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ABSTRACT

Predictive coding (PC) accounts of perception now form one of the dominant
computational theories of the brain, where they prescribe a general algorithm for
inference and learning over hierarchical Gaussian latent general models. Despite
this, they have enjoyed little export to the broader field of machine learning, where
comparative generative modelling techniques have flourished. In part, this has
been due to the poor performance of models trained with PC when evaluated by
both sample quality and marginal likelihood. By adopting the perspective of PC
as a variational Bayes algorithm under the Laplace approximation, we identify
the source of these deficits to lie in the exclusion of an associated Hessian term
in the standard PC objective function. To remedy this, we make three primary
contributions: we begin by suggesting a simple Monte Carlo estimated evidence
lower bound which relies on sampling from the Hessian-parameterised variational
posterior. We then derive a novel block diagonal approximation to the full Hessian
matrix that has lower memory requirements and favourable mathematical properties.
Lastly, we present an algorithm that combines our method with standard PC to
reduce memory complexity further. We evaluate models trained with our approach
against the standard PC framework on image benchmark datasets. Our approach
produces higher log-likelihoods and qualitatively better samples that more closely
capture the diversity of the data-generating distribution.

1 INTRODUCTION

In the last two decades, conceptions of the brain as an organ actively engaged in Bayesian inference
have become exceedingly prominent in cognitive neuroscience (Pouget et al., 2013; Clark, 2013;
Kanai et al., 2015). Under this paradigm, the brain adopts a probabilistic generative model of the
world, with perception corresponding to inference over latent states, and learning to the inference
over its parameters. Predictive coding (PC) (Rao and Ballard, 1999; Friston, 2018), arguably the most
notable instantiation of this perspective, describes a method for parameter learning in hierarchical
latent Gaussian generative models with arbitrarily complex and highly non-linear parameterisations
governing their conditional distributions. This computational scheme remains one of the foremost
and popular computational models for explaining cortical function, (Mumford, 1992; Hosoya et al.,
2005; Hohwy et al., 2008; Bastos et al., 2012; Shipp, 2016; Feldman and Friston, 2010; Fountas
et al., 2022), emphasizing the importance of evaluating it as a successful technique for training deep
generative models of the kind presupposed in the brain.

From a machine learning perspective, PC bares a close mathematical relationship to Bayesian
techniques such as the variational auto-encoder (VAE) (Kingma and Welling, 2014), which also relies
on optimising an evidence lower bound (ELBO); with a key advantage over VAEs ostensibly being
in PC’s use of non-amortised inference (Cremer et al., 2018). Furthermore, PC also benefits from
design principles inherited from its origins as a theory of cognitive function - namely asynchronous
and local error computation (Whittington and Bogacz, 2019), suggesting a far greater amenability to
implementation on energy-efficient neuromorphic hardware.

In this work, we show that generative models trained with PC (of the kind described in (Bogacz, 2017;
Tschantz et al., 2022; Millidge et al., 2022)), have poor log marginal likelihoods when evaluated
on common image datasets, and poor sample quality, despite producing good reconstructions. To
diagnose these issues we begin by adopting the perspective of PC as a variational Bayes algorithm
under the Laplace approximation (Friston, 2003; 2005; 2008). Under this approximation, quadratic
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assumptions over the log joint density of a generative model result in a Gaussian variational posterior
with precision (inverse variance) equal to the Hessian matrix - or curvature - of the negative log joint
with respect to its latent states.

We then present a simple ELBO-based objective function that accounts for this curvature - and thus
the uncertainty over latent states - using samples from the Laplace-optimal variational posterior. We
show that our objective has the additional effect of regularising for the sharpness of the probability
landscape. Furthermore, to improve upon the memory complexity of computing the full Hessian
matrix required for the Laplace ELBO objective, we present a novel block diagonal approximation
to the Hessian that has lower memory complexity and is guaranteed positive semi-definite (PSD) -
ensuring its associated variational posterior can always be sampled from. Finally, to further remove
the dependency of memory complexity on the output image dimensionality, we present a combined
model, in which the final layer of our generative model is trained with PC, and all higher layers
are trained with approximate Laplace Monte Carlo. The resulting method has memory complexity
reduced to O(n2

L), from O(N2) - where nL, and N are the dimensionalities of the largest latent layer,
and all latent layers combined respectively - while retaining improved log likelihoods and sample
quality.

2 PREDICTIVE CODING

Predictive coding is an algorithm with origins in computational neuroscience (Rao and Ballard, 1999;
Friston, 2003; 2005; Friston and Kiebel, 2009) that prescribes a method for parameter learning in
hierarchical latent variable probabilistic graphical models. In it’s most common form, (Bogacz, 2017;
Millidge et al., 2022; Tschantz et al., 2022), it can be described succinctly by the following simple
recipe:

1. Define a (possibly hierarchical) graphical model over latent (z) and observed (x) states with
parameters θ
(i.e. logP (x, z|θ))

2. For x ∼ D, where D is the data-generating distribution

Inference: Obtain MAP estimates (zMAP) for the latent states by enacting a gradient
descent on logP (x, z|θ)

Learning: Update the parameters θ using stochastic gradient descent with respect to the log
joint evaluated at the MAP estimates found at the end of inference: logP (x, zMAP|θ)

One common motivation for this algorithm rests upon its interpretation as a variational Bayesian
method under a Dirac delta (deterministic) approximate posterior distribution (Friston, 2005; Bogacz,
2017). Under this interpretation, the inference step outlined in the PC algorithm, corresponds to
maximisation of an ELBO (for a particular data point) with respect to the mean of the variational
Dirac delta distribution, and learning corresponds to maximising the ELBO (over the entire dataset)
with respect to the model parameters θ. Another common interpretation for this algorithm assumes
the Laplace approximation (Friston et al., 2007), under which inference corresponds to optimising
the mean of a Gaussian variational posterior with covariance equal to the inverse Hessian of the log
joint probability. While, this interpretation retains the inference procedure of PC, it has non-trivial
implications for the learning procedure, which we detail in the next section.

3 RELATED WORK AND THE LAPLACE APPROXIMATION

The Laplace approximation has historically been derived in two contexts. The first context adopted
Laplace’s method for the computation of the ordinarily intractable marginalised model evidence
after the maximum a posteriori (MAP) value of the latent states had already been identified (Kass
and Raftery, 1995; Tierney and Kadane, 1986). The second adopted the Laplace approximation for
variational inference, wherein, under quadratic assumptions for the log joint, it can be shown that
the Gaussian variational posterior which minimises the ELBO has inverse covariance equal to the
Hessian of the negative log joint probability evaluated at the variational mode (Friston et al., 2007).
We adopt this second perspective here and thus begin with the definition of the standard ELBO for a
latent probabilistic model p(x, z|θ), where x and z are sets of observed and latent random variables
respectively, and θ are a set of model parameters:
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logP (x|θ) ≥ F = EQ(z) [logP (x, z|θ)]− EQ(z) [logQ(z)] (1)

Adopting a quadratic approximation over the log joint, and plugging the optimal posterior under this
approximation into the ELBO results in the following analytical expression (See: Appendix A.3 for a
recounting of the full derivation):

F ≈ logP (x, µz|θ) +
1

2
log
[
(2π)N detHe(θ)

−1
]

(2)

Here µz is the mean of the variational Gaussian posterior over latent states, and He is the Hessian
associated with the negative log joint (− logP (x, z)) with respect to z, evaluated at the variational
mode.

In much of the PC literature, it has been common practice to ignore this second log determinant
Hessian term as a further simplification. This is either done explicitly (Buckley et al., 2017; Millidge
et al., 2020; Whittington and Bogacz, 2017), or implicitly by adopting a point mass for the posterior
density (Friston, 2005). Optimising this approximate ELBO with respect to µz and θ then results in
the PC algorithm, as described in Section 2.

It is worthwhile to note that the determinant Hessian of a function evaluated at a critical point is equal
to the Gaussian curvature of that function. When this determinant is well-defined (i.e. the Hessian is
positive semi-definite), its eigenvalues are of the same sign, and thus the value of this log determinant
is monotonically related to the sharpness (the maximum eigenvalue of the Hessian), a metric directly
related to the risk of divergence in gradient descent (See Cohen et al. (2022) for it’s use in the context
of neural network training). It is unsurprising then that one of the practical difficulties that arise with
PC is managing the risk of divergence during the inference procedure as training progresses, which
in practice is ameliorated by either finely tuning the inference learning rate, or using an adaptive step
size. This increased risk of divergence, can therefore be elegantly explained as a failure to regularise
for the curvature of the log joint due to the exclusion of the log determinant Hessian term in the
variational Laplace Bayes objective.

In the statistical literature, this Hessian term has been comparatively less neglected. Attempts in this
arena have optimised model parameters (θ) with respect to equation 2 or approximations thereof (Bell,
2001). Alternative approaches have used purpose-built auto-differentiation packages to first compute
the Hessian, and subsequently computed gradients of model parameters with respect to Laplace
importance sampling estimate of the marginal likelihood, (Skaug, 2002; Skaug and Fournier, 2006;
Kristensen et al., 2016). Compared to our approach, these have various serious disadvantages such as
bias (Breslow and Lin, 1995) and computational complexity, in the case of direct optimization of
Laplace marginal evidence, or potentially high variance in the case of importance sampling estimates
based on the Laplace posterior (Chatterjee and Diaconis, 2018).

For completeness we also note that the context in which the Laplace approximation is generally
adopted in the existing deep learning literature is distinct from the context it will be used in this
paper. In the existing DL literature, (LeCun et al., 1989; MacKay, 1992; Daxberger et al., 2022;
Immer et al., 2022; Ritter et al., 2022), the Laplace approximation is ordinarily used to obtain
an approximate posterior over the model parameters (θ) for a non-latent non-hierarchical model
consisting of a log-likelihood parameterised by the output of a (possibly deep) neural network, i.e.
Ex,y [log p (x, y|θ) p (θ)], where x and y are observed variables and θ are neural network parameters.
The Laplace approximated posterior over θ is then used either post-hoc (after training) to estimate
model uncertainty, or used online for hyperparameter tuning, model selection (Immer et al., 2021),
and preventing catastrophic forgetting (Ritter et al., 2018). MAP learning of model parameters in
this context is tractable and relatively straight-forward via direct (stochastic) gradient descent on the
joint log likelihood due to the absence of latent random variables, which would ordinarily have to
be marginalised over. Therefore, while learning is more tractable, a weakness of these approaches
is in their absence of datapoint specific latent random variables (z) that encode the latent (hidden)
probabilistic causes of each datapoint. The presence of data specific probabilistic latent states in
most SOTA generative modelling techniques, (Vahdat et al., 2021; Nichol and Dhariwal, 2021; Child,
2021) suggests they are highly beneficial, if not essential, for modelling complex datasets.
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Conceptually, the methodology presented in this paper is closest to that of (Park et al., 2019),
albeit from different narrative perspectives (non-amortized VAEs rather than PC) and with three
key algorithmic differences: we adopt a block diagonal approximation to the Hessian to reduce the
memory complexity of computing a full Hessian, we also present a “combined” model (with both
Dirac delta and Laplace approximate posteriors) to reduce memory complexity further, and lastly we
do not propagate gradients through every time step of the inference procedure to the amortization
model, which would require memory proportional to the length of inference - allowing us to use a
significantly greater number of inference steps and thus keep the amortisation gap small.

4 METHOD
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Figure 1: (a) Visualisation of the joint probability, P (x, z1, z2) (left), under quadratic (middle)
and factorised quadratic approximation for the log joint of a model with two latent states (z1, z2)
connected by leaky ReLU and a linear coefficient. We can see the approximate quadratic formulation
trades off the accuracy of our variational posterior with tractability. (b) Log absolute values of our
approximate block-diagonal Hessian for a 4 layer, 64 dimension per layer generative model. (c) Log
absolute values for the full Hessian for the same model. Layers are demarcated with dashed white
lines.

4.1 THE LAPLACE MONTE CARLO ELBO

One can begin by considering the following decomposition of the ELBO into an expected energy
term and an entropy term:

logP (x) ≥ EQ(z;µMAP),Σq
[logP (x, z|θ)] + H[Q] (3)

Since the optimal approximate posterior under the Laplace approximation is known and analytically
tractable, and since our model parameters are independent of the entropy of this approximate posterior,
we may optimise our model parameters with respect to the free-energy by simply considering the
first term - the expectation of the log joint probability with respect to our variational posterior. We
may then approximate this term by taking Monte Carlo samples from our Laplace-optimal variational
posterior and optimise our model parameters via standard automatic differentiation. Note that this
does not require the reparameterisation trick (Kingma and Welling, 2014) as we do not require
optimising any parameters associated with our variational posterior.
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LMC(θ) =
1

K

∑
i

[logP (x, zi|θ)] (4)

Where we are sampling z from our Laplace optimal approximate posterior

zi ∼ Q(Z;µMAP,Σq = He−1) (5)

The advantage of this approach is that while we are sampling from the optimal posterior under the
Laplace approximation, unlike the analytical expression (equation 2) described in section 3 we do
not require this approximation to be true for the resultant objective to still be an ELBO; with the
validity of this approximation instead only impacting the tightness of this bound. Furthermore, in
section 5 we demonstrate empirically that despite not optimising with respect to the log determinant
Hessian directly, our objective function nonetheless successfully regularises for the sharpness of the
probability landscape. We denote models trained with the objective in equation 4 as Laplace Monte
Carlo (LMC) models.

4.2 APPROXIMATING THE HESSIAN

There remain a number of difficulties present however when working with the Hessian under this
approach. First, we require the Hessian of the log-joint to be positive semi-definite as its inverse
forms the covariance matrix for the variational Posterior under the Laplace approximation. Second,
computing the Hessian has a strict lower-bound computational and memory complexity of O(N2)
where N is the total dimensionality of our latent states across the entire network - which for deep
networks can approach the order of tens of thousands to millions.

To circumvent these issues we present an approximation to the full Hessian that retains only curvature
information within a layer, resulting in a variational posterior that is factorised across layers. The
resultant approximate Hessian also has the desirable property of being guaranteed PSD and thus
Monte Carlo estimates of our ELBO are always computable.

We consider a general probabilistic model consisting of a set of latent (unobserved) random variables
Z, and observed random variables X . We define a generative model under these random variables
factorised such that disjoint subsets of our random variables, {z(j)|z(j) ⊂ Z} and {x(i)|x(i) ⊂ X},
have associated with them a multivariate Gaussian conditional distribution with fixed or learnt
diagonal covariance matrices Σ(i) = diag(σ(i)), Σ(j) = diag(σj); and means µ(i), µ(j) parameterised
by a function of a subset of the remaining random variables, which we denote with Pa(z(j)) and
Pa(x(i)). The negative log joint of this general model can then be defined as follows:

− logP (x, z) =
1

2

∑
{x(i)⊂X}

(
x(i) − fi(Pa(x(i)), θi)

)T
Σ(i)

(
x(i) − fi(Pa(x(i)), θi)

)
+

1

2

∑
{z(j)⊂Z}

(
z(j) − fj(Pa(z(j)), θj)

)T
Σ(j)

(
z(j) − fj(Pa(z(j)), θj)

)
+ C (6)

We focus on an approximation to the Hessian of this log-joint where we only consider the second
order relations of random variables within the same layer, and not between layers. As such the
approximate Hessian derived here will be a block diagonal matrix, which we may then guarantee to
be positive semi-definite if the constituent blocks on its diagonal are also guaranteed to be positive
semi-definite.

We adopt the following approximation for a single latent block of the Hessian, which is guaranteed to
be PSD, and which we note is also exact for piece-wise functions f , such as an affine transformation
followed by a leaky ReLU. (We place the full derivation in the Appendix A.1 for the sake of clarity).
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−J(∇z(j) logP (X,Z)) = Σ(j) +
∑

z(k)∈Ch(z(j))

(
∂fk
∂z(j)

)T

Σ(k)

(
∂fk
∂z(j)

)

+
∑

x(i)∈Ch(z(j))

(
∂fi
∂z(j)

)T

Σ(i)

(
∂fi
∂z(j)

)
(7)

Since we have assumed diagonal covariance matrices (Σi = diag(σ)) throughout our generative
model, the blocks of our block diagonal Hessian thus simplify to a sum of terms that are guaranteed
to be PSD (see Appendix A.2 for a short proof), resulting in a Hessian approximation that is also
guaranteed to be PSD. A visualisation of the resultant approximation for a 4 layer model, captured
during training, can be seen in Figure 1b alongside the full Hessian (Fig. 1c). We also visualise the
joint probability under quadratic, and approximate quadratic assumptions for a model with 2 latent
states connected hierarchically alongside the ground truth joint probability in Figure 1a.

HeApprox =


−J(∇Z1

) 0 · · · 0
0 −J(∇Z2

) · · · 0
...

...
. . .

...
0 0 · · · −J(∇ZJ

)

 (8)

Because we are only computing curvature information with respect to each layer individually,
our memory complexity is also reduced to O(max(n2

L, nF ∗ nO)), where nL, nF , nO are the
dimensionalities of the largest latent layer, final latent layer and observation layer respectively, which
will generally be significantly lower than O(N2) for a full Hessian. Note that our memory complexity
is not O(n2

L) as one might expect because of the Jacobians associated with our observed random
variable log likelihood terms, a fact that we will address in the next section.

We also note that the derivation of one block of our approximate Hessian is similar in principle to the
derivation of the generalised Gauss-Newton matrix commonly used to approximate the Hessian of
neural network parameters for the purpose of second-order optimisation (Schraudolph, 2002; Martens,
2020), as both derivations rely on decomposing the full Hessian into first-order and second-order
components.

4.3 COMBINATION MODELS

Naively adopting the aforementioned Hessian approximation may still have impractically high
memory requirements as the Jacobians associated with our observed random variables can be
exceptionally large if the dimensionality of our observations are high even if the final gram Jacobian
matrix is quite small - transiently resulting in high memory requirements.

To address this issue and reduce memory complexity further, we take an approach inspired by the
recent class of latent diffusion models (Rombach et al., 2022; Vahdat et al., 2021). The key insight
here is that one may reduce the untenably high memory requirements of more complex generative
models by instead training them on the smaller latent space of an autoencoder trained with the
objective of producing good reconstructions. In our experiments, while PC networks failed to produce
good generative models, they frequently produced excellent reconstructions with very few training
samples. Thus we hypothesised that training a combined model, in which lower level/s are trained
with the PC objective and higher layers are trained with our Approximate-LMC objective, would
allow us to combine the strengths of curvature aware training with the reduced memory complexity
of the ordinary PC objective.

Unlike the latent diffusion modelling approach, we train our combination models simultaneously and
end-to-end. Mathematically, this approach may still be described by expression 4, with lower layers
being "sampled" from a Dirac delta variational posterior and higher layers being sampled from our
(approximate) Laplace-optimal Gaussian posterior, both centred at the MAP estimates found at the
end of inference. Resulting in the following expression, where we have now segmented our latent
states into those trained in accordance with LMC (zL) and those with PC (zP ):
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LMC(θ) =
1

K

∑
i

[
logP (x, zL

i , µ
P
MAP|θ)

]
(9)

Where we are sampling zL from our Laplace optimal approximate posterior:

zLi ∼ Q(ZL;µL
MAP,Σq = He−1) (10)

5 EXPERIMENTS

To test the proposed objectives, we trained hierarchical models composed of layers of latent states
connected via a non-linearity (leaky ReLU or tanh) followed by an affine transformation - as well
as skip connections for adjacent layers with equal dimensionality. The decision to have the non-
linearity precede the affine transformation was to ensure that the predicted means for each layer were
unbounded - in parity with the unbounded support of our Gaussian variational posterior. We tested
three model configurations across four datasets, combined models with learnt variances, combined
models with fixed variances, and non-combined models with fixed variances. To initialise our
variational modes we adopted the amortisation scheme described by Tschantz et al. (2022), wherein
a feedforward amortisation network is trained alongside our generative model to initialise close to
the non-amortised MAP estimates found at the end of inference. We used K = 20 for our LMC
and ALMC objectives. For more extensive details on the model architectures we refer the reader to
appendix A.4.

As we note in section 4.2, a significant difficulty with naively using the Hessian is the inability to
guarantee positive semi-definiteness - a property which, in our experiments, could result in up to 90%
of the samples in a batch having non-PSD associated Hessians in the early stages of training. To
accommodate for this issue we experimented with skipping the relevant samples but found that if done
so training quickly deteriorates and the issue of non-PSD Hessians exacerbate as training progressed.
Thus, for the experiments discussed in this paper non-PSD Hessians were instead replaced with
identity matrices, which we found stemmed the continued presence of the problem.

Log Likelihood. We evaluate our models by estimating log marginal likelihoods using Laplace
importance sampling of the kind described in (Kuk, 1999). To avoid reporting erroneously inflated
log-likelihood values stemming from modelling discrete pixel intensities with continuous models, we
follow best practices and dequantize the data by adding uniform noise for both training and evaluation,
(Uria et al., 2014); the resultant log-likelihoods are thus guaranteed to be lower bounds on the true
log-likelihood on the discrete data distribution (Theis et al., 2016). The aforementioned (negative)
log marginal likelihoods (reported as bits per dimension) can be found in Table 1.

Sharpness. We track the log determinant Hessian for 3200 unseen samples throughout training,
see Figure 2. We find that Laplace Monte Carlo objectives (approximate or otherwise) regularise for
the curvature (log determinant Hessian) despite not explicitly optimising with respect to the term.
The log determinant Hessian is also equal to the negative of approximate posterior entropy up to an
additive constant (N2 log(2π)), and thus the effect of LMC/ALMC can be seen as preventing over
confidence in the posterior predictions - a type of Occam’s razor.

Interpolations and Samples. By fixing any particular hierarchical layer of our generative model
and enacting a feed-forward top-down pass through it we may visualise what the latent states at
each hierarchical layer appear to be representing. We do this while interpolating across the latent
embeddings for two images and find that LMC models were more likely to exhibit semantically
meaningful hierarchical structure, with higher layers representing global features such as background,
hair colour and gender. An example can be seen in Figure 5. Additionally, examples of samples
obtained via ancestral sampling can be seen in Figure 5.

6 CONCLUSION

Across (almost) all the configurations and image datasets tested, our LMC and ALMC methods
consistently outperformed PC in terms of log marginal likelihood and sample quality. These results
serve as a clear demonstration that the PC objective function as commonly presented is insufficient
for producing generative models that capture the diversity of the data generating distribution. We
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Method Dataset BPD ↓
PC MNIST 6.785± 0.01

LMC MNIST 6.731± 0.03
ALMC MNIST 6.727± 0.03

PC CIFAR10 7.007± 0.03
LMC CIFAR10 6.935± 0.006

ALMC CIFAR10 6.900± 0.009
PC CelebA 6.895± 0.001

LMC CelebA 6.896± 0.002
ALMC CelebA 6.895± 0.001

PC SVHN 5.533± 0.01
LMC SVHN 5.505± 0.008

ALMC SVHN 5.493± 0.005

Method Dataset BPD ↓
PC MNIST 9.690± 0.0002

LMC MNIST 9.581± 0.0001
ALMC MNIST 9.537± 0.002

PC CIFAR10 9.430± 0.0007
LMC CIFAR10 9.405± 0.001

ALMC CIFAR10 9.390± 0.002
PC CelebA 9.444± 0.02

LMC CelebA 9.423± 0.04
ALMC CelebA 9.450± 0.02

PC SVHN 9.417± 0.0007
LMC SVHN 9.396± 0.002

ALMC SVHN 9.380± 0.001

Method Dataset BPD ↓
PC* MNIST 9.690± 0.0002
LMC MNIST 9.515± 0.03

ALMC MNIST 9.374 0.0003
PC* CIFAR10 9.430± 0.0007
LMC CIFAR10 9.374± 0.01

ALMC CIFAR10 9.363± 0.01
PC* SVHN 9.417± 0.0007
LMC SVHN 9.349± 0.003

ALMC SVHN 9.365± 0.03

Table 1: Bits per dimension (BPD) for various model configurations: combination models with
variance optimisation (left), combination models with fixed variance (right), and non-combination
models with fixed variance (bottom). See configurations 1, 2 and 3 respectively in Appendix A.4 for
more details. Error margins correspond to standard deviation over 5 multiple seed runs. (*) Note
configurations 2 and 3 are equal for PC as the combined configuration results in no change.

Figure 2: Log determinant Hessian (curvature) for 3200 unseen samples across the training of
our models, for all 3 objective functions. Curves correspond to model configuration 1 (combined
with variance optimisation) as described in Appendix A.4. Shaded regions correspond to standard
deviation over 5 runs.

have argued in this paper that the source of these deficits lie in a failure to accommodate for the
uncertainty over our latent states as determined by the curvature of our model’s log joint probability.

To show that this is the case, we presented a simple LMC objective that accommodates for this by
sampling latent states from a Gaussian centred upon the MAP estimates found at the end of inference,
with covariances equal to the inverse Hessian of the negative log joint - an optimal approach under
the Laplace approximation. The resultant objective produces consistent improvements in terms of log
marginal likelihood and sample diversity, but is marred with difficulties that make it impractical for
training larger models such as the inability to guarantee positive semi-definiteness for the Hessian,
and poorly scaling memory requirements.
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Figure 3: Samples (temp=1) for models trained on CelebA (top) and CIFAR10 (bottom) with the
ALMC (left), LMC (center), and PC objective (left). While the fidelity of these samples are clearly
lacking due to the small size of our tested models, LMC and ALMC capture far more of the training
set diversity, while PC produces highly uniform samples.
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Figure 4: Linear interpolations in the latent states of different hierarchical layers (rows) for ALMC
(left) and PC (right). Images refer to a feed-forward top-down pass through our generative model
after fixing the latent states at a particular layer.

We resolved this by then deriving a novel block diagonal approximation to the Hessian that has better
memory complexity, and is guaranteed positive semi-definite. Perhaps unexpectedly, the resultant
approximate LMC objective consistently performs better than the LMC objective. We attribute
this effect to the aforementioned inability to guarantee positive semi-definiteness when utilising the
full Hessian, resulting in having to either skip training samples, or as employed here, using a fixed
alternative Hessian in its stead.

We also demonstrate that accommodating for this curvature can be interpreted as regularising for
the sharpness of the loss landscape, an effect that we empirically verify our LMC and approximate
LMC objectives exhibit despite not explicitly optimising with respect to the log determinant Hessian.
This has important implications for practical implementations of PC which are frequently ailed by
gradient divergence, an effect which is the direct consequent of a loss landscape that is too sharp
relative to the step size of ones descent. Finally, we noted that the log determinant Hessian is equal to
the entropy of the Laplace optimal posterior up to an additive constant, and thus our results suggest
that curvature aware methods induce a type of Occam’s razor regularisation, where the posterior over
latent states is prevented from becoming over-confident.
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REPRODUCIBILITY STATEMENT

Detailed information on all the necessary experimental details required to reproduce our results can
be found in section 5 and appendix A.4. Additionally, source code associated with the experiments
will be made available after the review process.
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A APPENDIX

A.1 DERIVATION OF PSD BLOCK DIAGONAL HESSIAN APPROXIMATION

We consider a general probabilistic model consisting of a set of latent (unobserved) random variables
Z, and observed random variables X . We define a generative model under these random variables
factorised such that disjoint subsets of our random variables, {z(j)|z(j) ⊂ Z} and {x(i)|x(i) ⊂ X},
have associated with them a multivariate Gaussian conditional distribution with fixed or learnt
diagonal covariance matrices Σ(i) = diag(σ(i)), Σ(j) = diag(σj); and means µ(i), µ(j) parameterised
by a function of a subset of the remaining random variables, which we denote with Pa(z(j)) and
Pa(x(i)). Note that the parent sets Pa(x(i)) and Pa(z(i)) can include both latent and observed
variables.

For a single set of observed and latent variables, the negative log joint of this general model can then
be defined as follows.

− logP (x, z) =
1

2

∑
{x(i)⊂X}

(
x(i) − fi(Pa(x(i)), θi)

)T
Σ(i)

(
x(i) − fi(Pa(x(i)), θi)

)
+

1

2

∑
{z(j)⊂Z}

(
z(j) − fj(Pa(z(j)), θj)

)T
Σ(j)

(
z(j) − fj(Pa(z(j)), θj)

)
+ C (11)

We focus on an approximation to the Hessian of this log-joint where we only consider the second
order relations of random variables within the same layer, and not between layers. As such the
approximate Hessian derived here will be a block diagonal matrix, which we may then guarantee to
be positive semi-definite if the constituent blocks on its diagonal are also guaranteed to be positive
semi-definite.

We can ask ourselves what one of these blocks looks like, by first applying the gradient operator with
respect to the latent variables of one layer to our unnormalised log joint probability. Note that, solely
for the sake of clarity during this derivation, we will exclude any contributions from observed child
random variables, i.e. X(k) ∈ Ch(z(j)), for which the steps below follow identically.

−∇z(j) logP (X,Z) = Σ(j)
(
z(j) − fj(Pa(z(j)))

)
︸ ︷︷ ︸

dim=Nj∗1

−
∑

z(k)∈Ch(z(j))

(
∂fk
∂z(j)

)T

︸ ︷︷ ︸
dim=Nj∗Nk

Σ(k)
(
z(k) − fk(Pa(z(k))

)
︸ ︷︷ ︸

dim=Nk∗1

(12)

We can now apply the Jacobian operator to the resultant gradient vector field. But first we decompose
the the matrix vector product inside the summation as a sum of vectors multiplied by scalars.

−∇z(j) logP (X,Z) = Σ(j)
(
z(j) − fj(Pa(z(j)))

)
−

∑
z(k)∈Ch(z(j))

∑
i∈Nk

σ
(k)
i

(
∂fk
∂z(j)

T
)

∗,i

(
z(k) − fk(Pa(z(k))

)
i

(13)

Now, applying the Jacobian operator.
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−J(∇z(j) logP (X,Z)) = Σ(j) −
∑

z(k)∈Ch(z(j))

∑
i∈Nk

σ
(k)
i

(
∂2fk

∂z(j)
2

)
i,∗,∗

(
z(k) − fk(Pa(z(k))

)
i

− σ
(k)
i

(
∂fk
∂z(j)

T
)

∗,i

(
∂fk
∂z(j)

)
i,∗

(14)

We may rewrite the second part of the summation as product of the Jacobian tranpose, diagonal
covariance, and Jacobian.

−J(∇z(j) logP (X,Z)) = Σ(j) +
∑

z(k)∈Ch(z(j))

(
∂fk
∂z(j)

)T

Σ(k)

(
∂fk
∂z(j)

)

−
∑

z(k)∈Ch(z(j))

∑
i∈Nk

σ
(k)
i

(
∂2fk

∂z(j)
2

)
i,∗,∗

(
z(k) − fk(Pa(z(j))

)
i

(15)

We can then choose to either approximate this by ignoring all terms involving second order derivatives,
or alternatively, if the functions fk are piece-wise linear - as is the case of for activations functions
such as the (leaky) ReLU - these terms are guaranteed to be 0, resulting in the following:

−J(∇z(j) logP (X,Z)) = Σ(j) +
∑

z(k)∈Ch(z(j))

(
∂fk
∂z(j)

)T

Σ(k)

(
∂fk
∂z(j)

)
(16)

Including the contributions from any observed random variable log likelihood terms, for which the
derivation follows identically, results in the final simplified expression:

−J(∇z(j) logP (X,Z)) = Σ(j) +
∑

z(k)∈Ch(z(j))

(
∂fk
∂z(j)

)T

Σ(k)

(
∂fk
∂z(j)

)

+
∑

x(i)∈Ch(z(j))

(
∂fi
∂z(j)

)T

Σ(i)

(
∂fi
∂z(j)

)
(17)

Since we have assumed diagonal covariance matrices (Σi = diag(σ)) throughout our generative
model, the blocks of our block diagonal Hessian thus simplify to a sum of terms that are guaranteed
to be PSD (see Appendix A.2 for a short proof), resulting in a Hessian approximation that is also
guaranteed to be PSD.

A.2 PROOF OF PSD

Consider the matrix M = AT diag(σ)A, with sigma being a vector of positive real values. We may
rewrite this matrix as follows:

M = AT diag(σ−1)A (18)

= AT diag(σ− 1
2 )diag(σ− 1

2 )A (19)

= AT diag(σ− 1
2 )T diag(σ− 1

2 )A (20)

= (diag(σ− 1
2 )A)T (diag(σ− 1

2 )A) (21)
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Call B = diag(σ− 1
2 )A, so we can write:

M = BTB (22)

Thus M is a real gram matrix and guaranteed to be positive semi-definite.

A.3 DERIVING THE VARIATIONAL LAPLACE OBJECTIVE

Consider a generative model, logP (x, z|θ), defined over a set of observed (x) and latent states (z),
with model parameters given by θ. We are then concerned with optimising our model parameters (θ)
with respect to the log marginal likelihood of observations x.

logP (x|θ) = log

[∫
P (x, z|θ)dz

]
= log

[∫
Q(z)

Q(z)
P (x, z|θ)dz

]
= logEQ(z)

[
P (x, z|θ)
Q(z)

]
(23)

Adopting Jensen’s inequality allows us to define the following lower bound, which we denote with F ,
often referred to as the negative free energy or the ELBO

≥ EQ(z)

[
log

P (x, z|θ)
Q(z)

]
= EQ(z) [logP (x, z|θ)]− EQ(z) [logQ(z)] = F (q) (24)

Note that F is thus far a functional of an unspecified probability density function q(z).

While the entropy (second) term in equation 24 has an analytically tractable form in the case of our
Gaussian assumptions for Q(z), the first expectation term may not as it is dependent on the exact
form of the density function specifying our generative model.

The Laplace approximation approximates the log joint density with a quadratic approximation using
a second-order taylor series centred around the mode of our Gaussian variational distribution µz:

EQ(z) [logP (x, z|θ)] =
∫

Q(z) logP (x, z|θ)dz (25)

≈
∫

Q(z)

[
logP (x, µz|θ) + (z − µz)∇ logP (x, µz|θ)

+
1

2
(z − µz)

THe(z − µz)

]
(26)

≈ logP (x, µz)EQ(z) [(z − µz)]︸ ︷︷ ︸
=0

∇ logP (x, µz|θ)

+
1

2
EQ(z)

[
(z − µz)

THe(z − µz)
]

(27)

Using a well-known identity on the expectation of a quadratic form (Mathai and Provost, 1992) we
may simplify the third term, such that we obtain a significantly simplified expression for our expected
energy.

≈ logP (x, µz|θ) +
1

2
Tr [HeΣq] (28)

We can then reintroduce this simplified expected log joint term into our original expression for the
ELBO, while plugging in the well-known analytic expression for the differential entropy of the
Gaussian distribution for the second term (Lazo and Rathie, 1978):

F (µz,Σq, θ) ≈ logP (x, µz|θ) +
1

2
Tr [HeΣq] +

1

2
log
[
(2πe)N detΣq

]
(29)

By differentiating this expression with respect to the variational covariance matrix Σq we find that the
optimal covariance matrix is equal to the inverse of the negative Hessian of our log joint probability.
Note that this is an analytical function of the variational modes µz and model parameters θ, which
we make explicit here

Σq = −He(µz, θ)
−1 (30)
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Plugging this into our expression for the free-energy we obtain the following significantly simplified
expression for the free-energy, which is now a function over µz and parameters θ. (We ignore the
dependency on x for the sake of notational clarity)

F (µz, θ) ≈ logP (x, µz|θ) +
1

2
log
[
(2π)N det−He−1

]
(31)

A.4 MODEL ARCHITECTURE AND EXPERIMENTAL DETAILS

Model Architecture. For the image dataset CelebA, we evaluate models with 5 layers of latent
states of dimensionality: [40, 64, 64, 64, 64]. For MNIST, CIFAR10 and SVHN we evaluate models
with 5 layers of dimensionality: [10, 64, 64, 64, 64].

Each layer of the aforementioned models parameterises the mean of the subsequent layer via a
non-linearity (either tanh or leaky ReLU), following by an affine transformation. Where adjacent
layers have equal dimensionality we also use skip connections.

A summary of the configurations tested for all three datasets and all three methods can be found in
Table 2.

Configuration Number Activation Fn Variance Optimised Combined
1 Leaky Relu True True
2 Tanh False True
3 Tanh False False

Table 2: Note, configuration 2 and 3 are equal for PC models (for which the combined configuration
results in no changes).

Amortisation. Our amortisation models adopt the same basic architecture but in reverse, i.e. for a
MNIST model, we use an ANN with layer sizes [64,64,64,64,10]. Each layer of the amortisation
model is then trained via SGD (with momentum) on an MSE loss between its feed-forward predictions
and the MAP latent states identified at the end of inference.

Optimisation of θ. We use batch sizes of 32 for CelebA and 64 for MNIST, CIFAR10 and SVHN.
We use SGD learning rates of 0.01 and 0.0001 for tanh and leaky relu models respectively. We train
all generative models using SGD, with momentum set to 0.9. Additionally, for models with learnt
variances, we constrain variances to lie between 1e− 3 and 2.

Optimisation of µz . We use inference step sizes of 0.05 and 0.001 for tanh and leaky ReLU models
respectively and 150 inference steps per batch. Step sizes were reduced by 10% on a per sample basis
if an increase in the log joint probability was observed. Furthermore, for experiments with learnt
variances we rescale the step size (SS) as max(1e-5, SS*(Minimum Variance)).

Hessian and Jacobian Computation. All Hessians and Jacobians in this text were computed
using the general purpose implementations of higher-order automatic differentiation in the PyTorch
based functorch library (Horace He, 2021). Due to the 7th digit round-off error associated with
single-precision floating point numbers, it was possible for the computed Hessians (or approximate
Hessian matrices) to, on occasion, be asymmetric; all Hessians (and approximate Hessians) were
therefore symmetrised after their computation.

Combination Models. Experiments using combination models used the standard predictive coding
approximate posterior for the last layer of the model.

Sampling. Samples were taken with temp=1 until the penultimate layer, which was taken with
temp=0, for all models except for those with variance optimisation.
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