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Abstract

Randomized smoothing is considered to be the state-of-the-art provable defense
against adversarial perturbations. However, it heavily exploits the fact that clas-
sifiers map input objects to class probabilities and do not focus on the ones that
learn a metric space in which classification is performed by computing distances to
embeddings of class prototypes. In this work, we extend randomized smoothing
to few-shot learning models that map inputs to normalized embeddings. We pro-
vide analysis of the Lipschitz continuity of such models and derive a robustness
certificate against `2-bounded perturbations that may be useful in few-shot learn-
ing scenarios. Our theoretical results are confirmed by experiments on different
datasets.

1 Introduction

Few-shot learning is a setting in which a classification model is evaluated on the classes not seen
during the training phase. Nowadays quite a few few-shot learning approaches based on neural
networks are known. Unfortunately, neural network-based classifiers are intimately vulnerable to
adversarial perturbations [41, 10] – accurately crafted small modifications of the input that may
significantly alter the model’s prediction. This vulnerability poses a restriction on the deployment of
such approaches in safety-critical scenarios, so the research interest in the field of attacks on neural
networks has been great in recent years.

Several works studied this phenomena in different practical applications – image classification
[2, 34, 33, 40], object detection [17, 26, 48, 50], face recognition [18, 5, 54], semantic segmentation
[7, 12, 50]. These studies show that it is easy to force a model to behave in the desired way by
applying an imperceptible change to its input. As a result, defenses, both empirical [4, 55, 14] and
provable [51, 21, 3, 47, 52, 15, 46, 35], were proposed recently. Although empirical ones can be (and
often are) broken by more powerful attacks, the provable ones are of a big interest since they make it
possible to provide guarantees of the correctness of the work of a model under certain assumptions,
and, thus, possibly broaden the scope of tasks which may be trusted to the neural networks.

Randomized smoothing [21, 3, 25] is the state-of-the-art approach used for constructing classification
models provably robust against small-norm additive adversarial perturbations. This approach is
scalable to large datasets and can be applied to any classifier since it does not use any assumptions
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Figure 1: Illustration of certification pipeline for a single image x. Given a model f(·) and n

realisations of zero-mean Gaussian noise "1, . . . , "n ⇠ N (0,�2
I), an estimate ĝ(x) = 1

n

Pn
i=1 f(x+

"i) of g(x) = E"⇠N (0,�2I)f(x+ ") is computed. Note that g(x) is L-Lipschitz with L =
p
2/⇡�2,

according to the Theorem 1. The number of samples n is increased until adversarial embedding risk
� from the Theorem 2 is computed with Algorithms 1-2 and certified radius r = �

L is determined.
The model g(·) is treated as certified at x for all additive perturbations � : k�k2 < r.

about the model’s architecture. Generally, the idea is the following. Suppose, we are given a base
neural network classier f : RD ! [0, 1]K that maps an input image x to a fixed number of K class
probabilities. Its smoothed version with the standard Gaussian distribution is:

g(x) = E
"⇠N (0,⌃)

f(x+ "). (1)

As shown in [3], the new (smoothed) classifier is provably robust at x to `2-bounded perturbations if
the base classifier f is confident enough at x. However, the proof of certification heavily exploits the
fact that classifiers are restricted to mapping an input to a fixed number of class probabilities. Thus,
directly applying randomized smoothing to classifiers in metric space, such as in few-shot learning,
is a challenging task.

There are several works that aim at improving the robustness for few-shot classification [20, 9, 53, 28].
However, the focus in such works is either on the improvement of empirical robustness or probabilistic
guarantees of certified robustness; none of them provide theoretical guarantees on the worst-case
model behavior.

In this work, we fill this gap, by generalizing and theoretically justifying the idea of randomized
smoothing to few-shot learning. In this scenario, provable certification needs to be obtained not in the
space of output class probabilities, but in the space of descriptive embeddings. This work is the first,
to our knowledge, where the theoretical robustness guarantees for a few-shot scenario are provided.

Our contributions are summarized as follows:

• We provide the first theoretical robustness guarantee for few-shot learning classification.

• Analysis of Lipschitz continuity of such models and providing the robustness certificates
against `2�bounded perturbations for few-shot learning scenarios.

• We propose to estimate confidence intervals not for distances between the approximation
of smoothed embedding and class prototype but for the dot product of vectors which has
expectation equal to the distance between actual smoothed embedding and class prototype.

2 Problem statement

2.1 Notation

We consider a few-shot classification problem where we are given a set of labeled objects
(x1, y1), . . . , (xm, ym) where xi 2 RD and yi 2 {1, . . . ,K} are corresponding labels. We fol-
low the notation from [39] and denote Sk as the set of objects of class k.
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2.2 Few-shot learning classification

Suppose we have a function f : RD ! Rd that maps input objects to the space of normalized
embeddings. Then, d�dimensional prototypes of classes are computed as follows (expression is
given for the prototype of class k):

ck =
1

|Sk|
X

x2Sk

f(x). (2)

In order to classify a sample, one should compute the distances between its embedding and class
prototypes – a sample is assigned to the class with the closest prototype. Namely, given a distance
function ⇢ : Rd ⇥ Rd ! [0,+1), the class c of the sample x is computed as below:

c = argmin
k2{1,...,K}

⇢ (f(x), ck) . (3)

Given an embedding function f , our goal is to construct a classifier g provably robust to additive
perturbations � of a small norm. In other words, we want to find a norm threshold t such that equality

argmin
k2{1,...,K}

⇢ (g(x), ck) = argmin
k2{1,...,K}

⇢ (g(x+ �), ck) , (4)

will be satisfied for all � : k�k2  t.

In this paper, the solution to a problem of constructing a classifier that satisfies the condition in (4) is
approached by extending the analysis of the robustness of smoothed classifiers described in (1) to
the case of vector functions. The choice of the distance metric in (4) is motivated by an analysis of
Lipschitz-continuity given in the next section.

3 Randomized smoothing

3.1 Background

Randomized smoothing [21, 3] is described as a technique of convolving a base classifier f with an
isotropic Gaussian noise such that the new classifier g(x) returns the most probable prediction of f
of a random variable ⇠ ⇠ N (x,�2

I), where the choice of Gaussian distribution is motivated by the
restriction on g to be robust against additive perturbations of the bounded norm. In this case, given a
classifier f : RD ! [0, 1] and smoothing distribution N (0,�2

I), the classifier g looks as follows:

g(x) =
1

(2⇡�2)
n
2

Z

RD

f(x+ ") exp

✓
�k"k

2
2

2�2

◆
d". (5)

One can show by Stein’s Lemma that given the fact that the function f in (5) is bounded (namely,
8x 2 D(f), |f(x)|  1), then the function g is L�Lipschitz:

8x, x0 2 D(g), kg(x)� g(x0)k2  Lkx� x
0k2, (6)

with L =
q

2
⇡�2 , what immediately produce theoretical robustness guarantee on g.

Although this approach is simple and effective, it has a serious drawback: in practice, it is impossible
to compute the expectation in (5) exactly and, thus, impossible to compute the prediction of the
smoothed function g at any point. Instead the integral is computed with the use of Monte-Carlo
approximation with n samples to obtain the prediction with an arbitrary level of confidence. Notably,
to achieve an appropriate accuracy of the Monte-Carlo approximation, the number of samples n

should be large enough that may dramatically affect inference time.

In this work, we generalize the analysis of Lipschitz-continuity to the case of vector functions
g : RD ! Rd and provide robustness guarantees for classification performed in the space of
embeddings. The certification pipeline is illustrated in Figure 1.
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3.2 Randomized smoothing for vector functions

Lipschitz-continuity of vector function. In the work of [38], the robustness guarantee from [3] is
proved by estimating the Lipschitz constant of a smoothed classifier. Unfortunately, a straightforward
generalization of this approach to the case of vector functions leads to the estimation of the expectation
of the norm of a multivariate Gaussian which is known to depend on the number of dimensions of
the space. Instead, we show that a simple adjustment to this technique may be done such that the
estimate of the Lipschitz constant is the same as for the function in (5). Our results are formulated in
the theorems below proofs of which are moved to the Appendix in order not to distract the reader.
Theorem 1. (Lipschitz-continuity of smoothed vector function) Suppose that f : RD ! Rd is a
deterministic function and g(x) = E"⇠N (0,�2I)f(x+ ") is continuously differentiable for all x. If

for all x, kf(x)k2 = 1, then g(x) is L�Lipschitz in l2�norm with L =
q

2
⇡�2 .

Remark 1. We perform the analysis of Lipschitz-continuity in the Theorem 1 in l2�norm, so the
distance metric in (4) is l2�distance. We do not consider other norms in this paper.

Robust classification in the space of embeddings. To provide certification for a classifica-
tion in the space of embeddings, one should estimate the maximum deviation of the classi-
fied embedding that does not change the closest class prototype. In the Theorem 2, we show
how this deviation is connected with the mutual arrangement of embedding and class prototype.

c1

c2

g(x)
�

Figure 2: Illustration of the Theorem 2, one-shot
case. The direction of adversarial risk in the space
of embeddings is always parallel to the vector c1�
c2. This is also true for the case of kc1k2 6= kc2k2.

Theorem 2. (Adversarial embedding risk)
Given an input image x 2 RD and the embed-
ding g : RD ! Rd the closest point on to de-
cision boundary in the embedding space (see
Figure 2) is located at a distance (defined as
adversarial embedding risk):

� = k�k2 =
kc2 � g(x)k22 � kc1 � g(x)k22

2kc2 � c1k22
,

(7)
where c1 2 Rd and c2 2 Rd are the two closest
prototypes. The value of � is the distance be-
tween classifying embedding and the decision
boundary between classes represented by c1 and
c2. Note that this is the minimum l2�distortion
in the embedding space required to change the
prediction of g.

Two theorems combined result in an l2�robustness guarantee for few-shot classification as:
Theorem 3. (Robustness guarantee) L2-robustness guarantee r for an input image x in the
n�dimensional input metric space under classification by a classifier g from the Theorem 1 is
r = �

L , where L is the Lipschitz constant from the Theorem 1 and � is the adversarial risk from the
Theorem 2. The value of r is the certified radius of g at x, or, in other words, minimum l2�distortion
in the input space required to change the prediction of g. The proof of this fact straightforwardly
follows from the definition (6) and results from Theorems 1-2.

4 Certification protocol

In this section, we describe the numerical implementation of our approach and estimate its failure
probability.

4.1 Estimation of prediction of smoothed classifier

As mentioned previously, the procedure of few-shot classification is performed by assigning an object
x to the closest class prototype. Unfortunately, given the smoothed function g in the form from the
Theorem 1 and class prototype ck from (2), it is impossible to compute the value ⇢(g(x), ck) explicitly
as well as to determine the closest prototype, since it is in general unknown how does g(x) look like.

4



We propose both to estimate the closest prototype for classification and to estimate the distance to
the closest decision boundary � from Theorem 2 as the largest class-preserving perturbation in the
embedding space by computing two-sided confidence intervals for random variables

⇠1 = kĝ(x)� c1k22, . . . , ⇠K = kĝ(x)� cKk22, (8)

where ĝ(x) = 1
n

Pn
i=1 f(x+ "i) is the estimation of g(x) computed as empirical mean by n samples

of noise, and one-sided confidence interval for � from the Theorem 2, respectively. Pseudo-code for
both procedures is presented in Algorithms 1-2.

Algorithm 1 Closest prototype computation algorithm.
GIVEN: base classifier f , noise �, object x, number of samples n for ĝ(x), class prototypes {ci}Ki=1,
maximum number of samples T and confidence level ↵,
RETURNS: index A of the closest prototype.

Function CLOSEST(f,�, x, n, {ci}Ki=1, T,↵)
fs ;
i 0
n0 = n

while n  T do

"1, . . . , "n ⇠ N (0,�2
I)

ĝ(x) 1
n

Pn
i=1 f(x+ "i)

fs fs [ {ĝ(x)}
for all i 2 [1, . . . ,K] do

C = ci

dsToC  ⇢(fs, C)
(lC , uC) TwoSidedConfInt(dsToC,↵)
li  lC , ui  uC

end for

A argmin {li}Ki=1

if uA < min({li}Ki=1,i 6=A) then

Return A, fs
else

n n+n0 {Increase number of samples used for computing an approximation ĝ(x) until the
number of observations is large enough to determine two leftmost intervals or until n = T}

end if

end while

EndFunction
The Algorithm 1 describes an inference procedure for the smoothed classifier from the Theorem 1;
the Algorithm 2 uses Algorithm 1 and, given input parameters, estimates an adversarial risk from
the Theorem 2 – it determines two closest to the smoothed embedding g(x) prototypes A and B

and produces the lower confidence bound for the distance between g(x) and the decision boundary
between A and B. Combined with analysis from the Theorem 1, it provides the certified radius for
a sample – the smallest value of l2�norm of perturbation in the input space required to change the
prediction of the smoothed classifier. In the next subsection, we discuss in detail the procedure of
computing confidence intervals in Algorithms 1-2.

4.2 Applicability of algorithms

The computations of smoothed function and distances to class prototypes and decision boundary in
Algorithms 1-2 are based on the estimations of corresponding random variables, thus, it is necessary
to analyze the applicability of the algorithms. In this section, we propose a way to compute confidence
intervals for squares of the distances between the estimates of embeddings and class prototypes.

Computation of confidence intervals for the squares of distances. Recall that one way to estimate
the value of a parameter of a random variable is to compute a confidence interval for the corresponding
statistic. In this work, we construct intervals by applying well-known Hoeffding inequality [13] in
the form
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P
�
|X � E(X)| � t

�
 2 exp

✓
� 2t2n2

Pn
i=1(bi � ai)2

◆
, (9)

where X and E(X) are sample mean and population mean of random variable X , respectively, n is
the number of samples and numbers ai, bi are such that P(Xi 2 (ai, bi)) = 1.

Algorithm 2 Adversarial embedding risk computation algorithm.
GIVEN: base classifier f , noise �, object x, number of samples n for ĝ(x), class prototypes {ci}Ki=1,
maximum number of samples T for ĝ(x) and confidence level ↵
RETURNS: lower bound � for the adversarial risk �.

Function EMBEDDING-RISK(f,�, x, n, {ci}Ki=1, T,↵)
A, fsA  CLOSEST(f,�, x, n, {ci}Ki=1, T,↵)
B, fsB  CLOSEST(f,�, x, n, {ci}Ki=1,i 6=A, T,↵)
fs fsA [ fsB

�s ;
for all f 2 fs do

� = kcB�gk2�kcA�gk2

2kcB�cAk2

�s �s [ {�}
end for

� LowerConfBound(�s,↵)
Return �
EndFunction

However, a confidence interval for the distance kĝ(x) � ckk2 with a certain confidence covers
an expectation of distance E(kĝ(x) � ckk2), not the distance for expectation kE(ĝ(x) � ck)k2 =
kg(x)� ckk2.
To solve this problem, we propose to compute confidence intervals for the dot product of vectors.
Namely, given a quantity ⇠x,k = hg(x) � ck, g(x) � cki, we sample its unbiased estimate with
at maximum 2n samples of noise (here we have to mention that the number of samples n from
Algorithm 1 actually doubles since we need a pair of estimates ĝ(x) of smoothed embeddings):

⇠̂x,k =

*
1

n

nX

i=1

f(x+ "i)� ck,
1

n

2nX

j=n+1

f(x+ "j)� ck

+
(10)

and compute confidence interval (lx,k, ux,k) such that given

↵

3
= 2 exp

✓
� 2t2n2

Pn
i=1(bi � ai)2

◆
, (11)

the population mean E(⇠̂x,k) is most probably located within it, or, equivalently,
P
⇣
lx,k  E(⇠̂x,k)  ux,k

⌘
� 1 � ↵. We have to mention that there are three confidence inter-

vals for three terms (one with quadratic number of samples and two with the linear numbers of
samples) in the expression (10), that is why there is fraction 1

3 in the equation (11).

Also note that the population mean E(⇠̂x,k) is exactly kg(x)� ckk22, since

E(⇠̂x,k) = E
*
1

n

nX

i=1

f(x+ "i)� ck,
1

n

2nX

j=n+1

f(x+ "j)� ck

+
= kg(x)� ckk22 (12)

since f(x + "i) and f(x + "j) are independent random variables for i 6= j. Finally, note that the
confidence interval (lx,k, ux,k) for the quantity kg(x)� ckk22 implies confidence interval
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(a) Cub-200-2011 (b) CIFAR-FS (c) miniImageNet

Figure 3: Dependency of certified accuracy on attack radius " for different �, 1-shot case, n = 1000.

(a) Cub-200-2011 (b) CIFAR-FS (c) miniImageNet

Figure 4: Dependency of certified accuracy on attack radius " for different �, 5-shot case, n = 1000.

(
p

lx,k,
p
ux,k) (13)

for the quantity kg(x)� ckk2. Thus, the procedures TwoSidedConfInt and LowerConfBound from
algorithms return an interval from (13) and its left bound for the random variable representing
corresponding distance, respectively.

5 Experiments

5.1 Datasets

For the experimental evaluation of our approach we use several well-known datasets for few-shot
learning classification. Cub-200-2011 [45] is a dataset with 11, 788 images of 200 bird species, where
5864 images of 100 species are in the train subset and 5924 images of other 100 species are in the test
subset. It is notable that a lot of species presented in dataset have degree of visual similarity, making
classification of ones a challenging task even for humans. miniImageNet [44] is a substet of images
from ILSVRC 2015 [37] dataset with 64 images categories in train subset, 16 categories in validation
subset and 20 categories in test subset with 600 images of size 84⇥ 84 in each category. CIFAR FS
[1] is a subset of CIFAR 100 [19] dataset which was generated in the same way as miniImageNet and
contains 37800 images of 64 categories in the train set and 11400 images of 20 categories in the test
set. Experimental setup for all the datasets is presented in the next section.

5.2 Experimental settings and computation cost

Following [3], we compute approximate certified test set accuracy to estimate the performance of the
smoothed model prediction with the Algorithm 1 and embedding risk computation with the Algorithm
2. The baseline model we used for experiments is a prototypical network introduced in [39] with
ConvNet-4 backbone. Compared to the original architecture, an additional fully-connected layer was
added in the tail of the network to map embeddings to 512-dimensional vector space. The model was
trained to solve 1-shot and 5-shot classification tasks on each dataset, with 5-way classification on
each iteration.
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Parameters of expeiments. For data augmentation, we applied Gaussian noise with zero mean,
unit variance and probability 0.3 of augmentation. Each dataset was certified on a subsample of 500
images with default parameters for the Algorithm 1: number of samples n = 1000, confidence level
↵ = 0.001 and variance � = 1.0, unless stated otherwise. For our settings, it may be shown from
simple geometry that values (ai, bi) from (9) are such that bi � ai  4 so we use bi � ai = 4. The
maximum number of samples T in the Algorithm 1 is set to be T = 5⇥ 105.

Computation cost. In the table below, we report the computation time of the certification procedure
per image on Tesla V100 GPU for Cub-200-2011 dataset. Standard deviation in seconds appears
to be significant because the number of main loop iterations required to separate the two leftmost
confidence intervals varies from image to image in the test set.

Table 1: Computation time per image of implementation of the Algorithm 2, Cub-200-2011.
n 103 104 105

t, sec 0.044 ± 0.030 0.509 ± 0.403 4.744 ± 2.730

5.3 Results of experiments

In this section, we report the results of our experiments. In our evaluation protocol, we compute
approximate certified test set accuracy, CA. Given a sample x, a smoothed classifier g(·) from the
Algorithm 1 with an assigned classification rule h(x) = argmini2{1,...,K} kg(x)� ckk2, threshold
value " for l2�norm of additive perturbation and the robustness guarantee r = r(x) from the
Algorithm 3, we compute CA on test set S as follows:

CA(S, ") =
|(x, y) 2 S : r(x) > " & h(x) = y|

|S| . (14)

In other words, we treat the model g(·) as certified at point x under perturbation of norm " if x is
correctly classified by g(·) (what means that the procedure of classification described in the Algorithm
1 does not abstain from classification of x) and g(·) has the value of certified radius r(x) > ".

Visualization of results. The figures 3-4 represent dependencies of certified accuracy on the value of
norm of additive perturbation for different learning settings (1-shot and 5-shot learning). The value
of the attack radius corresponds to the threshold " from (14). For Cub-200-2011 dataset we provide a
dependency of certified accuracy for different sample size n for the Algorithm 1 (in the Figure 5).

6 Limitations

In this section, we provide failure probability of Algorithms 1-2, discuss abstains from classification
in the Algorithm 1 and speculate on the application of our method in other few-shot scenarios.

6.1 Estimation of errors of algorithms

Note that the value of ↵ from (11) is the probability of the value of ⇢x,k = kg(x)�ckk2 not to belong
to the corresponding interval of the form from (13). Given a sample x, the procedure in the Algorithm
1 returns two closest prototypes to the g(x). To determine two leftmost confidence intervals, all the
distances ⇢x,k have to be located within corresponding intervals, thus, according to the independence
of computing these two intervals, the error probability for the Algorithm 1 is q1 = K↵, where K

is the number of classes. Similarly, the procedure in the Algorithm 2 outputs the lower bound for
the adversarial risk with coverage at least 1� ↵ and depend on the output of the Algorithm 1 inside,
and, thus, has error probability q2 = 1� (1� ↵)(1�K↵) = ↵+K↵�K↵

2 that corresponds to
returning an overestimated lower bound for the adversarial risk from the Theorem 2.

6.2 Abstains from classification and extension to other few-shot approaches

It is crucial to note that the procedure in the Algorithm 1 may require a lot of samples to distin-
guish two leftmost confidence intervals and sometimes does not finish before reaching threshold
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value T for sample size. As a result, there may be input objects at which the smoothed classi-
fier can be neither evaluated nor certified. In this subsection, we report the fraction of objects
in which the Algorithm 1 abstains from determining the closest class prototype (see Tables 2-3).

Figure 5: Dependency of certified accuracy on
attack radius " for different number of samples
n of the Algorithm 1, CIFAR-FS dataset, 5-
shot case. It is notable that a relatively small
number of samples may be used to achieve a
satisfactory level of certified accuracy.

Table 2: Percentage of non-certified objects in
test subset, 1-shot case.

↵ = 10�2
↵ = 10�3

↵ = 10�4

Cub-200-2011 1.6% 1.6% 1.6%
CIFAR-FS 2.2% 2.2% 2.4%
miniImageNet 1.9% 2.2% 2.4%

Table 3: Percentage of non-certified objects in
test subset, 5-shot case.

↵ = 10�2
↵ = 10�3

↵ = 10�4

Cub-200-2011 1.2% 1.2% 1.4%
CIFAR-FS 3.0% 3.4% 3.8%
miniImageNet 2.9% 2.9% 3.0%

Since our method is based on randomized smoothing, among the approaches presented in [43] it is
applicable for matching networks and to some extent to MAML networks. In the case of matching
networks, the new sample is labeled as weighted cosine distance to support samples, so it is easy to
transfer guarantees for l2�distance to the ones for cosine distance in case of normalized embeddings.
For MAML, smoothing may be applied to the embedding function as well, but theoretical derivations
of certificates are required.

7 Related work

Breaking neural networks with adversarial attacks and empirical defending from them have a long
history of cat-and-mouse game. Namely, for a particular proposed defense against existing adversarial
perturbations, a new more aggressive attack is found. This motivated researchers to find defenses that
are mathematically provable and certifiably robust to different kinds of input manipulations. Several
works proposed exactly verified neural networks based on Satisfiability Modulo Theories solvers
[16, 6], or mixed-integer linear programming [30, 8]. These methods are found to be computationally
inefficient, although they guarantee to find adversarial examples, in the case they exist. Another line
of works use more relaxed certification [47, 11, 36]. Although these methods aim to guarantee that
an adversary does not exist in a certain region around a given input, they suffer from scalability to big
networks and large datasets. The only scalable to large datasets provable defense against adversarial
perturbations is randomized smoothing. Initially, it was found as an empirical defense to mitigate
adversarial effects in neural networks [29, 49]. Later several works showed its mathematical proof
of certified robustness [21, 25, 3, 38]. Lecuyer et al [21] first provided proof of certificates against
adversarial examples using differential privacy. Later, Cohen et al [3] provided the tightest bound
using Neyman-Pearson lemma. Interestingly, alternative proof using Lipschitz continuity was found
[38]. The scalability and simplicity of randomized smoothing attracted significant attention, and it
was extended beyond l2�perturbations [22, 42, 27, 24, 23, 20, 32, 51].

8 Conclusion and future work

In this work, we extended randomized smoothing as a defense against additive norm-bounded
adversarial attacks to the case of classification in the embedding space that is used in few-shot
learning scenarios. We performed an analysis of Lipschitz continuity of smoothed normalized
embeddings and derived a robustness certificate against l2�attacks. Our theoretical findings are
supported experimentally on several datasets. There are several directions for future work: our
approach can possibly be extended to other types of attacks, such as semantic transformations; also,
it is important to reduce the computational complexity of the certification procedure.
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