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ABSTRACT

In many real-world scenarios, precisely labeling graph data is costly or imprac-
tical, especially in domains like molecular biology or social networks, where
annotation requires expert effort. This challenge motivates partial-label graph
learning, where each graph is weakly annotated with a candidate label set con-
taining the true label. However, such ambiguous supervision makes it hard to
extract reliable semantics and increases the risk of overfitting to noisy candidates.
To address these challenges, we propose PRISM, a unified framework that per-
forms relational inference with spatial and spectral cues to resolve label ambi-
guity. PRISM captures discriminative spatial cues by aligning prototype-guided
substructures across graphs and extracts global spectral cues by decomposing
graph signals into multiple frequency bands with attention, preserving frequency-
specific semantics. These complementary views are integrated into a hybrid re-
lational graph, which supports confidence-aware label propagation under candi-
date constraints. A closed-loop refinement mechanism further stabilizes super-
vision via masked updates and momentum-based confidence estimation. Exten-
sive experiments across diverse benchmarks demonstrate that PRISM consistently
outperforms strong baselines under various noise settings, establishing a new
paradigm for weakly supervised graph classification. The source code is avail-
able at https://anonymous.4open.science/r/PRISM-17107/.

1 INTRODUCTION

Graph-structured data is pervasive across diverse domains such as drug discovery, molecular prop-
erty prediction, social network analysis, and recommendation systems (Fang et al., 2022; Zhang
et al., 2021b; Wang et al., 2021). These data are naturally represented as graphs, where nodes de-
note entities and edges model relations. To handle such complex structures, Graph Neural Networks
(GNNs) (Welling & Kipf, 2016; Hamilton et al., 2017; Xu et al., 2018; Zhang et al., 2021a) have
emerged as powerful tools for learning expressive graph-level representations, achieving state-of-
the-art results in a wide range of applications including biomedical classification (Liu et al., 2023),
cross-modal retrieval (Chen et al., 2022), and event understanding (Du et al., 2023). GNNS typically
operate by recursively aggregating information from node neighborhoods and summarizing node
embeddings via global pooling (Gao & Ji, 2019; Lee et al., 2021), followed by classification.

Despite these advances, existing GNN-based graph classification frameworks are fundamentally
data-intensive: they require accurate and fully labeled training samples to learn discriminative rep-
resentations (Li et al., 2022; Rousseau et al., 2015). However, in many real-world scenarios, ac-
quiring ground-truth labels is prohibitively expensive or technically infeasible. For instance, an-
notating molecular graphs often depends on density functional theory (DFT) simulations (Becke,
2014), which are computationally demanding; in social or biomedical networks, labeling requires
domain experts to manually verify latent properties such as toxicity, protein function, or commu-
nity membership (Yu et al., 2015a). As a result, datasets in practice are often weakly supervised,
with only partial or ambiguous label information available. While self-supervised methods such as
GraphCL (You et al., 2020) alleviate reliance on labels during pre-training by leveraging contrastive
objectives, they still depend on accurate annotations during fine-tuning or evaluation stages. In the
presence of label ambiguity, their performance tends to degrade significantly due to misaligned su-
pervision signals. This raises a crucial question: how can we train reliable GNN classifiers in the
presence of incomplete or uncertain supervision?
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We focus on a practical yet underexplored setting: Partial-label Graph Learning (PLGL). Each graph
is annotated with a candidate label set S; C ) containing the true class label, but the exact ground-
truth is unknown. This situation commonly arises when annotations are generated from noisy heuris-
tics, coarse rules, or automated labeling tools (Ge et al., 2022). While similar ideas have been studied
in image classification (Feng & An, 2019; Lyu et al., 2020), PLGL presents unique challenges due
to the structural complexity and non-Euclidean nature of graphs. First, ambiguous supervision intro-
duces semantic uncertainty, making it difficult to capture class-discriminative substructures. Second,
standard GNNs tend to overfit noisy signals without precise feedback, particularly when candidate
sets contain semantically similar labels. Third, unlike images, graphs exhibit patterns at multiple
structural resolutions, from local motifs to global topology, which cannot be represented by uniform
pooling or global averaging. Recent works have explored weakly supervised graph classification
using pseudo-labeling (Ju et al., 2023) or contrastive learning (You et al., 2020; Luo et al., 2023),
but they often face two limitations: (i) reliance on single-view or overconfident predictions, leading
to error accumulation and limited robustness under severe ambiguity; and (ii) lack of explicit use of
structural and spectral diversity to disentangle candidate labels.

To bridge this gap, we introduce PRISM, a unified and theoretically grounded framework for Partial-
label Relational Inference with Spatial and Spectral Modeling. PRISM tackles label ambiguity
through three synergistic and mutually reinforcing perspectives. First, it extracts spatial cues by
aligning prototype- guided substructures across graphs, thereby uncovering class-discriminative lo-
cal patterns even under noisy candidate sets. Second, it encodes spectral cues by decomposing graph
signals into multiple frequency bands, where a dedicated multi-band attention mechanism preserves
frequency-specific semantics critical for fine-grained reasoning and global structural understanding.
Third, it constructs a hybrid relational graph that integrates both spatial and spectral similarities, en-
abling confidence-aware label propagation to refine supervision signals iteratively and coherently. A
momentum-based update of soft labels under candidate constraints forms a closed-loop refinement
mechanism, which stabilizes training, suppresses noise accumulation, and ultimately yields robust
and reliable optimization under weak supervision.

Our contributions are summarized as follows. (1) Underexplored Problem. We study the under-
explored problem of partial-label graph learning, motivated by practical scenarios with ambiguous
supervision in molecular, social, and multimedia domains. (2) Novel Framework. We propose
PRISM, a novel relational inference framework that integrates spatial and spectral cues to disam-
biguate labels, combining substructure alignment, frequency-aware encoding, and dual-relational
propagation. (3) Extensive experiments. We validate PRISM across diverse benchmarks and
demonstrate its superiority over existing weakly supervised and graph learning approaches.

2 BACKGROUND

Problem Definition. Let G = {G; = (V;,&;, X;)}}Y, denote a collection of N graphs, where each
graph G; consists of a node set V;, edge set &;, and node features X; € RIViI*4 We denote by
A; € {0, 1}|Vl|X Vil the adjacency matrix of £;. For each graph G;, we are given a candidate label
set S; C ), where Y = {1,2,...,C} is the complete label space. The candidate set S; includes
the true label y; but does not reveal which one is correct. Our objective is to learn a graph classifier
f(G;; 0) that predicts the ground-truth label y for each graph in the test set, by training only on
ambiguous candidate sets without access to ground-truth supervision.

Graph Neural Networks. Graph Neural Networks (GNNs) are widely used to encode graph struc-
tures by recursively aggregating information from node neighborhoods. At each layer [, the repre-
sentation of node v is updated by combining its own embedding with messages from its neighbors:

RO = ¢® (RGD, 37w (R ), )

uwEN (v)
where ¢() and /() are learnable functions, and N (v) denotes the neighbor set of node .

After L layers, node embeddings hE,L) are aggregated into a graph-level representation using a read-
out function:

g = READOUT ({hw}vev) : &)
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Figure 1: Overview of PRISM. Our framework jointly models spatial substructures (A) and spectral
frequency patterns (B) to disambiguate partial labels. Prototype-guided attention and multi-band
spectral encoding construct two relational graphs (A®P*, A%P¢) for iterative label refinement under
candidate constraints.

where READOUT can be sum, mean, or attention-based pooling. These graph representations pro-
vide the basis for downstream tasks such as graph-level classification.

3 METHODOLOGY

This paper introduces a novel framework PRISM for partial-label graph learning that integrates local
substructural cues and global spectral dynamics to resolve candidate label ambiguities. Each graph
is simultaneously encoded through two complementary pathways: a spatial encoder emphasizes dis-
criminative regions by aligning interpretable subgraphs with label prototypes, while a spectral en-
coder decomposes graph signals into distinct frequency bands, capturing both smooth and irregular
structural patterns. These dual perspectives induce a relational graph with two types of edges: one
encoding prototype-based substructure similarity, the other reflecting spectral affinity across graphs.
To refine label supervision, we perform confidence-aware propagation over this hybrid graph, fusing
signals from both relational types. This design enables the model to distill consistent label cues from
noisy candidates, without relying on ground-truth labels. The overview of the proposed framework
PRISM is illustrated in Figure 1, and we will elaborate on the details below.

3.1 SPATIAL CUES VIA SUBSTRUCTURE MATCHING

In partial-label graph learning, the true label of each sample is concealed within a noisy candidate
set, where multiple labels may be semantically correlated. Relying solely on global representations
often blurs these distinctions, since graphs with overlapping candidate labels can exhibit similar
overall topology. In contrast, local substructures frequently encode the most discriminative evi-
dence for class separation. Motivated by this observation, we design a structure-aware disambigua-
tion module that aligns interpretable subgraph-level components across related instances, enabling
prototype-guided reasoning to uncover consistent label semantics under ambiguity.

To incorporate class-level semantic priors, we maintain a momentum-updated prototype bank {p. €
R¥} .cy, where each prototype p, tracks the aggregated global representation of graphs associated
with candidate label c. At training step ¢, we update each prototype as:

Z gi, 3)

where g; = READOUT ({hS,L)}vevi) denotes the global embedding of graph G, and B, is the set
of current-batch graphs containing label c in their candidate set and passing confidence-based filter-

® (t-1)
De m-pg 7+ (1-
IB | ;
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ing. Based on the prototype bank, we apply a prototype-guided attention mechanism to extract C'
substructure embeddings per graph, where each embedding is aligned with a candidate class. Given

the node embeddings from the final GNN layer {th)}Ueyi and the full prototype set {p.}<_,,
attention weights are computed to obtain class-aware latent components:

exp(hy” " p.)
TEC) = Z Ay - hg;L)v where o, = : : (4)

LT
ey, S, exp(h p)
The resulting embeddings {rfc)}g}:l serve as interpretable, class-specific substructures for down-
stream comparison. We then construct a relational graph over graph pairs that share at least one
candidate label. Let P = {(4,7) | SiNS; # 0, i # j} denote the set of such graph pairs. For each
pair (G, G;) € P, we define a prototype-aware substructure similarity:

(c) ()
e CEH;%XS], cos (rl@’ T‘EC)) . cos (23,1)(;) . 5)

For each graph, we retain its top-k, neighbors with the highest 57" scores to form a sparse relational

graph with a normalized adjacency matrix AP* that encodes substructure-level agreement under
label semantics. This spatial reasoning module provides a fine-grained structural prior, thereby
enhancing label disambiguation by promoting relational consistency among structurally aligned and
semantically plausible graph instances across diverse scenarios.

3.2 SPECTRAL CUES VIA MULTI-BAND FREQUENCY ATTENTION

While the spatial disambiguation module focuses on extracting local spatial cues, graph spectra
offer a complementary global perspective by capturing both low-frequency smoothness and high-
frequency irregularities. However, many existing spectral methods treat all frequency components
equally, applying uniform aggregation across the spectrum. This equal weighting tends to blur
structurally diverse signals and may obscure frequency-specific patterns that are crucial for fine-
grained graph understanding. In contrast, we propose a Multi-Band Frequency Attention module that
not only integrates spectral information into a unified representation but also preserves frequency-
specific characteristics through explicit band-wise modeling. Specifically, our method: (1) main-
tains the resolution of each frequency band by employing independently parameterized encoders,
and (2) supports fine-grained cross-graph reasoning via band-level similarity comparison. This de-
sign enables frequency-aware graph embeddings that emphasize informative spectral patterns while
suppressing noise from less relevant bands.

Given a graph G = (V, &) with normalized Laplacian eigenvalues {\1, A2,..., Ax} and corre-
sponding eigenvectors {w,us, ..., uy}, we first lift scalar spectral values into a learnable signal
space using harmonic expansion:

p(\) = [sin(kX), cos(kN)]}_, - W,,  p(\) € RY, (6)

where W, € R2T*d 5 a shared learnable projection matrix. This produces 7" distinct frequency
embeddings, each serving as a filtered spectral descriptor of the graph. To construct band-specific
node representations, we modulate the p-th eigenvector u, € RY with its associated harmonic
encoding p(),) to form:

XP) =, @p(),) € RV* (7
where ® denotes the outer product broadcast across all nodes. Each X (P) is then processed by an
independently parameterized feedforward network (MLP), resulting in transformed node features
X () ¢ RVN* that encode frequency-specific semantics. We then apply a message passing neural

network fsared, Shared across all frequency bands, to each X @) to extract high-level structural
signals. For each band p € {1,...,T}, we compute the corresponding graph-level embedding as:

2(") — READOUT ( Funarea (X @, A)) : (8)

where A denotes the adjacency matrix of the graph. This yields a set of band-level embeddings
{z(l), e ,z(T)} that capture structurally filtered representations of the graph across multiple fre-
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quency perspectives. To synthesize multi-scale structural signals, we employ a soft attention mech-
anism across bands:

T T (p)
z= Za(p)z(p),where a®) = Texp (a o(W=" )) ) 9
= D g=1€XD (aTo(Wz@))

Here, W and a are learnable parameters, and o(-) denotes a nonlinear activation. For cross-graph
structural reasoning, we compute band-wise similarity between graphs. Let G; and G; denote two

graphs with band embeddings {z"’ H_ ) and {zj(-p ) I_ ., respectively. Their similarity is defined as:

sf]’,’e = pe?ll,a.).{,T} cos (zz(p), zj(p)) . (10)

To ensure label-aware alignment, we restrict edges to graph pairs with overlapping candidate sets,
ie., SiN'S; # 0. Each graph links to its top-k. most similar neighbors, forming a relational graph
with normalized adjacency matrix A®P¢ that supports label disambiguation.

We theoretically establish that both A°P* and A®P¢ contribute to label disambiguation. Intuitively,
the distribution of hidden node embeddings should be determined by the prototype of the true label
to a certain degree. Building on this observation, we present the following theorem with proof
provided in Appendix A:

Theorem 1. Assume E {hg)\y;‘ = c} =pe, YU €V, 7]52 =P (A; (j, k) = 1) is random variable
whose distribution can be determined by y;, and mini<;<n1<p<T )‘1(721 — /\Z(,i)
§ > 0. Then, we have for any i,j € {1,2, ..., N}:

P (AP =1y =y;) =1 (11)

> ¢ for some

and
P (A =1ly; =y)) — 1 (12)

as |Vi|,|V;| = oo.

spa

Theorem | suggests that if graph ¢ and j shares the same true label, the probabilities of A; 5 and

Aff “ being 1 will both converge to 1, which works on the subsequent label propagation with disam-
biguation from noisy candidate sets.

3.3 LABEL DISAMBIGUATION VIA RELATIONAL INFERENCE

Based on the relational graph constructed in previous modules, which encodes spatial proximity and
spectral correlation as distinct relational types, we develop an iterative label propagation framework
to enhance supervision under partially labeled settings where ground-truth labels are inaccessible.
This framework integrates complementary structural and spectral signals, progressively refining soft
supervision, while rigorously enforcing candidate label constraints throughout the entire refinement
process to ensure both semantic validity and training stability.

Let Y9 € RNXC denote the initial soft label matrix, where N is the number of graphs and C' the
number of classes. At each iteration ¢, label signals are updated using two normalized adjacency
matrices: A*P? for spatial relations and A*P¢ for spectral affinity. The propagation rule is:

Y+ — o y® 4 (1-—a) N (Aszmy(t) + AspeY(t)) , (13)

where « € (0, 1) controls the update momentum, and A (-) denotes row-wise ¢ normalization. To
constrain label propagation to valid candidate classes, we apply a binary mask M € {0,1}V*¢
after each update:

Y(tJrl) — N (Y~'(t+1) ® M> , (14)

where ® denotes element-wise multiplication. After 7 iterations, the refined label matrix Y (7) cap-
tures multi-relational consistency while remaining faithful to partial supervision, enabling effective
disambiguation of noisy candidate sets. We maintain a soft label confidence matrix Q € RV*¢,
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initialized uniformly over candidate classes. To adaptively improve supervision quality, Q is pe-
riodically updated using the soft labels Y (7) inferred through relational propagation. The update
follows an exponential moving average (EMA) scheme:

Qi N (m-Qi+(1-m)-¥,"), (1s)

where m € (0, 1) is the momentum coefficient and N (-) denotes row-wise ¢; normalization applied
over candidate entries. This closed-loop mechanism ensures alignment between model predictions
and structure-aware label signals, promoting stable and reliable supervision during training.

3.4 UNIFIED TRAINING OBJECTIVE

To train the model under partial supervision, we adopt a unified objective that couples candidate-
constrained loss with confidence-aware refinement. The final predictions are obtained by applying
an MLP-based classifier to the spatial-view embeddings g, producing logits P*?% € R¥XC  1In
parallel, a distinct classifier processes the spectral-view embeddings z to yield P*P¢ € RV*C_ The
training loss for the spatial (spectral) view is defined as the negative marginal log-likelihood over
candidate classes:

B

1 o

L), = 3 D log Softmax(P;”). - Qc, o€ {spa, spe}, (16)
i=1 ceS;

where S; is the candidate label set for sample 4, and B is the batch size. This formulation encourages
the model to align predictions with the confidence-weighted support within each candidate set. We
jointly optimize the spatial and spectral objectives to extract complementary supervisory signals:

L= Lo+ L (17)
This dual-view supervision facilitates robust label disambiguation under uncertainty. We then offer
a theoretical analysis of the proposed method, particularly focusing on the convergence of the label

confidence matrix and training loss under certain conditions. To begin with, let Y* = (Yl*)f\il €

{0, 1}NXC be the matrix consisting of ground-truth one-hot label vector. Denote the classifier as
fetassifier Which produces partial label confidence matrix P, the final predicted label confidence
vector of graph i is P; = feiassifier (gi). If the classifier is well-trained, it should recover label ¢
from p, since p, is the prototype of label c. Based on this, we have the following results with the
proof in Appendix B:

Theorem 2. Under the assumption of Theorem 1, further assume feossifier (Pc) = L, Ve € Y
where 1, € {0, l}c denotes one-hot vector whose c-th component is 1 while the rest are 0, we have:

Qi == Y (18)
as |\Vi|, T — oo. And
E[Lsup] — 0 (19)

as minlSiSN |Vz‘ 7T — OQ.

Theorem 2 indicates that if each graph has enough node information and we iterate enough epochs,
the soft label confidence matrix updated by EMA will converge to the ground-truth and training
loss will tend to zero, which further implies our framework can resolve label ambiguity by aligning
prototype-guided substructures across graphs. The condition |V;| — oo can be replaced by B, N —
o0 to a certain degree, since graphs with the same label and candidate label set can be regarded as a
whole, and the whole number of nodes tends to infinity when B, N — oo.

3.5 COMPUTATIONAL EFFICIENCY ANALYSIS

Let N be the number of nodes, |£| the number of edges, d the feature dimension, L the number
of GNN layers, and 7" the number of spectral bands. In preprocessing, we compute the k smallest
eigenvectors and their spectral encodings, which are reused throughout training. During training, the
spatial view performs message passing with complexity O(L|£|d), while the spectral view operates
on pre-computed features across 7' bands and applies shared MLPs, resulting in a total cost of
O(TNd). Since L and T are small constants, the overall training complexity is O(|€|d), which is
linear in the number of edges and consistent with standard GNN-based methods.
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Table 1: The classification accuracy (mean%=+std%) on five graph benchmark datasets. The best
results are shown in boldface and the second best results are underlined. ¢ = P(y € Y|y # y)
reflecting the degree of label ambiguity.

Datasets ENZYMES Letter-High COIL-DEL CIFAR10 COLORS-3
Methods q=0.3 q=0.5 q=0.3 q=05 ¢=005 ¢g=0.1 q=0.3 q=0.5 q=0.3 q=0.5
GCN 48441206 40224203 44.00+108 35.94+1s2  50.43+107 41.63+174  43.68+068 41.35+065 74.87+025 60.67+1.64
GAT 49. 114293 34.67+387 61.33+348 53.04+306 59.77+197 46.63+154 52.93+122 48.54+046 71.832022 62.56+354
GIN 47114450 34224178 50.43+192 35.59+375 46.23+088 37.29+104 43914045 41244052 48171044  41.00+27s
GraphSAGE 47334303 39334311 70.96+148  60.35+183 58.91+192 49.23+190 51.92+026 47.44+083 T1.24+300 56.63+ss1
TopKPool 44224276 36.00+480 55.25+274 43.83+s521 44.83+210 34.63+208 48.97+124 42874131 56.69+358 33494174
SAGPool 46.67+253 37114500 55.71+a7m1 39.30+s540 41.89+428 30.17+185 50.01+t0e8 45.16+03 59.91+414 24.62+03
EdgePool S51.11+306 33334190 64.17+244 55364216 56.74+398 45.89+130 50.17+064 45904044 76.96+013 62.31+123
ASAP 44441306 31.56+334 65.04+122 52.75+441 46.20+408 34.941300 50.10+063 44.81+157  70.11+054  62.47+008
Graph Transplant  51.78+230 43.784341 74.84+144 66.78+186 66.57+160 57.11x103 53.79+111 48.95+147 74.66+130 62.72+237
PiCO 46.88+276 35784302 73.56+171 64.63+435 76.25+166 63.69+142 53.47+114  46.04+120 53.99+092 34.74+177
TGNN 53.334351 42224430 70431097 59.83+132  62.28+105 50.20+117 OOM OOM 75.84+181  63.95+218
GraphCL 54224514 39784500 72.00+201 62.49+200 69.94+231 60.17+296 53.57+0s87 48.10+061 72.89+124  61.55+101
GraphACL 54441233 44.89+475 69.80+101 57.68+285 71.40+005 60.29+304 53.25+t062 47.86+065 73.84+212  63.57+130
DEER 5822+218 47.56+251 80.12+126 72.29+154  79.94+120 68.03+111 57.08+0s7 52.48+072 88.13+208 66.81+28

PRISM (Ours)  63.11+0s3 51.334361 82.55:1089 78.32+137 85.69+106 79.48+145 58291083 55104098 91.93:226 80.57+260

4 EXPERIMENTS
4.1 EXPERIMENTAL SETUP

Datasets. To comprehensively assess the performance of PRISM, we conduct experiments on five
established graph classification benchmarks spanning the bioinformatics and vision domains: EN-
ZYMES (Schomburg et al., 2004), Letter-High (Riesen & Bunke, 2008), COIL-DEL (Riesen &
Bunke, 2008), CIFAR10 (Dwivedi et al., 2020), and COLORS-3 (Knyazev et al., 2019). Fol-
lowing (Gu et al., 2024), we randomly inject false positive labels into the candidate set to gen-
erate partial-label data. Specifically, each incorrect label 4 # vy is included with probability
qg= Py €Y |7y # y), controlling the degree of label ambiguity. A higher ¢ indicates noisier
candidate supervision. We set ¢ € {0.1,0.3,0.5} for most datasets, and ¢ € {0.02,0.05,0.1} for
COIL-DEL to account for its larger label space. More details are provided in the Appendix E.

Baseline Methods. We compare our proposed PRISM with a comprehensive set of baselines across
multiple paradigms: (a) Graph neural networks: GCN (Welling & Kipf, 2016), GAT (Velickovic
et al.,, 2017), GIN (Xu et al., 2018), and GraphSAGE (Hamilton et al., 2017); (b) Hierarchical
graph pooling methods: TopKPool (Gao & Ji, 2019), SAGPool (Lee et al., 2019), EdgePool (Diehl,
2019), and ASAP (Ranjan et al., 2020), all using GraphSAGE as the backbone; (¢) Graph augmen-
tation method: Graph Transplant (Park et al., 2022); (d) Unsupervised contrastive graph learning:
GraphCL (You et al., 2020) and GraphACL (Luo et al., 2023); (e) Semi-supervised graph learning:
TGNN (Ju et al., 2023); (f) Partial label learning in vision: PiICO (Wang et al., 2022), adapted to the
graph setting with a GraphSAGE encoder for fair comparison; (g) Partial label learning for graphs:
DEER (Gu et al., 2024). Further details on the baselines are provided in the Appendix F.

Implementation and Evaluation Protocol. All experiments are implemented using PyTorch with
the PyG backend. We use a two-layer GraphSAGE with 512 hidden units as the shared encoder
across all models. Training is performed using the Adam optimizer (Kingma & Ba, 2014) with
an initial learning rate of 0.001 and a batch size of 128. All reported results are averaged over five
independent runs with different random seeds, each reporting mean accuracy and standard deviation.
More details about the implementation are provided in the Appendix G.

4.2 PERFORMANCE COMPARISON

Table | summarizes the classification performance of PRISM against diverse baselines under vary-
ing label ambiguity levels (g). The results highlight four key findings: (1) PRISM achieves con-
sistently superior performance across all datasets and ambiguity settings, surpassing baselines by
a considerable margin. For example, on ENZYMES, our method outperforms the second-best by
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Table 2: Ablation study on ENZYMES, Letter-High, and CIFAR10.

Datasets ENZYMES Letter-High CIFARI10
Variants q=0.3 q=20.5 q=0.3 q=20.5 q=0.3 q=20.5
PRISM w/o Sub 61.78+206 49.56+355 80.70+120 76.11+219 56.65+101 53.30+0.77
PRISM w/o Spa 60.89+226 48.00+387 79.65+121  T4.72+099 55.23+119  51.72+108
PRISM w/o Spe 61.55+194 48.89+211  80.17+043 76.46+245 55.72+093 52.65+1.12

PRISM w/o Rel. Infer 57.78+281 45.11+4395 78.43+103 71244218 53.61+132 49.79+127
PRISM (Full Model) 63.11+0s3 51.33+361 82.551089 78.32+137 58.29+083 55.10-+0.9s
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Figure 2: (a) Performance comparison in scenarios with hierarchical label noise. (b) Performance
comparison in scenarios with competitive label noise. (c)(d) Performance w.rt. top-k, and top-k.
on ENZYMES and Letter-High.

8.3% under ¢ = 0.3, confirming its robustness and generalization under weak supervision. (2) On
fine-grained datasets such as COIL-DEL, where class granularity and semantic ambiguity are pro-
nounced, PRISM retains a strong advantage even at high noise. On COIL-DEL with ¢ = 0.1, it at-
tains 79.48% accuracy, exceeding the prior best (DEER, 68.03%) by 16.8%, showing effective can-
didate disambiguation via complementary spectral and substructure cues. (3) Compared to vision-
based partial-label methods (e.g., PiCO) and semi-supervised models (e.g., TGNN), our framework
consistently improves performance across all graph datasets. Although PiCO with GraphSAGE en-
coders is adapted to graphs, it still lags, underscoring the limits of directly transferring CV-based
methods and the necessity of graph-specific modeling. (4) As label ambiguity ¢ increases, most
methods degrade sharply, whereas PRISM exhibits a much slower decline. This robustness stems
from integrating spectral and substructural reasoning, with confidence-aware propagation mitigating
noisy and misleading supervision. More results under ¢ = 0.1 are provided in Appendix D.

Semantically Correlated Label Noise. In many real-world scenarios, labels are not independent
but semantically correlated, leading to candidate sets that contain noisy labels with stronger affinity
to the ground-truth than unrelated classes, thereby creating additional challenges for robust learn-
ing. This raises the challenge of whether PRISM can reliably address such semantically entangled
ambiguity. To evaluate this, we design two experimental protocols: (1) Hierarchical label noise.
We exploit the coarse-to-fine taxonomy of CIFAR10 (e.g., vehicles vs. animals) and introduce noise
by flipping negative labels within the same super-class as the true label with probability g, thereby
forming semantically plausible candidates. (2) Competitive label noise. Following (Yan & Guo,
2023), we pretrain a graph neural network (GNN) on clean data to capture inter-class semantic de-
pendencies. We then randomly select noisy candidates from the Top-K predictions of this GNN,
with K = 6 for Letter-High, and vary the candidate set size by adjusting sampling ratios. The
results, presented in Figure 2 (a)(b), show that PRISM consistently outperforms all baselines under
both noise schemes across different ambiguity levels, thereby highlighting its robustness to seman-
tically correlated label noise. Details of the CIFAR10 hierarchy are provided in Appendix E.

4.3 ABLATION STUDY

To assess the contribution of each core component in PRISM, we conduct ablation experiments on
ENZYMES, Letter-High, and CIFAR10 under noise levels ¢ = 0.3 and ¢ = 0.5, with results in
Table 2. Removing substructure alignment (PRISM w/o Sub) and replacing class-specific match-
ing with holistic graph embeddings causes clear performance drops, especially under high ambigu-
ity, showing that discriminative substructure cues outperform coarse comparisons. Excluding the
spatial branch (PRISM w/o Spa) further reduces accuracy, as the absence of neighborhood-aware
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Figure 3: Class-specific attention maps reveal consistent focus on discriminative substructures
across graph instances within different categories.

signals weakens the capture of fine-grained topology critical for resolving label ambiguity, particu-
larly in CIFAR10. Discarding the spectral attention module (PRISM w/o Spe) validates the value of
frequency-specific reasoning, since multi-band decomposition highlights global semantics comple-
menting local structure. Most critically, removing the relational inference layer (PRISM w/o Rel.
Infer) yields the sharpest degradation, especially at ¢ = 0.5, underscoring that graph-of-graph mod-
eling and label propagation are indispensable for suppressing noise and ensuring robust supervision.

4.4 SENSITIVITY ANALYSIS

To investigate the influence of relational sparsity, we analyze how the number of neighbors retained
in the spatial (k,) and spectral (k.) relational graphs affects performance. As illustrated in Figure 2
(c)(d), accuracy generally increases as k, and k. grow from 1 to moderate values, then saturates or
slightly declines. This pattern indicates that adding structurally or spectrally aligned instances im-
proves cross-graph consistency by enhancing the density of reliable signals. However, overly dense
connectivity introduces noisy or weakly correlated neighbors, diluting discriminative patterns and
potentially causing label propagation drift. Our model achieves stable performance under a broad
range of k values, reflecting robustness to hyperparameter choices in multi-view graph construction.

4.5 VISUALIZATION OF CLASS-SPECIFIC ATTENTION

To assess the interpretability of our spatial encoder, we visualize class-conditioned attention maps
from the ENZYMES dataset. As shown in Figure 3, each node is colored by its attention weight rel-
ative to the ground-truth class prototype, with warmer colors denoting greater contribution to class-
specific substructure reasoning. The model consistently highlights structurally informative regions,
such as densely connected motifs, central connectors, or bridging nodes, while down-weighting pe-
ripheral or less relevant parts of the graph. Despite structural variability across samples, attention
patterns remain highly consistent within the same class, indicating that prototype-guided attention
effectively identifies semantically aligned substructures relevant for enzyme classification and pro-
vides human-interpretable insights into functionally critical topological regions.

5 CONCLUSION

In this work, we study the underexplored problem of partial-label graph learning, where each graph
is annotated with an ambiguous candidate label set. To address the inherent challenges of semantic
uncertainty and structural complexity, we propose PRISM, a unified relational inference framework
that integrates spatial substructure alignment and spectral frequency modeling via dual relational
graphs. Our method leverages confidence-aware label propagation and candidate-constrained refine-
ment to disambiguate supervision without relying on ground-truth annotations or external auxiliary
signals. Extensive experiments across multiple benchmarks validate the effectiveness, robustness,
and generalizability of PRISM under various ambiguity levels, highlighting its potential as a princi-
pled and versatile solution for learning from weakly supervised graph data.
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A PROOF OF THEOREM 1

To begin with, we denote adjacent matrix of graph i as A for the sake of convenience, take
READOUT function as the mean in (2) that g; = |v i Z'L)GV h "), Since P is the prototype of
label ¢, we assume the latent representations of nodes satisfy

E [hgf'>|y;f - c} = pe, Yo € V. (20)

where y; is the ground-truth label of graph . Assume the latent representations of nodes in one
graph are identically distributed, it follows from (20) and the law of large number that for any graph
1 with true label y; = ¢

gi‘WEZW‘” (A 1yi = ] = pe

as |V;| — oo, which is account for (3) to a certain degree. As for the adjacent matrix, we refer to (Gu
et al., 2024) to consider the generalized random dot product graph, which can date back to (Solanki
et al., 2021) that for graph ¢:

P (A =110) = antl I, &

where © = (&1,...,&,) ~ FO I, = diag (I, —1I,). We assume the distribution F*) is deter-
mined by the global graph feature g; that there exist a continuous matrix function M such that

AD = M (g;), Vie{1,2,..,N}. Q1)
Take coefficients agc) = \\i I and denote /\1(7 ), u( ") as the p-th eigenvalue, eigenvector for graph ¢ for
the sake of simplicity. First we consider if y; = ¢, y; = ¢’ then by (20) and the continuity theorem

cos (7”50)77"5-0/)) = Z Oz( Y f)],?:, cos (hg),hg))
veV;,v' €V;
| X 5

as |V;|, |Vj| = oo, and

o (17,0 = 3 oo (19.0) o

vEV;

Z v 7p0> &)Cos(pc,pc) =1,
€V;

as |V;| — oo, which further implies

C
P(AP =1yf =y;) =D P(AT =1y} =y =) P (y; =y} =y} =)

Y

C
DB (s =1y =y =) P (yf =y} = cly; = ;)
c=1

c P 470
ZZPG%«%YOM<2,m>1M£%PM£w?yﬁ

as [V, |V;| — oo, where the second and third line follow from the definitions of A*** and s77*. As
for (12), observe that (21) indicates the adjacent matrix of graph ¢ given y; = c satisfies

A6 — <V| 3 h(z) L2 M (pe)
veV;
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*

as [V;| — oo, which implies [|A®) — AW ||z =25 0 given y; = y; = c. Further by Weyl’s
Perturbation Theorem in (Oudghiri, 2005) we have

’)\(z J)’<HA A(j)||F&>O’
while by a variant of DaV1s Kahan Theorem, Theorem 2 in (Yu et al., 2015b) and
AW

p+1

SUSINLIXPS

||u;“ — )] < 3140 — ADp 225 0
for 1 < p < T. Therefore by (8) and the continuity theorem we have

127 = Z7] £ 0
for 1 < p < T, which leads to

P2 )2
Z; + Z
1>c S( (p) (p)) || H || ||

P [N [Pl LR [Pl
2||z£”)|| 122 2/|27]] - 11287

Then by the definitions of A*P¢ and s;7“we obtain

C
P (A =1y =u) =D P(AY =1ly; =y; =) Py = v = cly] =v])

C
>N P(s=1ly; =y =) P(y; =y} =clyf =)

=Y Py =y =cly =y;) =1,
c=1
as [Vi|, |V;| — oo, which completes the proof. ]

B PROOF OF THEOREM 2

Recall that we assume the classifier is well-trained such that
fclassifier (p(‘) = Hm Ve e y, (22)

where I, € {0, l}c denotes one-hot vector whose c-th component is 1 and the rest are 0. By
Theorem 1 and (13) we have

VAR, Ta

as |V;|, T — oo, which further implies Q; ~> Y;* according to (15). By the continuity theorem
and (22) we have

P fclasszfzer (gz) fclasszfzer <Z |V | > — fclassifier (pyf) = ]Iy: = Y'i* (23)

vEV;

as |V;| — oo. Denote |V| = min1<i§ ~ |Vil, by dominated convergence theorem and (16) we obtain

lim E[Ly] = lim E
\V|,1TH—1>oo ») B Z VI, o oo

logZSoftmax( ). ch]

ceS;

B
1 .
_EE E| lim log E Softmax (F;), - Qic + (z)*sz
i=1

V|, T— o0 ¢
cAy;

B
1
= fEZElog[OJr 11=0
i=1
where the last line follows from (18) and (23). ]
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C RELATED WORK

C.1 GRAPH CLASSIFICATION

Graph classification has been widely applied in fields such as molecular property prediction, protein
interaction analysis, and social network modeling (Fang et al., 2022; Wang et al., 2021). Tradi-
tional graph kernel methods (Shervashidze et al., 2011) measure structural similarity through sub-
graph comparisons, but scale poorly to large graphs. Recent advances in Graph Neural Networks
(GNNs) (Welling & Kipf, 2016; Hamilton et al., 2017; Velickovi¢ et al., 2017; Xu et al., 2018) have
shown superior performance by aggregating local neighborhood information and generating graph-
level representations via pooling operators (Lee et al., 2019; Gao & Ji, 2019; Lee et al., 2021).
Spectral approaches like EigenMLP (Bo et al., 2023) provide an alternative by encoding global
graph structure through Fourier-like eigenvalue embeddings. Despite their success, these methods
heavily rely on clean and abundant labels, which are often unavailable in real-world scenarios due
to annotation cost or inherent uncertainty. While self-supervised methods such as GraphCL (You
et al., 2020) avoid labels during pre-training, they still require accurate annotations for downstream
classification and tend to degrade significantly under label ambiguity. Our work takes a step further
by addressing the graph classification task under partial-label settings with relational inference over
spatial and spectral cues.

C.2 PARTIAL LABEL LEARNING

Partial label learning (PLL) considers a weak supervision setting where each training instance is
annotated with a candidate label set containing only one correct label (Hiillermeier & Beringer,
2005; Cour et al., 2011). Early approaches treat all candidates equally by averaging losses, but
such uniform assumptions often fail under high label ambiguity. Later works focus on disambigua-
tion, estimating true labels through confidence-based or similarity-driven refinement (Feng & An,
2019; Wang & Zhang, 2022). Recent advances introduce contrastive learning to PLL (Wang et al.,
2022), where prototype-instance alignment helps separate correct labels from distractors. However,
these methods are mostly designed for Euclidean data such as images or texts. On graph-structured
data, PLL remains underexplored. DEER (Gu et al., 2024) is one of the few attempts, proposing
to measure semantic distribution divergence between graph views for contrastive learning and using
posterior-guided soft label correction. Nonetheless, DEER relies on semantic distribution matching
and lacks fine-grained structural modeling. Another work, GPCD (Gao et al., 2024), introduces
graph potential cause discovery to estimate causal subsets for supervision, but suffers from high
training complexity and overlooks global spectral cues. In contrast, PRISM integrates spatial sub-
structure information and spectral semantics into a unified relational inference framework, enabling
more precise and robust label disambiguation under complex graph structures.

D MORE EXPERIMENTAL RESULTS

We present additional results under the low ambiguity level (¢ = 0.1, ¢ = 0.02) in Table 3. Across
all datasets, PRISM consistently achieves the best performance, reaffirming its robustness under
mild supervision noise. In particular, clear gains are observed on fine-grained datasets such as
COIL-DEL, where both spatial and spectral cues play a pivotal role in resolving semantic ambi-
guities. These results complement the main findings in Section 4.2, further demonstrating that our
framework sustains strong generalization across diverse noise regimes.

E DETAILS OF DATASETS

To rigorously evaluate the effectiveness of our proposed PRISM, we conduct extensive experiments
on five graph classification benchmarks spanning bioinformatics and visual domains: ENZYMES,
Letter-High, COIL-DEL, CIFAR10, and COLORS-3. These datasets provide a wide range of struc-
tural configurations and semantic granularities, enabling a comprehensive analysis of PRISM under
varied supervision conditions.

* ENZYMES (Schomburg et al., 2004) is a bioinformatics dataset comprising 600 protein tertiary
structures. Each graph represents a protein, where nodes correspond to secondary structure ele-
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Table 3: The classification accuracy (mean%=+std%) on five graph benchmark datasets. The best
results are shown in boldface and the second best results are underlined. ¢ = P(y € Y|y # y)
reflecting the degree of label ambiguity.

Dataset ENZYMES Letter-High COIL-DEL CIFAR10 COLORS-3
Methods q=0.1 q=0.1 q=0.02 q=0.1 q=0.1
GCN 61.3342585 50.09+0.70 60.77x111 47.18+100  90.341006
GAT 58.2243.03 73.39+141 69.11+286  57.56+065 89.33+142
GIN 59.78 1458 55.83 1428 55944160  47.294061  63.01x145
GraphSAGE 60.89-+1.00 78.20+1.17 71404215 57.22+061  91.70+218
TopKPool 53.11+4.12 67.07+1.60 55.80+485  55.26+085  82.35+136
SAGPool 56.89+537 67.424191 52944250 54231053 76.991439
EdgePool 58.67+267 70.49+3.0 68.74+185  55.09+061  87.47+041
ASAP 60.89+267 71.25+144 59.031300  54.56+066  77.84+126
Graph Transplant ~ 61.56+236 80.75+0.60 80.09+075  56.87+128  85.48+039
PiCO 61.08+6.67 81.27+1.60 84.88+100 57.70+0s2  65.68+1.07
TGNN 62.441301 78.55+078 70.49 40387 OOM 93.16+155
GraphCL 61.78+151 78.43+085 78.83+106  57.62+0s6  92.71+1e1
GraphACL 58.22+151 81.04+1.01 80.66+041  57.65+021  92.05+050
DEER 67.11+166 83.48 1092 87.86+141  61.451040 96.231204

PRISM (Ours) 68.00-1.63 84.87 1074 89.291136 61.73+087  98.36+1.07

ments (e.g., helices, strands), and edges indicate either spatial proximity or sequential adjacency.
The classification involves assigning one of six enzyme commission (EC) classes.

* Letter-High (Riesen & Bunke, 2008) contains graphs constructed from 15 uppercase letters. Each
letter is transformed into a prototype graph by representing stroke endpoints as nodes and line
segments as edges. The dataset emphasizes shape topology and inter-class similarity among char-
acters.

* COIL-DEL (Riesen & Bunke, 2008) is derived from object images by applying Harris corner
detection followed by Delaunay triangulation. This results in undirected graphs where nodes
denote detected corners and edges reflect geometric connectivity. The dataset includes 100 object
categories with significant structural variation.

* CIFAR10 (Dwivedi et al., 2020) is constructed from an image classification benchmark by trans-
forming each image into a graph representation based on superpixels. In this formulation, nodes
denote individual superpixels, and edges are established according to k-nearest neighbor rela-
tionships. The dataset further exhibits a hierarchical taxonomy: the first super-class (vehicles)
comprises airplane, automobile, ship, and truck (excluding pickup truck), whereas the second
super-class (animals) encompasses bird, cat, deer, dog, frog, and horse.

* COLORS-3 (Knyazev et al., 2019) is a synthetic benchmark for evaluating reasoning over discrete
node attributes. Each graph contains nodes with categorical color features (red, green, blue),
encoded as one-hot vectors. The task is to count the number of nodes of a specified color, requiring
models to identify and aggregate attribute-specific information.

To emulate the partial-label learning scenario, we adopt the controlled label corruption protocol
in (Gu et al., 2024), wherein each sample is provided with a candidate label set that includes the
ground-truth label and randomly sampled distractors. The inclusion probability ¢ = P(g € S; |
Yy # y;) determines the ambiguity level of the candidate supervision. We set ¢ € {0.1,0.3,0.5}
for ENZYMES, Letter-High, and COLORS-3, while smaller values {0.02, 0.05, 0.1} are chosen for
COIL-DEL due to its larger label space and increased visual complexity.

F DETAILS OF BASELINES

We compare our proposed PRISM against a broad spectrum of baseline models categorized into
seven distinct groups: (a) Graph neural networks: GCN (Welling & Kipf, 2016), GAT (Velickovic¢
etal.,2017), GIN (Xu et al., 2018), and GraphSAGE (Hamilton et al., 2017); (b) Hierarchical graph
pooling: TopKPool (Gao & Ji, 2019), SAGPool (Lee et al., 2019), EdgePool (Diehl, 2019), and
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ASAP (Ranjan et al., 2020) (all using GraphSAGE as the encoder backbone); (c) Graph augmenta-
tion method: Graph Transplant (Park et al., 2022); (d) Contrastive graph learning: GraphCL (You
et al., 2020) and GraphACL (Luo et al., 2023); (e) Weakly-supervised learning: TGNN (Ju et al.,
2023); (f) Partial-label learning in vision: PiCO (Wang et al., 2022), adapted with a GraphSAGE
encoder; (g) Partial-label learning for graphs: DEER (Gu et al., 2024), which operates directly on
the partial supervision scenario. These baselines span diverse learning paradigms and offer comple-
mentary modeling assumptions, providing a comprehensive testbed for evaluation.

* GCN (Welling & Kipf, 2016): A spectral convolutional network that leverages renormalized ad-
jacency matrices to aggregate first-order neighborhood information in a computationally efficient
manner.

* GAT (Velickovic et al., 2017): Introduces attention weights over neighbors, enabling each node
to prioritize important neighbors during message passing.

* GIN (Xu et al., 2018): Uses MLPs to approximate injective functions over multisets of neighbors,
achieving powerful discriminative capacity aligned with the Weisfeiler-Lehman graph test.

* GraphSAGE (Hamilton et al., 2017): Aggregates information from randomly sampled neighbors
and generalizes to unseen graphs via inductive learning, making it scalable to large datasets.

* TopKPool (Gao & Ji, 2019): Selects top-ranked nodes based on a learnable projection score to
form a pooled graph with reduced size and preserved discriminative regions.

* SAGPool (Lee et al., 2019): Utilizes self-attention scores computed from graph convolutions to
guide node selection for pooling, capturing both feature and structural signals.

* EdgePool (Dichl, 2019): Contracts informative edges iteratively to coarsen the graph while main-
taining crucial topological structures.

* ASAP (Ranjan et al., 2020): Combines node selection and clustering by learning soft assignments
over local h-hop neighborhoods, allowing for adaptive structure-aware pooling.

* Graph Transplant (Park et al., 2022): A mixup-inspired data augmentation strategy that extracts
meaningful subgraphs based on node saliency and generates hybrid samples through substructure-
level interpolation.

* GraphCL (You et al., 2020): A contrastive learning framework that maximizes agreement be-
tween different augmented views of a graph, using stochastic transformations and InfoNCE loss.

* GraphACL (Luo et al., 2023): Improves contrastive representation learning by constructing ad-
versarial hard negatives and regularizing the feature space with orthogonality and divergence con-
straints.

* TGNN (Ju et al., 2023): A dual-view semi-supervised framework that integrates message passing
and kernel-based reasoning, encouraging consistency across views to exploit both labeled and
unlabeled graphs.

* PiCO (Wang et al., 2022): Learns a set of class-wise prototypes and employs contrastive objec-
tives to align instance embeddings with their correct prototypes. We adopt a GraphSAGE encoder
to enable graph-level application.

* DEER (Gu et al., 2024): A partial-label graph learning method that selects reliable positive pairs
by measuring distribution divergence across augmented views. It also performs soft label cor-
rection via posterior estimation. However, it does not explicitly model substructures or spectral
signals, limiting its granularity in structural reasoning.

Training Protocol. All baselines are trained under partial-label supervision using a cross-entropy
loss over candidate label sets. TGNN additionally optimizes a consistency loss between dual views.
For contrastive methods such as GraphCL and PiCO, we apply their contrastive loss and the cross-
entropy loss. Pooling-based methods are evaluated with a fixed reduction ratio of 0.6 and use Graph-
SAGE as their encoder. All models are trained under identical random seeds for controlled compar-
isons.

G DETAILS OF IMPLEMENTATION

We implement all models using PyTorch with the PyG backend. A two-layer GraphSAGE with 512
hidden units is adopted as the shared encoder. The model is trained using the Adam optimizer with a
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learning rate of 0.001 and a batch size of 128. The EMA momentum for prototype and label updates
is set to m = 0.99, and the propagation momentum is o = 0.9 with T' = 2 steps. Both spatial and
spectral relational graphs connect each graph to k, = k. = 5 neighbors. Eigen-decomposition is
precomputed via sparse solvers to ensure efficiency. For ENZYMES, Letter-High, COIL-DEL, and
COLORS-3, we partition the data into training, validation, and test sets with a ratio of 80%:5%:15%.
For CIFARI10, we adopt the conventional split of 45,000 training, 5,000 validation, and 10,000 test
graphs, consistent with the protocol in (Dwivedi et al., 2020). All reported results are averaged over
five independent random seeds.

LLMS USAGE

We adhere to the ICLR Code of Ethics. We use large language models solely for polishing writing.
All scientific contributions remain entirely our own.
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