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Abstract

Pre-training on graph neural networks (GNNs) aims to learn transferable knowledge
for downstream tasks with unlabeled data, and it has recently become an active
research area. The success of graph pre-training models is often attributed to the
massive amount of input data. In this paper, however, we identify the curse of big
data phenomenon in graph pre-training: more training data do not necessarily lead
to better downstream performance. Motivated by this observation, we propose
a better-with-less framework for graph pre-training: fewer, but carefully chosen
data are fed into a GNN model to enhance pre-training. The proposed pre-training
pipeline is called the data-active graph pre-training (APT) framework, and is
composed of a graph selector and a pre-training model. The graph selector chooses
the most representative and instructive data points based on the inherent properties
of graphs as well as predictive uncertainty. The proposed predictive uncertainty,
as feedback from the pre-training model, measures the confidence level of the
model in the data. When fed with the chosen data, on the other hand, the pre-
training model grasps an initial understanding of the new, unseen data, and at
the same time attempts to remember the knowledge learned from previous data.
Therefore, the integration and interaction between these two components form a
unified framework (APT), in which graph pre-training is performed in a progressive
and iterative way. Experiment results show that the proposed APT is able to obtain
an efficient pre-training model with fewer training data and better downstream
performance.

1 Introduction

Pre-training Graph neural networks (GNNs) shows great potential to be an attractive and competitive
strategy for learning from graph data without costly labels [29, 50]. Recent advancements have
been made in developing various graph pre-training strategies, which aim to capture transferable
patterns from a diverse set of unlabeled graph data [22, 30, 31, 40,44, 60,76,77]. Very often, the
success of a graph pre-training model is attributed to the massive amount of unlabeled training data,
a well-established consensus for pre-training in computer vision [12, 19,26] and natural language
processing [11,45].

In view of this, contemporary research almost has no controversy on the following issue: Is a massive
amount of input data really necessary, or even beneficial, for pre-training GNNs? Yet, two simple
experiments regarding the number of training samples (and graph datasets) seem to doubt the positive
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Figure 1: Top row: The effect of scaling up sample size (log scale) on the downstream performance based on
a group of GCCs [50] under different configurations (the graphs used for pre-training are kept as all eleven
pre-training data in Table 3, and the samples are taken from the backbone pre-training model according to its
sampling strategy). The results for different downstream graphs (and tasks) are presented in separate figures.
To better show the changing trend, we fit a curve to the best performing models (i.e., the convex hull fit as [1]
does). Bottom row: The effect of scaling up the number of graph datasets on the downstream performance based
on GCC. For a fixed horizontal coordinate, we run 5 trials. For each trial, we randomly choose a combination
of input graphs. The shaded area indicates the standard deviation over the 5 trials. See Appendix E for more
observations on other graph pre-training models and detailed settings.

answer to this question. We observe that scaling pre-training samples does not result in a one-model-
fits-all increase in downstream performance (top row in Figure 1), and that adding input graphs
(while fixing sample size) does not improve and sometimes even deteriorates the generalization of
the pre-trained model (bottom row in Figure 1). Moreover, even if the number of input graphs (the
horizontal coordinate) is fixed, the performance of the model pre-trained on different combinations of
inputs varies dramatically; see the standard deviation in blue in Figure 1. As the first contribution of
this work, we identify the curse of big data phenomenon in graph pre-training: more training samples
(and graph datasets) do not necessarily lead to better downstream performance.

Therefore, instead of training on a massive amount of data, it is more appealing to choose a few
suitable samples and graphs for pre-training. However, without the knowledge of downstream tasks,
it is difficult to design new data selection criteria for the pre-training model. To this end, we propose
the graph selector which is able to provide the most instructive data for the model by incorporating
two criteria: predictive uncertainty and graph properties. On one hand, predictive uncertainty is
introduced to measure the level of confidence (or certainty) in the data. On the other hand, some
graphs are inheritantly more informative and representative than others, and thus the fundamental
properties should help in the selection process.

Apart from the graph selector, the pre-training model is also designed to co-evolve with the data.
Instead of swallowing data as a whole, the pre-training model is encouraged to learn from the data in a
progressive way. After learning a certain amount of training data, the model receives feedback (from
predictive uncertainty) on what kind of data the model has least knowledge of. Then the pre-training
model is able to reinforce itself on highly uncertain data in next training iterations.

Putting together, we integrate the graph selector and the pre-training model into a unified paradigm
and propose a data-active graph pre-training (APT) framework. The term ‘“‘data-active ” is used
to emphasize the co-evolution of data and model, rather than mere data selection before model
training. The two components in the framework actively cooperate with each other. The graph
selector recognizes the most instructive data for the model; equipped with this intelligent selector, the
pre-training model is well-trained and in turn provides better guidance for the graph selector.

The rest of the paper is organized as follows. In §2 we present the basic graph pre-training framework
and review existing work on this topic. Then in §3 we describe in detail the proposed data-active
graph pre-training (APT) paradigm. §4 contains numerical experiments, demonstrating the superiority
of APT in different downstream tasks, and also includes the applicable scope of our pre-trained
model.



2 Basic Graph Pre-training Framework

This section reviews the basic framework of graph pre-training commonly used in the literature. The
backbone of our graph pre-training model also follows this framework.

We start with a natural question: What does graph pre-training actually learn? On one hand, graph
pre-training tries to learn transferable semantic meaning associated with structural patterns. For
example, both in citation networks and social networks, the closed triangle structure (|&]) is interpreted
as a stable relationship, while the open triangle (|&]) indicates an unstable relationship. In comparison,
these semantic meanings can be quite different in other networks, e.g., molecular networks. On
the other hand, however, the distinction (or relationship) between different structural patterns is
still transferable. Taking the same example, the closed and open triangles might yield different
interpretations in molecular networks (stability of certain chemical property) from those in social
networks (stability in social intimacy), but the distinction between these two structures remains the
same: they indicate opposite (or contrastive) semantic meanings [32,41,57]. Therefore, the graph
pre-training either learns representative structural patterns (when semantic meanings are present),
or more importantly, obtains the capability of distinguishing these patterns. This observation in
graph pre-training is not only different from that in other areas (e.g., computer vision and natural
language processing), but may also explain why graph pre-training is effective, especially when some
downstream information is absent.

With the hope to learn the transferable structural patterns or the ability to distinguish them, the graph
pre-training model is fed with a diverse collection of input graphs, and the learned model, denoted
by fo (or simply f if the parameter 6 is clear from context), maps a node to a low-dimensional
representation. Unaware of the specific downstream task as well as task-specific labels, one typically
designs a self-supervised task for the pre-training model. Such self-supervised information for a node
is often hidden in its neighborhood pattern, and thus the structure of its ego network can be used
as the transferable pattern. Naturally, subgraph instances sampled from the same ego network I';
are considered similar while those sampled from different ego networks are rendered dissimilar.
Therefore, the pre-training model attempts to capture the similarities (and dissimilarities) between
subgraph instances, and such a self-supervised task is called the subgraph instance discrimination
task. More specifically, given a subgraph instance (; from an ego network I'; centered at node v; as
well as its representation x; = f((;), the model f aims to encourage higher similarity between x;
and the representation of another subgraph instance C;r sampled from the same ego network. This
can be done by minimizing, e.g., the InfoNCE loss [48],
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where €2, is a collection of subgraph instances sampled from different ego networks I'; (j # 1),
and 7 > 0 is a temperature hyper-parameter. Here the inner product is used as a similarity measure
between two instances. One common strategy to sample these subgraph instances is via random
walks on graphs, as used in GCC [50], and other sampling methods as well as loss functions are also
valid.

3 Data-Active Graph Pre-training

In this section, we present the proposed APT framework for graph pre-training, and the overall
pipeline is illustrated in Figure 2. The APT framework consists of two major components: a graph
selector and a graph pre-training model. The technical core is the interaction between these two
components: The graph selector feeds suitable data for pre-training, and the graph pre-training model
learns from the carefully chosen data. The feedback of the pre-training model in turn helps select the
needed data tailored to the model.

The rest of this section is organized as follows. We describe the graph selector in §3.1 and the graph
pre-training model in §3.2. The overall pre-training and fine-tuning strategy is presented in §3.3.
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Figure 2: Overview of the proposed data-active graph pre-training paradigm. The graph selector provides the
graph and samples suitable for pre-training, while the graph pre-training model learns from the incoming data
in a progressive way and in turn better guides the selection process. In the graph selector component, Part
(a) provides an illustrating example on the predictive uncertainty, and Part (b) plots the Pearson correlation
between the properties of the input graph and the performance of the pre-trained model on the training set
(using this graph) when applied to different unseen test datasets (see Appendix F for other properties that exhibit
little/correlation with performance).
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3.1 Graph selector

In view of the curse of big data phenomenon, it is more appealing to carefully choose data well
suited for graph pre-training rather than training on a massive amount of data. Conventionally, the
criterion of suitable data, or the contribution of a data point to the model, is defined based on the
output predictions on downstream tasks [20]. In graph pre-training where downstream information is
absent, new selection criteria or guidelines are needed to provide effective instructions for the model.
Here we introduce two kinds of selection criteria, originating from different points of view, to help
select suitable data for pre-training. The predictive uncertainty measures the model’s understanding
of certain data, and thus helps select the least certain data points for the current model. In addition to
the measure of model’s ability, some inherent properties of graphs can also be used to assess the level
of representativeness or informativeness of a given graph.

Predictive uncertainty. The notion of predictive uncertainty can be explained via an illustrative
example, as shown in part (a) of the graph selector component in Figure 2. Consider a query subgraph
instance (; (denote by (@ in Figure 2) from the ego network I'; in a graph G. If the pre-training
model cannot tell its similar instance (f (denoted by @) from its dissimilar instance (; € €2
(denoted by (@), we say that the current model is uncertain about the query instance (;. Therefore, the
contrastive loss function in Eq. (1) comes in handy as a natural measure for the predictive uncertainty
of the instance (;: duncertain(¢;) = L. Accordingly, the predictive uncertainty of a graph G (i.e., the

graph-level predictive uncertainty) is defined as Guncerain(G) = (1/M) Zﬁl L;, where M is the
number of subgraph instances queried in this graph.

We further establish a provable connection between the proposed predictive uncertainty and the
conventional definition of uncertainty. In most existing work, model uncertainty is often defined
in the label space, e.g., taking as the uncertainty the cross entropy loss Lcg(¢) of an instance ¢ on
the downstream classifier [43,54,56,58]. Comparatively, our definition of uncertainty, dyncertain (),
is in the representation space. The theoretical connection between these two losses is given in the
following theorem.

Theorem 1 (Connection between uncertainties.). Let X, Z and Y be the input space, representation
space and label set of downstream classifier. Denote a downstream classifier by h: Z — Y and the



set of downstream classifiers by H. Assume that the distribution of labels is a uniform distribution
over Y. For any graph encoder f : X — Z, one has

Lcg(X) > log (

log || )
IOg 2 - ¢uncertain(-)() ’

where Lcg denotes the conventional uncertainty, defined as cross entropy loss and estimated from
the composition of graph encoder and downstream classifier h o f, and duncerain IS the proposed
uncertainty estimated from graph encoder f (independent of the downstream classifier).

While the proof and additional discussion on the advantage of ¢yncertain are postponed to Appendix B,
we emphasize here that, by Theorem 1, a smaller Lcg over all downstream classifiers cannot be
achieved without a smaller @uncertain-

Although GCC is used as the backbone model in the presented framework, our data selection strategy
can be easily adapted to other non-contrastive learning tasks. In that case, the InfoNCE loss used in
Quncertain Should be replaced with another pre-training loss associated with the specific learning task.
More details with the example of graph reconstruction is included in Appendix H.

Graph properties. As we see above, the predictive uncertainty measures the model’s ability to
distinguish (or identify) a given graph (or subgraph instance). However, predictive uncertainty is
sometimes misleading, especially when the chosen graph (or subgraph) happens to be an outlier of
the entire data collection. Hence, learning solely from the most uncertain data is not enough to boost
the overall performance, or worse still, might lead to overfitting. The inherent properties of the graph
turn out to be equivalently important as a selection criterion for graph pre-training. Intuitively, it is
preferable to choose those graphs that are good by themselves, e.g., those with better structure, or
those containing more information. To this end, we introduce five inherent properties of graphs, i.e.,
network entropy, density, average degree, degree variance and scale-free exponent, to help select
better data points for pre-training. All these properties exhibit a strong correlation with downstream
performance, which is empirically verified and presented in part (b) of the graph selector component
in Figure 2. The choice of these properties also has an intuitive explanation, and here we discuss the
intuition behind the network entropy as an example.

The use of network entropy is inspired from the sam-
pling methods used in many graph pre-training models
(see, e.g., [22,50]).In those works, random walks are
used to construct subgraph instances (used as model
input). Random walks can can also serve as a means
to quantify the amount of information contained in a
graph. In particular, the amount of information con-
tained in a random walk from node v; to node v; is S common structural propertcs
defined as — log P;; [6], where P is the transition ma- NSV oS A e e

trix. Thus, the network entropy of a connected graph S A :

can be defined as the expected information of indi- regative seale-free exponent
vidual transitions over the random walk process [3]: normalized value of structural properties

(i.e., average degree, density, degree variance or negative scale-free exponent)

informativeness

less more

network entropy

# degree variance

Gentropy = (—log P)p = — Z m P;;log P;;, (2) Figure 3: Illustrative graphs with increasing net-
ij work entropy (bottom left to top right), and the

where 7 is the stationary distribution of the random ©ther four graph properties.

walk and (-) p denotes the expectation of a random variable according to P. Network entropy (2) is
in general difficult to calculate, but is still tractable for special choices of the transition matrix P. For
example, for a connected unweighted graph G = (V, E) with node degree vector d € R!V!, if the
transition matrix is defined by P;; = 1/d;, then the stationary distribution is w = (1/2|E|)d and the
network entropy (2) reduces to

V]

1
¢entropy = m ; di 1Og dz 3)
In this case, the network entropy of a graph depends solely on its degree distribution, which is
straightforward and inexpensive to compute.

Although the definition of network entropy originates from random walks on graphs, it is still useful
in graph pre-training even when the sampling of subgraph instances does not depend on random



walks. Its usefulness can also be explained via the coding theory. Network entropy can be viewed as
the entropy rate of a random walk, and it is known that the entropy rate is the expected number of
bits per symbol required to describe a stochastic process [6]. Similarly, the network entropy can be
interpreted as the expected number of “words” needed to describe the graph. Thus, intuitively, the
larger the network entropy is, the more information the graph contains.

We also note that the connectivity assumption does not limit the usefulness of Eq. (3) in our case.
For disconnected input graphs, we can simply compute the network entropy of the largest connected
component, since for most real-world networks, the largest connected component contains most of
the information [14]. Alternatively, we can also take some of the largest connected components from
the graph and treat them separately as several connected graphs.

Furthermore, the other four graph properties, i.e., density, average degree, degree variance and scale-
free exponent, are closely related to the network entropy. Figure 3 presents a clear correlation between
the network entropy and the other four graph properties, as well as provides some illustrative graphs.
(These example graphs are generated by the configuration model proposed in [47], and Appendix F
contains more results on real-world networks.) Intuitively, graphs with higher network entropy
contain a larger amount of information, and so are graphs with larger density, higher average degree,
higher degree variance, or a smaller scale-free exponent. The connections between all five graph
properties can also be theoretically justified and the motivations of choosing these properties can be
found in Appendix A. The detailed empirical justification of these properties and the pre-training
performance in included in Appendix F.

Time-adaptive selection strategy. The proposed predictive uncertainty and the five graph properties
together act as a powerful indicator of a graph’s suitability for a pre-training model. Then, we aim to
select the graph with the highest score, where the score is defined as

j(G) = (1 - ’Yt)(ﬁuncertain + 'YtMEAN(éentropya (idensilyy éavgﬁdcga édegfvarz 'éa)a (4)

where the optimization variable is the graph G to be selected, ; € [0, 1] is a trade-off parameter to
balance the weight between predlctlve uncertalnty and graph propertles and ¢ is the iteration counter.

The small hat on the terms ¢uncerlama Qbentropya deensuy, ¢avg deg>» ¢deg var and ¢7o¢ indicates that all the
values are already z-normalized, so the objective (especially the MEAN operator) is independent of
their original scales.

Note that the pre-training model learns nothing at the beginning, so we initialize o = 1, and in later
iterations, the balance between the predictive uncertainty and the inherent graph properties ensures
that the selected graph is a good supplement to the current pre-training model as well as an effective
representative for the entire data distribution. In particular, at the beginning of the pre-training, the
outputs of the model are not accurate enough to guide data selection, so the parameter 7, should be
set larger so that the graph properties play a leading role. As the training phase proceeds, the graph
selector gradually pays more attention to the feedback @uncertain Via a smaller value of ;. Therefore,
in our framework, the parameter -y, is called the time-adaptive parameter, and is set to be a random
variable depending on time ¢. In this work, we take ; from a Beta distribution ; ~ Beta(1, 5),
where [3; decreases over time (training iterations).

3.2 Graph pre-training model

Instead of swallowing all the pre-training graphs as a whole, our
graph pre-training model takes the input graphs and samples
one by one in a sequential order and enhances itself in a pro-
gressive manner. However, such a straightforward sequential
training does not guarantee that the model will remember all the
contributions of previous input data. As shown in the orange M
curve in Figure 4, the previously learned graph exhibits a larger N, pmiimﬂl erm (L2)
predictive uncertainty as the training phase proceeds. e e T o m w
training epoch

Figure 4: Predictive uncertainty versus
training epoch.
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The empirical result indicates that the knowledge or information
contained in previous input data will be forgotten or covered by
newly incoming data. This phenomenon, called catastrophic
forgetting, was first noticed in continual learning [35] and also



appears in our case. Intuitively, when the training data is taken in a progressive or iterative manner,
the learned parameters will cater to the newly incoming data and forget the old, previous data points.

One remedy for this issue is adding a proximal term to the objective. The additional proximal
term (i.e., the regularization) guarantees the proximity between the new parameters and the model
parameters learned from previous graphs. Therefore, when the model is learning the k-th input graph,
the loss function for our pre-training model in APT is

A k—1 k-1

L) =32 Li0)+5 D Fy V0 -0 ), ®)
i J

where £, is given in Eq. (1), the first summation is taken over the subgraph instances sampled from

the latest input graph, /1) is the model parameters after learning from the first k¥ — 1 graphs, and
the parameter A describes the trade-off between the knowledge learnt from new data and that from

previous data. Here, F' (k=1) is the Fisher information matrix of 6(*=1) and Fj(Jk ) is its j-th diagonal
element. When F is set as an identity matrix, the second term degenerates to the L2 regularization
(which serves as one of our variants). The proximal term in Eq. (5) is absent when the first input
graph is introduced to the model, and the term is applied on the first three layers of the pre-training
model. Finally, we note that the total number of parameters in the pre-training model is in the same

order of magnitude as classical GNNSs, so the memory cost would not be a bottleneck.

3.3 Training and fine-tuning

Integrating the graph selector and the pre-training model forms the entire APT framework, and the
overall algorithm is presented in Appendix C. After the training phase, the APT framework returns
a pre-trained GNN model, and then the pre-trained model is applied to various downstream tasks
from a wide spectrum of domains. In the so-called freezing mode, the pre-trained model returned
by APT is directly applied to downstream tasks, without any changes in parameters. Alternatively,
the fine-tuning mode uses the pre-trained graph encoder as initialization, and offers the flexibility of
training the graph encoder and the downstream classifier together in an end-to-end manner.

4 Experiments

In the experiments, we pre-train a graph representation model via the proposed APT framework,
and then evaluate the transferability of our pre-trained model on multiple unseen graphs in the
node classification and graph classification task. Lastly, we include the applicable scope of our
pre-trained model. Additional experiments can be found in Appendix H, including our adaptation to
backbone pre-training models GraphCL, JOAO and Mole-BERT, training time, impact of different
graph properties, analysis of the ablation studies and selected pre-training graphs, hyper-parameter
sensitivity, explorations of various combinations of graph properties.

4.1 Experimental setup

Datasets. The datasets for pre-training and testing, along with their statistics, are listed in Ap-
pendix D. Pre-training datasets are collected from different domains, including social, citation,
and movie networks. Testing datasets comprise both in-domain (e.g., citation, movie) and cross-
domain (e.g., image, web, protein, transportation and others) datasets to evaluate transferability
comprehensively, also including large-scale datasets with millions of edges sourced from [28].

Baselines. We evaluate our model against the following baselines for node and graph classification
tasks. For node classification, ProNE [80], DeepWalk [49], struc2vec [53], DGI [65], GAE [34],
and GraphSAGE [23] are used as baselines, and then the learned representations are fed into the
logistic regression, as most of baselines did. As for graph classification, we take graph2vec [46],
InfoGraph [59], DGCNN [81] and GIN [71] as baselines, using SVM as the classifier, which aligns
with the methodology of most baselines. For both tasks, we also compare our model with (1) Random:
random vectors are generated as representations; (2) GraphCL [76]: a GNN pre-training scheme
based on contrastive learning with augmentations; (3) JOAO [75]: a GNN pre-training scheme that
automatically selects data augmentations; (4) GCC [50]: the state-of-the-art cross-domain graph
pre-training model (which is our model’s version without the data selector, trained on all pre-training



Table 1: Micro F1 scores of different models in the node classification task. The column “A.R.” reports the
average rank of each model. Asterisk (x) denotes the best result on each dataset, and bold numbers denote the
best result among graph pre-training models in the freezing or fine-tuning setting. The notation “/” means out of
memory or no convergence for more than three days.

M brazil dd242 dd68 dd687 wisconsin cornell cora pubmed ogbarxiv  ogbproteins A.R.
Random 32.16(13.65) 6.71(2.44) 8.29(4.35) 5.98(2.70) 26.79(8.59) 39.77(7.26) 26.80(1.62) 38.85(0.76) 11.89(4.66) 52.69(5.94) |13.2
ProNE 50.24(11.56) 10.04(2.56) 7.73(3.11)  3.88(1.66) 44.67(7.49) 47.32(12.14) 80.76(2.92)* 78.80(0.98)* 65.96(0.06)* 76.28(0.34)* | 7.5
DeepWalk 43.16(16.78) 8.11(1.45) 6.72(3.04)  6.17(2.18) 39.61(9.11) 47.67(8.30) 49.85(9.26) 44.99(10.89) 16.04 (2.98) 64.74(0.49) | 8.7
struc2vec 25.54(11.74) 13.71(2.66) 10.30(3.23) 7.98(2.74) 45.39(7.36) 38.39(9.18) 36.01(2.41) 44.45(0.78) / / 10.6
DGI 56.44(7.79) 14.35(0.44) 13.57(0.44) 11.04(1.93) 49.46(5.46) 49.85(9.26) 30.02(0.44) 42.39(0.84) 12.93(7.67) 55.98(0.33) | 6.6
GAE 57.88(10.68) 14.09(1.52) 13.43(0.96) 10.25(2.63) 45.78(4.18) 49.26(5.24) 30.10(0.31) 40.14(0.68) / / 8.5
GraphSAGE 67.93(9.28) 14.33(0.37) 13.55(0.70) 10.39(0.78) 47.03(1.98) 49.20(1.46) 35.93(1.76) 39.94(0.02) / / 7.1
GraphCL (freeze) 50.71(5.00) 9.53(2.50) 9.36(3.63)  6.03(1.86) 38.85(10.80) 41.05(5.67) 16.95(2.39) 41.07(1.16) 7 7 122
JOAO (freeze) 71.22(7.21)  7.98(2.90) 12.36(2.59) 5.34(1.43) 42.69(8.15) 43.16(5.67) 18.13(2.82) 41.05(0.87) / / 109
GCC (freeze) 67.47(4.09) 15.83(0.80) 11.95(1.13) 9.61(0.94) 52.57(1.69) 46.87(1.73) 35.47(0.51) 46.40(0.18) 14.56(7.60) 59.15(0.35) | 7.0
APT-G (freeze) 68.69(3.42) 17.21(1.13) 11.98(0.75) 9.54(1.29) 54.45(1.90) 46.53(1.59) 34.89(0.25) 46.49(0.22) 12.32(7.71) 60.38(0.41) | 6.3
APT-P (freeze) 66.55(2.35) 16.58(0.97) 12.48(0.85) 10.33(0.83) 51.90(1.64) 47.33(2.31) 35.63(0.56) 46.16(0.12) 12.86(7.54) 60.32(0.32) | 6.2
APT-R (freeze) 68.12(3.07) 16.72(0.72) 12.42(1.24) 11.05(0.88) 54.48(1.77) 46.80(1.08) 34.93(0.36) 46.02(0.11) 18.79(5.87) 62.18(0.46) | 5.0
APT-L2 (freeze) 69.82(2.32) 16.79(0.88) 12.68(0.81) 10.34(1.12) 55.11(1.74) 48.76(2.20) 34.27(0.43) 46.21(0.15) 19.64(6.46) 60.23(0.37) | 4.4
APT (freeze) 73.39(2.55) 16.57(0.94) 12.08(0.89) 10.35(1.24) 53.38(1.19) 47.37(1.29) 36.69(0.49) 46.88(0.21) 22.04(0.29) 62.29(0.55) | 3.8
GraphCL (rand, fine-tune)|64.43(14.95) 15.04(0.85) 14.69(2.48) 10.99(0.58) 63.85(2.18) 44.21(10.58) 30.45(0.37) 40.73(0.66) / / 8.3
JOAO (rand, fine-tune) 72.14(6.74) 10.93(2.85) 8.08(2.15) 7.40(3.48) 45.38(13.30) 45.26(10.31) 29.93(2.84) 42.01(0.68) / / 9.6
GCC (rand, fine-tune) 58.51(3.07) 15.98(1.05) 13.16(1.06) 9.74(0.95) 53.85(2.58) 50.95(2.26) 43.70(0.52) 49.72(0.17) 18.61(1.88) 59.12(0.35) | 7.6
GraphCL (fine-tune) 73.57(10.33) 15.35(0.99) 13.51(2.57) 10.66(1.04) 63.85(4.42) 51.05(2.41) 30.81(0.36) 42.91(0.91) / / 7.5
JOAO (fine-tune) 75.00(5.76) 10.54(3.07) 7.56(1.94) 8.77(2.39) 50.0(12.28) 42.11(10.26) 29.34(3.04) 42.21(0.88) / / 9.5
GCC (fine-tune) 74.46(3.05) 19.32(0.80) 13.87(1.13) 10.37(1.06) 59.47(1.49) 48.32(2.42) 43.34(0.38) 50.87(0.19) 18.62(1.92) 60.08(0.56) | 6.4
APT-G (fine-tune) 77.60(1.48) 25.45(0.60)* 17.78(1.14) 11.27(0.76) 66.09(2.28) 53.02(1.51) 45.63(0.66) 50.81(0.18) 27.33(4.80) 60.02(0.32) | 3.8
APT-P (fine-tune) 78.99(2.44) 25.19(0.87) 16.40(1.22) 11.69(1.19) 64.24(1.90) 50.05(1.39) 45.53(0.30) 50.66(0.18) 27.20(4.80) 59.86(0.32) | 4.8
APT-R (fine-tune) 79.14(1.97) 24.96(0.57) 17.43(1.05) 11.29(1.04) 66.28(1.94) 53.56(2.28)* 46.02(0.83) 51.00(0.21) 18.41(1.84) 60.10(0.38) | 3.4
APT-L2 (fine-tune) 78.75(1.63) 24.62(0.90) 17.83(1.35)* 12.26(0.78)* 67.04(1.50)* 52.94(1.95) 47.48(0.46) 51.25(0.21) 27.40(4.97) 60.85(0.46) | 2.6
APT (fine-tune) 79.67(2.30)* 28.62(0.55)* 20.30(1.13)* 12.80(1.54)* 67.08(1.75)" 52.15(2.25) 47.51(0.62) 51.30(0.16) 27.40(4.87) 61.64(0.35) | 1.3

data). GCC, GraphCL and JOAO are trained on the entire collected input data, and the suffix (rand,
fine-tune) indicates whether the model is trained from scratch. We also include 9 variants of our
model: (1) APT-G: removes the criteria of graph properties in the graph selector; (7) APT-P: removes
the criteria of predictive uncertainty in the graph selector; (8) APT-R: removes the regularization w.r.t
old knowledge in Eq. (5); (8) APT-L2: degenerates the second term in Eq. (5) with L2 regularization.

Experimental settings. In the training phase, we aim to utilize data from different domains to
pre-train one graph model. We iteratively select graphs for pre-training until the predictive uncertainty
of any candidate graph is below 3.5. For each selected graph, we choose samples with predictive
uncertainty higher than 3. We set the number of subgraph instances queried in the graph for uncertainty
estimation M as 500. The time-adaptive parameter -; in Eq. (4) follows a y; ~ Beta(1, 3;), where
By = 3 — 0.995¢. We set the trade-off parameter A = 10 for APT-L2, and A = 500 for APT. The
total iteration number is 100. We adopt GCC as the backbone pre-training model with its default
hyper-parameters, including their subgraph instance definition. In the fine-tuning phase, we select
logistic regression or SVM as the downstream classifier and adopt the same setting as GCC. Due to
space limit, results of our adaption on other backbones like GraphCL, JOAO and Mole-BERT, as
well as details can be found in Appendices H and G. See Appendix G for details.

We provide an open-source implementation of our model APT at https://github.com/
galina0217/APT.

4.2 Experimental results

Node classification. Table 1 presents the micro F1 score of different methods over 10 unseen graphs
from a wide spectrum of domain for node classification task. We observe that our model beats the
graph pre-training competitor by an average of 9.94% and 17.83% under freezing and fine-tuning
mode respectively. This suggests that instead of pre-training on all the collected graphs (like GCC), it
is better to choose a part of graphs better suited for pre-training (like our model APT).

Moreover, compared with the traditional models without pre-training, the performance gain of
our model is attributed to the transferable knowledge learned by pre-training strategies. We also
find that some proximity-based models, like ProNE, enforce neighboring nodes to share similar
representations, leading to superior performance on graphs with strong homophily rather than weak
homophily. Nonetheless, when applied to different graphs, these models require re-training, which
makes them non-transferable. In contrast, we target at a general, transferable model free from specific
assumptions on graph types, and thus applicable across wide scenarios (including both homophilic
and heterophilic graphs). Ablation study reveals the necessity of all the components in APT (e.g.,


https://github.com/galina0217/APT
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the proximity regularization with respect to old knowledge, proximity term, graph properties and
predictive uncertainty). We also explore the impacts of the five graph properties used in our model,
and demonstrate their indispensability by experiments. Thus, combining all graph properties is
essential to boost the performance of APT. Details in ablation study and more experimental results
can be found in Appendix H.

Graph classification. The micro F1 score on unseen test data in the graph classification task
is summarized in Table 2. Especially, our model is 7.2% and 1.3% on average better than
the graph pre-training backbone model under freezing and fine-tuning mode, respectively. In-
terestingly, we observe that all variants of APT perform quite well, and thus, a simpler yet
well-performed version of APT could be used in practice. This phenomenon could happen
since "graph pre-train and fine-tune" is an extremely complicated non-convex optimization prob-
lem. Another observation is that in specific cases, such as dd dataset, a decrease in down-
stream performance after fine-tuning is observed, as compared to the freezing mode. This
could happen since “graph pre-train and fine-tune” is an extremely complicated non-convex
optimization problem. A similar observation has been made in previous work [37] as well.

Finally, it is worth noting that our APT model Table 2: Micro F1 of different models in graph classifi-

. .. . ion.
achieves a training time 2.2x faster than the catio
competitive model GCC, achieved through a Dataset ) )
. Method imdb-binary dd msrc-21 AR,
reduced number of carefully selected training etho
) Random 49304.82) 5272435 44902.14) | 11
graphs and samples. More specifically, we care-  graph2vec 56.20(5.33) 59.16(3.47) 8.22(3.67) | 7.7
1. InfoGraph 66.58(0.63) 58.66(0.23) 6.01(0.59) | 7.7
fully selected only 7 datasets out of the avail- R oroooonn) S5.1003.18) " S782(471) " S.44277) | 93
able 11 and performed pre-training using at most  JOAO (freeze) 63.90(348) 55.97(3.61) 5.09(2.65) | 9.3
24.92% of the samples in each selected dataset. ~ J5T{) T 030 1oy Lo i
Moreover, for each newly added dataset, our  APT-P (freeze) 72.83(0.81) 76.38(0.32) 13.30(0.57) | 3.0
L : APTR (freeze) 73.98(0.21) 75.32(034) 12.90(0.57) | 3.0
model only needs a few more training iterations  xpr.s (freese) 73.54(0.40) 75.81(0.30) 13.16(0.77) | 2.3
to convergence, rather than being trained from  APT (freeze) 73.00(0.50) 75.83(0.31) 13.81(1.06) | 3.0
h DGCNN 71.00(4.69) 58.63(4.46) 6.01(0.59) [11.3
scratch. GIN 72.002.41) 77.61(1.47)* 10.54(5.08) | 6.0
‘GraphCL (fand; finé-iune)| 63.60(3.61) "58.15(4.60) " 8.25(2.94) | 12.7
JOAO (rand, fine-tune) | 67.70(3.35) 62.104.31) 11.40(3.06) | 10.0
4.3 Discussion: scope of application GCC (rand, fine-tune) 75.80(1.37) 74.26(0.59) 17.18(1.43) | 7.3
GraphCL (fine-tune) 66.90(4.39) 65.55(5.14) 8.77(2.60) |10.7
. . JOAO (fine-tune) 68.50(3.61) 62.61(4.99) 10.18(1.72) [10.0
The transferability of the pre-trained model  GCC (fine-tune) 76.19(0.90) 75.32(1.77) 24.90(1.65) | 4.7
. APT-G (fine-tune) 76.29(0.89) 75.46(0.77) 21.94(0.73) | 4.7
comes from the learned representative structural  ,prp fine tune) 767001.01)" 75.34(0.88) 2432(122) | 3.7
ns an ili istineui - APTR (fine-tune) 76.60(1.02) 75.64(0.70) 24.09(2.12) | 3.3
patterns and the ability to distinguish these pat
. . APT-L2 (fine-tune) 75.93(0.84) 75.58(1.06) 25.58(1.57)*| 3.7
terns (as discussed in §2). Therefore, our pre-  Apr (fine-tune) 76.27(1.20) 75.69(1.42) 24.41(1.82) | 3.0

training model is more suitable for the datasets
where the target (e.g., labels) is correlated with
subgraph patterns or structural properties (e.g., motifs, triangles, betweenness, stars). For example,
for node classification on heterophilous graphs (e.g., winconsin, cornell), our model performs very
well because in these graphs, nodes with the same label are not directly connected, but share similar
structural properties and behavior (or role, position). On the contrary, graphs with strong homophily
(like cora, pubmed, ogbarxiv and ogbproteins) may not benefit too much from our models. Similar
observation can also be made on graph classification: our model could also benefit the graphs whose
label has a strong relationship with their structure, like molecular, chemical, and protein networks
(e.g., dd in our experiments) [17,66].

5 Related Work

Graph pre-training. Inspired by pre-training in CV/NLP, recent efforts have shed light on
pre-training on GNNs. Initially, unsupervised graph representation learning is used for graph pre-
training [13, 21, 23, 46, 53, 63, 80]. The design of unsupervised models is largely based on the
neighborhood similarity assumption, and thus cannot generalize to unseen graphs. More recently,
self-supervised graph learning emerges as another line of research, including graph generative and
contrastive models. Graph generative models aim to capture the universal graph patterns by recovering
certain parts of input graphs [7,27,30,34,67], but they rely heavily on domain-specific knowledge.
In comparison, contrastive models maximize the agreement between positive pairs and minimize
that between negative pairs [24, 25,29, 39,40, 44,59, 60, 65, 69,70,76,78,83,85-87]. Some work in



this direction takes subgraph sampling as augmentation, in the hope that the transferable subgraph
patterns can be captured during pre-training. However, all the aforementioned studies only focus on
the design of pre-training models, rather than suitable selection of data for pre-training.

Uncertainty-based sample selection. The terminology uncertainty is widely used in machine learn-
ing, without a universally-accepted definition. In general, this term refers to the lack of confidence of
an ML model in certain model parameters. The majority of existing works define uncertainty in the
label space, such as taking the uncertainty as the confidence level about the prediction [16, 18,42,61].
Only a few works define uncertainty in the representation space [52,68]. In [52], uncertainty
is measured based on the representations of an instance’s nearest neighbors with the same label.
However, this approach requires access to the label information of the neighbors, and thus cannot be
adapted in pre-training with unlabeled data. [68] introduces a pretext task for training a model of
uncertainty over the learned representations, but this method assumes a well-pre-trained model is
already available. Such a post processing manner is not applicable to our scenario, because we need
an uncertainty that can guide the selection of data during pre-training rather than after pre-training.

Some works on active learning and hard example mining (HSM) have also introduced concept similar
to uncertainty. In active learning, uncertainty is measured via classification prediction, and the
active learning model focuses on those samples which the model is least certain about [4, 74, 82, 84].
However, these techniques all rely on the labels and cannot be adapted in pre-training with unlabeled
data. As another line of work, HSM introduces similar strategies and works on those samples with
the greatest loss, which can also be regarded as a kind of uncertainty [36,43,55,56]. Nevertheless,
existing HSM approaches do not meet the following two requirements needed in our setting. (1) The
chosen instances should follow a joint distribution that reflects the topological structures of real-world
graphs. This is satisfied by our use of graph-level predictive uncertainty and graph properties, but is
not met in HSM. (2) The chosen set of graphs should include informative and sufficiently diverse
instances. This is only achieved by the proposed APT framework while existing HSM methods fail to
consider this requirement.

Pre-training in CV and NLP. For pre-training in CV and NLP, scaling up the pre-training data size
often results in a better or saturating performance in the downstream [1, 15,33,51,62]. In view of
this, data selection is not an active research direction for CV and NLP. Existing studies mainly focus
on selecting pre-training data that closely matches the downstream domain [2,5,8-10,38,72]. The
assumption on downstream domain knowledge differs from our graph pre-training setting, making
such data selection less relevant to our work.

Data-centric AI. This recently introduced concept emphasizes the enhancement of data quality
and quantity, rather than model design [73,79]. Following-up works in graph pre-training [24,64]
exploits the data-centric idea to design data augmentation. For example, [24] introduces a graph
data augmentation method by interpolating the generator of different classes of graphs. [64] mainly
focuses on the theoretical analysis of data-centric properties of data augmentation. While many of
these works advocate for shifting the focus to data, they do not consider the co-evolution of data and
model, as is the case in our work.

6 Conclusion

In this paper, we identify the curse of big data phenomenon for pre-training graph neural networks
(GNNs). This observation then motivates us to choose a few suitable graphs and samples for GNN
pre-training rather than training on a massive amount of unselected data. Without any knowledge
of the downstream tasks, we propose a novel graph selector to provide the most instructive data for
pre-training. The pre-training model is then encouraged to learn from the data in a progressive and
iterative way, reinforce itself on newly selected data, and provide instructive feedback to the graph
selector for further data selection. The integration of the graph selector and the pre-training model
into a unified framework forms a data-active graph pre-training (APT) paradigm, in which the two
components are able to mutually boost the capability of each other. Extensive experimental results
verify that the proposed APT framework indeed enhances model capability with fewer input data.
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A Theoretical Connection Between Network Entropy and Typical Graph
Properties

Many interesting graph structural properties from basic graph theory give rise to a graph with high
network entropy [19]. We here theoretically show some connections between the proposed network
entropy and typical structural properties.

To make theoretical analysis, we consider connected, unweighted and undirected graph, whose
network entropy depends solely on its degree distribution (see Eq. (3)). Considering a random graph
G with a fixed node set, we suppose that the degree of any node v; independently follows distribution
p, which is a common setting in random graph theory [8]. Then the expected network entropy of G is
(dlog d)
(d)

where every d; (and d) is an independent random variable follows the distribution p.

H(G)) = ﬁ 3 (dilogds) = ©)

Now we are ready to discuss the connection between network entropy (H(G)) and some typical
graph properties (i.e., average degree (d), degree variance Var(d) and the scale-free exponent «).

Average degree. Given that the function x log x is convex in x, we have

(d) log(d)
(H(G)) > G

It is clear that average degree is the lower bound of network entropy. Based on our discussion on
§3.1, we conclude that when used for pre-training, an input graph with higher average degree would
in general result in better performance of the pre-trained model.

= log(d). ©

Degree variance. The Taylor expansion of (dlog d) in Eq. (6) at {d) gives

o Var(d) o 1
(@) = tosla) + o + o (1)

where Var(d) is the variance of d. We find that log(d) is exactly the zeroth-order term in the
expansion. When average degree is fixed, the network entropy and the degree variance Var(d) are
positively correlated. This in turn implies a positive correlation between degree variance and the test
performance of the model.

Scale-free exponent. Most real-world networks exhibit an interesting scale-free property (i.e.,
only a few nodes have high degrees), and thus the degree distribution often follows a power-law
distribution. That is, we can just write the degree distribution as p(z) ~ z~%, where « is called the
scale-free exponent. For a real-world network, the scale-free exponent « is usually larger than 2
[4]. Suppose the degrees of a random graph G with N nodes follows a power-law distribution
p(x) = Cx~* where C'is a normalization constant. When « > 2, we could approximately have [8]

mmpzl' if N — oo

a—2’
Clearly, a smaller scale-free exponent « results in a higher network entropy.

Remark 1 (Connection between network entropy and typical structural properties). A graph with
high network entropy arises from graphs with typical structural characteristics like large average
degree, large degree variance, and scale-free networks with low scale-free exponent.

Besides the above theoretical analysis. The motivation of choosing density, average degree, degree
variance and scale-free exponent is similar to that of network entropy. Intuitively, graphs with larger
average degree and higher density have more interactions among the nodes, thus providing more
topological information to graph pre-training. Also, the larger the diversity of node degrees, the more
diverse the subgraph samples. The diversity of node degrees can be measured by degree variance
and scale-free exponent. (A smaller scale-free exponent indicates the length of the tail of degree
distribution is relatively longer, i.e., the degree distribution spreads out wider.)
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B Theoretical Analysis and Advantages of Predictive Uncertainty

In this section, we provide the proofs of Theorem 1 and demonstrate the advantages of our proposed
uncertainty.

Proofs of Theorem 1 Before we start the proof for Theorem 1, we introduce three useful lemmas
that are adopted to prove the theorem as follows.

Lemma 1 (Fano’s Inequality.). Let X be a random variable uniformly distributed over a finite set of
outcomes X. For any estimator X suchthat X —Y — X forms a Markov chain, we have

- I(X; X) —log2
PriX#X)>1 - —"F-——>— 8
(X £X)> og |7 ®)
Lemma 2 (Data-Processing Inequality.). For any Markov chain X — Y — Z, we have
I(X;Y) > I(X;2)and (Y Z) > 1(X; 2). ©)

The proof of lemma 1 and lemma 2 can be found under Chapter 2 in [5]. The above lemmas establish
a connection between mutual information and the accuracy of downstream task. Next, we further
establish the connection between mutual information and ours uncertainty measure.

Lemma 3 (Connection between InfoNCE and mutual information). Assume that graph encoder g is
a scaling function, namely g(x) = ka. Hence, the mutual information 1(X; Z) can be expressed by
the InfoNCE l0ss Guncertain for node in Eq.(1) as follows:

_¢uncertain > _I(va(X)) = _I(X7Z) (10)
Proof: We follow [20] to prove the theorem. The mutual information 1(X; Z) can be expressed as:
ef(-El 19(i))

d)uncertam = Sl}pE(L ,9(2:))~Px g(x) Z 10g W (] 1

< Dxr, (Px,gx)|Px Py(x)) = I(X;Q(X)) =1(X;Z),
where f(x;y) is any similarity scoring function like f(x;y) = cos(x) cos(y)/T.
Therefore, we can now prove that lower existing uncertainty Lcg(¢) over all downstream classifiers

cannot be achieved without lower uncertainty duncertain (¢)-

Theorem 1 (Theoretical connection between uncertainty.). Let X, Z and Y be the input space,
representation space and label set of downstream classifier. Assume that the distribution of labels is
a uniform distribution over ). Consider the set of downstream classifiers H = {h : Z — Y}. For
any graph encoder f : X — Z,

Lcg(¢) > log( log |

log 2 — Qbuncertain(g)

where Lcg denotes the conventional uncertainty (which is the cross entropy loss here) estimated from
the composition of graph encoder and downstream classifier h o f, and ¢uncertain IS our proposed
uncertainty estimated from graph encoder f.

) (12)

Proof. For h € H, we have the Markov chain

Y5 X5 rx) 5 (ho f) (X)),

where X, Y are random variables for input and label distributions respectively. The first Markov chain
Y — X can be understood as a generative model for generating inputs according to the conditional
probability distribution p x|y Therefore, applying Lemmas 1 and 2, we obtain the inequality,

I(Y;(ho f)(X)) + log?2 o1 I(X; f(X))+log2
log || - log |V '

Prin(f (X)) £Y] 21~ (13)

Prlh (f (X)) # Y] represents the error rate. According to the definition of cross entropy, the cross
entropy for node can be denoted as follows:

Lo = —log(1 - Pr [ (f (X)) # Y)). (14)
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By combining Eq. (13), Eq. (10) with Eq. (14), we have

I(X;Z) +log2 Puncertain (¢) — log 2

Prih(f(X)#Y]=1-e £l >1 > 1+ :
[ (f () # Y] > DT 2 ] .
log |V
L >lo .
CE(C) - g(log 2— ¢uncertain(<)>
Thus, we completed the proof. O

Advantages of our proposed uncertainty Except for the theoretical advantages, we further discuss
two advantages of using the model loss (i.e., InfoNCE loss) as predictive uncertainty for data
selection. First, InfoNCE loss is exactly the objective function of our model, so what we do is
actually to select the samples with the greatest contributions to the objective function. Such strategy
has been justified to accelerate convergence and enhance the discriminative power of the learned
representations [18, 28,29, 31]. Second, as the loss function of our model, InfoNCE is already
computed during the training, and thus no additional computation expense is needed in the data
selection phase.

C Algorithm

The overall algorithm for APT is given in Algorithm 1. Given a collection of graphs G =
{G1,...,Gn} from various domains, APT aims to pre-train a better generalist GNN (i.e., pre-
training model) on wisely chosen graphs and samples. Our APT pipeline involves the following
three steps. (i) At the beginning, the graph selector chooses a graph for pre-training according to
the graph properties (line 1). (ii) Given the chosen graph, the graph selector chooses the subgraph
samples whose predictive uncertainty is higher than 7 in this graph (line 3). (iii) The selected
samples are then fed into the model for pre-training until the predictive uncertainty of the chosen
graph is below T}, or the number of training iterations on this chosen graph reaches I’ (line 4-5). (iv)
The model’s feedback in turn helps select the most needed graph based on predictive uncertainty and
graph properties until the predictive uncertainty of any candidate graph is low enough (line 6-7). The
last three steps are repeated until the iteration number reaches a pre-set maximum value T (which can
be considered as the total iteration number required to train on all selected graphs).

Algorithm 1 Overall algorithm for APT.

Input: A collection of graphs G = {G1, ..., Gy}, maximal period F of training one graph,
trade-off parameter v; = 0, hyperparameter {5; }, the learning rate p, the predictive uncertainty
threshold of moving to a new graph T}, the predictive uncertainty threshold of choosing training
samples T, and the maximum iteration number 7'.

Output: Model parameter § of the pre-trained graph model.

1: Choose a graph G* from G via the graph selector, and G < G\{G*}.

2. while The iteration number reaches 1" do

3 Sample instances with predictive uncertainty higher than 7 from G* via the graph selector.
4:  Update model parameters 6 < 6 — uVoL(0).

5: if Guncerrain(G*) < T}, or the model has been trained on G* by F iterations then

6 Update the trade-off parameter v, ~ Beta (1, 5;).

7 Choose a graph G* from G, and G + G\{G*}.

8 end if

9: end while

The time complexity of our model mainly consists of five components: data augmentation, GNN
encoder propagation, contrastive loss, sample selection and graph selection. Suppose the maximal
number of nodes of subgraph instances is |V|, the batch size is B, and D is the representation
dimension. (1) As for the data augmentation, the time complexity of random walk with restart
is at least O(B|V|?) [34]. (2) The time complexity of GNN encoder propagation depends on
the architectures of the backbone GNN. We denote it as X here. (3) The time complexity of the
contrastive loss is O(B?D) [17]. (4) Sample selection is conducted by choosing the samples with
high contrastive loss (the loss is computed before), which costs O(B). (5) Graph selection costs
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Table 3: Datasets for pre-training and testing, where * denotes the average statistic of multiple graphs
under graph classification setting. |V| and | E| denote the number of nodes and the number of edges
in a graph, respectively.

Type Name V| |E| Description

citations arxiv 86,376 517,563 citations between papers on the arxiv
dblp 93,156 178,145 same as above (dblp)
patents-main 240,547 560,943 citations between US patents

g social soc-sign0902 81,867 497,672 friend/foe links between the users of Slashdot in Feb. 2009
%0 soc-sign0811 77,350 468,554 same as above (Nov. 2008)
E wiki-vote 7,115 100,762 voting relationships between wikipedia users
‘= academia 137,969 369,692 friendships between academics on Academia.edu
3= michigan 30,147 1,176,516 friendships between Facebook users in University of Michigan
E msu 32,375 1,118,774 same as above (Michigan State University)
uillinois 30,809 1,264,428 same as above (University of Uillinois)
imdb 896,305 3,782,447 relationships between actors and movies
protein dd 284.32* 715.66" molecular interactions between amino acids
ogbproteins 132,534 39,561,252 biologically associations between proteins

image msrc-21 77.52* 198.32" adjacency between superpixels of the image segmentations
s imdb-binary 19.77*  96.53"  collaboration relationships between actors/actresses
= citations cora 2,708 5,278  citations between Machine Learning papers
§ pubmed 19,717 88,648 citations between scientific papers
= ogbarxiv. 169,343 1,166,243 citation network between computer science arxiv papers

web cornell 183 280 hyperlinks between webpages collected from Cornell University
wisconsin 251 466 same as above (Wisconsin University)
transportation brazil 131 2,077  commercial flights between airports in Brazil
others dd242 1,284 3,303  this network dataset is in the category of labeled networks
dd68 775 2,093 same as above
dd687 725 2,600  same as above

O(|G|M?D) (where M the number of samples needed to compute the predictive uncertainty of a
graph, and |G| is the number of graphs that have not been selected). This step is executed only in
a few epochs (around 6% in our current model), so we ignore its time overhead in graph selection.
Therefore, the overall time complexity of APT in each batch is O(B|V|* + X + B?D + B).

D Dataset Details

The graph datasets for pre-training and testing in this paper are collected from a wide spectrum of
domains (see Table 3 for an overview). The consideration of the graphs for pre-training and test
is as follows. When selecting pre-training data, we hope that the graph size is at least hundreds
of thousands to contain enough information for pre-training. When selecting test data, we hope
that: (1) some test data is in the same domain as the pre-training data, and some is cross-domain,
so as to comprehensively evaluate our model’s in and across-domain transferability. Accordingly,
the in-domain test data is selected from the type of movie and citations, and the others test data are
across-domain; (2) the size of test graphs can scale from hundreds to millions, including large-scale
datasets with millions of edges from Open Graph Benchmark [10].

Regarding the pre-training datasets, arxiv, dblp and patents-main are citation networks collected from
[2], [37] and [9], respectively. Imdb is the collection of movie from [27]. As for the social networks,
soc-sign0902 and soc-sign0811 are collected from [16], wiki-vote is from [15], academia is from [7],
and michigan, msu and uillions are from [32]. Regarding the test datasets, we collect the protein
network dd and ogbproteins from [6] and [10]. The image network msrc-21 is from [23]. The
movie network imdb-binary is from [36]. The citation networks, cora, pubmed and ogbarxiv, are
from [21], [22] and [10]. The web networks cornell and wisconsin are collected from [24]. The
transportation network brazil is form [26], and dd242, dd68 and dd687 are from [27].

The detailed graph properties of the pre-training data and test data are presented in Table 4 and
Table 5, respectively.
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Table 4: Detailed structural propertles of pre-training datasets, where avg properties equals to
MEAN((ﬁemropy7 (bdenslty; ¢dvg degs ¢deg var) fi)a) in Eq. (4), and neiy denotes the average number and
standard deviation of 2—hop neighbors, |V| and | E| denote the number of nodes and the number of
edges in a graph, respectively.

Dataset Properties 4] |E|  avg properties avg degree degree var density entropy «  neis (avg, std) avg clustering coef
soc-sign0902 81867 497672 -0.32 13.16 1643.20 1.49¢-04 391 1.51 1192.33,2305.99 0.06
soc-sign0811 77350 468554 -0.32 13.12 1631.77 1.57e-04 3.93 1.52 1226.93,2312.03 0.05
imdb 896305 3782447 -0.66 9.44 29827 9.42e-06 3.07 1.53 316.16,614.03 5e-05
patent 240547 560943 -0.96 5.66 3495 1.94e-05 2.04 1.57 117.23,172.40 0.08
academia 137969 369692 -0.89 6.36 102.14 3.88¢e-05 2.38 1.57 101.40,225.96 0.14
wiki-Vote 7115 103689 0.74 29.32 331479 4.10e-03 4.46 1.40 972.03,1045.13 0.14
dblp 93156 178145 -1.12 4.82 58.05 4.11e-05 2.16 1.72 58.85,90.46 0.27
arxiv 86376 517563 -0.43 12.98 382.12 1.39e-04 3.22 1.41 14521,309.12 0.68
michigan 30147 1176516 1.40 79.05 6369.17 2.59¢-03 478 1.23 4683.90, 3655.25 0.21
msu 32375 1118774 113 70.11 5087.53 2.13e-03 4.62 1.23 4567.63, 3465.16 0.21
uillinois 30809 1264428 1.44 83.08  6306.02 2.66e-03 4.78 1.22 5267.10, 3831.37 0.21

Table 5: Detailed structural properties of test datasets, where neis denotes the average number and
standard deviation of 2—hop neighbors, and the numbers with % denote the average statistics of
multiple graphs under graph classification setting. |V, | E| and |G| denote he number of nodes in
a graph, the number of edges in a graph and the number of graphs in graph classification datasets,
respectively.

Properties

Dataset 4] |E| |G| avgdegree degree var density entropy  neis (avg, std)  avg clustering coef # of classes
imdb-binary 19.77*  193.06* 1000  9.89* 116.01* 1.04* 1.07* 24.89%,15.91* 0.95% 2
msre-21 77.52* 198.32* 563  6.10% 30.26*  6.81e-02*  1.71* 17.00%, 5.81* 0.51* 20
dd 284.32*  715.66* 1178  6.00* 27.60*  2.78e-02* 1.65* 14.30*,5.68* 0.48* 2
cora 2708 5278 / 4.90 4253 1.44e-03  1.71 34.98,47.70 0.24 7
pubmed 19717 44327 / 5.50 7544 2.28e-04 223 57.10,82.72 0.06 3
brazil 131 1074 / 16.85 539.18 1.26e-01  3.14 92.27,28.50 0.66 4
dd242 1284 3303 / 6.14 2880  4.01e-03  1.68 14.57,4.30 0.47 20
dde68 775 2093 / 6.40 3342 6.98¢-03 1.76 17.40,8.93 0.44 20
dde687 725 2600 / 8.17 5578  9.91e-03 201 25.45,9.96 0.48 20
wiscosin 251 466 / 4.65 7626  1.49-02 1.84 68.04,58.22 0.23 5
cornell 183 280 / 4.04 58.48 1.68e-02 174 54.09,44.30 0.18 5
ogbarxiv 16343 1157799 / 14.67 4898.17 8.07e-05 3.63 3483.08,6711.40 023 40
ogbproteins 132534 39561252 / 598.00 742637.58 4.50e-03  6.84 32265.17,19401.46 0.28 2

E Additional Observations of Curse of Big Data Phenomenon

This section provides more comprehensive observations to support the curse of big data phenomenon
in graph pre-training, i.e., more training samples and graph datasets do not necessarily lead to better
downstream performance.

We investigate 3630 experiments with GCC [25] and GraphCL [39] model with different model
configurations (i.e., the number of GNN layers is set to be 3, 4 and 5 respectively), when pre-trained
on all training graphs listed in Table 3 and evaluated on different test graphs (annotated in the upper
left corner of each figure) under freezing setting. For each experiment, we calculate the mean and
standard deviation over 10 evaluation results of the downstream task with random training/testing
splits.

The observations of GCC and GraphCL model can be found in Figure 6 and Figure 7 respectively.
The downstream results of different test data are presented in separate rows. The figures in left three
columns present the effect of scaling up the number of graphs on the downstream performance under
different model configurations (i.e., the number of GNN layers) respectively. We first pre-train the
model with only two input graphs, and the result is plotted in a dotted line. The largest standard
deviation among the results w.r.t different graph last is also marked by the blue arrow. The figures in
the last column illustrate the effect of scaling up sample size (log scale) on the performance.

Curse of big data phenomenon in molecular pre-training. We also conduct observations of
scaling up the number of graphs on the downstream performance in molecular pre-training. We take
AttrMasking [13], ContextPred [13], and GraphCL [39] as backbone models. Following their settings,
the pre-training data is sampled from the molecular dataset ZINC15 and we take the molecular dataset
BBBP as downstream data. We directly adopt the default settings of these pre-train models except for
the number of molecules for pre-training. The number of molecular graphs are selected as {1,000,
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5,000, 10,000, 50,000, 100,000}. The results are shown in Figure 5, which suggest that “curse of big
data” phenomenon is still found even when pre-training and downstream data are all molecules.

Table 6: The value of parameters for fitting the curve according to the function f(x) = a; Ina/x* +
as (a1, as,as > 0), based on the points in the last column in Figure 6 and Figure 7.

GCC GraphCL
Parameter
Dataset a1 a2 as o a2 as
cora 0.45 0 33.43 1038.19 1.24 17.15
pubmed 4.74 0.11 39.63 3.50 0.12 36.83
brazil 39.10 0.09 0 29.59 0.19 41.83
dd242 6.60 0.08 3.82 7.84 0.12 0
dd6s 6.44 0.11 3.83 | 2.08e+17 6.55 10.37
dded7 968.01 1.37 10.31 5.21 0.12 1.35
wisconsin 26.78 0.11 16.59 11.42 0.21 38.24
cornell 1546 041 4545 7.84 4.83 51.79
imdb-binary 7.43 0.13 6497 1.06 0 51.69
dd 0.81 0.31 75.53 13.76 0.10 36.33
msrc 5.56 0.11 4.85 4.71 0.13 0
74 74 74
=2 =72 =72
70 I
g6 £ 68 £ 68
° 3 7 5 66 3 7 5 606 7 5
10 10 10 10 10 10 10 10 10
# of graphs # of graphs # of graphs
(a) AttrMasking (b) ContextPred (c) GraphCL

Figure 5: The effect of scaling up the number of graph datasets on the downstream performance
under molecular pre-training on different pre-training models.

The explanation of convex hull fit. In order to better show the changing trend, the blue curve in
the last column in Figure 6 and Figure 7 is fitted to the convex hull of the points. The convex hull
is proposed to capture the performance of a randomized classifier made by choosing pre-training
models with different probabilities [1].

We first introduce the concept of randomized classifier. Given two classifiers with training sample
size and downstream performance c¢; = (c§?, ¢3*) and ¢ = (¢, ¢%), a randomized classifier can be
made to choose the first classifier with probability p and the second classifier with probability 1 — p.
Then the output of the randomized classifier is pc; + (1 — p)ca, which is the convex combination
of ¢; and c;. All the points on this convex combination can be obtained by choosing different p.
Extend the notion to the case of multiple classifiers, we can consider the output of such a randomized
classifier to be a convex combination of the outputs of its endpoints [1]. All the points on the convex
hull are achievable. Therefore, the output of the randomized classifier is equivalent to the convex hull
of our trained classifiers’ performance.

In our experiments, we include the upper hull of the convex hull of the model performances, i.e., the
highest downstream performance for every given sample size. Such convex hull fit is proved to be
robust to the density of the points in each figure [1].

A final remark is that our observations on different downstream datasets do not result in a one-
model-fits-all trend. So we propose to fit a complicated curve whose function has form f(z) =
ay Inx/z* 4 a3 (a1, az,az > 0) to the best performing models (i.e., the convex hull fit as discussed
above). The fitted parameters a;, a2 and as in this function of each curve are given in Table 6.
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Figure 6: The additional observations of curse of big data phenomenon, performed on different
GCC pre-training models. Left three columns present the effect of scaling up the number of graphs
on the downstream performance under different model configurations (i.e., the number of GNN
layers) respectively. Last column illustrates the effect of scaling up sample size (log scale) on the
performance.
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Figure 7: The additional observations of curse of big data phenomenon, performed on different
GraphCL pre-training models.
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F Empirical Study of Graph Properties

Additional properties for part (b) in Figure 2. In Figure 8, we plot the Pearson correlation between
the graph properties of the graph used in pre-training (shown in the y-axis) and the performance
of the pre-trained model using this graph on different unseen test datasets (shown in the z-axis).
Note that the pre-training is performed on each of the input training graphs (in Table 3) via GCC.
The results indicate that network entropy, density, average degree and degree variance exhibit a
clear positive correlation with the performance, while the scale-free exponent presents an obviously
negative relation with the performance. On the contrary, some other properties of graphs, including
clique number, transitivity, degree assortativity and average clustering coefficient, do not seem to
have connections with downstream performance, and also exhibit little or no correlation with the
performance. Therefore, the favorable properties of network entropy, density, average degree, degree
variance and the scale-free exponent of a real graph are able to characterize the contribution of a
graph to pre-training.
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Figure 8: Pearson correlation between the structural features of the graph used in pre-training and the
performance of the pre-trained model (using this graph) on different unseen test datasets.

Detailed illustrations of Figure 3. In Figure 3, the illustrative graphs are generated by the
configuration model with 15-18 nodes. The shaded area groups the illustrative graphs whose network
entropy and graph properties are similar. Each four points on the same horizontal coordinate represent
four graph properties of an illustrating graph. Each curve is fitted by least squares and represents the
relation between entropy and other graph properties.

Additional real-world example for Figure 3. In Figure 9, we provide a real-world example
of how network entropy correlates with four typical structural properties (in red), as well as the
performance of the pre-trained model on test graphs (in blue). Numerical experiments again support
our explanation (or intuition) of their strong correlation.
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Figure 9: The red plot shows the network entropy (left y-axis) versus typical structural properties in a
graph (i.e., density, average degree, degree variance, and the parameter « in a scale-free network),
and the blue one shows the pre-training performances on wisconsin dataset (right y-axis) versus
structural features.
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G Implementation Details

The number reported in all the experiments are the mean and standard deviation over 10 evaluation
results of the downstream task with random training/testing splits. When conducting the downstream
task, For each dataset, we consistently use 90% of the data as the training set, and 10% as the testing
set. We conduct all experiments on a single machine of Linux system with an Intel Xeon Gold 5118
(128G memory) and a GeForce GTX Tesla P4 (8GB memory).

Implementations of our model. The regularization for weights of the model in Eq. (5) is applied to
first 2 layers of GIN. The maximal period of training one graph F' is 6, the maximum iteration number
T is 100, and the predictive uncertainty thresholds T’s and T}, are set to be 3 and 2 respectively. The
selected instances are sampled from 20,000 instances each epoch. Since the pre-training model is
unable to provide precise predictive uncertainty in the initial training stage, the model is warmed
up over the first 20 iterations. Since we adopt GCC as the backbone pre-training model, the other
settings are the same as GCC.

Our model is implemented under the following software settings: Pytorch version 1.4.04+cul00,
CUDA version 10.0, networkx version 2.3, DGL version 0.4.3post2, sklearn version 0.20.3, numpy
version 1.19.4, Python version 3.7.1.

Implementations of baselines. We compare against several graph representation learning meth-
ods. For implementation, we directly adopt their public source codes and most of their default
hyperparameters. The key parameter settings and code links can be found in Table 7.

Table 7: The source code and major hyper-parameters used in the baselines.

Method Hyper-parameter Code

DeepWalk The dimension of output representations is https://github.com/shenweichen/GraphEmbedding
64, walk length = 10, number of walks =
80
struc2vec  The dimension of output representations is https://github.com/leoribeiro/struc2vec
32, walk length = 80, number of walks =
10, window size = 5

DGI 512 hidden units per GNN layer, learning https://github.com/PetarV-/DGI
rate = 0.001

GAE 32 hidden units per GNN layer, learning https://github.com/zfjsail/gae-pytorch
rate = 0.01

graph2vec  The dimension of output representations is https://github.com/benedekrozemberczki/graph2vec
128

InfoGraph 32 hidden units per GNN layer, 5 layers https://github.com/fanyun-sun/InfoGraph
DGCNN 32 hidden units per GNN layer, learning https://github.com/leftthomas/DGCNN
rate = 0.001, batch size = 50
GIN 64 hidden units per GNN layer, 5 layers, https://github.com/weihua916/powerful-gnns
learning rate = 0.01, sum pooling
GraphCL 300 hidden units per GNN layer, 5 layers, https://github.com/Shen-Lab/GraphCL
learning rate = 0.001
GCC 64 hidden units per GNN layer, 5 layers, https://github.com/THUDM/GCC
learning rate = 0.005, number of samples
per epoch = 20000
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H Additional Experimental Results and Analysis

Analysis of ablation studies of APT. Table 1 presents the node classification results of APT and its 4
variants, i.e., APT-G, APT-P, APT-R, and APT-L2. We here analyze the performance of these ablation
studies from the following three points of view: (1) APT-L2 and APT, the variants with the proximity
regularization w.r.t old knowledge, perform the best in most cases. This suggests that catastrophic
forgetting of previous trained graphs could occur during pre-training, and it is necessary to add the
proximity regularization to prevent this; (2) Sometimes APT-R (the variant without proximity term)
achieves the best performance on the test data dd687 and cornell. One potential reason is that the
last data to be selected for pre-training is dblp, while the test data dd687 and cornell exhibit some
properties similar to dblp. Therefore, even excluding the proximity term, the pre-training model can
still remember knowledge from the last pre-trained data, and achieve good performance on the test
data that is similar to the last pre-trained data; (3) APT-G and APT-P present suboptimal performance
among all variants, which suggests the utility of graph properties and predictive uncertainty.

Impact of five graph properties combination. We study the effect of the strategy of utilizing only
one graph property in Table 8. We find that the five properties used in our model are all indispensable,
and the most important one probably varies for different datasets. That’s why we choose to combine
all graph properties.

Moreover, these case studies may provide some clues of how to select pre-training graphs when some
knowledge of the downstream tasks is known. For example, if the downstream dataset is extremely
dense (like imdb-binary), the density property dominates among the selection criteria (such that the
probability of encountering very dense out-of-distribution samples during testing can be reduced). If
the entropy of downstream dataset is very high (like brazil), it is perhaps better to choose graphs with
high entropy for pre-training. But still, when the downstream task is unknown, using the combination
of five metrics often leads to the most satisfactory and robust results.

Table 8: The effect of different graph properties on downstream performance (micro F1 is reported)
under APT-L2 (fine-tune). The last row is our strategy of combining all the graph properties, and
each of the first five rows is the strategy of only utilizing one graph property.

node classification graph classification
Method Dataset brazil dd242 dde6s dd687 wisconsin  cornell cora pubmed |imdb-binary dd msrc-21
Entropy 80.04(2.15) 25.79(0.94) 16.31(0.81) 11.08(0.82) 67.01(2.00) 52.80(2.46) 45.41(0.85) 50.85(0.19)| 76.78(0.84) 75.56(0.84) 24.34(1.50)
Density 79.23(1.92) 27.29(0.62) 19.89(0.95) 12.22(1.06) 65.58(1.87) 51.15(1.59) 46.18(0.71) 50.74(0.15)| 77.20(0.66) 75.29(0.54) 24.20(1.31)

Average degree  |79.22(1.65) 24.99(0.67) 16.56(1.01) 11.67(1.18) 67.02(1.86) 51.43(4.16) 46.38(0.48) 50.99(0.31)| 76.87(0.93) 75.46(0.53) 25.14(1.54)
Degree variance | 78.44(2.24) 24.94(0.61) 16.62(1.04) 11.51(1.17) 65.65(1.28) 50.45(2.14) 45.76(0.65) 50.70(0.21)| 76.39(1.04) 75.47(0.67) 25.22(1.51)
Scale-free exponent |79.70(2.71) 24.94(0.68) 17.26(0.63) 12.03(1.41) 64.77(2.31) 51.37(2.70) 45.18(0.52) 50.84(0.26)| 75.24(0.62) 75.52(1.24) 23.19(1.39)
Our combination  |78.75(1.63) 24.62(0.90) 17.83(1.35) 12.26(0.78) 67.04(1.50) 52.94(1.95) 47.48(0.46) 51.25(0.21)| 75.93(0.84) 75.58(1.06) 25.58(1.57)

Analysis of the selected graphs. The data sequentially selected via our graph selector are uillinois,
soc-sign0811, msu, michigan, wiki-vote, soc-sign0902 and dblp. To further analyze why these graphs
are chosen, we present their detailed structural properties in Table 4 in the Appendix D. We first
observe that uillinois, michigan and msu have the largest value of the term related to graph properties
(i.., MEAN(Bentropys Gensity> Gave degs Gdeg vars -G ))» while dblp has the smallest. This indicates
that the selection of data is influenced by a combination of factors, including graph properties and
potentially other factors such as predictive uncertainty. Moreover, it is also interesting to see that
the selected graph wiki-vote is the smallest graph among all the pre-training graphs, but it still
contributes to the performance. This observation again verifies the curse of big data phenomenon in
graph pre-training, which suggests that having more training samples does not necessarily result in
improved downstream performance.

Results of APT under different backbone models. We here include GraphCL [39] and JOAO [38]
as our backbone models. Table 9 shows our superiority under most cases. The datasets used for
pre-training and testing are the same as those employed in the experiments where GCC was the
backbone model (refer to Table 7). Since the downstream tasks of GraphCL and JOAO are limited to
graph classification, we can directly adapt them to our setting with graph classification as downstream
task. For the node classification task, we simply take the RWR subgraphs as the input of GraphCL
and JOAO, and treat the learned subgraph representation as node representation. We directly adopt
GraphCL and JOAO with their default hyper-parameters. The backbone GNN model is GIN with 5
layers.
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Table 9: Micro F1 scores of different models in the node classification task and graph classification
task, with GraphCL and JOAO as our backbone model, respectively.

node ifi graph

Method Dataset brazil dd242 dd6s dd687 wisconsin cornell cora pubmed | imdb-binary dd msrc-21

GraphCL (rand, finetune) | 3045(0.37)  40.73(0.66) 64.43(14.95) 15.040.85) 14.69(2.48) 10.99(0.58) 63.85(2.18) 44.21(10.58) | 63.603.61) 58.15(4.60) 8.25(2.94)
GraphCL (fine-tune) 30.81(0.36)  42.91(091) 73.57(1033) 1535(0.99) 13.51(2.57) 10.66(1.04) 63.85(4.42)  51.052.41) | 66.90(4.39) 65.55(5.14) 8.77(2.60)
GraphCL-APT (fine-tune) | 30.63(0.49) 42.93(1.01) 75.14(10.02) 1542(149) 14.51(2.72) 10.88(0.84) 64.46(3.22)  52.63(2.63) | 67.55(3.37) 67.23(4.07) 10.02(2.78)
JOAO (rand, finetunc) 2993284 42.01(068) 72.14(6.74) 1093285 8.08(215) 740(343) 4538(13.30) 45.26(1031) | 67.70(335) 62.10@4.31) 11.40(3.06)
JOAO (fine-tune) 2934(3.04) 4221(0.88) 75.00(5.76)  10.54(3.07) 7.56(1.94) 8.77(2.39)  50.0(12.28) 42.11(10.26) | 68.503.61) 62.61(4.99) 10.18(1.72)
JOAO-APT (fine-tune) 30.45(0.56)  42.80(1.05) 72.29(11.03) 10.71(2.85) 9.32(4.32) 10.90(0.67) 51.92(1.98)  46.51(2.69) | 63.9(348) 63.42(3.61) 12.82(0.70)

Results of APT under molecular pre-training. We also evaluate APT under molecular pre-
training setting. We adopt the state-of-art model, Mole-BERT [35] and a commonly used strategy,
EdgePred [12] as backbone molecular pre-training models.

The predictive uncertainty mentioned before is based on contrastive loss, however, the loss function
of Mole-BERT and EdgePred are different from that used in GCC. To adapt these two models, we
need to make corresponding changes to our predictive uncertainty. More specifically, for Mole-BERT,
we take triplet masked contrastive learning Lrycr , which is the combination of triplet loss Ly;

with commonly-used contrastive loss L., in the original paper, as the predictive uncertainty. For
EdgePred, we take the loss function, i.e., negative log likelihood in the original paper as the predictive
uncertainty

Besides, we adjust the data selection process in molecular pre-training. This is because each molecular
graph is taken as a sample in molecular pre-training, so we can directly select graphs. The overall
algorithm for APT under molecular setting is given in Algorithm 2.

Algorithm 2 Overall algorithm for APT (Mole).

Input: A collection of graphs G = {G1, ..., Gy}, the number of graphs in the pre-training dataset
|G|, the maximal period F of training a set of graphs, trade-off parameter ; = 0, ratio of the
number of selected graphs each time to the number of graphs in the pre-training dataset ) ,
hyperparameter {/3; }, the learning rate u, the predictive uncertainty threshold of moving to a new set
of graphs Ty, and the maximum iteration number 7.

Output: Model parameter § of the pre-trained graph model.

1: Choose a set of graphs G* (|G*| = n * |G°|) from G via the graph selector, and G + G\{G*}.
2: while The iteration number reaches 1" do

3:  Update model parameters 6 < 0 — uVoL(0).

4: if Puncertain(G*) < T}y or the model has been trained on G* by F iterations then

5: Update the trade-off parameter v; ~ Beta (1, 5;).

6: Choose a set of graphs G* (|G*| = 1 * |G°|) from G, and G + G\{G*}.

7:  endif

8: end while

For pre-training datsets, we use 2 million molecules sampled from the ZINC15 database following [12,
35]. For downstream datasets, we adopt the widely-used 8 binary classification datasets contained
in MoleculeNet [33] following [12,35]. For implementation, Ty, is set as -2.5 for Mole-BERT and
0.5 for EdgePred. For both Mole-BERT and EdgePred, the ratio of the number of selected graphs
each time to the number of the graphs in original pre-training dataset 7 is 0.2. Other parameters
related to APT are set the same as those in APT with GCC as pre-training backbone model. The
other parameters related to molecular pre-training are the same as those employed in Mole-BERT
and EdgePred, respectively.

The results of APT under molecular pre-training with Mole-BERT and EdgePred as backbone models
are reported in Table 10. We can see that our APT adaptions show significant superiority compared to
the backbones. Moreover, APT (Mole-BERT) achieves the best performance on 6 out of 8 downstream
datasets among all the baseline models, which shows the effectiveness of our pipeline.

Training time. As empirically noted in Table 11, the total training time of APT-L2 and APT is
18321.39 seconds and 18592.01 seconds respectively (including the time consumed in graph selection
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Table 10: Results for molecular property classification. We report the mean (standard deviation)
ROC-AUC of 10 random seeds with scaffold splitting. ‘No pre-train’ means training from scratch.
The baseline results are directly obtained from the reported results in Mole-BERT [35]..

Method Dataset Tox21  ToxCast  Sider  ClinTox MUV HIV BBBP Bace Average
# Molecules 7,831 8,575 1,427 1,478 93,087 41,127 2,039 1,513 -
No pretrain 74.6(0.4) 61.7(0.5) 58.2(1.7) 58.4(6.4) 70.7(1.8) 75.5(0.8) 65.7(3.3) 72.4(3.8) 67.15
InfoGraph 73.3(0.6) 61.8(0.4) 58.7(0.6) 75.4(4.3) 74.4(1.8) 74.2(0.9) 68.7(0.6) 74.3(2.6) 70.10
GPT-GNN 74.9(0.3) 62.5(0.4) 58.1(0.3) 58.3(5.2) 75.9(2.3) 65.2(2.1) 64.5(1.4) 77.9(3.2) 68.45
ContextPred 73.6(0.3) 62.6(0.6) 59.7(1.8) 74.0(3.4) 72.5(1.5) 75.6(1.0) 70.6(1.5) 78.8(1.2) 70.93
GraphLoG 75.0(0.6) 63.4(0.6) 59.6(1.9) 75.7(2.4) 75.5(1.6) 76.1(0.8) 68.7(1.6) 78.6(1.0) 71.56
G-Contextual 75.0(0.6) 62.8(0.7) 58.7(1.0) 60.6(5.2) 72.1(0.7) 76.3(1.5) 69.9(2.1) 79.3(1.1) 69.34

G-Motif 73.6(0.7) 62.3(0.6) 61.0(1.5) 77.7(2.7) 73.0(1.8) 73.8(1.2) 66.9(3.1) 73.0(3.3) 70.16
AD-GCL 74.9(0.4) 63.4(0.7) 61.5(0.9) 77.2(2.7) 76.3(1.4) 76.7(1.2) 70.7(0.3) 76.6(1.5) 72.16
JOAO 74.8(0.6) 62.8(0.7) 60.4(1.5) 66.6(3.1) 76.6(1.7) 76.9(0.7) 66.4(1.0) 73.2(1.6) 69.71
SimGRACE 74.4(0.3) 62.6(0.7) 60.2(0.9) 75.5(2.0) 75.4(1.3) 75.0(0.6) 71.2(1.1) 74.92.0) 71.15
GraphCL 75.1(0.7) 63.0(0.4) 59.8(1.3) 77.5(3.8) 76.4(0.4) 75.1(0.7) 67.8(2.4) 74.6(2.1) 71.16
GraphMAE 75.2(0.9) 63.6(0.3) 60.5(1.2) 76.5(3.0) 76.4(2.0) 76.8(0.6) 71.2(1.0) 78.2(1.5) 72.30
3D InfoMax 74.5(0.7) 63.5(0.8) 56.8(2.1) 62.7(3.3) 76.2(1.4) 76.1(1.3) 69.1(1.2) 78.6(1.9) 69.69
GraphMVP 74.9(0.8) 63.1(0.2) 60.2(1.1) 79.1(2.8) 77.7(0.6) 76.0(0.1) 70.8(0.5) 79.3(1.5) 72.64
MGSSL 75.2(0.6) 63.3(0.5) 61.6(1.0) 77.1(4.5) 77.6(0.4) 75.8(0.4) 68.8(0.6) 78.8(0.9) 72.28
AttrMask 75.1(0.9) 63.3(0.6) 60.5(0.9) 73.5(4.3) 75.8(1.0) 75.3(1.5) 65.2(1.4) 77.8(1.8) 70.81
MAM (with vanilla VQ-VAE) | 75.8(0.6) 63.1(0.5) 60.7(1.5) 74.2(2.7) 76.5(1.6) 76.2(0.9) 66.4(0.7) 78.2(0.8) 71.39
TMCL( w/0 Leon ) 73.5(1.0) 61.8(0.3) 58.7(1.6) 61.1(4.1) 71.6(1.3) 73.5(1.3) 65.4(2.6) 73.72.4) 67.41
TMCL (w/o Ly ) 74.1(0.4) 62.4(0.8) 58.7(3.0) 75.6(2.2) 75.7(1.1) 74.6(1.1) 66.8(1.4) 74.2(1.3) 70.26
MAM 76.2(0.5) 63.9(0.3) 61.4(1.9) 75.1(3.0) 77.4(2.1) 77.5(1.0) 66.8(1.5) 78.9(1.1) 72.16
TMCL 74.9(0.7) 63.2(0.7) 59.6(1.4) 77.0(4.2) 77.2(0.3) 75.3(1.1) 67.6(1.3) 75.1(1.2) 71.24
EdgePred 76.0(0.6) 64.1(0.6) 60.4(0.7) 64.1(3.7) 75.1(1.2) 76.3(1.0) 67.3(2.4) 77.3(3.5) 70.08

APT (EdgePred) 76.5 (0.4) 64.3 (0.3) 61.4 (0.8) 77.9 (3.0) 75.2(1.7) 76.6 (0.9) 70.7 (2.0) 81.8 (1.4) 73.05
Mole-BERT 76.8(0.5) 64.3(0.2) 62.8(1.1) 78.9(3.0) 78.6(1.8) 78.2(0.8) 71.9(1.6) 80.8(1.4) 74.04

APT (Mole-BERT) 77.0(0.4) 65.0(0.3) 60.8(0.4) 79.91.0) 75.9(1.0) 78.9(0.6) 73.1(0.4) 82.3(14) 74.11

and regularization term), while the competitive graph pre-training model GCC takes 40161.68 seconds
for the same number of training epochs on the same datasets.

* The time spent on the inference on all graphs during graph selection (which is the main time spent
for graph selection) only accounts for 3.95% and 3.87% of the total time under APT-L2 and APT
respectively. Note that this step is executed only in a few epochs (around 6% in our current model).

* The time cost of the L2 regularization term only accounts for 0.08% of the total time and the EWC
regularization term only accounts for 0.45% of the total time, which is calculated by the runtime
gap between the models with and without the regularization term. Note that the regularization term
is imposed on the first two layers of the GNN encoder, which only accounts for 12.4% of the total
number of parameters.

The efficiency of our model is due to a much smaller number of carefully selected training graphs
and samples at each epoch. In addition, the number of parameters in our model is 190,544, which is
the same order of magnitude as classical GNNs like GraphSAGE, GraphSAINT, efc. and is relatively
small among models in open graph benchmark [11].

Table 11: Training time (sec) comparison between our model and GCC. All the models are trained
under the same number of epochs, which is set as 100 in practice. (The difference in time cost of
inference on all graphs is due to different runs.)

Time GCC APT-L2 APT
inference on all graphs - 723.92  719.64
proximity term - 15.98 83.58
total 40161.68 18321.39 18592.01

Effects of hyper-parameters. Here we show that the effect of the hyper-parameter {\} in the
proximity term, the maximal number of training iterations on one graph F', the predictive uncertainty
threshold of moving to a new graph T, and the predictive uncertainty threshold of choosing training
samples T on performance in Figure 10 and Figure 11.
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The hyper-parameter A is the trade-off parameters between the knowledge learnt from new data and
that from previous data in Eq. (5). We use the dataset dd242 as an example to find the suitable values
of the hyper-parameter under the L2 and EWC regularization setting respectively, and present here
for reference (see Figure 10). Clearly, a too small or too large A would deteriorate the performance.
Thus, an appropriate value of ) is preferred to ensure that the graph pre-training model can learn
from new data as well as remember previous knowledge. We leave changing )\ as the future work.
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Figure 10: Performance of our model on dd242 w.r.t varying {\}.

Our model training involves three hyper-parameter F, Ty, T, where I controls the largest number of
epochs training on each graph, Ty, is the predictive uncertainty threshold of moving to a new graph,
Ty is the predictive uncertainty threshold of choosing training samples. We use grid search to show
F e {4,5,6}’s, T, € {3,3.5,4}’s and T, € {1,2,3}’s role in the pre-training. F' remains at 5
while studying T, and T, Ty, remains at 3.5 while studying F' and T, and T remains at 2 while
studying I and T};. Figure 11 presents the effect of these parameters, We find that if the value of
F'is set too small or that of T} is too large, the model cannot learn sufficient knowledge from each
graph, leading to suboptimal results. Too large F' or small Ty also lead to poor performance. This
indicates that instead of training on a graph for a large period, it would be better to switch to training
on various graphs in different domains to gain diverse and comprehensive knowledge. Regarding the
hyper-parameter 7, we observe that large Ts would make the model having too few training samples
to learn knowledge, and small T could not select the most uncertain and representative samples, thus
both cases achieve suboptimal performance.
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Figure 11: Performance of our model on dd242 w.r.t varying F, T, T..

The choice of 3;, its alternatives, and ablation study. At the beginning of the pre-training, the
model is less accurate and needs more guidance from graph properties. We therefore set 4 as
larger at the beginning and gradually decrease it. To simplify this process, we follow [3] to use the
exponential formula of 8; = ¢; — ¢} to set the expectation of ; to be strictly decreasing (where
vt ~ Beta(1, B;)).

The parameters ¢; and ¢z in the exponential formula of 3; = ¢; — ¢} are suggested as 1.005 and 0.995
in [3]. We simply perform grid search on ¢ in {1.005, 3, 5}; see the effect of ¢; in the Figure 12.

We then illustrate that the choice of the decay function of 3; is robust. Table 12 and Table 13 below
show the effect of linear decay, step decay and exponential decay on ;. (The function for linear
decay and step decay are designed as 8; = 2.001 + 0.004¢, 5; = 2.005 + floor(¢/20), respectively.
The initial value (37 is set the same as ours.) While there is no universally better decay function, the
performance of our method is not significantly impacted by the choice of different decay functions,
and our performance is better than the baselines in most cases regardless of the choices of specific
decay functions.
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Figure 12: Performance of APT-L2 (freeze) w.r.t varying c;.

Table 12: Micro F1 of APT-L2 (freeze) with the different decay functions in the node classification
task.

Dataset

brazil dd242 dd68 dd687 wisconsin  cornell cora pubmed
Method
linear 72.30(1.37) 16.28(0.57) 12.44(0.72) 10.29(0.87) 54.20(1.50) 47.66(1.53) 35.74(0.52) 46.49(0.19)
step 68.70(3.95) 16.74(0.45) 12.86(1.07) 10.09(0.76) 52.55(2.39) 48.08(1.28) 35.50(0.46) 46.58(0.21)
exponential 69.82(2.32) 16.79(0.88) 12.68(0.81) 10.34(1.12) 55.11(1.74) 48.76(2.20) 34.27(0.43) 46.21(0.15)

Table 13: Micro F1 of APT-L2 (freeze) with the different decay functions in the graph classification
task.

Mot Dataset\, - ib-binary  dd msre-21
Tinear 73.66(0.34) 75.47(0.26) 13.01(0.78)
step 72.99(0.40) 75.41(0.41) 14.13(0.56)

exponential 73.54(0.40) 75.81(0.30) 13.16(0.77)

Results under GCC’s original experimental setting. For a more comprehensive comparison, we
also adopt the same pretraining datasets and downstream datasets as GCC. Table 14 and table 15
shows the performance of our model and the strongest competitor GCC, under the experiment setting
of GCC in node classification and graph classification task, repectively. (The performance of GCC is
directly taken from its paper.) The results indicate that our model still outperforms GCC under the
experimental setting of GCC. The results still suggest ours superiority in most cases.

Table 14: Micro F1 scores of GCC and our model in the node classification task, under the experi-

mental setting of GCC.
Dataset . )
m US-Airport H-index

GCC (freeze) 65.6 75.2
Ours (freeze) 66.12(5.31) 75.9(3.01)
GCC (fine-tune) 67.2 80.6

Ours (fine-tune) |70.50(6.08) 82.28(1.48)

Table 15: Micro F1 scores of GCC and our model in the graph classification task, under the
experimental setting of GCC.

Dataset \ipB.B IMDB-M COLLAB RDT-B  RDT-M
Method

GCC (freeze) 72.0 49.4 78.9 89.8 53.7
Ours (freeze) 73.2(0.27) 49.6(1.17) 79.12(0.77) 89.6(2.51) 54.1(2.45)
GCC (fine-tune) 73.8 50.3 81.1 87.6 53.0

Ours (fine-tune) |76.27(1.20) 50.50(1.08) 81.23(0.86) 92.20(2.43) 53.28(2.33)
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The justification of input graphs’ learning order. Table 16 reveals the downstream performance
can be affected by the learning order of input training graphs. With the guidance of graph selector,
the pre-training model is encouraged to first learn the graphs and samples with higher predictive
uncertainty and graph properties. Such learning order accomplishes better downstream performance
compared to the reverse or random one.

Table 16: The effect of input graphs’ learning order on downstream performance (micro F1 is
reported) under freezing mode in the node classification task. The first row is the order learnt from
APT-L2, and the second and third rows are the reverse and random order of the first row, respectively.

Dataset
Method
Our order 69.82(2.32) 16.79(0.88) 12.68(0.81) 10.34(1.12) 55.11(1.74) 48.76(2.20) 34.27(0.43) 46.21(0.15)

Reverse order  [69.60(2.71) 16.00(0.47) 11.41(0.91) 10.65(0.65) 51.46(1.64) 44.36(1.38) 35.66(0.62) 45.92(0.14)
Random order |67.25(2.40) 16.11(0.79) 12.57(1.17) 11.06(0.75) 53.06(2.41) 46.76(1.95) 35.90(0.72) 46.36(0.20)

brazil dd242 dd68 dd687 wisconsin  cornell cora pubmed

The choice of the “difficult” data. Among all the data, “difficult” samples contribute the most to
the loss function, and thus they can yield gradients with large magnitude. Comparatively, training
with easy samples may suffer from inefficiency and poor performance as these data points produce
gradients with magnitudes close to zero [14, 30]. In addition, learning from difficult samples
has proven to be able to accelerate convergence and enhance the expressive power of the learnt
representations [28,31]. For our model, the importance of learning from difficult samples is also
justified empirically, as shown in Table 17.

Table 17: The comparison of learning from easy samples and learning from difficult sample in our
pipeline (APT-L2 (freeze)) on node classification. Micro F1 is reported in the table. (Under the
setting of learning from easy samples, we replace Guncertain With —dyncertain in Eq.(4), and only sample
instances with predictive uncertainty lower than T’.)

Method Dataset it ad242 ddes dd687  wisconsin  cornell cora  pubmed

Learning from easy samples 56.34(3.45) 14.38(0.53) 11.76(1.04) 9.90(0.64) 50.65(1.84) 48.09(1.72) 35.74(0.42) 46.03(0.17)
Learning from difficult samples (ours) |69.82(2.32) 16.79(0.88) 12.68(0.81) 10.34(1.12) 55.11(1.74) 48.76(2.20) 34.27(0.43) 46.21(0.15)

Time comparison: pre-training vs. training from scratch. Using a pre-trained model can
significantly reduce the time required for training from scratch. The reason is that the weights of the
pre-trained model have already been put close to appropriate and reasonable values; thus the model
converges faster during fine-tuning on a test data. As shown in Figure 13, compared to regular GNN
model (e.g. GIN), our model yields a speedup of 4.7x on average (which is measured by the ratio of
the training time of GIN to the fine-tuning time of APT). Based on above analysis, we can draw a
conclusion that pre-training is beneficial both in effectiveness and efficiency.
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Figure 13: The running time of our model and the basic GNN model on graph classification task.
Our model achieves a speedup of 4.7x on average compared with GIN.
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