
TO THE CUTOFF... AND BEYOND? A LONGITUDINAL
PERSPECTIVE ON LLM DATA CONTAMINATION

Manley Roberts1, Himanshu Thakur1,2, Christine Herlihy3, Colin White1, Samuel Dooley1
1Abacus.AI 2Carnegie Mellon University 3University of Maryland
{manley,colin,samuel}@abacus.ai; hthakur@andrew.cmu.edu;
cherlihy@umd.edu

ABSTRACT

Recent claims about the impressive abilities of large language models (LLMs) are
often supported by evaluating publicly available benchmarks. Since LLMs train
on wide swaths of the internet, this practice raises concerns of data contamination,
i.e., evaluating on examples that are intentionally or unintentionally included in
the training data. Data contamination remains notoriously challenging to measure
and mitigate, even with partial attempts like controlled experimentation of training
data, canary strings, or embedding similarities. In this work, we conduct the first
thorough longitudinal analysis of data contamination in LLMs by using the natural
experiment of training cutoffs in GPT models to look at benchmarks released over
time. Specifically, we consider two code/mathematical problem-solving datasets,
Codeforces and Project Euler, and we find statistically significant trends among
LLM pass rate vs. GitHub popularity and release date that provide strong evidence
of contamination. By open-sourcing our dataset, raw results, and evaluation
framework, our work paves the way for rigorous analyses of data contamination in
modern models. We conclude with a discussion of best practices and future steps
for publicly releasing benchmark in the age of LLMs which train on webscale data.

1 INTRODUCTION

Progress in machine learning has historically been driven by the use of benchmark datasets (Raji et al.,
2021) to demonstrate and ultimately improve model performance. In recent years, as large language
models (LLMs) have risen to prominence, these benchmarks are used to claim impressive capabilities
across a wide range of tasks (Brown et al., 2020a), such as open-ended text and code generation.
However, it has become increasingly clear that evaluating on these benchmarks jeopardizes our ability
to accurately compare and assess modern models since static, open-source benchmarks are generally
published on the internet, and most modern LLMs incorporate internet text in their training data.

There are two main phenomena to be concerned with. The first is contamination, which refers to an
LLM’s exposure, during training, to examples that are similar or identical to the examples that the
model will later be evaluated on. The second is memorization, which can be understood as a property
of a model that permits extraction of generated outputs that are exact or near-exact replicas of examples
seen during training. Both phenomena can pose security and privacy risks (Carlini et al., 2021).
Additionally, as we discuss below, they can upwardly bias model performance estimates, obfuscating
our ability to compare models and attribute performance gains to true model improvements.

Despite these concerns, contamination and memorization remain deceptively challenging to defini-
tively measure and detect. While some researchers have used string-matching algorithms to compare
test to training datasets (Radford et al., 2019; Brown et al., 2020b), many popular LLMs’ full train-
ing dataset details are not publicly available (OpenAI, 2023a; Rozière et al., 2023). Additionally,
string-matching produces false negatives when slight variations exist in data between train and test
(OpenAI, 2023a). Even concerted efforts to prevent any model from training on a benchmark can
fail. For example, the canary strings present in all BIG-Bench files (bench authors, 2023), which
are designed to be checked and excluded by model trainers, were not sufficient to keep BIG-bench
out of GPT-4’s training corpus (OpenAI, 2023a), partly because the success of this strategy relies
on the awareness and compliance of model trainers in the absence of an enforcement mechanism.

1

Recent works that look for contamination or memorization focus on popular benchmarks. They use
controlled experimentation on models trained with certain subsets of chosen datasets, recognizing the
value of comparing performance on examples that are seen vs. not seen during training (Magar &
Schwartz, 2022; Zhang et al., 2021).

In contrast, we take an experimental economics view and use a naturally occurring experiment—i.e.,
the training cut-off date—to assess contamination and memorization. We exploit the known training
cutoff dates of GPT-4 and GPT-3.5-Turbo (OpenAI, 2023a;b) and assumed cutoff date of Code Bison
(Google, 2023) to naturally partition benchmark examples into subsets that have either probably been
seen (pre-cutoff) or have probably1 not been seen (post-cutoff). We focus our analysis on longitudinal
benchmarks consisting of problems released over a period of time which bridges the cutoff.

In particular, we analyze Codeforces and Project Euler, two longitudinal code generation/problem
solving websites. These websites have steadily released problems since 2010 and 2001, respectively.
Informal analyses have shown that there are large drops in success rates of GPT-4 when evaluated on
older versus more recent problems from Codeforces (He, 2023; Cundy, 2023).

We build upon these insights by conducting the first rigorous, large-scale, longitudinal analysis of
contamination and memorization in code generation and problem-solving benchmarks. To the best of
our knowledge, we are the first to exploit the longitudinal nature of the benchmarks we analyze, along
with the known training cutoff dates of the open and closed sourced models, to naturally identify
examples that the LLMs are likely/unlikely to have been exposed to during training, and use this
partition to compare LLM performance during the pre- and post-cutoff periods.

Our contributions In this work, we explore contamination and memorization through the lens of
time. Our core contributions include:

(i) The first large-scale, longitudinal analysis of contamination and memorization using a naturally
occurring experiment — a novel methodology in LLM contamination which is important in light
of closed-source models;

(ii) Empirical findings demonstrating that GPT-4 was likely exposed to Codeforces and Project Euler,
due to a statistically significant positive association we observe between a problem’s presence on
GitHub and each LLM’s test case pass rate only for problems released before the GPT training
cutoff;

(iii) Code required to construct our longitudinal datasets and perform analyses, which we open-source.2

2 RELATED WORK

Evaluation of Code Generation Models Code generation models are generative models that
try to produce valid code given an input of some representation of the programmatic behavior,
mathematical function, and/or computational task that the user would like to obtain. Modern code
generation models include general models such as GPT family (OpenAI, 2023a), Llama 2 (Rozière
et al., 2023), or PaLM (Chowdhery et al., 2022), as well as a variety of task-specific code models:
AlphaCode (Li et al., 2022), CodeGen (Nijkamp et al., 2022), Code-Llama (Rozière et al., 2023),
PaLM-Coder (Chowdhery et al., 2022).Relevant code generation benchmarks include small sets of
entirely handwritten problems (Chen et al., 2021; Nijkamp et al., 2022) as well as larger collections
curated from internet sources such as code interview sites, competitive programming forums, or
general open source code (Hendrycks et al., 2021; Austin et al., 2021; Zan et al., 2022; Huang
et al., 2022), and some that include both original and online-sourced problems (Yin et al., 2022;
Li et al., 2022). Code interview, practice, or competition sites, offering problem descriptions and
programmatic evaluation, are common choices to assess modern LLM capabilities (Nguyen & Nadi,
2022; Zhang et al., 2023; He, 2023; Cundy, 2023)—and indeed some public benchmarks feature
these problems (Hendrycks et al., 2021; Li et al., 2022).

1GPT-4 acknowledges training with some small amount of data beyond its cutoff (OpenAI, 2023a), so
post-cutoff examples may still appear. GPT-3.5-Turbo, subject to similar reinforcement learning with human
feedback (RLHF) as GPT-4 (OpenAI, 2023a), may have seen data beyond its cutoff as well.

2Our treatment of datasets and our evaluation framework are available at https://github.com/
abacusai/to-the-cutoff. We release code and dataset contents to the extent possible while respecting
the licensing requirements of the dataset owners.

2

https://github.com/abacusai/to-the-cutoff
https://github.com/abacusai/to-the-cutoff

To asses the validity of solutions, many of these benchmarks include test cases. They use a ‘functional
correctness’ metric based on passing these cases as the primary way to measure code generation
performance; evaluating with complexity/understandability metrics (Nguyen & Nadi, 2022) is less
common. Kulal et al. (2019); Chen et al. (2021) employ the pass@k metric, describing the likelihood
at least one among k sampled generations will pass all test cases. The benefit of these metrics
is the complete independence from either expensive human feedback or inherently constraining
similarity-to-ground-truth NLP metrics (Papineni et al., 2002; Lin, 2004), which are often ineffective
for code (Tran et al., 2019). These metrics are in contrast to other popular LLM performance metrics
like perplexity (Kirchenbauer et al., 2023; Jain et al., 2023) or information retrieval based LLM
metrics of accuracy (Kwiatkowski et al., 2019; Pal et al., 2023).

Adversarial Filtering and Adaptive Benchmarks in NLP Test-time exploitation of knowledge
gained via contamination or memorization can be seen as special cases of a more general phe-
nomenon in which language models appear to exhibit sophisticated reasoning capabilities but are
in fact exploiting shallower heuristics, with potentially negative consequences for generalizabil-
ity (Bender et al., 2021). Prior work has demonstrated that domain-agnostic and domain-specific
crowd worker-constructed natural language inference (NLI) datasets—i.e., SNLI (Bowman et al.,
2015), MultiNLI (Williams et al., 2018), MedNLI (Romanov & Shivade, 2018)—contain spurious
correlations between lexical and syntactic features of the inputs and the corresponding class labels,
such that hypothesis-only baselines (i.e., without premise) are able to outperform majority-class
baselines (Poliak et al., 2018; Gururangan et al., 2018; McCoy et al., 2019; Herlihy & Rudinger,
2021). Researchers have proposed a variety of detection and mitigation strategies, including (1)
adversarial filtering, in which an ensemble of classifiers are used to iteratively partition a dataset
into easy and hard subsets (Zellers et al., 2018); (2) introduction of stochasticity to the annotator
prompting process via randomly selected anchor words (Sakaguchi et al., 2020); and (3) calls for the
development of adversarially adaptive rather than static benchmarks (Zellers et al., 2019).

Memorization and Contamination in LLMs Many recent works have highlighted the security,
privacy, and generalizability risks of memorization and contamination during LLM training and
fine-tuning, while simultaneously proposing methods for detection and risk mitigation. Mireshghallah
et al. (2022); Biderman et al. (2023); Carlini et al. (2023); Magar & Schwartz (2022) investigate
the training dynamics of memorization/contamination, seeking scaling laws, early indications, and
understanding of when and how memorization occurs in training. Carlini et al. (2021) famously
extract hundreds of verbatim train examples from GPT-2. Ippolito et al. (2023) propose inference-time
tricks to prevent regurgitation of examples, and Jacovi et al. (2023); Karmakar et al. (2022) give
best practices to avoid benchmark contamination. Carlini et al. (2021; 2023); Lee et al. (2022);
Kandpal et al. (2022); Magar & Schwartz (2022); Carlini et al. (2019) investigate the relationship
between duplicated training data and memorization/contamination (in particular, Carlini et al. (2019)
uses artificially introduced “canary" artifacts to track memorization). Nori et al. (2023) proposes a
distance-based metrics to assess memorization. Several works (Magar & Schwartz, 2022; Zhang et al.,
2021) evaluate the impact of memorization/contamination by estimating the difference in test-time
performance on examples seen vs. not seen during training; we will use a variation of this strategy.

Dodge et al. (2021) conduct a case study of the webcrawl corpus C4, including contamination
investigation, while others (Aiyappa et al., 2023; Chang et al., 2023; Golchin & Surdeanu, 2023)
conduct studies on the contamination of GPT models directly. Karmakar et al. (2022) dive deep
into Hackerrank (an interview-prep coding platform) contamination in the Codex model by not only
assessing pass rates on full problems but also on partial problem snippets. Golchin & Surdeanu
(2023), a recent work, focuses in particular on comparing the result of prompting for memorized
completion with or without benchmark clues and concludes that GPT-4 has been contaminated with
several standard datasets; our analysis finds more contamination of GPT-4, but differs by examining
longitudinal datasets in order to view the effects of dataset portions before and after training cutoffs.

3 DATASET CONSTRUCTION

Many open-source benchmarks (Chen et al., 2021) designed to evaluate code generation are released
at a certain point in time, evaluated on a number of models along with release, and then deployed
repeatedly as time goes on in order to evaluate new models’ performance on the benchmark. For

3

a model with a strict temporal training dataset cutoff, these benchmarks exist either firmly within
or outside of the training data, meaning that to evaluate the effect of the cutoff, we must compare
between multiple datasets (which, clearly, might have many differences beyond their release dates).

For this analysis, we concern ourselves with datasets with hand-written original problems that are
released at intervals over a long stretch of time. In particular, we require that a substantial number of
problems are produced before and after the GPT-4/GPT-3.5-Turbo cutoffs in September 2021, that
the bulk of problems are of a format and size sufficient for prompting to modern LLMs, and that there
exists an automated objective measure of correctness for evaluation. We focus on problems from the
competitive programming website Codeforces (problems from 2010 - 2023) (Mirzayanov, 2023)
and from the mathematical programming puzzle website Project Euler (problems from 2001-2023)
(Hughes, 2023), building off analyses from (Cundy, 2023; He, 2023).

Codeforces Codeforces is a website that hosts competitive programming competitions. Problems
are released in small batches corresponding to a particular round, and competitors submit solutions
against test cases, competing to produce the highest overall score by giving fast solutions. After a
competition ends, each competitor’s solutions are available online, as well as the test cases that were
evaluated on each problem (which take the form of an input file and expected output).

For each problem, we collect metadata, problem text (processed to clear some HTML artifacts),
and input/expected output text for public and private test cases. We forgo the compute-intensive
procedure of generating additional test cases for problems which was used by (Li et al., 2022) and
omit test cases in which either the given input or output on the Codeforces platform end with “...”, as
this often indicates that the text is too long and has been abridged. We provide additional details of
the Codeforces problem set and our collection process in Appendix A.2.

Project Euler Project Euler is a website that hosts difficult math problems with a string answer
that is usually a single number (integral or real). The recommended way to solve these problems is to
write code that will generate the answer. The answer itself can be submitted on the site and compared
directly to the private solution (there are no official public solutions). There are no test cases except a
comparison with the true answer.

We collect Project Euler problems through a combination of their metadata API and direct scraping of
problem pages. We collect problems through 845 (released May 2023) and use open-source solutions
from (luckytoilet, 2023). These solutions were collected in September 2023, but there are a few
recent problems through 845 without a solution from this source; these we omit.

4 METHODOLOGICAL APPROACH

The primary research questions we endeavor to explore through longitudinal analysis of pre- versus
post-cutoff LLM performance include: (1) Does there exist a statistically significant relationship
between a programming problem’s frequency of presence in open-source GitHub repositories and an
LLM’s ability to generate a functionally correct solution to that problem, and/or reproduce portions of
its metadata, such as the problem title or tags? (2) How or to what extent is this relationship mediated
by a problem’s reported difficulty? (3) Most critically—how or to what extent do (1) and (2) change
depending on whether a problem was released before versus after the LLM’s training date cutoff?

Models To answer these questions, we conduct analysis on output produced by GPT-4, GPT-
3.5.-Turbo, Davinci-002, Google’s code-bison, and Meta’s Code-Llama. The specific models used
are gpt-4-0314, gpt-3.5-turbo-0301, text-davinci-002, code-bison@001, and
codellama/CodeLlama-34b-Instruct-hf.

Independent Variables To begin, we define the following set of independent variables (IVs):

GitHub Presence is a proxy metric intended to capture the frequency with which a problem is
publicly available on GitHub (similar to public Google and Bing API search used by Chang et al.
(2023) as a proxy for online presence of books). For simplicity, it searches only for mention
of the problem’s name and ID. To compute GitHub Presence, we begin by collecting all public
repositories that contain mentions of the benchmark dataset of interest (i.e., Codeforces or Project

4

Euler) as of our collection date. Then, for each problem of interest in a given dataset, we filter the
dataset repositories and retain the subset containing substring(s) that correspond to the problem’s
title. We are then able to approximately compute the number of times a problem p occurs as:∑|dataset repos|

i=1 c(p, i) ∀p ∈ {dataset problems}, where c(p, i) is the number of matches within repo
i’s concatenated text to any one of a number of format variations of p’s ID or title. Counting multiple
occurrences within the same repo offers benefits such as a more granular analysis in the event of
mega-repos that might store multiple solutions to the same problem, and it is therefore in our eyes a
closer proxy to the true frequency of the problem in the training data.

Difficulty intuitively captures how challenging a problem is for humans to solve. Both Codeforces
and Project Euler report difficulty scores as part of problem metadata.

Problem released post-cutoff is a Boolean variable to indicate whether a given problem was released
(i.e., published by the dataset owners) before (0) or after (1) the training date cutoff for a given LLM.

Dependent Variables We consider the following set of dependent variables (DVs):

Problem-level pass rate (pass rate) We assume that in the general case, a given problem p can be
mapped to some number, np ≥ 1 of test cases (either public or private). For code generation tasks,
the question-level pass rate can then be computed as the fraction of test cases for which the code
generated by the LLM produces a functionally correct solution—i.e., 1

np

∑np

i=1 1(λ(LLM(p)) = yi),
where λ represents calling the LLM’s generated code and yi represents the ground-truth output for
problem p’s ith test case. The special case where we ask the LLM to generate (only) the solution
rather than code can be represented by omitting the λ call in the above expression. We use code
generation on Codeforces and solution-only generation on Project Euler. See Appendix A.1 for a
discussion of alternative metrics.

Title reproduction In each of the datasets we consider, each problem has a title. To compute title
reproduction for a given problem p, we provide as input the dataset name and problem ID, ask the
LLM to generate the problem’s title given this input, and evaluate the similarity between the generated
string, ˆtitlep, and p’s ground-truth title by mapping the title into a bag of tokens and modeling the
retrieval of each token as a separate observation in logistic regression. We include this DV as a probe
for possible memorization.

Tag reproduction Among the datasets we consider, only Codeforces problems contain descriptive
tags. Each tag is an n-gram that describes the intended approach or content of a problem, as well
as metadata like the difficulty. For example, Problem 500A has tags “dfs and similar”, “graphs”,
“implementation”, and “*1000”. For a given problem, p, we provide the problem’s title and ID as
input to the LLM, and ask it to produce a set of candidate tags. We evaluate token-level recall with
respect to the tokenized version of the problem’s ground-truth tag(s). Much like title reproduction,
this DV is included as a memorization probe.

To answer the aforementioned research questions for each dataset and dependent variable, we conduct
regression analyses with problem-level performance as our unit of analysis, of the form:

DV ∼ (Difficulty + GitHub Presence) · postCutoff
Because the problem-level pass rate prediction task involves count data, we specifically formalize it
as a binomial regression, such that for a given problem, p with a corresponding number of {public +
private} test cases, np, we seek to predict the number of successes—i.e., the number of test cases, out
of np trials that the LLM’s generated code and/or numeric solution will pass. In title reproduction,
the outcome of interest is binary—i.e., the LLM either does or does not successfully reproduce the
problem’s title; as such, we model this task using logistic regression. For tag reproduction, while
a problem’s tags can be set-valued, we tokenize the string of tags and evaluate the recall of each
token independently; as such, this task is also modeled using logistic regression. A more detailed
description of our modeling choices, along with interpretation guidance for the regression tables and
marginal effects plots, can be found in Appendix B.1.

In the regression tables, we report coefficients as odds ratios where values equal to 1 indicate no
impact of the variable on the Pass Rate. Coefficients greater than 1 indicate a positive impact and
those less than 1 indicate a negative impact. For example, an odds ratio coefficient of 1.352 would
correspond to a 35.2% increase in the dependent variable associated with a unit increase in the
independent variable.

5

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15
10%

20%

30%

40%

50%

60%

log(GitHub Presence)

F
un

ct
io

na
l C

or
re

ct
ne

ss

log(Difficulty)
7.04
7.43
7.83

Functional Correctness Marginal Effects Plots for GPT−4 on Codeforces

Figure 1: Marginal Effects of Pass Rate Metric for GPT-4 on the Codeforces Dataset. Observe a
positive association between GitHub Presence before the cutoff but not after. Also, there is a
negative association between Difficulty and pass rate both before and after the cutoff.

5 RESULTS

Overall, we see strong trends that the performance of each model changes after the training cutoff.
These changes often highlight that there is a positive association between the presence of questions
on GitHub and the performance of the model; however, after the training cutoff, this association
disappears. We provide examples of the generations of the LLMs in Appendix B.8 for a qualitative
inspection of the results. We note that, while we did test the code generation performance of the open
source models text-davinci-002 and codellama/CodeLlama-34b-Instruct-hf, these models’ functional
correctness performance was too low to yield meaningful analysis. Thus, we omit these models from
all analyses in the main paper, but refer the reader to Appendix B.6.

5.1 PASS RATE

GitHub Presence First, we look at the performance of Pass Rate on the benchmark Codeforces,
where we report marginal effect plots for GPT-4 in Figure 1; GPT-3.5-Turbo and Code Bison
are qualitatively similar and can be found in Appendix Figures 12 and 14. We report regression
coefficients for all models on Codeforces in Figure 2. On the Project Euler benchmark, we report
marginal effect plots in Appendix Figures 28 and 30 and regression coefficients in Figure 3. Note that
Project Euler is a much smaller benchmark with just 73 problems included after the GPT training
cutoff date in September 2021. Additionally, none of the LLMs we tested got any of the questions
correct for this set of 73 problems. We make several observations.

Most strikingly, we see that the effect of the GitHub Presence variable is significant before the training
cut-off and is not significant after the training cutoff. For GPT-4, we observe that for each increase in
one unit of the log of GitHub Presence, we see the odds ratio increase by 4.5% on Codeforces and
47.8% on Project Euler; for GPT-3.5-Turbo, that value is moderated slightly to 2.5% on Codeforces
and 27.7% on Project Euler; for Code Bison we see the odds ratio increase by 3.1%. However, we
see no statistically significant association between GitHub Presence and GPT model performance for
those problems which appeared online after the training cutoff in September 2021.

This post-cutoff performance degradation provides evidence of contamination and/or memorization
of pre-cutoff problems from Codeforces and Project Euler by GPT-3.5-Turbo and GPT-4. For the
most part, the odds ratios are similar in terms of the direction and magnitude of their effects on the
pass rate odds for each LLM. Two points of distinction include: (1) GPT-4 performs better across the
board, as evidenced by higher odds of functional correctness for all difficulty levels in both the pre-
and post-cutoff periods as compared to GPT-3.5-Turbo. (2) For Codeforces, the odds ratio for GitHub

6

Figure 2: Regression coefficients for Pass Rate of GPT4, GPT-3.5-Turbo, and Code Bison on the
Codeforces dataset. Observe that the odds ratios for both Difficulty and GitHub Presence
are statistically significantly moderated between the before and after cutoffs for both models. See
Table 1 and 2 for regression coefficients.

presence is equal to 1 and is not statistically significant during the post-cutoff period for GPT-4, but
is > 1 (i.e., associated with increased odds of Y) and statistically significant for α = 0.1 during the
same period for GPT-3.5-Turbo (see Table 1 and 2). While training details for GPT-family models
are generally secret, we propose as a possible explanation that GPT-3.5-Turbo may have had higher
train/finetune exposure to problems released after the cutoff date than GPT-43.

It is worth pointing out that the relationships between Github Presence and pass rate have non-
overlapping confidence intervals (before and after cutoff) for only GPT-4. This lends itself to our
conclusion that memorization occurred for this model.

Code Bison’s analysis uses a different cutoff (February 2023). On all of the data before this
cutoff, there is a positive association between Github Presence and pass rate, while after there is no
association. This analysis does produce a very large confidence band on the post-cutoff problems
(due to the small sample size of Codeforces problems collected between Feb. 2023 and June 2023),
making definitive conclusions difficult to resolve.

Figure 3: Regression coefficients plots of Pass Rate for GPT-4 and GPT-3.5-Turbo on the Project
Euler Dataset. See Table 10 and 11 for regression coefficients. No problems pass after the cutoff.

3As mentioned in Section 1, GPT-4 is known to have some post-cutoff events included in its training; since
GPT-3.5-Turbo uses a similar RLHF procedure (OpenAI, 2023a), it’s possible it has been exposed as well—to a
publicly unknown extent.

7

Difficulty When we examine results for GPT-4, GPT-3.5-Turbo, and Code Bison on Codeforces (see
Tables 1, 2, 3), we see that there always exists a statistically significant, negative association between
Difficulty and pass rate for each LLM—i.e., this relationship is observed in both the pre- and
post-cutoff periods. However, while each model’s post-cutoff Difficulty coefficient is < 1,
indicating a decrease in the odds of pass rate these coefficients are statistically significantly larger
than their corresponding pre-cutoff values, suggesting a moderation in the still-negative relationship
between Difficulty and pass rate.

On the one hand, we can interpret the persistence of this relationship as evidence that the LLMs’
inductive biases, while perhaps influenced by the effects of contamination and memorization, are
by no means solely determined by such artifacts. For this reason, we do not see equal (or perhaps,
equally poor) performance across problem difficulty levels in the post-period, but instead see that
LLM pass rates vary in accordance with difficulty even in the (hypothetical) absence of contamination,
much as they do for human programmers.

Other possible contributing factors include: (1) variation in the number of test cases by difficulty
level, and/or over time; (2) more limited, but non-zero amounts of contamination or memorization of
the datasets we analyze; and (3) the presence of unobserved confounder(s) influencing change in both
problem difficulty and LLM pass rate over time. We test (1) by fitting a regression model to examine
whether Difficulty is able to predict the number of observed test cases after the cutoff, but do
not find Difficulty to have predictive power. Hypothesis (2) could be occurring, particularly
given the acknowledged GPT fine-tuning (OpenAI, 2023a); however, it is unlikely this is happening
at high enough levels to be a sufficient cause of observed behavior. We view the identification of
possible confounders as a promising direction for future work.

5.2 TITLE AND TAG REPRODUCTION

For title reproduction, we show regression tables in Appendix Tables 12-15 and Appendix Figures 32-
38. We conclude that across all models, there is no impact of GitHub Presence on the ability of the
LLMs to reproduce the title, both before and after the training cutoffs.

For tag reproduction, we find that there is a negative association between GitHub Presence and the
ability of the LLMs to reproduce the tag labels on Codeforces (there are no tags associated with
Project Euler). In Figure 42, Appendix Figure 40 and Appendix Tables 16 and 17, we can see that
across the board, there is a negative association between Difficulty and tag reproduction performance
before the cutoff but there is no association after the cutoff. As the regression results demonstrate, the
negative association moderates after the cutoff, dropping from a decrease of 56.9% to 17.4% in odds
ratios from before to after the cutoff for GPT-4 and from 50.3% to 26.1% for GPT-3.5-Turbo.

The way in which Codeforces problems are available online is one hypothesis as to why tags
reproduction is inversely related to GitHub presence, whereas title reproduction is not. Tags are
metadata for Codeforces problems which are not present in the main problem description. As such,
the tags may be less likely to be copied and pasted throughout the internet. Thus, it is possible that
those tags themselves undergo some interesting distribution shift which could explain their inverse
relationship with presence on GitHub.

5.3 ANALYSIS ABLATIONS

Public vs Private Test Cases As discussed in Section 3, the Codeforces problems contain both
public and private test cases. Public cases are readily available on the problem’s page whereas the
private cases can only be found by opening an accepted submission on the Codeforces platform.
Above, we analyzed the pass rate of each problem on all collected test cases. Now, we break these out
by public and private test cases to investigate any different trends between the two sets. We consider
only the private test cases in Figures 22-24 and Tables 7-8, whereas only the public test cases in
Figures 16-18 and Tables 4-5.

We see first that the two main trends we observed above hold, indicating the robustness of the
conclusions: contamination is likely since GitHub Presence is positively correlated with pass
rate only before the cutoff, and Difficulty has a negative association with pass rate. However,
we observe non-overlapping confidence intervals only for GPT-4 private test cases.

8

However, we also observe, unexpectedly, that the pass rate after the cutoff is higher for the private test
cases than for the public test cases. This observation contrasts the typical perspective on Codeforces
which considers the public test cases to be simpler toy cases used as examples while coding whereas
the private cases are more thorough checks for correct behavior. To explain the discrepancy, we
hypothesize that this behavior may be related to the private test cases after the cutoff being, on
average, easier to answer than public test cases after the cutoff. There is no per-case difficulty score
available on Codeforces, but we can consider a simple heuristic: shorter inputs are simpler to answer,
and longer inputs are harder. Why might this effect be most noticeable after the cutoff? To answer,
we observe that while the median test case input string lengths for our public and private pre-cutoff
test cases are similar, at 18 and 21 characters, respectively, the median input lengths after the cutoff
diverge for public and private test cases: 38 for public and 27 for private. Further investigation into
the causes and consequences of this shift is a promising direction for future work.

Covariate Shift We detail how we assess whether the performance degradation that we observe
for problems released after the training cutoff might be caused by covariate shifts in the questions
present in Codeforces and Project Euler. More precisely, we examine the distribution over tags
and/or difficulty level, and we look for statistically significant changes in their prevalence during the
post-cutoff period, relative to the pre-cutoff period. We visually inspect the distribution over tags (for
Codeforces) and over discretized difficulty scores (for both datasets) for problems released during the
pre- vs. post- periods, and do not find evidence of qualitative differences. We then conduct χ2 tests
using the pre-cutoff normalized counts as the reference distribution. We do not find any statistically
significant difference in any of the pre- versus post-distributions that we analyze. Plots and detailed
statistical results are available in Appendix B.7.

6 DISCUSSION

Utility of longitudinal analysis: We provide a novel methodology for examining data contamination
in LLMs, borrowed from experimental economics where we observe phenomena by exploiting natu-
rally occurring changes. Thus, we present a novel way to approximately validate claims made about
training date cutoffs for black box LLMs, and/or exposure (or lack thereof) to a given dataset during
training or fine-tuning, provided that the dataset in question contains instances on each side of the
model’s reported cutoff. This can be valuable in cases where specific training details are not public,
and/or when contamination or memorization is suspected as a root cause of performance degradation
when the model in question is evaluated on newer problems. It is important to acknowledge that limi-
tations also exist—for example, we cannot rule out the presence of latent confounder(s) influencing
both exposure (i.e., to a given subset of problems) and LLM performance on those problems.

Implications for LLM evaluation: Our findings in Section 5 illustrate the extent to which even
high-quality, manually constructed benchmarks can be expected to enjoy ever-shorter shelf lives in
the era of LLMs, as newer models with updated training cutoff dates will iteratively render existing
benchmarks stale. Detection of memorization and contamination will likely remain challenging in
the general case, as many popular benchmarks have been released all at once rather than over time,
and as such, cannot be subjected to longitudinal analyses like the ones we perform. Additionally, in
open-ended domains such as code generation, we may fail to detect instances where the model has
been exposed to solution(s) for a given problem when the problem context itself is missing or latent
(i.e., by training on public repositories where people may not reproduce the questions their code is
intended to answer/solve).

Current mitigation options, including the use of private (i.e., offline, closed-source) benchmarks,
and/or benchmarks known to be constructed after the training cutoff for evaluation target(s) of interest,
are likely to be time-bound in their utility and may be cost-prohibitive to sustain over longer time
horizons, in the absence of exogenous shocks to the pace of LLM release cycles. Additionally,
reliance on private benchmarks may further erode transparency and lead to duplication of efforts as
challenging examples are detected and addressed in a more siloed fashion. Thus, while the need
for some set of open-source “goalposts” against which to measure progress, evaluate, and compare
LLMs is likely to persist, the way in which we construct, release, and evaluate against benchmark
datasets will need to become more dynamic. We urge the community to move away from static
benchmarks released in a single time step and toward continuous integration-style staggered release
and evaluation cycles.

9

REFERENCES

Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-Yeol Ahn. Can we trust the evaluation on
chatgpt?, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program Synthesis with
Large Language Models, 2021.

BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models, 2023.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 610–623, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi:
10.1145/3442188.3445922. URL https://doi.org/10.1145/3442188.3445922.

Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony,
Shivanshu Purohit, and Edward Raff. Emergent and predictable memorization in large language
models, 2023.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020b.

Ethan Caballero, . OpenAI, and Ilya Sutskever. Description2Code Dataset, 8 2016. URL https:
//github.com/ethancaballero/description2code.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium (USENIX Security 19), pp. 267–284, 2019.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel.
Extracting training data from large language models, 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models, 2023.

Kent K. Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, memory: An
archaeology of books known to chatgpt/gpt-4, 2023.

Matt Chaput. Whoosh. https://whoosh.readthedocs.io/en/latest/, 2012. [Online;
accessed 4-October-2023].

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,

10

https://doi.org/10.1145/3442188.3445922
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/ethancaballero/description2code
https://github.com/ethancaballero/description2code
https://whoosh.readthedocs.io/en/latest/

Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Chris Cundy. Gpt-4 memorizes project euler numerical solutions. https://cundy.me/post/
gpt_4_memorizes_project_euler_numerical_solutions/, 2023. [Online; ac-
cessed 26-September-2023].

Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
colossal clean crawled corpus. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 1286–1305, Online and Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.
98. URL https://aclanthology.org/2021.emnlp-main.98.

Shahriar Golchin and Mihai Surdeanu. Time travel in llms: Tracing data contamination in large
language models, 2023.

Google. feedbackavailable models in generative ai studio. https://cloud.google.
com/vertex-ai/docs/generative-ai/learn/models, 2023. [Online; accessed 28-
September-2023].

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A. Smith. Annotation artifacts in natural language inference data. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pp. 107–112, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2017. URL https:
//www.aclweb.org/anthology/N18-2017.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357–362, 2020.

Horace He. Tweet: I suspect gpt-4’s performance is influenced by data contamination, at least on
codeforces. of the easiest problems on codeforces, it solved 10/10 pre-2021 problems and 0/10
recent problems. this strongly points to contamination. 1/4, March 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Christine Herlihy and Rachel Rudinger. MedNLI is not immune: Natural language inference
artifacts in the clinical domain. In Proceedings of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pp. 1020–1027, Online, August 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.acl-short.129. URL https:
//aclanthology.org/2021.acl-short.129.

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong Yan, Haotian Cui, Jeevana Priya Inala, Colin
Clement, Nan Duan, and Jianfeng Gao. Execution-based evaluation for data science code generation
models. arXiv preprint arXiv:2211.09374, 2022.

Colin Hughes. Project euler. https://projecteuler.net, 2023. [Online; accessed 26-
September-2023].

11

https://cundy.me/post/gpt_4_memorizes_project_euler_numerical_solutions/
https://cundy.me/post/gpt_4_memorizes_project_euler_numerical_solutions/
https://aclanthology.org/2021.emnlp-main.98
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models
https://www.aclweb.org/anthology/N18-2017
https://www.aclweb.org/anthology/N18-2017
https://aclanthology.org/2021.acl-short.129
https://aclanthology.org/2021.acl-short.129
https://projecteuler.net

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine Lee,
Christopher A. Choquette-Choo, and Nicholas Carlini. Preventing verbatim memorization in
language models gives a false sense of privacy, 2023.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. Stop uploading test data in plain
text: Practical strategies for mitigating data contamination by evaluation benchmarks. arXiv
preprint arXiv:2305.10160, 2023.

Neel Jain, Khalid Saifullah, Yuxin Wen, John Kirchenbauer, Manli Shu, Aniruddha Saha, Micah
Goldblum, Jonas Geiping, and Tom Goldstein. Bring your own data! self-supervised evaluation
for large language models. arXiv preprint arXiv:2306.13651, 2023.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
in language models. ArXiv, abs/2202.06539, 2022. URL https://api.semanticscholar.
org/CorpusID:246823128.

Anjan Karmakar, Julian Aron Prenner, Marco D’Ambros, and Romain Robbes. Codex hacks
hackerrank: Memorization issues and a framework for code synthesis evaluation, 2022.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. Spoc: Search-based pseudocode to code. Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS), 32, 2019.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8424–8445, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.577. URL https://aclanthology.org/
2022.acl-long.577.

Kiho Lee. Chatgpt_dan. https://github.com/0xk1h0/ChatGPT_DAN, 2023. [Online;
accessed 4-October-2023].

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with
alphacode. arXiv preprint arXiv:2203.07814, 2022.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Edward Loper and Steven Bird. Nltk: The natural language toolkit. arXiv preprint cs/0205028, 2002.

luckytoilet. Projecteuler-solutions. https://github.com/luckytoilet/
projecteuler-solutions, 2023.

Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 157–165, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-short.18. URL https://aclanthology.org/
2022.acl-short.18.

12

https://api.semanticscholar.org/CorpusID:246823128
https://api.semanticscholar.org/CorpusID:246823128
https://aclanthology.org/2022.acl-long.577
https://aclanthology.org/2022.acl-long.577
https://github.com/0xk1h0/ChatGPT_DAN
https://github.com/luckytoilet/projecteuler-solutions
https://github.com/luckytoilet/projecteuler-solutions
https://aclanthology.org/2022.acl-short.18
https://aclanthology.org/2022.acl-short.18

Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 3428–3448, Florence, Italy, July 2019. Association
for Computational Linguistics. doi: 10.18653/v1/P19-1334. URL https://www.aclweb.
org/anthology/P19-1334.

Wes McKinney et al. pandas: a foundational python library for data analysis and statistics. Python
for high performance and scientific computing, 14(9):1–9, 2011.

Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, and Taylor Berg-
Kirkpatrick. An empirical analysis of memorization in fine-tuned autoregressive language
models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 1816–1826, Abu Dhabi, United Arab Emirates, December 2022. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.119. URL https:
//aclanthology.org/2022.emnlp-main.119.

Mike Mirzayanov. Codeforces. https://codeforces.com/, 2023. [Online; accessed 26-
September-2023].

Nhan Nguyen and Sarah Nadi. An empirical evaluation of github copilot’s code suggestions. In
Proceedings of the 19th International Conference on Mining Software Repositories, MSR ’22, pp.
1–5, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393034.
doi: 10.1145/3524842.3528470. URL https://doi.org/10.1145/3524842.3528470.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In Proceedings of the International Conference on Learning Representations (ICLR),
2022.

Harsha Nori, Nicholas King, Scott Mayer McKinney, Dean Carignan, and Eric Horvitz. Capabilities
of gpt-4 on medical challenge problems, 2023.

OpenAI. Gpt-4 technical report. Technical Report, 2023a.

OpenAI. Openai platform documentation: Models. https://platform.openai.com/docs/
models, 2023b. [Online; accessed 28-September-2023].

Arka Pal, Deep Karkhanis, Manley Roberts, Samuel Dooley, Arvind Sundararajan, and Siddartha
Naidu. Giraffe: Adventures in expanding context lengths in llms. arXiv preprint arXiv:2308.10882,
2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
Hypothesis only baselines in natural language inference. In Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics, pp. 180–191, New Orleans, Louisiana, June
2018. Association for Computational Linguistics. doi: 10.18653/v1/S18-2023. URL https:
//www.aclweb.org/anthology/S18-2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Inioluwa Deborah Raji, Emily Denton, Emily M Bender, Alex Hanna, and Amandalynne Paullada.
Ai and the everything in the whole wide world benchmark. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

Alexey Romanov and Chaitanya Shivade. Lessons from natural language inference in the clinical do-
main. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process-
ing, pp. 1586–1596, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1187. URL https://aclanthology.org/D18-1187.

13

https://www.aclweb.org/anthology/P19-1334
https://www.aclweb.org/anthology/P19-1334
https://aclanthology.org/2022.emnlp-main.119
https://aclanthology.org/2022.emnlp-main.119
https://codeforces.com/
https://doi.org/10.1145/3524842.3528470
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://www.aclweb.org/anthology/S18-2023
https://www.aclweb.org/anthology/S18-2023
https://aclanthology.org/D18-1187

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):8732–8740, Apr. 2020. doi: 10.1609/aaai.v34i05.6399. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/6399.

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien Nguyen. Does bleu score work for
code migration? In 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC), pp. 165–176. IEEE, 2019.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference, 2018.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to code generation in
interactive data science notebooks. arXiv preprint arXiv:2212.09248, 2022.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
and Jian-Guang Lou. Cert: Continual pre-training on sketches for library-oriented code generation.
arXiv preprint arXiv:2206.06888, 2022.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial dataset
for grounded commonsense inference, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 4791–4800, Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1472. URL https://www.aclweb.org/anthology/
P19-1472.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. Counterfactual memorization in neural language models. arXiv preprint arXiv:2112.12938,
2021.

Zizhuo Zhang, Lian Wen, Shaoyang Zhang, David Chen, and Yanfei Jiang. Evaluating gpt’s
programming capability through codewars’ katas, 2023.

14

https://ojs.aaai.org/index.php/AAAI/article/view/6399
https://ojs.aaai.org/index.php/AAAI/article/view/6399
https://www.aclweb.org/anthology/P19-1472
https://www.aclweb.org/anthology/P19-1472

A ADDITIONAL METHODOLOGY

A.1 METRICS

We note that Pass@k (Chen et al., 2021) is an alternative outcome metric that is commonly reported
within the LLM evaluation literature, which explores the number of sampled generations that pass
every unit test of a problem. We can map our analyses onto Pass@1 since we generate one sample
from each LLM. However, we also look at the problem pass rate (defined above) since the number
of unit tests for Codeforces can be very large (sometimes over 500) and Pass Rate provides a more
granular view of model performance than Pass@1. In this paper, Pass@1 is defined as the number of
problems that pass all unit tests.

A.2 CODEFORCES DATASET COLLECTION

(Caballero et al., 2016; Hendrycks et al., 2021; Li et al., 2022) assembled, in their respective datasets,
a portion of Codeforces problems and test cases through 2018 and 2021, respectively. However, only
(Li et al., 2022) contained any problems after the GPT-4/3.5-Turbo cutoff, and it had so few problems
after the cutoff that we needed to collect Codeforces problems ourselves in order to have enough
post-cutoff problems. In fact, we do not use their version of the problems at all, instead collecting a
full set of problems from 2010-2023 ourselves, in order to ensure that the data quality is consistent
for all problems. We do replicate many design decisions from Li et al. (2022), including separating
the “public” test cases (those simpler test cases available in the problem description, fed to the model,
and given during the competition to all competitors) from the “private” test cases (those test cases
reserved in secret at the release of a competition but made public after some time).

We collected every problem on the Codeforces site through Codeforces Contest 1840, also known as
round 843 (which took place June 6, 2023), and removed problems for a variety of reasons including:
no test cases are found; testing is interactive and requires communicating with the Codeforces server;
a problem has no English-language version; a problem is given as a PDF and not HTML text; or a
problem is a special contest such as a private contest, a Q# quantum programming competition, or an
April Fools’ competition.

B ADDITIONAL EMPIRICAL RESULTS

B.1 REGRESSION DESCRIPTIONS

As opposed to other forms of regression, logistic regression uses odds rather than probabilities, and
the main quantity explored is an odds ratio. For an event with probability p, the odds of that event is
defined as p/(1− p). Odds ratios explain the relationship between independent variables (predictors
or features) and the probability of the binary outcome. In logistic regression, we use odds ratios to
quantify the effect of a one-unit change in an independent variable on the odds of the binary outcome.
The odds ratio is defined as the ratio of the odds of a problem passing to the odds that the problem
doesn’t pass.

More formally, let Y be the binary outcome variable indicating failure/success of a question by
an LLM where Y ∈ {0, 1} and we assume P (Y = 1) = p. Let X1, . . . , Xn be a set of predictor
variables. Then the logistic regression of Y on X1, . . . , Xn estimates parameters β0, . . . , βn through
maximum likelihood via the equation:

logit(p) = ln(
p

1− p
) = β0 + β1X1 + · · ·+ βnXn.

When we fit the regression, we obtain estimates for the βis. These fitted β̂i can be interpreted as
coefficients to the regression equation and provide intuition for how the independent variables Xi

influence the independent variable. Specifically, a fitted value of β̂i tells us that, keeping all other
variables constant, a one unit change in the variable Xi yields a change of β̂i in the log odds ratio of
the independent variable. It is also common to exponentiate the fitted coefficients, in which case a
unit change in Xi while holding the other dependent variables constant yields a eβ̂i change in the
odds ratio of the independent variable.

15

These eβ̂i are odds ratios that take values between 0 and ∞. They provide insight into how a change
in the predictor variable Xi affects the odds of the event occurring. If eβ̂i = 1, it suggests that the
predictor variable has no effect on the odds of Y . If eβ̂i > 1, it suggests that an increase in Xi

is associated with increased odds of the event happening, specifically by providing a (1 − eβ̂i)%
increase in the odds of Y . If eβ̂i > 1, it suggests that an increase in Xi is associated with decreased
odds of the event happening, specifically by providing a (1− eβ̂i)% decrease in the odds of Y .

In our analyses, we are primarily interested in the independent variables GitHub Presence,
Difficulty, and an indicator variable indicating whether a problem was released before or after
the training cutoff. Below, we report regression tables with estimated odds ratio coefficients as well
as marginal effects plots which visually depict the fitted regressions.

B.2 PASS RATE

In this section, we present the marginal effects on Pass Rate of GPT-4 and GPT-3.5-Turbo across the
Codeforces and Project Euler benchmarks.

B.2.1 ALL CODEFORCES DATA

First, we present the marginal effects in Figures 10, 12, 14 and regression coefficients in Tables 1, 2,
3 with corresponding regression coefficient visualization in Figures 9, 11, 13.

B.2.2 PUBLIC CODEFORCES DATA

Second, we evaluate only on the public test cases of Codeforces and produce the marginal effect
plots in Figures 16, 18, 20 and regression coefficients in Tables 4, 5, 6 with corresponding regression
coefficient visualization in Figures 15, 17, 19.

B.2.3 PRIVATE CODEFORCES DATA

Finally, we consider only the private test cases and get the marginal effect plots shown in Figures
22, 24, 26 and regression coefficients in Tables 7, 8, 9 with corresponding regression coefficient
visualization in Figures 21, 23, 25.

B.3 PROJECT EULER

Finally, we report pass rates on Project Euler in Figures 28 and 30. We also present the regression
coefficients in Tables 10 and 11 with corresponding regression coefficient visualization in Figures 27,
29.

B.4 TITLE REPRODUCTION

Here, we present the marginal effects on the Title Reproduction metric for GPT-4 and GPT-3.5-Turbo
across the Codeforces and Project Euler benchmarks in Figures 34, 32, 36 and 38. We also present
the regression coefficients in Tables 12, 13, 14 and 15 with corresponding regression coefficient
visualization in Figures 31, 33, 35, and 37.

B.5 TAG REPRODUCTION

Here, we present the marginal effects on the Tag Reproduction metric for GPT-4 and GPT-3.5-Turbo
across the Codeforces and Project Euler benchmarks in Figures 42 and 40. We also present the
regression coefficients in Tables 17 and 16 with corresponding regression coefficient visualization in
Figures 39, 41.

B.6 EXPERIMENTS WITH ADDITIONAL LLMS

The results in Sections 5 and B.2-B.5 exclusively use the models GPT-3.5 and GPT-4. In this section,
we discuss results on Davinci-002 and Code-Llama. Overall, our motivation to focus on GPT-3.5

16

and GPT-4 is because they are the only models to achieve nontrivial pass rate. For example, on
Codeforces, GPT-3.5 achieved 27% and 13% pass rates before and after the cutoff, and GPT-4
achieved 37% and 16% pass rates before and after the cutoff, but the pass rates for text-davinci-
002 with a comparable prompting strategy are both less than 1%. Similarly, a partial analysis of
codellama/CodeLlama-34b-Instruct-hf featuring 3400+ randomly chosen problems from Codeforces
(2800+ pre-cutoff, 500+ post-cutoff) yielded less than 1% pass rate both before and after the cutoff.
Due to the very small number of problems that succeeded even before the cutoff date, we were unable
to present non-trivial differences before and after the cutoff. On the other hand, we still include
all raw output data from our experiments with text-davinci-002 in our supplementary material at
https://anonymous.4open.science/r/to-the-cutoff-review-253A. We will
shortly make our Code-Llama data available as well.

B.7 ANALYSIS OF POSSIBLE COVARIATE SHIFTS

In this section, we conduct analyses to assess whether the drop-off in performance that we observe
for problem examples released after the GPT training cutoff might be attributable to (potentially
latent) covariate shifts. We specifically investigate whether the distribution over tags (only available
for Codeforces) and/or difficulty level (available for Codeforces and Project Euler) changed in a
statistically significant way during the post-cutoff period, relative to the pre-cutoff period. We
summarize our findings by dataset below:

B.7.1 CODEFORCES

Tags: In Codeforces, each problem is mapped by the problem creators to one or more descriptive
tags. These tags generally reflect algorithm(s), data structure(s), and/or problem-solving approaches
associated with the problem in question. We partition the Codeforces problems into pre- versus post
(reflecting whether a given problem was released before or after the GPT training cutoff) and compute
aggregate counts over tags, then normalize. We visualize the resulting frequencies in Figure 4 and
observe that the two distributions are qualitatively quite similar:

flo
ws

st
rin

gs
co

ns
tru

ct
iv

e
al

go
rit

hm
s

m
ee

t-i
n-

th
e-

m
id

dl
e

ge
om

et
ry

2-
sa

t
di

vi
de

 a
nd

 c
on

qu
er

ga
m

es
pr

ob
ab

ilit
ie

s
gr

ee
dy

sh
or

te
st

 p
at

hs
bi

na
ry

 se
ar

ch dp
in

te
ra

ct
iv

e
br

ut
e

fo
rc

e
tre

es
te

rn
ar

y
se

ar
ch

sc
he

du
le

s
ha

sh
in

g
bi

tm
as

ks
gr

ap
h

m
at

ch
in

gs fft
sp

ec
ia

l
so

rti
ng

s
tw

o
po

in
te

rs
da

ta
 st

ru
ct

ur
es

ex
pr

es
sio

n
pa

rs
in

g
ds

u
ch

in
es

e
re

m
ai

nd
er

 th
eo

re
m

m
at

h
gr

ap
hs

co
m

bi
na

to
ric

s
im

pl
em

en
ta

tio
n

df
s a

nd
 si

m
ila

r
nu

m
be

r t
he

or
y

st
rin

g
su

ffi
x

st
ru

ct
ur

es
m

at
ric

es

tags

0.00

0.02

0.04

0.06

0.08

0.10

pr
op

or
tio

n
of

 su
b-

gr
ou

p
pr

ob
le

m
s w

ith
 th

is
ta

g

CodeForces: distribution over tags for problems released pre- vs. post-GPT cutoff
pre
post

Figure 4: Codeforces: distribution over tags for problems released pre- vs. post-GPT cutoff

We also conduct a χ2 test to assess whether we are able to reject the null hypothesis, which states that
there is no significant difference between the normalized distribution of counts over labels in the pre-
versus post-cutoff examples (we use the pre-cutoff normalized counts as the reference or expected

17

https://anonymous.4open.science/r/to-the-cutoff-review-253A

distribution). We omit two tags with observed counts < 5; these are chinese remainder
theorem and schedules. The resulting χ2 test statistic is 0.006 (p=1.0); thus, we are not able
to reject the null hypothesis. These findings mitigate concerns that the drop-off in performance we
observe for Codeforces might be attributable to significant changes in the distribution over tags during
the post-cutoff period.

Difficulty: For the Codeforces problems we consider, difficulty takes values in the range [0,3500],
with higher values corresponding to increased difficulty. We visualize the distribution over raw
difficulty scores for problems in the pre-cutoff versus post-cutoff subsets in Figure 5:

pre post
problem cut-off group

0

500

1000

1500

2000

2500

3000

3500

Ra
w

di
ffi

cu
lty

 sc
or

e

CodeForces: distribution of difficulty scores
 for problems released pre- vs. post-GPT cutoff

Figure 5: Codeforces: distribution over raw difficulty scores for problems released pre- vs. post-GPT
cutoff

We then discretize the raw difficulty scores by mapping raw scores to discrete labels as follows:

λ(x) =


0 x ≤ Q1

1 Q1 < x ≤ Q2

2 Q2 < x ≤ Q3

3 x > Q3

(1)

where x represents a given problem’s raw difficulty score, and Q1, Q2, and Q3 correspond to the first,
second, and third quartiles, respectively. We visualize the pre-vs.post-cutoff problems’ distribution
over discretized difficulty scores in Figure 6:

We also conduct a χ2 test to assess whether we are able to reject the null hypothesis, which states
that there is no significant difference between the normalized distribution of counts over discretized
difficulty scores in the pre- versus post-cutoff examples (we use the pre-cutoff normalized counts
as the reference or expected distribution). The resulting χ2 test statistic is 0.073 (p=0.995); thus,
we are not able to reject the null hypothesis. These findings mitigate concerns that the drop-off in
performance we observe for Codeforces might be attributable to significant changes in the distribution
over difficulty levels during the post-cutoff period.

B.7.2 PROJECT EULER

Note that as mentioned above, Project Euler does not make their problem tags publicly available; as
such, we are not able to conduct tag analysis for this dataset, and we restrict our attention to difficulty.

18

0 1 2 3
diff_bucket

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
op

or
tio

n
of

 su
b-

gr
ou

p
pr

ob
le

m
s

 w
ith

 th
is

di
sc

re
tiz

ed
 d

iff
icu

lty
 sc

or
e

CodeForces: distribution over discretized difficulty scores
 for problems released pre- vs. post-GPT cutoff

pre
post

Figure 6: Codeforces: distribution over discretized difficulty scores for problems released pre- vs.
post-GPT cutoff

Difficulty: For the Project Euler problems we consider, difficulty takes values in the range [5,100],
with higher values corresponding to increased difficulty. We visualize the distribution over raw
difficulty scores for problems in the pre-cutoff versus post-cutoff subsets in Figure 7:

pre post
problem cut-off group

20

40

60

80

100

Ra
w

di
ffi

cu
lty

 sc
or

e

Project Euler: distribution of difficulty scores
 for problems released pre- vs. post-GPT cutoff

Figure 7: Project Euler: distribution over raw difficulty scores for problems released pre- vs. post-
GPT cutoff

Similarly to our Codeforces difficulty analysis, we discretize the raw difficulty scores using the
mapping in Equation 1. We visualize the pre-vs.post-cutoff problems’ distribution over discretized
difficulty scores in Figure 8:

We also conduct a χ2 test to assess whether we are able to reject the null hypothesis, which states
that there is no significant difference between the normalized distribution of counts over discretized
difficulty scores in the pre- versus post-cutoff examples (we use the pre-cutoff normalized counts
as the reference or expected distribution). The resulting χ2 test statistic is 0.027 (p=0.999); thus,
we are not able to reject the null hypothesis. These findings mitigate concerns that the drop-off

19

0 1 2 3
diff_bucket

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
op

or
tio

n
of

 su
b-

gr
ou

p
pr

ob
le

m
s

 w
ith

 th
is

di
sc

re
tiz

ed
 d

iff
icu

lty
 sc

or
e

Project Euler: distribution over discretized difficulty scores
 for problems released pre- vs. post-GPT cutoff

pre
post

Figure 8: Project Euler: distribution over discretized difficulty scores for problems released pre- vs.
post-GPT cutoff

in performance we observe for Project Euler might be attributable to significant changes in the
distribution over difficulty levels during the post-cutoff period.

20

B.8 RANDOMLY SAMPLED GPT-GENERATED OUTPUT FOR CODEFORCES, BY LLM

B.8.1 GPT-4

1. Problems released before GPT cutoff with functional correctness ∈ [0,0.0]
(a) Subgroup sample 1 of 2

title: scissors and tape | id: 1193_C | difficulty: 0 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1193/C

def polygon_area(points):
half_sum = 0
n = len(points)
for i in range(n):

j = (i + 1) % n
half_sum += (points[i][0] * points[j][1] − points[i][1] * points[j][0])

return abs(half_sum) / 2

def main():
s = list(map(int, input().split()))[1:]
t = list(map(int, input().split()))[1:]
s_points = [(s[2 * i], s[2 * i + 1]) for i in range(len(s) // 2)]
t_points = [(t[2 * i], t[2 * i + 1]) for i in range(len(t) // 2)]

s_area = polygon_area(s_points)
t_area = polygon_area(t_points)
t_area_to_s_area = t_area / s_area

Assuming s_area = t_area.
if abs(s_area − t_area) < 1e−6:

print(’scissors 0’, len(s_points))
for i in range(0, len(s), 2):

print("1", s[i], s[i + 1], "0 0")
print("tape", len(s_points), " ".join(map(str, range(1, len(s_points) + 1))))
print("1", "0 0", " ".join(map(str, t)))

else:
print("ERROR: The input polygons do not have the same area.")

if __name__ == "__main__":
main()

(b) Subgroup sample 2 of 2

title: string inside out | id: 530_B | difficulty: 1600 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/530/B

def manipulate_string(s):
n = len(s) // 2
return s[n − 1::−1] + s[:n − 1:−1]

2. Problems released before GPT cutoff with functional correctness ∈ (0.0, 0.137]
(a) Subgroup sample 1 of 2

21

title: zebra tower | id: 159_E | difficulty: 1700 | func_correct: 0.125

url: https://codeforces.com/problemset/problem/159/E

def main():
n = int(input())
cubes = [tuple(map(int, input().split())) for _ in range(n)]

color_cubes = {}
for i, (color, size) in enumerate(cubes):

if color not in color_cubes:
color_cubes[color] = []

color_cubes[color].append((size, i))

for color in color_cubes:
color_cubes[color].sort(reverse=True)

color_sums = [(sum(x[0] for x in color_cubes[c]), c) for c in color_cubes]
color_sums.sort(reverse=True)

max_height = 0
best_tower = []
for i in range(len(color_sums)):

for j in range(i+1, len(color_sums)):
height1, color1 = color_sums[i]
height2, color2 = color_sums[j]
tower = []

while color_cubes[color1] and color_cubes[color2]:
size1, idx1 = color_cubes[color1].pop()
size2, idx2 = color_cubes[color2].pop()
tower.append(idx1)
tower.append(idx2)

If there is an extra cube of the first color, add it to the tower
if color_cubes[color1]:

size1, idx1 = color_cubes[color1].pop()
tower.append(idx1)

curr_height = sum(cubes[idx][1] for idx in tower)

if curr_height > max_height:
max_height = curr_height
best_tower = tower

print(max_height)
print(len(best_tower))
print(*[x+1 for x in best_tower])

if __name__ == "__main__":
main()

(b) Subgroup sample 2 of 2

22

title: dirty arkady’s kitchen | id: 827_F | difficulty: 3200 | func_correct:
0.053

url: https://codeforces.com/problemset/problem/827/F

def main():
n, m = map(int, input().split())
passages = [tuple(map(int, input().split())) for _ in range(m)]

def can_reach(destination, time):
visited = [False] * (n + 1)
stack = [(1, time)]

while stack:
place, t = stack.pop()
if place == destination:

return True
if visited[place]:

continue
visited[place] = True

for a, b, l, r in passages:
if t >= l and t < r:

next_place = a if b == place else (b if a == place else None)
if next_place is not None and not visited[next_place]:

stack.append((next_place, t + 1))

return False

start_time = 0
while not can_reach(n, start_time):

start_time += 1
if start_time > 10**9:

print(−1)
return

print(start_time)

main()

3. Problems released before GPT cutoff with functional correctness ∈ (0.137, 0.667]
(a) Subgroup sample 1 of 2

23

title: alarm clock | id: 898_D | difficulty: 1600 | func_correct: 0.316

url: https://codeforces.com/problemset/problem/898/D

def min_alarms_to_turn_off(n, m, k, alarms):
alarms.sort()
diffs = [alarms[i+1] − alarms[i] for i in range(len(alarms)−1)]
diffs.sort()
turn_off = 0
while len(diffs) >= k−1 and sum(diffs[:k−1]) + k−1 < m:

turn_off += 1
diffs.pop()

return turn_off

def main():
n, m, k = map(int, input().split())
alarms = list(map(int, input().split()))
print(min_alarms_to_turn_off(n, m, k, alarms))

main()

(b) Subgroup sample 2 of 2

title: row of models | id: 887_F | difficulty: 2500 | func_correct: 0.424

url: https://codeforces.com/problemset/problem/887/F

def main():
n, k = map(int, input().split())
heights = list(map(int, input().split()))

def test_swap(heights, k):
first_higher = −1
for i in range(len(heights) − 1):

if heights[i] > heights[i + 1]:
if first_higher == −1:

first_higher = i
elif i − first_higher < k − 1:

return False
return first_higher == −1 or first_higher >= k − 1

if test_swap(heights, k) or test_swap(heights[::−1], k):
print("YES")

else:
print("NO")

if __name__ == ’__main__’:
main()

4. Problems released before GPT cutoff with functional correctness ∈ (0.667, 1.0]
(a) Subgroup sample 1 of 2

24

title: alternating current | id: 343_B | difficulty: 1600 | func_correct: 1.0

url: https://codeforces.com/problemset/problem/343/B

def can_be_untangled(s):
stack = []
for c in s:

if stack and stack[−1] == c:
stack.pop()

else:
stack.append(c)

return "Yes" if not stack else "No"

input_sequence = input().strip()
print(can_be_untangled(input_sequence))

(b) Subgroup sample 2 of 2

title: date calculation | id: 130_J | difficulty: 1800 | func_correct: 1.0

url: https://codeforces.com/problemset/problem/130/J

def is_leap_year(year):
return year % 400 == 0 or (year % 4 == 0 and year % 100 != 0)

def find_date(year, day_num):
days_in_months = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
if is_leap_year(year):

days_in_months[1] = 29
month = 0
while day_num > days_in_months[month]:

day_num −= days_in_months[month]
month += 1

return day_num, month + 1

year = int(input())
day_num = int(input())
day, month = find_date(year, day_num)
print(day, month)

5. Problems released after GPT cutoff with functional correctness ∈ [0,0.0]
(a) Subgroup sample 1 of 2

25

title: changing brackets | id: 1593_G | difficulty: 2200 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1593/G

def min_cost(s, l, r):
cnt_open = cnt_bracket = 0
cost = 0
for i in range(l, r+1):

if s[i] == ’(’ or s[i] == ’[’:
cnt_open += 1

else:
cnt_open −= 1
if cnt_open < 0:

if s[i] == ’)’:
cnt_bracket += 1

cnt_open = 0
return cnt_bracket

t = int(input())
for _ in range(t):

s = input()
q = int(input())
for _ in range(q):

l, r = map(int, input().split())
print(min_cost(s, l−1, r−1))

(b) Subgroup sample 2 of 2

title: premutation | id: 1790_C | difficulty: 1000 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1790/C

def reconstruct_permutation(t, test_cases):
def restore_permutation(n, sequences):

occurrences = [0] * (n + 1)
for seq in sequences:

for num in seq:
occurrences[num] += 1

return [i for i, count in enumerate(occurrences) if count == n − 1]

results = []
for case in test_cases:

n, sequences = case
results.append(restore_permutation(n, sequences))

return results

t = 5
test_cases = [

(4, [[4, 2, 1], [4, 2, 3], [2, 1, 3], [4, 1, 3]]),
(3, [[3, 2], [3, 1], [1, 2]]),
(5, [[4, 2, 1, 3], [2, 1, 3, 5], [4, 2, 3, 5], [4, 1, 3, 5], [4, 2, 1, 5]]),
(3, [[1, 3], [2, 3], [1, 2]]),
(4, [[3, 1, 2], [1, 3, 4], [2, 1, 3], [1, 2, 4]])

]

result = reconstruct_permutation(t, test_cases)
for r in result:

print(*r)

6. Problems released after GPT cutoff with functional correctness ∈ (0.0, 0.137]
(a) Subgroup sample 1 of 2

26

title: arranging crystal balls | id: 1740_I | difficulty: 3500 | func_correct:
0.062

url: https://codeforces.com/problemset/problem/1740/I

def gcd(a, b):
while b:

a, b = b, a % b
return a

def minimum_operations(n, m, k, a):
gcd_ak = a[0] − a[k]
for i in range(k, n):

gcd_ak = gcd(gcd_ak, a[i] − a[i − k])
if gcd_ak % m != 0:

return −1
return sum(abs(a[i] − a[0]) // m for i in range(n)) // k

n, m, k = map(int, input().split())
a = list(map(int, input().split()))
print(minimum_operations(n, m, k, a))

(b) Subgroup sample 2 of 2

27

title: count voting | id: 1799_G | difficulty: 2600 | func_correct: 0.083

url: https://codeforces.com/problemset/problem/1799/G

def main():
MOD = 998244353
n = int(input())
desired_votes = list(map(int, input().split()))
team = list(map(int, input().split()))

team_votes = [0] * (n + 1)
for tv in team:

team_votes[tv] += 1

dp = [[0] * (n + 1) for _ in range(n + 1)]
dp[0][0] = 1
for i in range(1, n + 1):

for j in range(n + 1):
dp[i][j] = dp[i − 1][j]
if j − desired_votes[i − 1] >= 0:

dp[i][j] += dp[i − 1][j − desired_votes[i − 1]]
if dp[i][j] >= MOD:

dp[i][j] −= MOD

ans = 1
total_non_team_votes = 0
for i in range(1, n + 1):

count = team_votes[i]
if count == 0:

continue
tmp = dp[total_non_team_votes + count][count] * ans
if tmp >= MOD:

tmp %= MOD
ans = tmp
total_non_team_votes += count

print(ans)

main()

7. Problems released after GPT cutoff with functional correctness ∈ (0.137, 0.667]
(a) Subgroup sample 1 of 2

28

title: count binary strings | id: 1767_C | difficulty: 2100 | func_correct:
0.364

url: https://codeforces.com/problemset/problem/1767/C

def main():
MOD = 998244353

n = int(input())
a = [list(map(int, input().split())) for _ in range(n)]

dp = [[[0] * (n + 1) for _ in range(n + 1)] for _ in range(3)]

for i in range(n+1):
dp[0][i][i] = dp[1][i][i] = 1

for l in range(2, n+1):
for i in range(1, n − l + 2):

j = i + l − 1

if a[i − 1][j − i] != 2:
dp[0][i][j] += (dp[0][i + 1][j] + dp[1][i + 1][j]) % MOD
dp[0][i][j] %= MOD

if a[i − 1][j − i] != 1:
dp[1][i][j] += (dp[0][i + 1][j] + dp[1][i + 1][j]) % MOD
dp[1][i][j] %= MOD

for k in range(i, j):
if a[i − 1][k − i] != 1 and a[k + 1 − 1][j − (k + 1)] != 1:

dp[2][i][j] += dp[2][i][k] * dp[2][k + 1][j] % MOD
if a[i − 1][k − i] != 1 and a[k + 1 − 1][j − (k + 1)] != 2:

dp[2][i][j] += dp[2][i][k] * dp[1][k + 1][j] % MOD
if a[i − 1][k − i] != 2 and a[k + 1 − 1][j − (k + 1)] != 1:

dp[2][i][j] += dp[0][i][k] * dp[2][k + 1][j] % MOD
if a[i − 1][k − i] != 2 and a[k + 1 − 1][j − (k + 1)] != 2:

dp[2][i][j] += dp[0][i][k] * dp[1][k + 1][j] % MOD

dp[2][i][j] %= MOD

print(dp[2][1][n])

if __name__ == "__main__":
main()

(b) Subgroup sample 2 of 2

29

title: interesting sum | id: 1720_B | difficulty: 800 | func_correct: 0.5

url: https://codeforces.com/problemset/problem/1720/B

def maximum_beauty(t, test_cases):
results = []
for n, a in test_cases:

max_outside = max(a)
max_inside, min_inside = max(a[1:−1]), min(a[1:−1])
ans = max(max_outside − a[0] + max_inside − a[−1],

max_outside − a[−1] + max_inside − a[0])
results.append(ans)

return results

def main():
t = int(input().strip())
test_cases = []
for _ in range(t):

n = int(input().strip())
a = list(map(int, input().strip().split()))
test_cases.append((n, a))

output = maximum_beauty(t, test_cases)
for res in output:

print(res)

if __name__ == ’__main__’:
main()

8. Problems released after GPT cutoff with functional correctness ∈ (0.667, 1.0]
(a) Subgroup sample 1 of 2

title: the boss can count pairs | id: 1830_B | difficulty: 2000 | func_correct:
1.0

url: https://codeforces.com/problemset/problem/1830/B

def main():
t = int(input().strip())
for _ in range(t):

n = int(input().strip())
a = list(map(int, input().strip().split()))
b = list(map(int, input().strip().split()))

count = 0
for i in range(n):

for j in range(i + 1, n):
if a[i] * a[j] == b[i] + b[j]:

count += 1
print(count)

if __name__ == "__main__":
main()

(b) Subgroup sample 2 of 2

30

title: interesting sections | id: 1609_F | difficulty: 2800 | func_correct: 1.0

url: https://codeforces.com/problemset/problem/1609/F

def main():
n = int(input().strip())
a = list(map(int, input().strip().split()))

def bit_count(x):
return bin(x).count(’1’)

ans = 0
for l in range(n):

min_val = a[l]
max_val = a[l]
for r in range(l, n):

min_val = min(min_val, a[r])
max_val = max(max_val, a[r])
if bit_count(min_val) == bit_count(max_val):

ans += 1
print(ans)

if __name__ == ’__main__’:
main()

B.8.2 GPT-3.5-TURBO

1. Problems released before GPT cutoff with functional correctness ∈ [0,0.0]
(a) Subgroup sample 1 of 2

31

title: trash problem | id: 1418_D | difficulty: 2100 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1418/D

n, q = map(int, input().split())
a = sorted(map(int, input().split()))
p = {a[i]:i for i in range(n)}
s = [x−y for x,y in zip(a[1:], a)]
s1 = [x−y for x,y in zip(a[2:], a)]
ans1 = ans2 = sum(s)
for _ in range(q):

t, x = map(int, input().split())
x −= 1
if t == 1:

a.append(x)
a.sort()
i = p[x] = a.index(x)
if i > 0: ans1 += max(0, a[i]−a[i−1]−1)
if i < n−1: ans1 += max(0, a[i+1]−a[i]−1)
if i > 1: ans1 −= max(0, a[i]−a[i−2]−1) − s1[i−2]
if i < n−2: ans1 −= max(0, a[i+2]−a[i+1]−1) − s[i−1]
n += 1
s1, s = s, [x−y for x,y in zip(a[1:], a)]

else:
i = p[x]
if i > 0: ans1 −= max(0, a[i]−a[i−1]−1)
if i < n−1: ans1 −= max(0, a[i+1]−a[i]−1)
if i > 1: ans1 += max(0, a[i]−a[i−2]−1) − s1[i−2]
if i < n−2: ans1 += max(0, a[i+2]−a[i+1]−1) − s[i−1]
a.remove(x)
n −= 1
del p[x]
s1, s = s, [x−y for x,y in zip(a[1:], a)]

print(ans1)
print(ans2)

(b) Subgroup sample 2 of 2

32

title: boboniu and string | id: 1394_C | difficulty: 2600 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1394/C

from collections import Counter

def can_reach(target, source):
"""Check if target can be obtained from source by removing ’B’,’N’ and ’BN’/’

↪→ NB’."""
n = len(target)
m = len(source)
i = j = 0
while i < n and j < m:

if target[i] == source[j]:
i += 1
j += 1

elif target[i] == ’B’ and source[j] == ’N’:
j += 1

elif target[i] == ’N’ and source[j] == ’B’:
j += 1

elif target[i:i+2] == ’BN’ and (j+1 < m and source[j:j+2] == ’BN’):
j += 2
i += 2

elif target[i:i+2] == ’NB’ and (j+1 < m and source[j:j+2] == ’NB’):
j += 2
i += 2

else:
return False

return i == n

n = int(input())
strings = []
for i in range(n):

strings.append(input().strip())

freq = Counter(’’.join(strings))
t = ’’
if freq[’B’] >= freq[’N’]:

t += ’B’ * freq[’B’]
else:

t += ’N’ * freq[’N’]

def binary_search():
"""Use binary search to find the minimum value of max_dist."""
l, r = 1, 2 * 10 ** 6
while l < r:

mid = (l + r) // 2
can_make = False
for char in [’B’, ’N’, ’BN’, ’NB’]:

for start in range(len(t)):
new_t = t[:start] + char + t[start:]
if all(can_reach(new_t, s) for s in strings):

can_make = True
break

if can_make:
break

if can_make:
r = mid

else:
l = mid + 1

return l
Note from authors: cutting this submission early for display convenience (it’s too

↪→ long to show all of it).

33

2. Problems released before GPT cutoff with functional correctness ∈ (0.0, 0.051]
(a) Subgroup sample 1 of 2

title: up the strip | id: 1558_B | difficulty: 1900 | func_correct: 0.03

url: https://codeforces.com/problemset/problem/1558/B

n, m = map(int, input().split())
dp = [0] * (n+1)
dp[n] = 1
for i in range(n−1, 0, −1):

dp[i] = (dp[i+1] + dp[i*2]) % m
print(dp[1])

(b) Subgroup sample 2 of 2

title: yellow cards | id: 1215_A | difficulty: 1000 | func_correct: 0.023

url: https://codeforces.com/problemset/problem/1215/A

a1 = int(input())
a2 = int(input())
k1 = int(input())
k2 = int(input())
n = int(input())

min_players_out = max(0, n − (a1*(k1−1) + a2*(k2−1)))
max_players_out = min(n, min(a1,k1)*a1 + min(a2,k2)*a2 − n)

print(min_players_out, max_players_out)

3. Problems released before GPT cutoff with functional correctness ∈ (0.051, 0.4]
(a) Subgroup sample 1 of 2

title: exchange of books | id: 683_H | difficulty: 1900 | func_correct: 0.1

url: https://codeforces.com/problemset/problem/683/H

n, k = map(int, input().split())
friends = list(map(int, input().split()))
start = list(range(1, n+1)) # starting arrangement of books

create a dict to map current position to the next position after one day
next_pos = {i+1: friend for i, friend in enumerate(friends)}

simulate book exchange for k days
for i in range(k):

end = [0] * n # initialize empty list to hold end arrangement of books
for j in range(n):

end[next_pos[j+1]−1] = start[j] # exchange books
start = end # update starting arrangement to end arrangement
next_pos = {j+1: next_pos[next_pos[j+1]] for j in range(n)} # update dict

print final arrangement of books
print(*start)

(b) Subgroup sample 2 of 2

34

title: alarm clock | id: 898_D | difficulty: 1600 | func_correct: 0.368

url: https://codeforces.com/problemset/problem/898/D

n, m, k = map(int, input().split())
alarms = sorted(map(int, input().split()))
interval = [0] * (10**6 + 1)
for i in range(1, n − k + 2):

start = alarms[i−1]
end = alarms[i+k−2] if i+k−1 <= n else 10**6
interval[start:end+1] = [j+1 for j in interval[start:end+1]]

print(sum([1 for x in interval if x >= m]))

4. Problems released before GPT cutoff with functional correctness ∈ (0.4, 1.0]
(a) Subgroup sample 1 of 2

title: chemistry in berland | id: 846_E | difficulty: 2300 | func_correct:
0.875

url: https://codeforces.com/problemset/problem/846/E

n = int(input())
b = list(map(int, input().split()))
a = list(map(int, input().split()))
adj = [[] for _ in range(n)]
for i in range(1, n):

x, k = map(int, input().split())
adj[i].append((x−1, k))
adj[x−1].append((i, k))

visited = [False] * n
def dfs(u):

visited[u] = True
for v, k in adj[u]:

if not visited[v]:
a[v] −= k * a[u]
b[v] −= k * b[u]
if a[v] > b[v] or a[v] % gcd(a[u], b[u]) != 0:

return False
if not dfs(v):

return False
return True

def gcd(a, b):
while b:

a, b = b, a % b
return a

for i in range(n):
if not visited[i] and a[i] != 0:

if dfs(i):
continue

else:
print("NO")
break

else:
print("YES")

(b) Subgroup sample 2 of 2

35

title: optimal subsequences (easy version) | id: 1227_D1 | difficulty: 1600 |
func_correct: 0.5
url: https://codeforces.com/problemset/problem/1227/D1

n = int(input())
a = list(map(int, input().split()))
m = int(input())

Indices of maximum elements in all prefixes of a
max_indices = [0] * n
cur_max_idx = 0
for i in range(n):

if a[i] > a[cur_max_idx]:
cur_max_idx = i

max_indices[i] = cur_max_idx

for _ in range(m):
k, pos = map(int, input().split())
subseq = []
i = max_indices[k − 1] # start with the maximum element in the k−length prefix
while len(subseq) < k:

if a[i] != 0:
subseq.append(a[i])

i += 1
if i >= n: # end of a is reached

break
subseq.sort(reverse=True) # lexicographically minimal subsequence with

↪→ maximum sum
print(subseq[pos − 1])

5. Problems released after GPT cutoff with functional correctness ∈ [0,0.0]
(a) Subgroup sample 1 of 2

36

title: anti-fibonacci permutation | id: 1644_B | difficulty: 800 |
func_correct: 0.0
url: https://codeforces.com/problemset/problem/1644/B

function to generate a permutation
def generate_permutation(n):

return list(range(1,n+1))

function to check if a permutation is anti−fibonacci
def is_anti_fibonacci(p):

for i in range(2,len(p)):
if p[i−2]+p[i−1] == p[i]:

continue
else:

return False
return True

t = int(input())
for _ in range(t):

n = int(input())
create a list of all possible permutations
all_permutations = [generate_permutation(n)]
iterate over all permutations and check if they are anti−fibonacci
for i in range(2, n):

for j in range(i):
new_permutations = []
for p in all_permutations:

new_p = p.copy()
new_p[i], new_p[j] = new_p[j], new_p[i]
if is_anti_fibonacci(new_p):

new_permutations.append(new_p)
all_permutations += new_permutations

print the first n anti−fibonacci permutations
for p in all_permutations[:n]:

print(*p)

(b) Subgroup sample 2 of 2

37

title: cypher | id: 1703_C | difficulty: 800 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1703/C

def original_sequence(n, final, moves):
initialize original sequence to all zeroes
orig = [0]*n

apply moves in reverse order to determine original sequence
for i in range(n−1, −1, −1):

if moves[i][0] == ’D’:
shift = int(moves[i][1:])

else:
shift = −int(moves[i][1:])

adjust for wheel rollover
if final[i] + shift < 0:

shift += 10
elif final[i] + shift > 9:

shift −= 10

orig[i] = (final[i] + shift) % 10

return orig

t = int(input())
for _ in range(t):

n = int(input())
final = [int(x) for x in input().split()]
moves = [input().strip() for _ in range(n)]

orig = original_sequence(n, final, moves)
print(*orig)

6. Problems released after GPT cutoff with functional correctness ∈ (0.0, 0.051]
(a) Subgroup sample 1 of 2

title: torus path | id: 1765_K | difficulty: 1500 | func_correct: 0.04

url: https://codeforces.com/problemset/problem/1765/K

n = int(input())
grid = []
for i in range(n):

grid.append(list(map(int, input().split())))
dp = [[0]*n for i in range(n)]
dp[0][0] = grid[0][0]
for i in range(1,n):

dp[i][0] = dp[i−1][0] + grid[i][0]
for j in range(1,n):

dp[0][j] = dp[0][j−1] + grid[0][j]
for i in range(1,n):

for j in range(1,n):
dp[i][j] = max(dp[i−1][j], dp[i][j−1]) + grid[i][j]

print(dp[−1][−1])

(b) Subgroup sample 2 of 2

38

title: olympic team building | id: 1779_H | difficulty: 3500 | func_correct:
0.023

url: https://codeforces.com/problemset/problem/1779/H

n = int(input())
strengths = list(map(int, input().split()))

winners = [True] * n # Assume all players are initially winners

while n > 1:
new_winners = [False] * n
for i in range(0, n, 2):

total_strength = strengths[i] + strengths[i+1]
if total_strength == max(total_strength, 0): # If both strengths are positive or

↪→ only one is negative
new_winners[i] = True

else:
new_winners[i+1] = True

winners = [winners[i] and new_winners[i] for i in range(n)] # Update winners
↪→ list

n //= 2 # Half the number of players
strengths = [strengths[2*i] + strengths[2*i+1] for i in range(n)] # Sum strengths

↪→ for remaining players

for i in range(len(winners)):
if winners[i]:

print("1", end="")
else:

print("0", end="")

7. Problems released after GPT cutoff with functional correctness ∈ (0.051, 0.4]
(a) Subgroup sample 1 of 2

39

title: magician and pigs (hard version) | id: 1774_F2 | difficulty: 2700 |
func_correct: 0.375
url: https://codeforces.com/problemset/problem/1774/F2

n = int(input())

create an empty list to store the pigs’ health points
pigs = []

iterate through n operations
for i in range(n):

op = input().split()
if op[0] == ’1’:

create a new pig with x health points
pigs.append(int(op[1]))

elif op[0] == ’2’:
reduce all pigs’ health points by x
for j in range(len(pigs)):

pigs[j] −= int(op[1])
else:

repeat all previous operations (including repeats)
for j in range(i):

prev_op = input().split()
if prev_op[0] == ’1’:

create a new pig with x health points
pigs.append(int(prev_op[1]))

elif prev_op[0] == ’2’:
reduce all pigs’ health points by x
for k in range(len(pigs)):

pigs[k] −= int(prev_op[1])

remove dead pigs from the list
pigs = [p for p in pigs if p > 0]

print the number of living pigs modulo 998244353
print(len(pigs) % 998244353)

(b) Subgroup sample 2 of 2

40

title: physical examination | id: 1571_I | difficulty: 3200 | func_correct:
0.333

url: https://codeforces.com/problemset/problem/1571/I

for _ in range(int(input())):
n = int(input())
L = list(map(int, input().split()))
R = list(map(int, input().split()))
x = max(0, max(L) − min(R))
p = [0] * n
for i in range(n):

p[i] = i
p.sort(key=lambda i: L[i])
current_time = x
for i in range(n):

if L[p[i]] > current_time + i or R[p[i]] < current_time + i:
print(−1)
break

print(current_time + i, end=’ ’)
else:

print()
print(*[p[i]+1 for i in range(n)])

8. Problems released after GPT cutoff with functional correctness ∈ (0.4, 1.0]
(a) Subgroup sample 1 of 2

title: replace the numbers | id: 1620_E | difficulty: 1900 | func_correct:
1.0

url: https://codeforces.com/problemset/problem/1620/E

q = int(input())
arr = []
for i in range(q):

query = input().split()
if query[0] == ’1’:

arr.append(int(query[1]))
else:

x = int(query[1])
y = int(query[2])
for j in range(len(arr)):

if arr[j] == x:
arr[j] = y

print(*arr)

(b) Subgroup sample 2 of 2

41

title: garland | id: 1809_A | difficulty: 800 | func_correct: 0.467

url: https://codeforces.com/problemset/problem/1809/A

def min_operations(s):
colors = set(s)
if len(colors) < 4:

return −1
on = set()
count = 0
for i in range(4):

if s[i] not in on:
on.add(s[i])
count += 1

return count

t = int(input())
for i in range(t):

s = input()
print(min_operations(s))

42

Table 1: Regression table for Pass Rate of GPT-4 on the Codeforces dataset. See Figure 9 for plot of
regression coefficients.

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.084 0.204
(0.082, 0.087) (0.183, 0.228)

p = 0.000∗ p = 0.000∗

GitHub_Presence 1.044 1.000
(1.038, 1.050) (0.986, 1.014)

p = 0.000∗ p = 0.988

Constant 37,810,359.000 36,517.320
(29,642,418.000, 48,261,514.000) (15,107.710, 88,780.010)

p = 0.000∗ p = 0.000∗

Observations 6,693 1,378
Log Likelihood −61,571.750 −3,358.241
Akaike Inf. Crit. 123,149.500 6,722.482

Note: ∗p<0.05

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT4 Functional
Correctness −− Codeforces

Figure 9: Regression coefficients plots of Pass Rate for GPT-4 on the Project Codeforces Dataset.
See Table 1 for regression coefficients.

43

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15
10%

20%

30%

40%

50%

60%

log(GitHub Presence)

F
un

ct
io

na
l C

or
re

ct
ne

ss

log(Difficulty)
7.04
7.43
7.83

Functional Correctness Marginal Effects Plots for GPT−4 on Codeforces

Figure 10: Marginal Effects of Pass Rate for GPT-4 on the Codeforces Dataset

Table 2: Regression table for Pass Rate of GPT-3.5-Turbo on the Codeforces dataset. See Figure 11
for plot of regression coefficients.

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.115 0.228
(0.112, 0.119) (0.202, 0.257)

p = 0.000∗ p = 0.000∗

GitHub_Presence 1.023 1.014
(1.017, 1.030) (0.998, 1.030)

p = 0.000∗ p = 0.081

Constant 2,859,990.000 9,989.318
(2,244,055.000, 3,646,978.000) (3,842.640, 26,109.620)

p = 0.000∗ p = 0.000∗

Observations 6,692 1,378
Log Likelihood −52,913.820 −2,611.597
Akaike Inf. Crit. 105,833.600 5,229.195

Note: ∗p<0.05

44

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT 3.5 Turbo
Functional Correctness −− Codeforces

Figure 11: Regression coefficients plots of Pass Rate for GPT-3.5-Turbo on the Project Codeforces
Dataset. See Table 2 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

40%

50%

log(GitHub Presence)

F
un

ct
io

na
l C

or
re

ct
ne

ss

log(Difficulty)
7.04
7.43
7.82

Functional Correctness Marginal Effects Plots for GPT−3.5−Turbo on Codeforces

Figure 12: Marginal Effects of Pass Rate for GPT-3.5-Turbo on the Codeforces Dataset

45

Table 3: Code Bison Functional Correctness – Codeforces

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.221 0.344
(0.214, 0.228) (0.240, 0.492)

p = 0.000∗ p = 0.000∗

Github_Presence 1.033 1.023
(1.027, 1.040) (0.978, 1.071)

p = 0.000∗ p = 0.316

Constant 12,033.200 229.971
(9,387.552, 15,428.990) (14.438, 3,694.907)

p = 0.000∗ p = 0.0002∗

Observations 7,807 217
Log Likelihood −38,944.730 −228.904
Akaike Inf. Crit. 77,895.470 463.807

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for Code Bison Functional
Correctness −− Codeforces

Figure 13: Regression coefficients plots of Pass Rate for Code Bison on the Project Codeforces
Dataset. See Table 3 for regression coefficients.

46

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.03
7.44
7.85

Pass Rate Marginal Effects Plots for Code Bison on Codeforces

Figure 14: Marginal Effects of Pass Rate for Code Bison on the Codeforces Dataset

Table 4: Regression table for Pass Rate of GPT-4 on the Codeforces dataset (public test cases only).
See Figure 15 for plot of regression coefficients.

Dependent variable:
Pass Rate (Public)

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.122 0.834
(0.110, 0.135) (0.624, 1.116)

p = 0.000∗ p = 0.221

GitHub_Presence 1.043 0.998
(1.024, 1.063) (0.964, 1.033)
p = 0.00001∗ p = 0.895

Constant 2,468,839.000 0.647
(1,118,457.000, 5,484,288.000) (0.064, 6.445)

p = 0.000∗ p = 0.712

Observations 6,693 1,378
Log Likelihood −7,352.622 −712.065
Akaike Inf. Crit. 14,711.250 1,430.131

Note: ∗p<0.05

47

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT4 Functional
Correctness −− Codeforces (Public)

Figure 15: Regression coefficients plots of Pass Rate for GPT-4 on the Project Codeforces Dataset
(evaluated on public test cases only). See Table 4 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

20%

40%

60%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.04
7.44
7.85

Pass Rate Marginal Effects Plots for GPT−4 on Codeforces (Public)

Figure 16: Marginal Effects of Pass Rate for GPT-4 on the Codeforces Dataset (evaluated on public
test cases only)

48

Table 5: Regression table for Pass Rate of GPT-3.5-Turbo on the Codeforces dataset (public test cases
only). See Figure 17 for plot of regression coefficients.

Dependent variable:
Pass Rate (Public)

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.157 1.046
(0.141, 0.173) (0.744, 1.478)

p = 0.000∗ p = 0.798

GitHub_Presence 1.027 0.998
(1.006, 1.047) (0.960, 1.038)

p = 0.011∗ p = 0.919

Constant 269,429.200 0.080
(119,822.600, 608,823.800) (0.005, 1.190)

p = 0.000∗ p = 0.069

Observations 6,693 1,378
Log Likelihood −6,461.524 −562.326
Akaike Inf. Crit. 12,929.050 1,130.652

Note: ∗p<0.05

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. * ***

Regression Coefficients for GPT 3.5 Turbo
Functional Correctness −− Codeforces (Public)

Figure 17: Regression coefficients plots of Pass Rate for GPT-3.5-Turbo on the Project Codeforces
Dataset (evaluated on public test cases only). See Table 5 for regression coefficients.

49

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

40%

50%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.04
7.44
7.85

Pass Rate Marginal Effects Plots for GPT−3.5−Turbo on Codeforces (Public)

Figure 18: Marginal Effects of Pass Rate for GPT-3.5-Turbo on the Codeforces Dataset (evaluated on
public test cases only)

Table 6: Code Bison Functional Correctness – Codeforces (Public)

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.309 0.606
(0.278, 0.343) (0.137, 2.627)

p = 0.000∗ p = 0.498

Github_Presence 1.049 0.886
(1.029, 1.069) (0.741, 1.034)
p = 0.00001∗ p = 0.147

Constant 742.217 3.558
(322.484, 1,710.418) (0.00003, 400,997.100)

p = 0.000∗ p = 0.827

Observations 7,807 217
Log Likelihood −5,463.652 −40.781
Akaike Inf. Crit. 10,933.300 87.561

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

50

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for Code Bison Functional
Correctness −− Codeforces (Public)

Figure 19: Regression coefficients plots of Pass Rate for Code Bison on the Project Codeforces
Dataset (evaluated on public test cases only). See Table 6 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

0%

10%

20%

30%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.03
7.44
7.85

Pass Rate Marginal Effects Plots for Code Bison on Codeforces (Public)

Figure 20: Marginal Effects of Pass Rate for Code Bison on the Codeforces Dataset (evaluated on
public test cases only)

51

Table 7: Regression table for Pass Rate of GPT-4 on the Codeforces dataset (private test cases only).
See Figure 21 for plot of regression coefficients.

Dependent variable:
Pass Rate (Private)

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.081 0.147
(0.079, 0.084) (0.129, 0.166)

p = 0.000∗ p = 0.000∗

GitHub_Presence 1.044 0.997
(1.037, 1.050) (0.982, 1.012)

p = 0.000∗ p = 0.684

Constant 49,784,537.000 489,263.300
(38,544,981.000, 64,349,935.000) (181,481.600, 1,331,364.000)

p = 0.000∗ p = 0.000∗

Observations 6,155 811
Log Likelihood −56,988.530 −2,805.794
Akaike Inf. Crit. 113,983.100 5,617.588

Note: ∗p<0.05

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT4 Functional
Correctness −− Codeforces (Private)

Figure 21: Regression coefficients plots of Pass Rate for GPT-4 on the Project Codeforces Dataset
(evaluated on private test cases only). See Table 7 for regression coefficients.

52

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

40%

50%

60%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.06
7.46
7.86

Pass Rate Marginal Effects Plots for GPT−4 on Codeforces (Private)

Figure 22: Marginal Effects of Pass Rate for GPT-4 on the Codeforces Dataset (evaluated on private
test cases only)

Table 8: Regression table for Pass Rate of GPT-3.5-Turbo on the Codeforces dataset (private test
cases only). See Figure 21 for plot of regression coefficients.

Dependent variable:
Pass Rate (Private)

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.112 0.168
(0.109, 0.116) (0.147, 0.192)

p = 0.000∗ p = 0.000∗

GitHub_Presence 1.023 1.014
(1.017, 1.030) (0.996, 1.031)

p = 0.000∗ p = 0.128

Constant 3,541,250.000 107,436.200
(2,746,064.000, 4,569,487.000) (37,418.200, 311,168.500)

p = 0.000∗ p = 0.000∗

Observations 6,154 811
Log Likelihood −49,348.890 −2,208.268
Akaike Inf. Crit. 98,703.780 4,422.537

Note: ∗p<0.05

53

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT 3.5 Turbo
Functional Correctness −− Codeforces (Private)

Figure 23: Regression coefficients plots of Pass Rate for GPT-3.5-Turbo on the Project Codeforces
Dataset (evaluated on public test cases only). See Table 8 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

40%

50%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.06
7.46
7.86

Pass Rate Marginal Effects Plots for GPT−3.5−Turbo on Codeforces (Private)

Figure 24: Marginal Effects of Pass Rate for GPT-3.5-Turbo on the Codeforces Dataset (evaluated on
private test cases only)

54

Table 9: Code Bison Functional Correctness – Codeforces (Private)

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.215 0.305
(0.208, 0.222) (0.210, 0.442)

p = 0.000∗ p = 0.000∗

Github_Presence 1.031 1.040
(1.025, 1.038) (0.992, 1.091)

p = 0.000∗ p = 0.111

Constant 15,512.470 574.153
(11,955.840, 20,133.940) (32.974, 10,079.970)

p = 0.000∗ p = 0.00002∗

Observations 6,791 132
Log Likelihood −36,805.650 −211.771
Akaike Inf. Crit. 73,617.300 429.541

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for Code Bison Functional
Correctness −− Codeforces (Private)

Figure 25: Regression coefficients plots of Pass Rate for Code Bison on the Project Codeforces
Dataset (evaluated on public test cases only). See Table 9 for regression coefficients.

55

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.05
7.46
7.86

Pass Rate Marginal Effects Plots for Code Bison on Codeforces (Private)

Figure 26: Marginal Effects of Pass Rate for Code Bison on the Codeforces Dataset (evaluated on
private test cases only)

Table 10: Regression table for Pass Rate of GPT4 on the Project Euler dataset. See Figure 27 for plot
of regression coefficients.

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.145 1.000
(0.104, 0.196) (0.000, Inf.000)

p = 0.000∗ p = 1.000

GitHub_Presence 1.476 1.000
(1.127, 1.947) (0.000, Inf.000)

p = 0.005∗ p = 1.000

Constant 0.323 0.000
(0.007, 15.405) (0.000, Inf.000)

p = 0.567 p = 1.000

Observations 765 72
Log Likelihood −170.511 −0.000
Akaike Inf. Crit. 347.023 6.000

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

56

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ** ***

Regression Coefficients for GPT4 Functional
Correctness −− Project Euler

Figure 27: Regression coefficients plots of Pass Rate for GPT-4 on the Project Euler Dataset. See
Table 10 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

12 14 16 12 14 16

0%

25%

50%

75%

100%

GitHub Presence

P
as

s
R

at
e Difficulty

2.83
3.62
4.41

Pass Rate Marginal Effects Plots for GPT−4 on Project Euler

Figure 28: Marginal Effects of Pass Rate for GPT-4 on the Project Euler Dataset

57

Table 11: Regression table for Pass Rate of GPT-3.5-Turbo on the Project Euler dataset. See Figure 29
for plot of regression coefficients.

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.166 1.000
(0.117, 0.228) (0.000, Inf.000)

p = 0.000∗ p = 1.000

GitHub_Presence 1.274 1.000
(0.954, 1.714) (0.000, Inf.000)

p = 0.100 p = 1.000

Constant 0.839 0.000
(0.012, 56.905) (0.000, Inf.000)

p = 0.936 p = 1.000

Observations 765 72
Log Likelihood −140.542 −0.000
Akaike Inf. Crit. 287.084 6.000

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT 3.5 Turbo
Functional Correctness −− Project Euler

Figure 29: Regression coefficients plots of Pass Rate for GPT-3.5-Turbo on the Project Euler Dataset.
See Table 11 for regression coefficients.

58

Problems Released Before Cutoff Problems Released After Cutoff

12 14 16 12 14 16

0%

25%

50%

75%

100%

GitHub Presence

P
as

s
R

at
e Difficulty

2.83
3.62
4.41

Pass Rate Marginal Effects Plots for GPT−3.5−Turbo on Project Euler

Figure 30: Marginal Effects of Pass Rate for GPT-3.5-Turbo on the Project Euler Dataset

Table 12: Regression table for Title Reproduction of GPT-4 on the Codeforces dataset. See Figure 31
for plot of regression coefficients.

Dependent variable:
Title Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.897 0.898
(0.826, 0.974) (0.756, 1.067)

p = 0.010∗ p = 0.222

GitHub_Presence 1.010 1.005
(0.994, 1.026) (0.982, 1.028)

p = 0.210 p = 0.684

Constant 0.817 0.750
(0.418, 1.598) (0.191, 2.956)

p = 0.556 p = 0.682

Observations 18,446 3,954
Log Likelihood −11,074.250 −2,265.482
Akaike Inf. Crit. 22,154.490 4,536.963

Note: ∗p<0.05

59

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

p−level n.s. **

Dependent Variables Pre Cutoff Post Cutoff

Regression Coefficients for GPT4 Title
Reproduction −− Codeforces

Figure 31: Regression coefficients plots of Title Reproduction Metric for GPT-4 on the Project
Codeforces Dataset. See Table 12 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15
21%

24%

27%

30%

log(GitHub Presence)

T
itl

e
R

ep
ro

du
ct

io
n

log(Difficulty)
7.05
7.45
7.86

Title Reproduction Marginal Effects Plots for GPT−4 on Codeforces

Figure 32: Marginal Effects of Title Reproduction Metric for GPT-4 on the Codeforces Dataset

60

Table 13: Regression table for Title Reproduction of GPT-3.5-Turbo on the Codeforces dataset. See
Figure 33 for plot of regression coefficients.

Dependent variable:
Title Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.839 0.709
(0.719, 0.979) (0.510, 0.984)

p = 0.026∗ p = 0.041∗

GitHub_Presence 1.010 0.973
(0.981, 1.041) (0.931, 1.016)

p = 0.506 p = 0.216

Constant 0.220 0.954
(0.063, 0.764) (0.071, 13.105)

p = 0.018∗ p = 0.972

Observations 18,446 3,954
Log Likelihood −4,293.516 −869.667
Akaike Inf. Crit. 8,593.032 1,745.333

Note: ∗p<0.05

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. *

Regression Coefficients for GPT 3.5 Turbo Title
Reproduction −− Codeforces

Figure 33: Regression coefficients plots of Title Reproduction Metric for GPT-3.5-Turbo on the
Project Codeforces Dataset. See Table 13 for regression coefficients.

61

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

4%

6%

8%

10%

log(GitHub Presence)

T
itl

e
R

ep
ro

du
ct

io
n

log(Difficulty)
7.05
7.45
7.86

Title Reproduction Marginal Effects Plots for GPT−3.5−Turbo on Codeforces

Figure 34: Marginal Effects of Title Reproduction Metric for GPT-3.5-Turbo on the Codeforces
Dataset

Table 14: Regression table for Title Reproduction of GPT4 on the Project Euler dataset. ee Figure 35
for plot of regression coefficients.

Dependent variable:
Title Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.780 0.946
(0.699, 0.870) (0.631, 1.438)
p = 0.00001∗ p = 0.793

GitHub_Presence 1.014 0.998
(0.962, 1.073) (0.741, 1.344)

p = 0.608 p = 0.991

Constant 0.848 0.508
(0.349, 1.980) (0.008, 29.457)

p = 0.709 p = 0.745

Observations 2,556 190
Log Likelihood −1,536.829 −114.284
Akaike Inf. Crit. 3,079.658 234.568

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

62

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT4 Title
Reproduction −− Project Euler

Figure 35: Regression coefficients plots of Title Reproduction Metric for GPT-4 on the Project Euler
Dataset. See Table 13 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

0%

25%

50%

75%

100%

log(GitHub Presence)

T
itl

e
R

ep
ro

du
ct

io
n

log(Difficulty)
2.91
3.67
4.42

Title Reproduction Marginal Effects Plots for GPT−4 on Project Euler

Figure 36: Marginal Effects of Title Reproduction Metric for GPT-4 on the Project Euler Dataset

63

Table 15: Regression table for Title Reproduction of GPT-3.5-Turbo on the Project Euler dataset. ee
Figure 37 for plot of regression coefficients.

Dependent variable:
Title Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 1.178 0.643
(0.934, 1.517) (0.136, 4.339)

p = 0.184 p = 0.589

GitHub_Presence 0.981 1.283
(0.898, 1.094) (0.339, 6.026)

p = 0.696 p = 0.715

Constant 0.044 0.002
(0.007, 0.198) (0.000, 51,280.610)
p = 0.0002∗ p = 0.505

Observations 2,556 190
Log Likelihood −564.246 −10.900
Akaike Inf. Crit. 1,134.492 27.801

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s.

Regression Coefficients for GPT 3.5 Turbo Title
Reproduction −− Project Euler

Figure 37: Regression coefficients plots of Title Reproduction Metric for GPT-3.5-Turbo on the
Project Euler Dataset. See Table 13 for regression coefficients.

64

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

0%

25%

50%

75%

100%

log(GitHub Presence)

T
itl

e
R

ep
ro

du
ct

io
n

log(Difficulty)
2.91
3.67
4.42

Title Reproduction Marginal Effects Plots for GPT−3.5−Turbo on Project Euler

Figure 38: Marginal Effects of Title Reproduction Metric for GPT-3.5-Turbo on the Project Euler
Dataset

Table 16: Regression table for Tag Reproduction of GPT-4 on the Codeforces dataset. See Figure 39
for plot of regression coefficients.

Dependent variable:
Tags Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.431 0.826
(0.400, 0.465) (0.707, 0.966)

p = 0.000∗ p = 0.017∗

GitHub_Presence 0.991 0.999
(0.977, 1.005) (0.981, 1.017)

p = 0.195 p = 0.888

Constant 310.696 1.026
(168.396, 573.834) (0.299, 3.508)

p = 0.000∗ p = 0.968

Observations 24,474 6,425
Log Likelihood −15,399.190 −3,172.626
Akaike Inf. Crit. 30,804.370 6,351.252

Note: ∗p<0.05

65

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. * ***

Regression Coefficients for GPT4 Tags Reproduction
 −− Codeforces

Figure 39: Regression coefficients plots of Tag Reproduction Metric for GPT-4 on the Project
Codeforces Dataset. See Table 16 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

20%

30%

40%

log(GitHub Presence)

Ta
gs

 R
ep

ro
du

ct
io

n

log(Difficulty)
7.14
7.52
7.89

Tags Reproduction Marginal Effects Plots for GPT−4 on Codeforces

Figure 40: Marginal Effects of Tag Reproduction Metric for GPT-4 on the Codeforces Dataset

66

Table 17: Regression table for Tag Reproduction of GPT-3.5-Turbo on the Codeforces dataset. See
Figure 41 for plot of regression coefficients.

Dependent variable:
Tags Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.497 0.739
(0.452, 0.547) (0.619, 0.883)

p = 0.000∗ p = 0.001∗

GitHub_Presence 0.959 1.001
(0.942, 0.976) (0.980, 1.022)
p = 0.00001∗ p = 0.955

Constant 56.613 1.540
(26.265, 121.894) (0.380, 6.228)

p = 0.000∗ p = 0.545

Observations 24,474 6,425
Log Likelihood −10,635.220 −2,587.031
Akaike Inf. Crit. 21,276.450 5,180.061

Note: ∗p<0.05

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT 3.5 Turbo Tags
Reproduction −− Codeforces

Figure 41: Regression coefficients plots of Tag Reproduction Metric for GPT-3.5-Turbo on the Project
Codeforces Dataset. See Table 17 for regression coefficients.

67

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

15%

20%

25%

30%

log(GitHub Presence)

Ta
gs

 R
ep

ro
du

ct
io

n

log(Difficulty)
7.14
7.52
7.89

Tags Reproduction Marginal Effects Plots for GPT−3.5−Turbo on Codeforces

Figure 42: Marginal Effects of tag Reproduction Metric for GPT-3.5-Turbo on the Codeforces Dataset

68

	Introduction
	Related Work
	Dataset Construction
	Methodological Approach
	Results
	Pass Rate
	Title and Tag Reproduction
	Analysis Ablations

	Discussion
	Additional Methodology
	Metrics
	Codeforces Dataset Collection

	Additional Empirical Results
	Regression Descriptions
	Pass Rate
	All Codeforces Data
	Public Codeforces Data
	Private Codeforces Data

	Project Euler
	Title Reproduction
	Tag Reproduction
	Experiments with Additional LLMs
	Analysis of Possible Covariate Shifts
	Codeforces
	Project Euler

	Randomly sampled GPT-generated output for Codeforces, by LLM
	GPT-4
	GPT-3.5-Turbo

