, we will have

∇θDt =
∂Dt

∂θ
+

[
∂Dt

∂xt
+

∂Dt

∂ut

∂ut

∂xt

]
∇θxt (14)

with

∇θxt =
∂xt

∂θ
+

[
∂xt

∂xt−1
+

∂xt

∂ut−1

∂ut−1

∂xt−1

]
∇θxt−1, (15)

where ∂Dt

∂θ , ∂Dt

∂xt
, ∂Dt

∂ut
and ∂xt

∂θ , ∂xt

∂xt−1
, ∂xt

∂ut−1
are analyti-

cally calculated in first so that on each time step we only
need to instantly plug in the corresponding parameter values
to obtain the numerical gradients. ∂ut

∂xt
and ∂ut−1

∂xt−1
are the lin-

ear control gain solved from FT-LQR. ∇θxt−1 is the stored
information from time step t− 1 and reused here, and ∇θxt

is prepared for the next time step t+ 1. Finally

∇θdt = ∇θxt+1 −
∂Dt

∂θ

[
xt

ut

]
−Dt

[
I

∂ut

∂xt

]
∇θxt,

∇xtdt = −∂Dt

∂xt

[
xt

ut

]
, ∇utdt = −∂Dt

∂ut

[
xt

ut

]
.

(16)

The calculation of ∇θCt and ∇θct is similar.

Algorithm 1 Forward Algorithm

1: Input: ∂Dt

∂θ , ∂Dt

∂xt
, ∂Dt

∂ut
and ∂xt

∂θ , Dt

2: Initialize variables ∇θx0 = 0
3: for time step t = 1, 2, . . . , T do
4: obtain ∇θxt through (15)
5: obtain ∇θDt with ∇θxt and (14), and obtain ∇θdt

with ∇θxt and (16)
6: end for
7: return ∇θD, ∇θd

4.7. Methodological Comparison and Discussion

Differences between our method and DiffMPC (Amos
et al., 2018) DiffMPC treats input X∗ and U∗ as constant
and uses auto-differentiation to obtain ∂D

∂θ , and finally use
the chain rule to obtain the derivative of the optimal trajec-
tory. We improve DiffMPC by further considering the input
X∗ and U∗ as a function of θ, that is, X∗(θ) and U∗(θ),
and leverage implicit differentiation on the fixed-point to
solve the exact analytical gradient, improving the accuracy
of the gradient. The box in 17 illustrates the differences
between the two approaches

Ai(τ i, θ) =
∂f(x, u, θ)

∂x

∣∣∣∣
τ i

, ∇θA
i =

∂Ai

∂θ
+

∂Ai

∂τ i
∂τ i

∂θ
.

(17)

5. Experiments

We follow the examples and experimental setups from pre-
vious works (Amos et al., 2018; Jin et al., 2020; Xu et al.,
2024a; Watter et al., 2015) and conduct experiments on two
well-known control benchmarks: CartPole and Inverted
Pendulum. The experiments demonstrate our method’s
computational performance (at most 128x speedup) and
superior learning performance (106 improvement). All ex-
periments were carried out on a platform with an AMD
3700X 3.6GHz CPU, 16GB RAM, and an RTX3080 GPU
with 10GB VRAM. The experiments are implemented with
Pytorch (Paszke et al., 2019).

5.1. Computational Performance
The performance of our differentiable iLQR solver is shown
in Figure 2. We compare it to the naive approach, where the
gradients are computed by differentiating through the entire
unrolled chain of iLQR. The results of the experiments
clearly demonstrate the significant computational advantage
of our method over AutoDiff across all configurations.

Backward pass efficiency: For example, for a horizon
of 10 and 300 iterations, AutoDiff takes 8.57 seconds com-
pared to just 0.067 seconds with our method, resulting in
a 128x speedup. Even in the case with the smallest im-
provement—horizon of 10 and 50 iterations, AutoDiff takes
1.41 seconds, while our method remains 0.067 seconds, still
delivering a 21x speedup. These results highlight the clear
scalability and efficiency of our method, maintaining a near-
constant computation time as the number of iLQR iterations
increases, while AutoDiff’s time grows significantly with
longer horizons and more iterations.

5.2. Imitation Learning

Imitation learning recovers the cost and dynamics of a con-
troller through only actions. Similarly to (Amos et al.,
2018), we compare our approach with Neural Network
(NN): An LSTM-based approach that takes the state x as
input and predicts the nominal action sequence, directly
optimizing the imitation loss directly; SysId: Assumes that
the cost of the controller is known and approximates the
parameters of the dynamics by optimizing the next-state
transitions; and DiffMPC (Amos et al., 2018). We evaluated
two variations of our method: DiLQR.dx: Assumes that
the cost of the controller is known and approximates the
parameters of the dynamics by directly optimizing the imi-
tation loss; DiLQR.cost: Assumes that the dynamics of the
controller are known and approximates the cost by directly
optimizing the imitation loss. Following DiffMPC (Amos
et al., 2018), we adopt the same dataset size convention
where “train=50” and “train=100” denote the number of
expert trajectories available during training.

Imitation Loss: In Figure 3, we compare our method with
NN and Sysid using imitation loss, under the train=100 set-

6



DiLQR: Differentiabl ILQR via Implicit Differentiation

50 100 150 200 250 300
iLQR iterations

0

5

10

15

20

25

Horizon = 10 

AutoDiff
Our method

50 100 150 200 250 300
iLQR iterations

Horizon = 20

AutoDiff
Our method

50 100 150 200 250 300
iLQR iterations

Horizon = 30

AutoDiff
Our method

Ba
ck

w
ar

d 
Ti

m
e 

(s
)

Figure 2: Backward computation time comparison between AutoDiff and our proposed method across different iLQR
iterations and LQR horizons. AutoDiff’s computation time scales linearly with the number of iterations, while our method
maintains constant computation time. The experiments are conducted under pendulum domain, with batch size 20.

Pendulum Cartpole
Tasks

10 7

10 5

10 3

10 1

Im
ita

tio
n 

lo
ss

Imitation Loss Comparison
nn
sysid
dilqr.dx
dilqr.cost

Figure 3: Learning results on the pendulum and cartpole.
We select the best validation loss during training and report
the test loss (Amos et al., 2018), averaged over five trials.

ting. Notably, our method performs the best in the dx mode
across both tasks, achieving a performance improvement
of orders of magnitude—106 and 104—over the NN. In the
dcost mode, our method is also dozens of times stronger
than the NN but slightly weaker than Sysid. This is because
Sysid directly leverages a system model with state estimates,
while imitation learning relies solely on action data, which
contains less information. The fact that our method achieves
comparable results to Sysid in this mode demonstrates its
effectiveness.

Figure 4: Model loss curves for cost function learning under
the cartpole domain, trained for 500 epochs.

Model Loss: In Figure 4, we compare the model error
learned from our approach to that of DiffMPC. Model loss
is defined as the MSE(θ− θ̂), where θ represents the param-
eters of the cost function. In the dcost mode, our approach
recovers more accurate model parameters than DiffMPC,
reducing model loss by 32%, indicating an improvement
over our analytical results.

We further evaluate the dynamics learning mode. Model
loss here is defined as the MSE(θ − θ̂), where θ represents
the parameters of the dynamics. Figure 5 shows DiffMPC’s
error plateaus early, while DiLQR achieves 41% lower fi-
nal error through steady optimization (with train=50). Al-
though DiLQR converges slightly slower with train=100,
it maintains strong physical consistency (2.76% negative
parameters vs. DiffMPC’s 16.85%, Table 1), largely avoid-
ing non-physical solutions that could destabilize control.
These results demonstrate DiLQR’s dual advantages in both
accuracy and physical plausibility. See Appendix A.5 for
clarification on the slight discrepancy with the rebuttal.

Figure 5: Model loss curves for dynamics learning under
the cartpole domain, trained for 500 epochs.

Table 1: Bad-Value Ratio (% of negative values in learned
dynamics)

Train Size DiLQR DiffMPC

dx (train=100) 2.76% 16.85%
dx (train=50) 7.23% 17.82%

7



DiLQR: Differentiabl ILQR via Implicit Differentiation

Comparison to Other Differentiable Control Methods
While SafePDP(Jin et al., 2021) and IDOC(Xu et al., 2024a)
report an imitation loss of ∼1e-2 under its official code-
base, these results are obtained under experimental settings
that differ from ours—specifically, using ground-truth-near
parameter initialization and expert trajectories generated
by an oracle solver (IPOPT). We progressively align these
conditions with our own experimental setup. As shown in
Figure 6, once the expert trajectories are replaced with those
generated by iLQR, DiLQR exhibits a clear performance ad-
vantage over both SafePDP and IDOC (As single-trajectory
training is the default setting in both SafePDP and IDOC, all
methods are trained using the same single expert trajectory
generated by iLQR.). This highlights the methodological
gap and underscores DiLQR’s effectiveness for learning
structured models in iLQR-specific settings.

Figure 6: Training loss comparison on the Cartpole task.
DiLQR is compared against SafePDP and IDOC under two
settings: (1) same initial dynamics parameters as DiLQR,
and (2) same dynamics parameters plus same expert tra-
jectories. Losses are plotted as reported by each method.
DiLQR demonstrates significantly lower final loss.

5.3. Ablation study

30 40 50 60 70 80 90
Horizon

100

101

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

Full Model
w/o Parallelization
w/o Forward Algorithm

Figure 7: Computation time comparison across different
ablation settings as a function of horizon length. Error bars
measure standard error across 5 samples.

To quantify the contribution of each module, we compare
the computation time of different ablation configurations,
including removing parallelization (Sec. 4.4), sparsity explo-
ration (Sec. 4.5), and the forward algorithm (Sec. 4.6). We
evaluate these configurations on Pendulum across varying
horizons.

Computational Time Parallelization (Sec. 4.4) and the
forward algorithm (Sec. 4.6) significantly reduce compu-
tation time. As shown in Figure 7, removing the forward
algorithm leads to a sharp increase in computation time
across all horizons, while disabling the parallelization fur-
ther exacerbates this effect, especially for longer horizons.

Discussion Among the tested modules, the forward algo-
rithm (Sec. 4.6) has the greatest impact on computation
time, especially for long-horizon settings. Parallelization
also plays a critical role in reducing computational cost.
These results validate our design choices and highlight the
necessity of each component for scalable differentiable con-
trol. Interestingly, at horizon 30, the computation without
parallelization is slightly faster than with parallelization.
This is due to the lower clock frequency of our GPU com-
pared to the CPU. In practice, an adaptive switching scheme
would be employed to select the optimal computation strat-
egy based on the horizon and batch size.

5.4. Visual control

We next explore a more complex, high-dimensional task:
controlling an inverted pendulum system using images as
input.

Figure 8: Diagram of the end-to-end control architecture.
The encoder maps compressed set of four input frames to
the physical state variables. The differentiable iLQR then
steps the state forward using the encoder’s parameters. The
decoder takes the predicted state and generates a future
frame to match true future observation.

In this task, the state of the pendulum is visualized by a
rendered line starting from the center of the image, with the
angle representing the position of the pendulum. The ob-
jective is to swing up the underactuated pendulum from its
downward resting position and balance it. The network ar-
chitecture consists of a mirrored encoder-decoder structure,
each with five convolutional or transposed convolutional
layers, respectively. To capture the velocity information,
we stack four compressed images as input channels. An
example of observations and reconstructions is provided in
Figure 8.

8



DiLQR: Differentiabl ILQR via Implicit Differentiation

Figure 9: Imagined trajectory in the pendulum domain.
The first image (red) represents the real input, while the
following images are "dreamed up" by our model based on
the initial image.

Our modular approach handles the coordination between the
controller and decoder seamlessly. Figure 9 shows sample
images drawn from the task depicting a trajectory generated
by our system. In this scenario, the system is given just
one real image and, with the help of DiLQR, it can output a
sequence of predicted images, which closely approximate
the actual trajectory of the pendulum. We further design an
autoencoder that connects the trained encoder and decoder
to predict trajectory images in an autoregressive manner. As
shown in Figure 10, the network incorporating differentiable
iLQR achieves significantly higher prediction accuracy with
lower variance.

0 5 10 15 20 25 30 35 40
Time Step

0.0000

0.0005

0.0010

0.0015

0.0020

M
SE

Pixel-wise MSE between Predicted and Real Images
Autoencoder
AE with iLQR

Figure 10: Comparison of image prediction error across
trajectory steps. The shaded area denotes the standard error
over 25 trials.

6. Discussion
6.1. Scope of Experiments

In this paper, we focus on the theoretical aspects of differ-
entiable control methods. While our experiments are based
on simpler control tasks, the advantages of our approach
promise to extend to more complex, real-world applications.
Many prior works (Amos et al., 2018; Watter et al., 2015;
Xu et al., 2024a; Jin et al., 2020) also rely on such toy exam-
ples to demonstrate foundational concepts. A demonstration
of our method on a high-dimensional rocket control task is
available on the project page.

6.2. Future direction

One promising direction is embedding our differentiable
controller into RL frameworks. For instance, it could be inte-

grated into a policy network and trained using an actor-critic
approach, enabling more efficient policy updates (Romero
et al., 2024a; Romero et al.). With its ability to propagate
gradients through the control process, our method could
enhance RL’s performance, potentially achieving state-of-
the-art results in more advanced tasks.

Another direction is combining our method with perceptual
control frameworks such as DiffTORI (Wan et al., 2024).
While DiffTORI emphasizes generality and visual input
handling, our approach offers precise and efficient gradients
for structured systems. Integrating the two could enable
scalable, end-to-end learning in high-dimensional, multi-
modal tasks.

6.3. Comparison with General Differentiation
Frameworks.

Our method addresses a key limitation in general-purpose
frameworks such as Theseus (Pineda et al., 2022) or JAXopt,
which can differentiate through fixed-point equations of
the form x∗ = f(x∗). In contrast, the iLQR optimality
condition is inherently recursive: both the dynamics and
cost functions depend on the optimal trajectory x∗ itself,
yielding a relation of the form x∗ = fx∗(x∗).

Such self-referential structure breaks the assumptions of
standard auto-implicit differentiation, which cannot han-
dle recursive dependencies without problem reformulation.
Our method bridges this gap by recasting the iLQR recur-
sion as a fixed-point equation suitable for exact differentia-
tion—going beyond an implementation tweak to address a
structural limitation in existing frameworks.

6.4. Limitations

Our method relies on the assumption that iLQR converges
to a fixed point and requires access to both first-order and
second-order derivatives of the dynamics. These constraints
may limit its applicability to systems where such conditions
hold.

7. Conclusions
In this work, we introduced DiLQR, an efficient framework
for differentiating through iLQR using implicit differen-
tiation. By providing an analytical solution, our method
eliminates the overhead of iterative unrolling and achieves
O(1) computational complexity in the backward pass, sig-
nificantly improving scalability. Experiments demonstrate
that DiLQR outperforms existing methods in both train-
ing loss and model loss, making it a promising approach
for real-time learning-based control applications. In future
work, we aim to explore relaxation techniques or alternative
formulations to extend its applicability.

9



DiLQR: Differentiabl ILQR via Implicit Differentiation

Impact statement
This paper presents work aimed at advancing the field of
Machine Learning. The societal implications of our research
are discussed in the Discussion section, and we do not find
any requiring additional emphasis here.

Acknowledgments
We gratefully acknowledge the financial support of the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC) and Honeywell Connected Plant. We also thank
Dr. Brandon Amos, Dr. Nathan P. Lawrence, and the re-
viewers for their insightful discussions.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-
mization as a layer in neural networks. In International
Conference on Machine Learning, pp. 136–145. PMLR,
2017.

Amos, B., Jimenez, I., Sacks, J., Boots, B., and Kolter, J. Z.
Differentiable MPC for end-to-end planning and control.
Advances in neural information processing systems, 31,
2018.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic
architecture. Proceedings of the AAAI Conference on
Artificial Intelligence, 31(1), 2017. doi: 10.1609/aaai.
v31i1.10916.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium mod-
els. Advances in neural information processing systems,
32, 2019.

Böttcher, L., Antulov-Fantulin, N., and Asikis, T. AI Pon-
tryagin or how artificial neural networks learn to control
dynamical systems. Nature communications, 13(1):333,
2022.

Bounou, O., Ponce, J., and Carpentier, J. Leveraging
proximal optimization for differentiating optimal con-
trol solvers. In 2023 62nd IEEE Conference on Decision
and Control (CDC), pp. 6313–6320. IEEE, 2023.

Brewer, J. The derivative of the riccati matrix with respect
to a matrix. IEEE Transactions on Automatic Control, 22
(6):980–983, 1977.

Chaplot, D. S., Pathak, D., and Malik, J. Differentiable
spatial planning using transformers. In International
conference on machine learning, pp. 1484–1495. PMLR,
2021.

Chen, J., Zhan, W., and Tomizuka, M. Constrained iterative
lqr for on-road autonomous driving motion planning. In
2017 IEEE 20th International conference on intelligent
transportation systems (ITSC), pp. 1–7. IEEE, 2017.

Cheng, S., Kim, M., Song, L., Yang, C., Jin, Y., Wang, S.,
and Hovakimyan, N. Difftune: Auto-tuning through auto-
differentiation. IEEE Transactions on Robotics, 2024.

Choi, S., Ji, G., Park, J., Kim, H., Mun, J., Lee, J. H.,
and Hwangbo, J. Learning quadrupedal locomotion on
deformable terrain. Science Robotics, 8(74):eade2256,
2023.

Collins, J., Chand, S., Vanderkop, A., and Howard, D. A re-
view of physics simulators for robotic applications. IEEE
Access, 9:51416–51431, 2021.

Dantec, E., Naveau, M., Fernbach, P., Villa, N., Saurel,
G., Stasse, O., Taix, M., and Mansard, N. Whole-
body model predictive control for biped locomotion on
a torque-controlled humanoid robot. In 2022 IEEE-RAS
21st International Conference on Humanoid Robots (Hu-
manoids), pp. 638–644. IEEE, 2022.

Dean, S., Mania, H., Matni, N., Recht, B., and Tu, S. On
the sample complexity of the linear quadratic regulator.
Foundations of Computational Mathematics, 20(4):633–
679, 2020.

Deisenroth, M. and Rasmussen, C. E. PILCO: A model-
based and data-efficient approach to policy search. In
Proceedings of the 28th International Conference on ma-
chine learning (ICML-11), pp. 465–472, 2011.

Dinev, T., Mastalli, C., Ivan, V., Tonneau, S., and Vijayaku-
mar, S. Differentiable optimal control via differential dy-
namic programming. arXiv preprint arXiv:2209.01117,
2022.

East, S., Gallieri, M., Masci, J., Koutnik, J., and Cannon, M.
Infinite-horizon differentiable model predictive control.
Proceedings of ICLR 2020, 2020.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596,
2018.

10

https://www.tensorflow.org/


DiLQR: Differentiabl ILQR via Implicit Differentiation

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Jin, W., Wang, Z., Yang, Z., and Mou, S. Pontryagin dif-
ferentiable programming: An end-to-end learning and
control framework. Advances in Neural Information Pro-
cessing Systems, 33:7979–7992, 2020.

Jin, W., Mou, S., and Pappas, G. J. Safe pontryagin differ-
entiable programming. Advances in Neural Information
Processing Systems, 34:16034–16050, 2021.

Karkus, P., Ivanovic, B., Mannor, S., and Pavone, M. Diff-
stack: A differentiable and modular control stack for
autonomous vehicles. In Conference on robot learning,
pp. 2170–2180. PMLR, 2023.

Lee, L., Parisotto, E., Chaplot, D. S., Xing, E., and Salakhut-
dinov, R. Gated path planning networks. In Interna-
tional Conference on Machine Learning, pp. 2947–2955.
PMLR, 2018.

Li, W. and Todorov, E. Iterative linear quadratic regulator
design for nonlinear biological movement systems. In
First International Conference on Informatics in Con-
trol, Automation and Robotics, volume 2, pp. 222–229.
SciTePress, 2004.

Mao, J., Qian, Y., Ye, J., Zhao, H., and Wang, Y. Gpt-
driver: Learning to drive with gpt. arXiv preprint
arXiv:2310.01415, 2023.

Mastalli, C., Budhiraja, R., Merkt, W., Saurel, G., Ham-
moud, B., Naveau, M., Carpentier, J., Righetti, L., Vi-
jayakumar, S., and Mansard, N. Crocoddyl: An efficient
and versatile framework for multi-contact optimal control.
In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2536–2542. IEEE, 2020.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert,
P. O. Constrained model predictive control: Stability and
optimality. Automatica, 36(6):789–814, 2000.

Niu, S., Chen, S., Guo, H., Targonski, C., Smith, M., and
Kovačević, J. Generalized value iteration networks: Life
beyond lattices. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Okada, M., Rigazio, L., and Aoshima, T. Path integral net-
works: End-to-end differentiable optimal control. arXiv
preprint arXiv:1706.09597, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Pereira, M., Fan, D. D., An, G. N., and Theodorou, E. MPC-
inspired neural network policies for sequential decision
making. arXiv preprint arXiv:1802.05803, 2018.

Pineda, L., Fan, T., Monge, M., Venkataraman, S., Sodhi, P.,
Chen, R. T., Ortiz, J., DeTone, D., Wang, A., Anderson,
S., et al. Theseus: A library for differentiable nonlinear
optimization. Advances in Neural Information Processing
Systems, 35:3801–3818, 2022.

Romero, A., Aljalbout, E., Song, Y., and Scaramuzza, D.
Actor-critic model predictive control: Differentiable opti-
mization meets reinforcement learning.

Romero, A., Song, Y., and Scaramuzza, D. Actor-critic
model predictive control. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp.
14777–14784, 2024a. doi: 10.1109/ICRA57147.2024.
10610381.

Romero, A., Song, Y., and Scaramuzza, D. Actor-critic
model predictive control. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp.
14777–14784. IEEE, 2024b.

Schleich, D., Klamt, T., and Behnke, S. Value iteration
networks on multiple levels of abstraction. arXiv preprint
arXiv:1905.11068, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shrestha, J., Idoko, S., Sharma, B., and Singh, A. K. End-
to-end learning of behavioural inputs for autonomous
driving in dense traffic. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
10020–10027. IEEE, 2023.

Soudbakhsh, D., Annaswamy, A. M., Wang, Y., Brunton,
S. L., Gaudio, J., Hussain, H., Vrabie, D., Drgona, J., and
Filev, D. Data-driven control: Theory and applications.
In 2023 American Control Conference (ACC), pp. 1922–
1939. IEEE, 2023.

Spielberg, N. A., Brown, M., and Gerdes, J. C. Neural
network model predictive motion control applied to auto-
mated driving with unknown friction. IEEE Transactions
on Control Systems Technology, 30(5):1934–1945, 2021.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn,
C. Universal planning networks: Learning generalizable
representations for visuomotor control. In International
conference on machine learning, pp. 4732–4741. PMLR,
2018.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

11



DiLQR: Differentiabl ILQR via Implicit Differentiation

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P.
Value iteration networks. Advances in neural information
processing systems, 29, 2016.

Tamar, A., Thomas, G., Zhang, T., Levine, S., and Abbeel,
P. Learning from the hindsight plan—episodic MPC
improvement. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 336–343. IEEE,
2017.

Tassa, Y., Mansard, N., and Todorov, E. Control-limited
differential dynamic programming. In 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pp. 1168–1175. IEEE, 2014.

Todorov, E., Erez, T., and Tassa, Y. MuJoCo: A physics
engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp.
5026–5033. IEEE, 2012.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double Q-learning. In Proceedings of
the 30th AAAI conference on artificial intelligence, vol-
ume 30, pp. 2094–2100, 2016. doi: 10.1609/aaai.v30i1.
10295.

Wan, W., Wang, Z., Wang, Y., Erickson, Z., and Held, D.
Difftori: Differentiable trajectory optimization for deep
reinforcement and imitation learning. arXiv preprint
arXiv:2402.05421, 2024.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller,
M. Embed to control: A locally linear latent dynamics
model for control from raw images. Advances in neural
information processing systems, 28, 2015.

Xiao, X., Zhang, T., Choromanski, K., Lee, E., Francis, A.,
Varley, J., Tu, S., Singh, S., Xu, P., Xia, F., et al. Learning
model predictive controllers with real-time attention for
real-world navigation. arXiv preprint arXiv:2209.10780,
2022.

Xie, Z., Liu, C. K., and Hauser, K. Differential dynamic
programming with nonlinear constraints. In 2017 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 695–702. IEEE, 2017.

Xu, M., Molloy, T. L., and Gould, S. Revisiting implicit
differentiation for learning problems in optimal control.
Advances in Neural Information Processing Systems, 36,
2024a.

Xu, Z., Zhang, Y., Xie, E., Zhao, Z., Guo, Y., Wong, K.-
Y. K., Li, Z., and Zhao, H. Drivegpt4: Interpretable
end-to-end autonomous driving via large language model.
IEEE Robotics and Automation Letters, 2024b.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. Mas-
tering Atari games with limited data. Advances in Neural
Information Processing Systems, 34:25476–25488, 2021.

Yu, Y. Towards sample efficient reinforcement learning. In
IJCAI, pp. 5739–5743, 2018.

Zhao, L., Xu, H., and Wong, L. L. Scaling up and stabilizing
differentiable planning with implicit differentiation. arXiv
preprint arXiv:2210.13542, 2022.

Zhao, W., Queralta, J. P., and Westerlund, T. Sim-to-real
transfer in deep reinforcement learning for robotics: a
survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737–744. IEEE, 2020.

Zhu, J., Payne, J. J., and Johnson, A. M. Convergent ilqr
for safe trajectory planning and control of legged robots.
arXiv preprint arXiv:2304.00346, 2023.

12



DiLQR: Differentiabl ILQR via Implicit Differentiation

A. Appendix
A.1. Proof of proposition 1

Proposition A.1. Define Fθ := ∂F
∂θ , FU := ∂F

∂U , FX := ∂F
∂X , Gθ := ∂G

∂θ , GU := ∂G
∂U , GX := ∂G

∂X . Define M := (I−FX)−1,
and K := I −GU . The analytical form of the gradients dX

dθ and dU
dθ are given as follows:

dX

dθ
= M(Fθ + FU (K −GXMFU )

−1(GXMFθ −Gθ))

dU

dθ
= (K −GXMFU )

−1(GXMFθ +Gθ)

(18)

Proof. With the new notations, equations can be rewritten as:

(I − FX)
dX∗

dθ
− FU

dU∗

dθ
= Fθ

−GX
dX∗

dθ
+ (I −GU )

dU∗

dθ
= Gθ

(19)

Focusing on the first equation, dX
dθ can be represented with dU

dθ :

dX

dθ
= (I − FX)−1(Fθ + FU

dU

dθ
)

= M(Fθ + FU
dU

dθ
)

(20)

Then, substituting 20 into the second equation of 19 to obtain an equation with respect to only dU
dθ :

−GX(M(Fθ + FU
dU

dθ
)) + (I −GU )

dU∗

dθ
= Gθ (21)

Solving equation 21 will give the solution to dU∗

dθ :

dU

dθ
= (K −GXMFU )

−1(GXMFθ +Gθ) (22)

Substituting 22 into 20, the solution to dX
dθ can be obtained:

dX

dθ
= M(Fθ + FU (K −GXMFU )

−1(GXMFθ +Gθ)) (23)

This completes the proof.

A.2. Experiments Details

We refer the methods in DiffMPC as DiffMPC.dx: Assumes the cost of the controller is known and approximates the
parameters of the dynamics by directly optimizing the imitation loss; DiffMPC.cost: Assumes the dynamics of the controller
are known and approximates the cost by directly optimizing the imitation loss. For all settings involving learning the
dynamics (mpc.dx, DiffMPC.cost. DiLQR.dx, and DiLQR.cost.dx), a parameterized version of the true dynamics is used. In
the pendulum domain, the parameters are the masses of the arm, length of the arm, and gravity; and in the cartpole domain,
the parameters are the cart’s mass, pole’s mass, gravity, and length. For cost learning in DiffMPC.cost and DiLQR.cost, we
parameterized the controller’s cost as the weighted distance to a goal state C(τ) = ∥wg(τ − τg)∥. As indicated in (Amos
et al., 2018), simultaneously learning the weights wg and goal state τg was unstable. Thus, we alternated learning wg and τg
independently every 10 epochs.

Training and Evaluation We collected a dataset of trajectories from an expert controller (iLQR with true system
parameters) and varied the number of trajectories our models were trained on. The NN setting was optimized with Adam
with a learning rate of 10−4, and all other settings were optimized with RMSprop with a learning rate of 10−2 and a decay
term of 0.5.

13



DiLQR: Differentiabl ILQR via Implicit Differentiation

A.3. Detailed Network Architecture for Visual Control Task

Encoder The encoder is a neural network designed to encode input image sequences into low-dimensional state represen-
tations. It is implemented as a subclass of torch.nn.Module, and consists of five convolutional layers and a regression
layer:

• Convolutional layers: Each layer applies 2D convolutions, followed by batch normalization, ReLU activations, and
max pooling. These operations progressively reduce the spatial dimensions of the input image.

• Regression layer: After the final convolutional layer, the output is flattened and passed through three fully connected
layers, mapping the extracted features to the desired output dimension, which represents the system state.

The forward pass takes an input tensor of shape [batch, 12, 224, 224] (representing four stacked RGB images)
and processes it through the convolutional layers. The output is a state vector of shape [batch, out_dim].

Decoder The decoder mirrors the structure of the encoder and is also a subclass of torch.nn.Module. It reconstructs
images from the low-dimensional state vector. The decoder consists of five transposed convolutional layers followed by a
regression layer:

• Transposed convolutional layers: These layers progressively upsample the input, applying batch normalization and
ReLU activations after each layer to restore the spatial dimensions.

• Regression layer: This layer, consisting of three fully connected layers, transforms the low-dimensional input vector
into a form suitable for the initial transposed convolution.

The forward pass takes a state vector of shape [batch, 3] as input, upscales it through the transposed convolution layers,
and outputs a reconstructed image tensor of shape [batch, 3, 224, 224]. A Sigmoid activation is applied to ensure
the pixel values remain within the range [0, 1].

A.4. Additional Experiments on Model Loss

Figure 11: Aggregated Cost Learning Curve (Cartpole,
Train=100, 500 epoch).

Figure 12: Per-Dimension Cost Learning Trajectories.

Observation:

DiLQR converges significantly faster than DiffMPC (Figure 11). In terms of dim-wise (Figure 12), although DiLQR and
DiffMPC exhibit similar trends in Dim 1 and Dim 2, in Dim 0 the difference is significant: DiLQR (blue) steadily converges
toward the ground truth (black dashed), while DiffMPC (red) consistently diverges in the wrong direction, highlighting a
failure to capture the correct gradient signal.

14



DiLQR: Differentiabl ILQR via Implicit Differentiation

A.5. Note on Discrepancy from Rebuttal.

In our rebuttal, we reported a 0.0% bad-value ratio for DiLQR under train=100. That statistic was generated with the help of
AI-assisted data summarization tool during fast-paced analysis, where truncated runs and inconsistent learning records were
not fully filtered. In the final version, we reprocessed all experiments using a stricter pipeline, including run alignment,
truncation exclusion, and ground-truth-based comparison. The resulting value (2.76%) remains significantly lower than
DiffMPC (16.85%), and does not affect our original conclusions.

15


