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GaussianTalker: Speaker-specific Talking Head Synthesis
via 3D Gaussian Splatting

Anonymous Authors

Audio Reference Frames

FLAME Mesh Gaussian Point Cloud

Generated FramesGaussianTalker

/thank/ /believe/ /both/ /which/

Figure 1: Given the driving audio and reference frames, GaussianTalker can animate the FLAME mesh of the speaker, which in
turn drives the Gaussians associated with it, ultimately synthesizing a high-quality video with precise lip movements.

ABSTRACT
Recent works on audio-driven talking head synthesis using Neural
Radiance Fields (NeRF) have achieved impressive results. However,
due to inadequate pose and expression control caused by NeRF
implicit representation, these methods still have some limitations,
such as unsynchronized or unnatural lip movements, and visual
jitter and artifacts. In this paper, we propose GaussianTalker, a
novel method for audio-driven talking head synthesis based on 3D
Gaussian Splatting. With the explicit representation property of 3D
Gaussians, intuitive control of the facial motion is achieved by bind-
ing Gaussians to 3D facial models. GaussianTalker consists of two
modules, Speaker-specific Motion Translator and Dynamic Gauss-
ian Renderer. Speaker-specific Motion Translator achieves accurate
lip movements specific to the target speaker through universalized
audio feature extraction and customized lip motion generation. Dy-
namic Gaussian Renderer introduces Speaker-specific BlendShapes
to enhance facial detail representation via a latent pose, delivering
stable and realistic rendered videos. Extensive experimental results
suggest that GaussianTalker outperforms existing state-of-the-art
methods in talking head synthesis, delivering precise lip synchro-
nization and exceptional visual quality. Our method achieves ren-
dering speeds of 130 FPS on NVIDIA RTX4090 GPU, significantly
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exceeding the threshold for real-time rendering performance, and
can potentially be deployed on other hardware platforms.

CCS CONCEPTS
•Computingmethodologies→Computer vision;Reconstruc-
tion;

KEYWORDS
talking head synthesis, 3D Gaussian splatting, speaker-specific

1 INTRODUCTION
Audio-driven talking head synthesis has attracted significant at-
tention in various fields, including digital avatars, virtual reality,
interactive entertainment, and online meetings[32, 44, 47]. This
task aims to synthesize a video in which the target speaker’s lip
movements are in sync with the given audio input.

In existing research, talking head synthesis approaches are pri-
marily categorized into 2D-based and 3D-based approaches. Ini-
tially, most 2D-based approaches depended on Generative Adversar-
ial Networks[16] or image-to-image translation[19] to synthesize
talking heads in sync with audio. However, the absence of a unified
facial model resulted in shortcomings in the identity preservation
and pose control of the synthesized videos. More recently, research
has been conducted to apply the Neural Radiance Fields (NeRF)[31]
to this task. NeRF is a method that models continuous 3D scenes
using implicit functions. Compared to 2D-based approaches, NeRF-
based approaches can synthesize more lifelike talking head videos
by effectively leveraging 3D facial modeling. Nevertheless, these ap-
proaches often encounter issues such as unsynchronized or unnat-
ural lip movements, visual jitters, and sporadic artifacts, primarily
because NeRF’s implicit definition entangles static facial geometry

https://doi.org/XXXXXXX.XXXXXXX
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with dynamic motion, complicating the control over facial poses
and expressions.

Recently, 3D Gaussian Splatting (3D GS)[23] has shown impres-
sive achievements in 3D scene reconstruction. 3D GS employs 3D
Gaussians as discrete geometric primitives, offering an explicit 3D
scene representation and optimizing for real-time rendering per-
formance. In comparison to NeRF, 3D GS not only significantly en-
hances rendering efficiency and visual quality, but also its paradigm
based on 3D Gaussians is easier to control, making it potentially
possible to flexibly and intuitively control facial movements. An
intuitive strategy is to drive a Gaussian point cloud for facial mo-
tion by using parametric 3D facial models[6, 27, 34]. These models
typically provide a comprehensive parameter space that allows for
the control of facial attributes, such as shape, pose, and expres-
sion. By binding the Gaussians to the geometric topology of the
model, dynamic talking heads can be generated by synchronizing
the displacement of the bound Gaussians with changes in the facial
attribute parameters.

Natural lip movements and realistic visual effects are crucial for
talking head synthesis. However, the deviation of 3D facial models
from a specific speaker’s face makes it challenging to synthesize
lifelike videos using such a basic binding strategy. Specifically, there
are twomain challenges: 1)Distribution inconsistencies between the
parameters driving the 3D Gaussians and the actual parameters can
lead to deviations in point positions. This distribution inconsistency
specifically refers to differences in speaking styles. For example,
some individuals may speak with a small open mouth, while the
driving signal is a wide open mouth. Lip movements that do not
align with the speaker’s talking style present unnatural effects and
even cause lip artifacts. 2) 3D facial models are limited in modeling
complex faces. They can only capture macroscopic muscle move-
ments but not fine details such as wrinkles and teeth. This inherent
limitation hinders the 3D Gaussians’ accurate representation of a
specific face, and the loss of facial details will also lead to visual
flicker and artifacts.

For natural lip movements and realistic visual effects, bridging
the subtle discrepancies between the 3D facial model and the spe-
cific speaker’s face is critical. Firstly, audio typically carries speaker
identity information. it is necessary to decouple the driving audio
from the original speaker’s identity information and ensure that
the synthesized lip movements closely match the target speaker’s
style. Secondly, intuitive control of Gaussian attributes helps break
through the representation limitations of facial models. With a
comprehensive set of blendshapes, these Gaussian attributes can be
fine-tuned to capture facial details, refining the facial representation
and further fitting a specific speaker.

In this work, we propose GaussianTalker, a framework designed
to generate highly natural and realistic talking head videos, adapt-
able to multiple languages and various timbres of audio input. For
dynamic reconstruction, 3D Gaussians are bound to the geometric
topology of the parameterized FLAME[27], driving the Gaussians
through the deformation of the FLAME mesh, ensuring accurate fa-
cial animation. To address the challenge of unnatural lip movements
caused by inconsistent distributions, we propose a Speaker-specific
Motion Translator. Employing timbre transformation-based con-
trastive learning for feature decoupling, a speaker-agnostic audio
feature is extracted and merged with the target identity embedding

to generate facial poses and expressions that closely align with
the target speaker. To confront the challenge posed by unrealistic
visual effects caused by the inherent limitations of 3D facial mod-
els, the Dynamic Gaussian Renderer introduces Speaker-specific
BlendShapes designed to predict the target speaker’s latent pose
representation and refine facial details through the computation of
detail-enhancing Gaussian attributes. It is important to note that
our framework is not only capable of achieving speeds well beyond
real-time rendering thresholds on contemporary GPUs, but it is
also expected to be deployed on other hardware platforms, paving
the way for its extensive application across multiple platforms.

The main contributions of this paper are summarized as follows:
• A novel framework for audio-driven talking head synthesis
that utilizes 3D Gaussian Splatting bound to FLAME, which
generates lifelike rendered videos by associating data from
different modalities with specific speakers.

• A Speaker-specific Motion Translator decouples identity and
employs personalized embedding for natural lip movements,
while a Dynamic Gaussian Renderer refines Gaussian at-
tributes through latent pose to ensure realistic visual effects.

• Extensive quantitative and qualitative experiments show
GaussianTalker surpasses state-of-the-art methods in lip-
sync and image quality, with its high rendering speed under-
scoring multi-hardware platform application potential.

2 RELATEDWORK
2.1 Audio-Driven Facial Animation
Most early methods of audio-driven facial animation required es-
tablishing a mapping relationship between phonemes and visemes.
These methods[3, 4] often overlook individual differences and are
overly complex. The emergence of large-scale high-definition video
datasets[1, 8, 12, 61], coupled with advancements in deep learn-
ing, has propelled the domain of learning-based audio-driven facial
animation to the forefront of research. Initial efforts utilized 2D
approaches[10, 14, 20, 36, 49, 52, 59, 63, 64], employing Generative
Adversarial Networks[16] or image-to-image translation[19], to
generate facial animations. However, these approaches fell short
of accurately reproducing a speaker’s face due to lack of 3D fa-
cial modeling, leading to shortcomings in identity preservation
and pose controllability. The adoption of 3D Morphable Models
(3DMM)[2, 41, 66] has spurred research into audio-driven facial
animation using 3DMM. These approaches[22, 30, 46, 51, 58], lever-
aging 3D modeling, are capable of rendering a more lifelike talking
style compared to 2D approaches. Nevertheless, intermediate trans-
formations through 3DMM may lead to information loss[2]. More-
over, prior universal 3D audio-driven animation methods[35, 39]
generated vertex predictions with biases toward specific speakers,
resulting in animations that fail to express personal styles.

Our method utilizes a parametric 3D facial model to represent
the human face, generating facial motion representation from the
driving audio. By identity decoupling and personalized embedding,
we accommodate the unique styles of different speakers.

2.2 Human Face Rendering
Recent studies have adopted Neural Radiance Fields (NeRF)[31]
for 3D human head modeling and rendering. NeRF encodes the
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Figure 2: Overview of the proposed GaussianTalker. Subfigure (a) depicts speaker-specific FLAME generated from audio, driving
Gaussians for rendering. Subfigure (b) illustrates the fusion of speaker-agnostic feature with speaker ID embeddings to decode
FLAME. Subfigure (c) shows Gaussians driven by FLAME, subsequently rendering frames.

scene into a continuous volumetric field using a neural network,
which enables high-quality 3D rendering. Following its success-
ful application in dynamic scenes[15, 33, 37], NeRF has been nat-
urally extended to talking head synthesis tasks[7, 17, 26, 29, 43,
45, 55–57]. Some studies have explored the implementation of
talking face video generation in an end-to-end way[17, 29, 55].
Subsequent studies have realized several improvements in render-
ing efficiency[26, 45], few-shot synthesis[28, 43], and lip shape
generalization[7, 56, 57].

With the advent of 3D Gaussian Splatting (3D GS)[23], con-
siderable potential has been shown in enhancing both rendering
efficiency and quality. Recent work[40, 42, 65] has implemented
dynamic head reconstruction based on 3D GS. GaussianHead[50]
employs learnable Gaussian diffusion for detailed head genera-
tion to accurately reproduce dynamic facial details. MonoGaussian-
Avatar[11] utilizes 3D Gaussian representation and deformation
fields for learning explicit avatars from monocular portrait videos.

Despite these approaches’ effectiveness, audio-driven talking
head synthesis faces a significant challenge: cross-modal facial
parameter generation from audio fails to precisely capture a specific
person’s facial nuances. To our knowledge, we first apply 3D GS
to this task and overcome the above problem. By Speaker-specific
BlendShapes, our method facilitates the synthesis of more lifelike
videos, charting a new course in the field of audio-driven high-
fidelity talking head synthesis.

3 METHOD
3.1 Overview
In this section, we provide a detailed description of the architectural
components of our proposed framework, GaussianTalker. Gaus-
sianTalker employs the parametric FLAME model[27] to serve as
a bridge between facial animation and rendering. As shown in
Figure 2, the overall framework consists of two main modules: 1)
Speaker-Specific Motion Translator, which converts audio signals
into speaker-specific FLAME parameters sequence for facial an-
imation control; 2) Dynamic Gaussian Renderer, which utilizes
FLAME to drive 3D Gaussians and renders dynamic talking head in
real-time. The following subsections detail the design and training
mechanisms of each module.

3.2 Speaker-specific Motion Translator
Given the diversity of audio inputs, we recognize that model gener-
alization is challenging when solely dependent on video data from
specific individuals. Consequently, we train the module using a
multilingual, multi-individual dataset to improve its adaptability
to diverse audio inputs. However, due to substantial variations in
individual speaking styles, the distribution of FLAME parameters
generated by the module might diverge from those of the target
speaker, potentially compromising the rendered videos’ realism.
To address this issue, we develop a Universal Audio Encoder that
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decouples identity information from content information, and a
Customized Motion Decoder that integrates personalization fea-
tures. Additionally, we refer to SelfTalk[35] and introduce a lip-
reading constraint mechanism based on self-supervision to further
refine the synchronization of lip movements. This module’s detailed
architecture and workflow are illustrated in Figure 2(b).

𝐴!"#$%&

𝐴'%(

𝐴")*,,

𝐴")*,-

Universal
Audio
Encoder

𝑓!"#$%&

𝑓. = 𝑓'%(

𝑓, = 𝑓")*,,

𝑓- = 𝑓")*,-

… …

Figure 3: Negative audios 𝐴𝑛𝑒𝑔,𝑖 are obtained by dividing the
audio and positive audio 𝐴𝑝𝑜𝑠 is obtained by timbre conver-
sion. Audios are encoded to get the corresponding features
for adversarial learning to fine-tune the encoder to become
a Universal Audio Encoder.

3.2.1 Universal Audio Encoder. Audio signals often contain both
speaker identity information and content information, which are
usually tightly coupled. This indicates that in addition to conveying
the content of speech, the audio also carries attributes unique to
the speaker, such as pitch and timbre. In the task of audio feature
extraction, our goal is to capture speech content while excluding
information related to speaker identity. Therefore, we start at the
audio encoding stage to achieve effective decoupling of identity
and content information. We extract audio features using the au-
dio encoder of a pre-trained Wav2Vec 2.0-based multilingual ASR
model[54]. As shown in Figure 3, we segment a speaker’s audio into
𝑘 + 1 segments, and then randomly select a segment as the anchor
audio 𝐴𝑎𝑛𝑐ℎ𝑜𝑟 = 𝐴𝑐1,𝑡1. Next, we perform timbre conversion[38]
on the anchor audio to obtain positive samples𝐴𝑝𝑜𝑠 = 𝐴𝑐1,𝑡2, while
the remaining audio segments are used as negative samples. The
subscripts 𝑐𝑖 , 𝑡𝑖 denote the content and timbre of the audio respec-
tively. By encoding the audio, we get the respective feature, whose
formulas are as follows:

𝒇𝑡 = 𝐸𝑢𝑛𝑖 (𝐴𝑡 ;𝜃𝑢𝑛𝑖 ), (1)

where 𝒇𝑡 denotes the audio feature, 𝐸𝑢𝑛𝑖 and 𝜃𝑢𝑛𝑖 denote the audio
encoder and its learnable parameters, and 𝐴𝑡 denotes the audio.

Positive samples are consistent in content with the anchor audio,
and we anticipate them to generate similar audio features. For
negative sample features, we aim for maximal dissimilarity from the
anchor audio feature to achieve de-identification of audio encoding.
To achieve this goal, we use the InfoNCE loss[48] for optimization.
To maintain the original capability of the encoder, we use 𝐸𝑎𝑠𝑟
and 𝐷𝑎𝑠𝑟 , encoder and decoder of the pre-trained Wav2Vec 2.0
model[54] to guide the optimization:

L𝑎𝑑𝑣 = − log
exp(𝒇𝑎𝑛𝑐ℎ𝑜𝑟 · 𝒇0/𝜏)∑𝑘
𝑖=1 exp(𝒇𝑎𝑛𝑐ℎ𝑜𝑟 · 𝒇𝑖/𝜏)

, (2)

L𝑡𝑒𝑥𝑡 = L𝑐𝑡𝑐 (𝐷𝑎𝑠𝑟 (𝒇𝑎𝑛𝑐ℎ𝑜𝑟 ), 𝐷𝑎𝑠𝑟 (𝐸𝑎𝑠𝑟 (𝐴𝑎𝑛𝑐ℎ𝑜𝑟 ))), (3)

where 𝜏 denotes the temperature.

3.2.2 Customized Motion Decoder. We introduce an identity em-
bedding to generate motions that capture the speaker’s talking style,
such as the difference in the degree of mouth opening when differ-
ent speakers talk. The Identity embedding takes personal identity
information as input and generates the personalized feature con-
sistent with the audio feature dimensions. Next, the personalized
feature is fused with the audio feature to serve as the input of the
Customized Motion Decoder. The decoder based on a transformer-
based structure, outputs the FLAME parameters sequence directly:

�̂�1:𝑇 = 𝐷𝑚 (𝐸𝑖𝑑 (𝑝;𝜃𝑖𝑑 ) + 𝐸𝑢𝑛𝑖 (𝐴), 𝜃𝑚), (4)

where �̂�1:𝑇 = (�̂�1, ..., �̂�𝑇 ) denotes the generated FLAME parameters
sequence, 𝐷𝑚 denotes the motion decoder, 𝐸𝑖𝑑 denotes the identity
embedding, 𝑝 denotes the speaker’s identity, and 𝜃𝑖𝑑 , 𝜃𝑚 denote the
learnable parameters of the corresponding component, respectively.

3.2.3 Training Object. The training objectives of Speaker-specific
Motion Translator include three components: reconstruction, lip
motion smoothness, and potential consistency.

Reconstruction. To ensure the generated motion sequence pre-
cisely aligns with the ground truth data, we calculate the mean
square error of the ground truth 𝒀1:𝑇 = (𝒚1, ...,𝒚𝑇 ) and the gen-
erated FLAME parameters sequence �̂�1:𝑇 , as well as the mean
square error of the corresponding vertices of the FLAME mesh
𝑽1:𝑇 = (𝒗1, ..., 𝒗𝑇 ) and �̂�1:𝑇 = (𝒗1, ..., 𝒗𝑇 ):

L𝑟𝑒𝑐 = 𝜆𝑦
1

𝑁 ×𝑇

𝑇∑︁
𝑡=1

∥𝒚𝑡 − �̂�𝑡 ∥2 + 𝜆𝑣
1

𝐾 ×𝑇

𝑇∑︁
𝑡=1

∥𝒗𝑡 − 𝒗𝑡 ∥2 , (5)

where 𝑁 denotes the dimension of FLAME parameters, 𝐾 denotes
the number of FLAME mesh vertices, 𝑇 denotes the total number
of video frames.

Lip motion smoothness. To avoid the potential motion jitter
problem that results from relying solely on reconstruction loss, we
enhance lip motion smoothness by calculating parameter changes
across frames:

L𝑠𝑡ℎ = 𝜆𝑠𝑡ℎ
1

𝑁 ×𝑇

𝑇∑︁
𝑡=1

∥(𝒚𝑡 −𝒚𝑡−1) − (�̂�𝑡 − �̂�𝑡−1)∥2 . (6)

Potential consistency. During training, the generated motion
sequence is passed to the lip-reading encoder to extract lip-reading
feature. To ensure coherence between the audio-text feature and
lip-reading feature, we compute their mean square error:

L𝑙𝑎𝑡 = 𝜆𝑙𝑎𝑡
1

𝐷 ×𝑇


𝐸𝑎𝑠𝑟 (𝐴) − 𝐸𝑙𝑖𝑝 (�̂�1:𝑇 , 𝑀𝐿)



2
, (7)

where 𝑀𝐿 denotes the index of lip region, 𝐸𝑙𝑖𝑝 denotes the lip
encoder, and 𝐷 denotes the feature dimension.

The final loss function is formulated as follows:

L = L𝑟𝑒𝑐 + L𝑠𝑡ℎ + L𝑙𝑎𝑡 . (8)

3.3 Dynamic Gaussian Renderer
3D GS[23] is a rasterization technique designed for the real-time
rendering of photorealistic scenes. It utilizes a collection of 3D
Gaussians for modeling, where each Gaussian in the model is char-
acterized by the following learnable parameters: position 𝒖 ∈ R3,
indicating the center of the Gaussian; rotation 𝒓 ∈ R3×3, defining
its orientation; scaling factor 𝒔 ∈ R3, controlling its size; opacity
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𝜶 ∈ R, determining its visibility; and spherical harmonics coeffi-
cients 𝜿 ∈ R3×(𝑘+1)2

, which determine the RGB color 𝒄 through
a k-order spherical harmonic function. This set of parameters for
each Gaussian is denoted as G = {𝒖, 𝒓 , 𝒔,𝜶 ,𝜿}. During the render-
ing process, the color 𝐶 of each pixel is determined by aggregating
the contributions of all overlapping Gaussians, as described by the
following equation:

𝐶 =
∑︁
𝑖∈𝑁

𝒄𝑖𝜶𝑖

𝑖−1∏
𝑗=1

(1 − 𝜶 𝑗 ). (9)

We aim to employ explicit 3D Gaussians to represent facial ex-
pressions, but static 3D Gaussians fall short of capturing dynamic
changes in expressions. Consequently, we devised a Dynamic Gauss-
ian Renderer that anchors the Gaussians to the FLAME triangles.
This approach leverages FLAME’s BlendShapes and SkinWeights to
control the deformation of the Gaussians. We also incorporate some
Speaker-specific Blendshapes to enhance geometric and textural
detail in facial rendering and introduce an Inpainting Generator to
seamlessly integrate the rendered face with the original image. The
complete pipeline is presented in Figure 2(c).

3.3.1 Dynamic Deformation. Given a set of FLAME parameters, 𝜷
for shape, 𝜺 for expression, and 𝝍 for pose changes, the vertices of
the FLAME model in the global space, denoted as 𝒗, are determined
by the following motion rules:

𝒗 = 𝐿𝐵𝑆 (𝒗𝑏𝑎𝑠𝑒 + 𝐵𝑆 ({𝜷 ; 𝜺;𝝍};𝑊𝑏𝑠 ), 𝐽 (𝝍),𝑊 ), (10)

where 𝒗𝑏𝑎𝑠𝑒 represents the vertices of the FLAMEmesh in canonical
space. 𝐿𝐵𝑆 signifies the standard Linear Blend Skinning function
with weights𝑊 and the function 𝐽 stands for the joint regressor
based on the pose 𝝍, both as defined in the FLAME model. The
𝐵𝑆 operation denotes a linear blend shaping process that creates
facial animations by combining blendshapes in accordance with
FLAME parameters, weighted by the blendshape weights𝑊𝑏𝑠 . For
a triangle T of the FLAME mesh, which is defined by its vertices
{𝒗0, 𝒗1, 𝒗2} and its edges {𝒆01 = 𝒗1−𝒗0, 𝒆02 = 𝒗2−𝒗0, 𝒆12 = 𝒗2−𝒗1},
we establish a local coordinate system based on T . The system’s
origin, 𝑃 , representing T ’s position in global space, is determined
by a barycentric combination of the triangle’s vertices. The system’s
orientation in global space is captured by the rotation matrix 𝑅,
and the scale factor 𝑆 reflects the size of T . These components are
delineated as follows:

𝑃 = 𝜂0𝒗0 + 𝜂1𝒗1 + 𝜂2𝒗2, (11)
𝑅 = [𝒏0; 𝒏1; 𝒏2], (12)
𝑆 = (∥𝒆01∥ + ∥𝒆02∥ + ∥𝒆12∥)/3, (13)

where 𝜼 = (𝜂0, 𝜂1, 𝜂2) is the learnable barycentric coefficients, and
the orthogonal unit vectors [𝒏0; 𝒏1; 𝒏2] are calculated as follows:

𝒏0 =
𝒆01
∥𝒆01∥

, 𝒏1 =
𝒆01 × 𝒆02
∥𝒆01 × 𝒆02∥

, 𝒏2 = 𝒏0 × 𝒏1 . (14)

Then a Gaussian is associated within this local space, denoted as
G = {�̄�, 𝒓, 𝒔,𝜶 ,𝜿 ,T ,𝜼}, enabling G to track the movements of T .
Specifically, the attributes �̄�, 𝒓 , 𝒔 of G are defined relative to the
local coordinate system, rather than the global space. We initialize
its position �̄� at the origin, rotation 𝒓 as the identity matrix, and

scale 𝒔 as a unit vector. When rendering, we transform the G into
global space by:

𝒖 = 𝑅 · �̄� + 𝑃, 𝒓 = 𝑅 · 𝒓, 𝒔 = 𝑆𝒔, (15)

where 𝒖, 𝒓, 𝒔 denotes the global position, orientation, scale of G.
During optimization, we employ an adaptive density control

strategy similar to the one described by 3D GS[23], to dynami-
cally add or remove Gaussians based on the view space positional
gradient and the opacity of each Gaussian. Specifically, when a
Gaussian G𝑖 is anchored to a triangle T𝑖 of the FLAME mesh, all
its derivatives generated by cloning or splitting from G𝑖 , denoted
as (G𝑖,1,G𝑖,2,G𝑖,3, ...), inherit the same local coordinate system that
we established based on T𝑖 .

3.3.2 Speaker-specific BlendShapes. We have addressed the chal-
lenge of capturing expressive facial motion at a coarse level by
binding Gaussians to the triangles of the FLAME mesh. However,
since FLAME primarily encodes only coarse facial deformations, it
remains a challenge to reproduce speaker-specific facial geometry
and texture details, such as teeth and wrinkles. To overcome this
limitation, we introduce a set of learnable BlendShape (BS) weights
that are designed to capture and delineate these nuanced facial fea-
tures. Initially, we define a Multilayer Perceptron (MLP), designated
as𝑊𝛾 , which accepts the pose parameters 𝝍 from the FLAME and
generates a latent pose representation 𝜸 as follows:

𝜸 =𝑊𝛾 (𝝍). (16)

To refine geometrical details, specialized BS weights,𝑊𝑝𝑜𝑠 for posi-
tion and𝑊𝑟𝑜𝑡 for rotation, are employed to update the correspond-
ing attributes of Gaussian G within the local space:

�̄�′ = �̄� + 𝐵𝑆 (𝜸 ;𝑊𝑝𝑜𝑠 ), 𝒓 ′ = 𝒓 · 𝐵𝑆 (𝜸 ;𝑊𝑟𝑜𝑡 ). (17)

These revised local attributes, �̄�′ and 𝒓 ′, are then converted to
global space when rendering, as explained in Equation 15. Similarly,
for texture refinement, we apply compensation to 𝜿0, the zeroth-
order coefficient of 𝜿 in G, which governs the base color calculated
by zeroth-order spherical harmonics function. This adjustment is
achieved through BS weights designated as𝑊𝑐𝑜𝑙𝑜𝑟 :

𝜿 ′
0 = 𝜿0 + 𝐵𝑆 (𝜸 ;𝑊𝑐𝑜𝑙𝑜𝑟 ) . (18)

With the incorporation of Speaker-specific BlendShapes for fa-
cial detailing, G is represented as G = {�̄�′, 𝒓 ′, 𝒔,𝜶 ,𝜿 ′

0,𝜿𝑟𝑒𝑠𝑡 ,T ,𝜼},
where 𝜿𝑟𝑒𝑠𝑡 denotes the higher-order(1 to k-th) coefficients of 𝜿 .

3.3.3 Inpainting Generator. By incorporating Dynamic Deforma-
tion and Speaker-specific BlendShapes, we achieve a consistent
alignment of the head pose with the original face image, which
enables a stable reintegration of the rendered face into the original
video frame. Nonetheless, using an alternative audio source may
lead to discrepancies in lip shapes between the rendered and origi-
nal video frames. These discrepancies are particularly pronounced
around the facial contour and chin, resulting in visual inconsis-
tencies. To address these issues and enhance the integrity of the
composite image, we introduce an Inpainting Generator, denoted as
𝐹 . It is designed to seamlessly fill in these mismatches and improve
the visual continuity of the final frames. The blending process is
described by the following equation:

𝐼 = (1 −𝑀) · 𝐼𝑜𝑟𝑖 +𝑀 · 𝐹 (𝐼𝑔𝑎𝑢 + (1 −𝑀)𝐼𝑜𝑟𝑖 ), (19)
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Table 1: Quantitative results under the self-driven setting. The best and second-best results are in bold and underlined.

Methods PSNR↑ SSIM↑ LPIPS↓ FID↓ LMD↓ LSE-C↑ LSE-D↓ FPS↑
Ground Truth — — — — — 7.465 7.131 —

Wav2Lip[36] 33.6435 0.9506 0.0602 17.44 6.048 9.129* 5.860* 23
AD-NeRF[17] 30.7756 0.9200 0.1135 26.98 3.975 6.128 8.134 0.15
RAD-NeRF[45] 29.9283 0.9115 0.1075 18.73 3.519 6.096 8.147 37
ER-NeRF[26] 29.5774 0.9071 0.0694 13.22 3.555 6.340 7.955 38
GeneFace++[56] 27.4192 0.8870 0.0920 12.69 3.942 5.920 8.378 44

Ours 37.0775 0.9676 0.0239 4.57 3.278 7.015 7.562 130

where𝑀 denotes the facial mask extracted from the original frame
by face parsing[62], and 𝐼𝑜𝑟𝑖 and 𝐼𝑔𝑎𝑢 denote the original video
frame and the output image of the Gaussian renderer, respectively.

3.3.4 Training Object. While training the Dynamic Gaussian Ren-
derer, we focus on three types of optimization objectives: image
similarity, Gaussian attributes, and Gaussian semantic category.

Image Similarity. The image similarity loss comprises a combi-
nation of L1 loss L1, VGG loss L𝑣𝑔𝑔 , and SSIM loss L𝑠𝑠𝑖𝑚 :

L𝑟𝑔𝑏 = 𝜆1L1 + 𝜆2L𝑣𝑔𝑔 + 𝜆3L𝑠𝑠𝑖𝑚 . (20)

Gaussian Attributes.We aim to ensure that during optimiza-
tion, the positions of the Gaussians faithfully align with the asso-
ciated FLAME triangles and their sizes remain within reasonable
bounds to avoid visual jitter and artifacts. To achieve this, we apply
constraints on the Gaussians’ position and scale:

L𝑎𝑡𝑡𝑟 = 𝜆𝑝


𝑚𝑎𝑥 (0, �̄�′ − 𝜖𝑝 )

2 + 𝜆𝑠 ∥𝑚𝑎𝑥 (0, 𝒔 − 𝜖𝑠 )∥2, (21)

where 𝜖𝑝 and 𝜖𝑠 serve as predefined thresholds that set the max-
imum allowable positions for �̄�′ and scales for 𝒔, respectively.

Gaussian Semantic Category. The dynamic deformation aims
for the deformed Gaussians to approximate the associated FLAME
mesh. Ideally, Gaussians bound to specific triangles, like the lips,
should exactly match the corresponding region’s color and position
in the rendered image. However, it’s a challenge to prevent Gaus-
sians from shifting to implausible positions during optimization,
resulting in jittering artifacts. To address this issue, we introduce a
Gaussian semantic loss L𝑠𝑒𝑔 . We render an auxiliary semantic seg-
mentation map𝑀𝑎𝑢𝑥 using the Gaussian Renderer, where instead
of utilizing the learned color 𝒄𝑖 in Equation 9, we assign a fixed
color 𝒄 𝑓 𝑖𝑥 to each Gaussian point based on its parent triangle’s
category; for example, assigning red to facial points and yellow to
lip points:

𝐶𝑠𝑒𝑔 =
∑︁
𝑖=1

𝒄 𝑓 𝑖𝑥𝜶𝑖

𝑖−1∏
𝑗=1

(1 − 𝜶 𝑗 ). (22)

Then, we compute the mean square error between𝑀𝑔𝑎𝑢 and𝑀𝑔𝑡

obtained by face parsing[62]:

L𝑠𝑒𝑔 = 𝜆𝑠𝑒𝑔 ∥𝑀𝑎𝑢𝑥 −𝑀𝑔𝑡 ∥2 . (23)

Consequently, the final loss function is formulated as follows:

L = L𝑟𝑔𝑏 + L𝑎𝑡𝑡𝑟 + L𝑠𝑒𝑔 . (24)

* Wav2Lip is jointly trained with SyncNet, and LSE-C and LSE-D are its optimization
objectives. As a result, it obtains better scores than the ground truth.

Table 2: Quantitative results under the cross-driven setting.
The best and second-best results are in bold and underlined.

Methods Testset A Testset B
FID↓ LSE-C↑ LSE-D↓ FID↓ LSE-C↑ LSE-D↓

Wav2Lip[36] 18.34 8.380 6.985 17.18 9.106 6.479
AD-NeRF[17] 29.95 3.929 11.02 29.92 3.408 11.39
RAD-NeRF[45] 19.55 4.028 10.78 19.18 4.035 10.93
ER-NeRF[26] 13.68 4.780 10.12 13.40 4.680 10.26
GeneFace++[56] 12.77 5.734 9.030 12.92 6.040 8.759

Ours 5.136 5.758 8.665 4.394 7.148 7.617

4 EXPERIMENT
4.1 Experimental Settings
4.1.1 Datasets. To facilitate comparison with other state-of-the-art
methods, we utilize the same dataset as AD-NeRF and GeneFace++,
comprised of five videos averaging 9085 frames each, at a frame
rate of 25 FPS, across English, French, and Korean languages. To
improve the Speaker-specific Motion Translator’s generalization ca-
pabilities, we incorporate data from target speakers, supplemented
with 100 samples of Chinese CN-CVS videos[8] and 100 samples of
English HDTF videos[61] for joint training. During the data prepro-
cessing phase, we begin by extracting audio and video frames from
the source video. Subsequently, facial keypoints are extracted and
smoothed[5, 25], then employ EMOCA[13] to obtain FLAME pa-
rameters sequence. Finally, we apply the face parsing technique[62],
which segments each video frame into distinct facial regions.

4.1.2 Compared baselines. We compare our method with several
representative methods: 1) Wav2Lip[36]: Sync-expert supervised
learning enhances lip sync accuracy; 2) AD-NeRF[17]: NeRF syn-
thesizes audio-driven videos end-to-end; 3) RAD-NeRF[45]: Dis-
crete learnable mesh boosts rendering efficiency; 4) ER-NeRF[26]:
Three-plane hash representation enables high-quality rendering; 5)
GeneFace++[56]: Pitch-aware audio-to-motion module and land-
mark LLE method ensure stable rendering.

4.1.3 Implementation Details. The official FLAME model lacks ver-
tices and triangles for teeth, so we manually attach it with 262
vertices and 546 faces to depict the teeth and inner mouth regions.
These newly added elements are not assigned independent BS and
LBS weights but rather are designed to move in sync with the
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(a) Comparison of six methods on May. (b) Comparison of latest methods on other speakers.
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Figure 4: The comparison of generated key frame results. We show the ground truth frames for comparing and mark the
un-sync and bad rendering quality results with red arrows. Please zoom in for better visualization.

lip area of the original FLAME model. For GaussianTalker’s train-
ing, we employ the Adam Optimizer[24] across all modules. The
Speaker-specific Motion Translator is trained for 100,000 iterations,
with the batch size set to 1. This training takes about 6 hours, using
a learning rate of 1 × 10−4. Furthermore, we train the Dynamic
Gaussian Renderer for 50,000 iterations using a batch size of 8, and
this training lasts about 4 hours. While optimizing the Gaussians’
attributes, we fine-tune the FLAME parameters within the dataset
to ensure they more accurately reflect the face of each frame. All
experiments are performed on a single NVIDIA RTX4090 GPU.

4.2 Quantitative Evaluation
4.2.1 Comparison settings. In quantitative evaluation, we focus on
both synthesized quality of the head and accuracy of lip movements.
Our comparisons are divided into two settings: 1) Self-driven setting,
where each speaker’s own audio is used to drive the corresponding
reference frame. 2) Cross-driven setting, where we extract two extra
audio clips from HDTF[61], named Testset A and Testset B, to
drive each speaker. For each generated result, we rescaled frames
into the same size for a fair comparison.

4.2.2 Evaluation Metrics. We employ Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity IndexMeasure (SSIM) for assessing

overall image quality. To assess image details, we utilize Learned
Perceptual Image Patch Similarity (LPIPS)[60]. To quantify the
similarity between the generated video and the ground truth, we
employ Fréchet Inception Distance (FID)[18]. For assessing audio-
lip synchronization, we utilize Landmark Distance (LMD)[9] to
gauge the extent of synchronization with the ground truth, and
complementarily evaluate lip movement accuracy through Lip Sync
Error Confidence (LSE-C) and Lip Sync Error Distance (LSE-D)[36].

4.2.3 Evaluation Results. The results are presented in Table 1. Our
results indicate that, in comparison with leading audio-driven talk-
ing head video synthesis methods, our method outperforms others,
achieving the highest scores across all image quality assessment
metrics. Owing to measures implemented to reduce jitter and arti-
facts, the videos produced by our method more accurately resemble
the actual scenes. Regarding lip synchronization, althoughWav2Lip
excels in the LSE-C and LSE-D metrics owing to its joint training
with SyncNet, our method still surpasses others in these metrics.
Additionally, our method demonstrates superior performance in
the LMD metric, suggesting a closer and more accurate alignment
with actual lip movements.

We also compared the generalization ability of each method us-
ing FID score and LSE-C and LSE-Dmetrics with out-of-distribution
(OOD) audio inputs, detailed in Table 2. The results show that our
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method exhibits outstanding image quality performance, with FID
reflecting a considerable enhancement over competing methods.
Furthermore, we have significantly improved the model’s general-
ization capabilities by training the Speaker-specific Motion Trans-
lator on a multi-individual dataset. This enhancement enables our
method to attain superior performance in lip synchronization, as
evidenced by the LSE-C and LSE-D.

We also tested the rendering speed. With an NVIDIA RTX4090
GPU and data preloaded into memory, a sequence of video frames
can be output at 130 FPS. The output video has the same resolution
as the original video. This far exceeds the performance of other
methods. In addition, we developed a rendering pipeline for Gaus-
sians with MNN[21] and OpenGL[53] and subsequently deployed
GaussianTalker. On devices with the Apple M1 chip, it achieved
rendering speeds of 36 FPS, demonstrating its adaptability across
various platforms.

4.3 Qualitative Evaluation
To more effectively assess image quality and lip synchronization,
we present a comparative analysis of our method with others in
Figure 4. Compared to our method, Wav2Lip primarily concentrates
on lip synchronization yet suffers low image quality, particularly
around the mouth area. AD-NeRF and RAD-NeRF cannot naturally
perform the blinking process, as evidenced by artifacts appearing
in eye closure frames. Moreover, these two methods suffer from
head-torso separation when driving cross-identity audio. ER-NeRF
demonstrates noticeable jittering in both the head and torso during
speech, which severely impacts the realism of the video. GeneFace++
shows limited expressiveness and lip movement variety, failing to
perform actions like staring or frowning convincingly.

Most NeRF-based approaches train the head and torso indepen-
dently, which can compromise the torso’s rendering quality in
scenes with extensive torso movement. Furthermore, rendering
can introduce artifacts stemming from the incomplete separation
of the speaker from the background during preprocessing. In con-
trast, our approach not only delivers superior image clarity but also
achieves enhanced lip synchronization performance, particularly
with cross-identity and cross-gender audio inputs, showcasing ro-
bust generalization capabilities. Please see our supplementary for
better visualization.

4.4 Ablation study
In this section, we conducted ablation studies in a self-driven set-
ting to validate the effectiveness of each component. Quantitative
assessment metrics included PSNR, LPIPS, and LMD. The results
are shown in Table 3 and Figure 5.

4.4.1 Universal Audio Encoder. We investigate the impact of audio
decoupling in the audio encoder, which excludes identity informa-
tion from the original audio and extracts audio feature that contains
only content information. Removing audio decoupling decreases all
metrics, with the LMD metric suffering the most, indicating poorer
lip synchronization. Figure 5 (a) also illustrates the artifact issues
in some of the lip shapes.

4.4.2 Speaker-specific BlendShapes. We explore the impact of elim-
inating the Speaker-specific BlendShapes, which play a crucial role

Table 3: Ablation study on subject Obama. The best overall
results are in bold.

Ablation PSNR↑ LPIPS↓ LMD↓

full 38.37 0.0089 3.72

replace Universal Audio Encoder
with Wav2Vec 2.0[54] 36.91 0.0104 4.55

w/o Speaker-specific BlendShapes 37.46 0.0098 3.78
w/o Fine-tune FLAME Parameters 36.87 0.0106 4.28
w/o Gaussian Semantic Loss 37.09 0.0104 3.97

w. audio 
decoupling

w. Speaker-specific 
BlendShapes

w/o audio 
decoupling

w/o Speaker-specific 
BlendShapes

(a) lip artifact (b) wrong teeth detail

Figure 5: Ablation study on audio decoupling and Speaker-
Specific BlendShape. Removing them will lead to (a) and (b).

in depicting facial details. The absence may cause the Gaussian
renderer to generate artifacts in regions that are not explicitly gov-
erned by FLAME parameters, like teeth and wrinkles, resulting in
distortions, particularly in fine features, as shown in Figure 5 (b).

4.4.3 Fine-tune FLAME Parameters. This optimization aligns the
FLAME parameters with the original video and reduces inter-frame
jitter. Without it, the Gaussian point cloud learns biased facial rep-
resentations. As a result, the visual jitter issue becomes more pro-
nounced and the image quality metrics are significantly declined.

4.4.4 Gaussian Semantic Loss. We investigate the effect of ablating
Gaussian semantic loss, which clarifies the binding relationship
between 3D Gaussians and FLAME and further normalizes the mo-
tion of Gaussians. Without the Gaussian semantic loss, the speaker
will jitter slightly, leading to a reduction in image quality metrics.

5 CONCLUSION
In this work, we propose GaussianTalker, a novel framework for
audio-driven talking head synthesis via 3D Gaussian Splatting in-
tegrated with the FLAME model. GaussianTalker associates multi-
modal data with specific speakers, reducing potential identity bias
between audio, 3D mesh, and video. The Speaker-specific FLAME
Translator employs identity decoupling and personalized embed-
ding to achieve synchronized and natural lip movements, while the
Dynamic Gaussian Renderer refines Gaussian attributes through
a latent pose for stable and realistic rendering. Extensive experi-
ments showed that GaussianTalker outperforms state-of-the-art
performance in talking head synthesis, while achieving ultra-high
rendering speed that significantly surpasses other methods. We
believe that this innovative approach will encourage future studies
to develop more fluid and lifelike character expressions and move-
ments. By leveraging advanced Gaussian models and generative
techniques, the animation of characters will go far beyond mere
lip-syncing, capturing a broader range of character dynamics.
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