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ABSTRACT

Language agents show potential in being capable of utilizing natural language for
varied and intricate tasks in diverse environments, particularly when built upon
large language models (LLMs). Current language agent frameworks aim to fa-
cilitate the construction of proof-of-concept language agents while neglecting the
non-expert user access to agents and paying little attention to application-level de-
signs. We present OpenAgents, an open platform for using and hosting language
agents in the wild of everyday life. OpenAgents includes three agents: (1) Data
Agent for data analysis with Python/SQL and data tools; (2) Plugins Agent with
200+ daily API tools; (3) Web Agent for autonomous web browsing. OpenAgents
enables general users to interact with agent functionalities through a web user in-
terface optimized for swift responses and common failures while offering develop-
ers and researchers a seamless deployment experience on local setups, providing
a foundation for crafting innovative language agents and facilitating real-world
evaluations. We elucidate the challenges and opportunities, aspiring to set a foun-
dation for future research and development of real-world language agents.

• Demo video: bit.ly/openagents-video
• Demo site: bit.ly/openagents-demo
• Code: bit.ly/openagents-code
• Docs: bit.ly/openagents-docs

1 INTRODUCTION

Intelligent agents are broadly conceptualized as autonomous problem solvers with the ability to
sense their environment, decide, and act upon that environment (Wooldridge & Jennings, 1995;
Sutton & Barto, 2005; Russell, 2010). With the advent of large language models (LLMs) (Brown
et al., 2020; Chen et al., 2021; Chowdhery et al., 2022; OpenAI, 2023b; Touvron et al., 2023), recent
implementations from the academic, industry, and open-source communities have leveraged this
concept to create language agents. These agents are capable of utilizing natural language to perform
a variety of intricate tasks in diverse environments, showcasing notable potentials (Yao et al., 2022b;
Chase, 2022; Gravitas, 2023; OpenAI, 2023a; Wang et al., 2023a).

Meanwhile, current agent frameworks such as LangChain (Chase, 2022), AutoGPT (Gravitas,
2023), Gentopia (Xu et al., 2023a), BabyAGI (Nakajima, 2023), AgentVerse (Chen et al., 2023),
Agents (Zhou et al., 2023c) provide proof-of-concept implementations and console interfaces largely
tailored for developers. This often restricts access to a wider audience, particularly those not versed
in programming or consoles. Current agent benchmarks are constructed within specific environ-
ments for deterministic evaluation, especially in scenarios involving coding (Yang et al., 2023a),
tool utilization (Li et al., 2023c; Patil et al., 2023; Qin et al., 2023b), web browsing (Shi et al., 2017;
Yao et al., 2022a; Deng et al., 2023; Zhou et al., 2023b) or a combination of above (Liu et al., 2023).

∗Equal contribution.
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Figure 1: The OpenAgents platform for general users, developers, and researchers. (a) General users
can interact with the agents via our online web interface, instead of programmer-oriented console or
packages. (b) Developers can effortlessly deploy the frontend and backend for further developments
given our codes. (c) Researchers can build new language agents or agent-related methods given
the examples and shared components, and see how they perform with the web UI. Our OpenAgents
serves to be a simple and versatile platform for using, developing, and evaluating language agents.

These offer initiatives toward agent evaluations while general agent usage is bound to be connected
to more open or unlimited environments and real users with their special needs and materials.

Aiming to develop LLM-powered offerings for a broader user base, OpenAI has crafted and de-
ployed well-designed products1, specifically Advanced Data Analysis (previously known as Code
Interpreter), Plugins, and Browse with Bing, leveraging their further trained models (which has
been reverse engineered and accepted by many (Zheng et al., 2023b; Gou et al., 2023)), business
logic code, and a nurtured software community (e.g., OpenAI plugins store). Despite the significant
success attained, the models and business logic code have not been open-sourced due to business
considerations, hindering not only users from free access but also developers and researchers from
further exploring, evaluating, and improving upon them.

Recognizing this, OpenAgents stems from the motivation to democratize agent access as an open-
source platform for using and hosting agents, currently encompassing three integral agents: Data
Agent for data analysis with Python and SQL, Plugins Agent for 200+ tool usages, and Web Agent
for autonomous web browsing. We believe that for LLMs to reach their full potential, they must tran-
sition from purely theoretical or developer-centric tools to dynamic, interactive systems that cater
to a diverse user base. As depicted in Figure 1, general users can readily explore agent capabilities
via the online Web UI without any coding expertise required. In addition, OpenAgents provides full
business logic and research codes for developers to easily deploy it locally and researchers to further
introspect and build language agents. Lastly, given all provided above, OpenAgents is meant to be a
realistic and holistic human-in-the-loop agent evaluation platform: out of real needs, real users inter-
act with agents to fulfill their tasks, and the whole human-agent interaction traces and user feedback
are recorded for further evaluation. Compared to existing benchmarks and platforms, OpenAgents
provides an in-the-wild environment where agents tackle a variety of genuine user needs.

During building OpenAgents, we first underscore the significance of effectively specifying applica-
tion requirements via LLM prompting, a process that often requires crafting instructions that cater
to backend logic, enhance output aesthetics, and safeguard against adversarial inputs. Our find-
ings indicate that the build-up of such instructions can, at times, be substantial, posing challenges
in terms of token limitations and context handling for the LLMs. Additionally, for effective real-
world deployment, agent models must not only exhibit high performance but also be able to handle

1https://chat.openai.com
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real-time, interactive scenarios, such as streaming, to provide an optimal user experience. Further-
more, our exploration reveals that current research often gravitates towards idealized performance
metrics, sometimes sidelining critical real-world considerations, such as the trade-offs between sys-
tem responsiveness and accuracy, and the nuanced complexities introduced when application-based
failures arise, potentially obfuscating the true capabilities of the LLMs.

For future directions and extensions based on OpenAgents, we envision the expansion of new agents,
agent-related methods, models, and tools for researchers. Plus, the built-in web UI paves the way
towards human-in-the-loop agent and LLM evaluation and interaction in the wild under realistic
needs, which could benefit the NLP and HCI communities. Finally, we hope that our codebase,
which includes off-the-shelf frontend and backend codes and shared components of agents, will
inspire the development of more innovative applications.

2 RELATED WORKS AND PRELIMINARIES

Building agents that operate intelligently in specific environments has a long history across the
fields of traditional artificial intelligence (Kaelbling et al., 1987; Maes, 1990; Brooks, 1991; Russell,
2010), reinforcement learning (Sutton & Barto, 2005; Mnih et al., 2013; Finn et al., 2017), and recent
language agents (Yao et al., 2022b; Yang et al., 2023a; Wang et al., 2023a) which are built on LLMs.

Generally, language agents can be formalized as a partially observable Markov decision process
(POMDP) (H,S,A,O, T ,R) with natural language space H, state space S, action space A, obser-
vation space O, transition function T ∶ S×A → S, and reward function R ∶ S×A → [0, 1]. Given
the dialogue history (user queries and agent responses) h ∈ H, an agent generates executable action
at ∈ A and interacts with the environment. An action is executable if it is within the action space
A and incurs a change in the state st+1 ∈ S, and an execution feedback as observation ot+1 ∈ O.
The interaction loop repeats until certain stop tokens as action is generated. It is worth noting that
currently most LLM-based language agents typically do not require training, and as a result, rewards
are often not regarded.

Table 1: Comparison between OpenAgents and current existing works on building prototypes and
benchmarks on agent concept. Online stands for whether it is deployable and can be online-hosted.
UI stands for providing a user interface. #Tools is the number of tools contained. Feedback stands
for supporting feedback from users. Web. is short for web browsing. “Controlled” means the
framework/benchmark sets up deterministic environments ahead for the agent to operate actions,
while “Wild” ones let the agent take actions in the open-ended real-world environment. The “∗”
marker indicates their agent only implements basic web browsing methods (e.g. web crawl) or uses
external APIs (e.g., google search). The “+” marker indicates OpenAgents offers additional features
beyond just statistical numbers, for example automatic selection on tools. All statistics in the table
are collected by September 2023.

Interface Environment

Name Online Human Feedback UI Coding Env. #Tools Web.

AutoGPT (Gravitas, 2023) ✗ ✓ CLI Wild 15 ✓
BMTools (Qin et al., 2023a) ✗ ✗ - Controlled 32 ✗

∗

BabyAGI (Nakajima, 2023) ✗ ✗ - Controlled - ✗
∗

Gentopia (Xu et al., 2023a) ✗ ✓ CLI Controlled 15 ✗
∗

Open Interpreter (Lucas, 2023) ✗ ✓ CLI Wild 1 ✗
GAs (Park et al., 2023) ✗ ✗ Web - - ✗
AgentVerse (Chen et al., 2023) ✗ ✗ Web - - ✗
Camel (Li et al., 2023b) ✓ ✗ Web - - ✗
Agents (Zhou et al., 2023c) ✓ ✓ Web Wild 11 ✗

∗

OpenAgents (ours) ✓ ✓ Web Controlled & Wild ≥200+
✓

+

ChatGPT Plus (closed-source) ✓ ✓ Web Controlled & Wild ≥500 ✓

Numerous frameworks and codebases surrounding language agents have been established. One
category comprises the construction of some proof-of-concept, catchy prototype implementa-
tions (Chase, 2022; Gravitas, 2023; Nakajima, 2023). The core technique is prompting LLMs and
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demonstrating astonishing results in certain cases. On this basis, some improved and updated con-
ceptual frameworks (Xu et al., 2023a; Zhou et al., 2023c) have been proposed. Another category
emphasizes the evaluation of language agents. These evaluations are often conducted in fully sim-
ulated environments (self-hosted web pages (Yao et al., 2022a; Zhou et al., 2023b), etc.), semi-real
environments (for instance, utilizing real tool API calls (Qin et al., 2023b)) or combination (Liu
et al., 2023; Wang et al., 2023b). Additionally, there are frameworks focusing on the study of multi-
agents and their behaviors (Li et al., 2023b; Park et al., 2023; Chen et al., 2023; Hong et al., 2023;
Wu et al., 2023). Table 1 shows an overall comparison of these frameworks and codebases.

3 PLATFORM DESIGN AND IMPLEMENTATION

User Interface Language Agent

Language
Models EnvironmentsTools

• Prompting
• Action Parsing
• Agent Method

• API Calling
• Tools Scaling
• Tools Selection

• Web Extension
• Sandbox

• User System
• …

• Frontend Website
• Streaming
• Error Handling

• Database Design
• Backend Server

BackendFrontendUser

Figure 2: System overview of OpenAgents’ architecture comprising (1) User Interface, a bridge
that facilitates communication between the user and the agent, and manages backend operations;
and (2) Language Agent, encompassing the language model, tools, and environment, driving the
agent’s decision-making processes. The flow of interaction typically follows from the user needs,
through the user interface, and culminates in the language agent taking specific actions using its
various components.

3.1 SYSTEMATIC DESIGN

In this section, we introduce our systematic efforts in OpenAgents, aiming towards addressing this
gap between existing agent frameworks and real-world functional agent applications.

The OpenAgents architecture can be generally split into two parts corresponding to Figure 2: (1)
User Interface, including both the frontend and backend; (2) Language Agent, including language
models, tools, and environments. OpenAgents provides a well-built interface for user-agent commu-
nication. Upon receiving instructions from the users, the agent will then plan, and take action in the
environment via using tools.

User Interface We have devoted significant effort to crafting a user-friendly and highly functional
User Interface. We have tackled a multitude of highly reusable business logic to use and host agents.
This effort has resulted in robust support for various technical aspects within the demo, such as
backend server operations, error handling, data streaming, etc. Our goal has been to make the
OpenAgents not only user-friendly but also to provide enhanced usability. Although these aspects
were not the central focus of the current agent frameworks (Chase, 2022; Xu et al., 2023a; Zhou
et al., 2023c), we firmly believe that these behind-the-scenes efforts should not be. They hold
significant meaning for future research, contributing to the overall robustness and usability of the
system.

Language Agent In our design, the language agent comprises three essential components: the lan-
guage model, the tool interface, and the environment. Currently, we adopt our prompting method
based on the approach introduced in ReAct (Yao et al., 2022b). The agent generally follows a
sequential process of Observation −→ Deliberation −→ Action in each turn of in-
teraction. We also prompt the language model to produce easily parsable text. The tool interface
includes parsers capable of translating this text into executable actions, such as generating code or
making API calls. Subsequently, these actions are executed within the corresponding environment.
We’ve also invested considerable effort into behind-the-scenes challenges, like stable API calling,
tools scaling, and building a sandbox environment.
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3.2 PRACTICAL IMPLEMENTATION CHALLENGES

The implementation journey unveiled several challenges essential for in-the-wild agent readiness.
Below are the simplified insights and highlights into the core facets of our implementation. For
more details, please kindly refer to Appendix A.

For User Interface implementation, we tackle the following challenges:

1. Adaptive Data Mapping §A.1.1 Drawing from database terminology, we employ the concept
of DataModel. This model effectively converts various raw data types—such as text, codes,
images, and tables—into formats optimized for both human-side pretty formatting, LLM con-
texts, and persistent data storage, streamlining communication between system components and
external entities.

2. Strategic Data Storage §A.1.2 We adopt a strategic data storage paradigm catering to the multi-
user nature of OpenAgents. Utilizing in-memory storage for temporary variables, Redis (Carl-
son, 2013) for global variables, and MongoDB (Banker et al., 2016) for user-centric data or-
chestrated an efficient data management and retrieval ecosystem.

3. User-Centric Interface §A.1.3 An Adaptive User Interface was crafted, bridging the interaction
chasm between users and the system. This UI, catering to various operational environments,
renders rich media and interactive content (images, code snippets, console outputs, and interac-
tive visualizations, etc.), augmenting user engagement and task efficiency.

4. Real-time Response Streaming §A.1.4 A streaming approach was adopted to mitigate the latency
inherent in receiving long text completions. Based on streaming API and push-down automata,
this innovation allowed for real-time parsing and rendering of generated tokens, significantly
ameliorating the immediacy of user feedback.

5. System Robustness §A.1.5 Enhancing agent robustness was identified as a quintessential re-
quirement for delivering a realistic user experience. Key areas including effective failure han-
dling (e.g., API calling failure), prompt response generation (e.g., LLM calling APIs pool set
and streaming handling), and token overflow management (chat history over length for LLM to
handle) were delineated and addressed, ensuring reliable functionality under diverse real-world
scenarios.

6. Browser Control via Chrome Extension §A.1.6 A Chrome extension was engineered, endowing
our web agent with direct browser control capabilities. This setup facilitates real-time user
monitoring and intervention during web interactions, and enables web browsing commands on
the user side, enhancing user control and trust in the system.

For Language Agents, we provide solutions to the following challenges:

1. Data Grounding §A.2.1: Our system lets users upload files which agents can process by writ-
ing codes. We’ve thus established a grounding source pool to store user-uploaded data. With
DataModel, each file type is linearized and indexed by its name, allowing agents to retrieve
and use content as instructed by humans.

2. Automatic Tool Selection §A.2.2 Users previously had to select a plugin manually, like OpenAI
Plugins (OpenAI, 2023a), for command execution. Recognizing the challenge of manual plugin
selection from numerous options, we’ve integrated a feature namely “Auto Selection”, which
auto-detects the most relevant tool based on user instructions, streamlining the process.

3. Automatic Tool Scaling §A.2.3: While tool creation poses unique challenges, especially for
agent use within the LLM infrastructure, we’ve sourced API provider information from plat-
forms like RapidAPI and OpenAI plugins store. This approach has led to over 200 high-quality
plugins, albeit with challenges that occasionally require human oversight. Further exploration
is needed for efficient scaling.

4. Executable Environments §A.2.4: By “executable”, we imply the transformation of language
model outputs into actionable tasks within a specific context. Constructing an application-level,
multi-user executable environment poses challenges due to the need for safety, robustness, and
functionality. We managed to implement sandbox environments catering to code execution,
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API interactions, and web navigation. These environments serve as a comprehensive testbed
for agents, facilitating tasks like code generation, plugin interactions, and web manipulations.

Collectively, these advancements contribute towards architecting a more coherent, robust, and user-
friendly platform. Moreover, We believe they also provide a rich repository of learnings, promising
to guide future implementations in similar domains.

4 OpenAgents

In OpenAgents, we develop three distinct agents: namely the Data Agent for data analysis, the
Plugins Agent for plugin integration, and the Web Agent for autonomous web browsing. The three
agents are experts in different domains, just like OpenAI’s ChatGPT Plugins (OpenAI, 2023a).
Moreover, our implementation is purely based on the top of open language APIs (and theoretically
any other open-sourced LLMs), such as GPT-4 (OpenAI, 2023b), and Claude (Anthropic, 2023).
We hope OpenAgents can serve as a pioneer in the move towards democratizing potent, real-world
language agents. Further, we contend that OpenAgents can serve as an experimental testbed for
researchers across various disciplines who share an interest in the future trajectory of language
agents.

4.1 DATA AGENT

Generate

Data 
Agent

Execute

Program

Data Tools

Figure 3: Pipeline (left) and demonstrations (mid and right) of Data Agent.

The data agent has been designed and implemented to deal with a wide spectrum of data-related
tasks that real users encounter daily. We support code generation and execution in two programming
languages: Python and SQL. We also integrate several data tools for the agent to use: (1) Kaggle
Data Search (datasets search on Kaggle via calling API); (2) Data Profiling (heuristic data profiling
providing basic data information); (3) ECharts Tool (interactive ECharts plotting). We prompt the
agent to proactively use these data tools to respond to user requests. Recognizing the intensive
coding requirements for data agent, we have opted to embed language models in the tool, and let the
tools generate code rather than the agent. Specifically, tools such as Python, SQL, and ECharts will
generate code, thereby harnessing the language models’ full programming prowess and alleviating
the strain on the agent itself.

Equipped with these data tools, the agent adeptly manages various data-centric requests. It tran-
scends the boundaries of mere text and code generation to proficiently perform data queries, vi-
sualization, manipulation tasks, etc. An illustrative example is depicted in Figure 3, where users
can upload custom files, such as tables and images, and make successive inquiries about the up-
loaded data. While we’ve highlighted the data agent’s key capabilities, the full potential of our data
agent extends beyond this brief overview. Much like OpenAI’s Advanced Data Analysis(previously
known as Code Interpreter) (OpenAI, 2023a), we hope the data agent can serve as a versatile tool
for myriad user workflows; for more use cases, please see Appendix B.1.

4.2 PLUGINS AGENT

The plugin agent has been meticulously designed to cater to the multifaceted requirements of users’
daily tasks which necessitate additional plugins, such as shopping, searching, news reading, weather
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Plugins
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API Call

Plugins
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Figure 4: Pipeline (left) and demonstrations (mid and right) of Plugins Agent.

forecasting, and website creation. We have integrated over 200 plugins from various sources, some
of the prominent plugins include (1) Google Search; (2) Wolfram Alpha; (3) Zapier; (4) Klarna; (5)
Coursera; (6) Show Me; (7) Speak; (8) AskYourPDF; (9) BizToc; and (10) Klook. Special attention
has been paid to ping the APIs, function calling interface, and API response length, enabling LLM-
based agents to optimally leverage these plugins.
Users can choose one or multiple plugins they would like to let their agent leverage based on the
given instructions of their needs. Examples can be observed in Figure 4. In instances where users
are uncertain about the appropriate plugins for their needs, we have incorporated a feature that
automatically selects the most relevant plugins based on their instructions. We posit that the plugin
agent can be instrumental in myriad scenarios, enriching various aspects of users’ daily lives. For a
more comprehensive list of use cases, refer to Appendix B.2.

4.3 WEB AGENT

Act

Web Agent 
(chat)

Web Agent 
(browse)

Figure 5: Pipeline (left) and demonstrations (middle and right) of Web Agent.

We present the web agent as a specialized tool designed to enhance the capabilities of the chat
agent. The main interaction interface still lies with the chat agent, but when necessary, it seamlessly
involves the web agent. The web agent then delivers the final response to the user, as shown in
Figure 5. This design strategy is not just theoretical; it has been implemented and demonstrates
several notable advantages.

First, the chat agent systematically processes important parameters like user inquiries or initiating
URLs before transferring them to the web agent. This ensures that there is a strong alignment with
user intentions and facilitates clearer communication. To clarify further, when dealing with complex
tasks that may seem ambiguous or have multiple aspects, the chat agent uses a decompositional
approach. Herein, overarching directives from users are segmented into more digestible sub-tasks.
The chat agent then interfaces with the web agent using these sub-instructions, sequentially, ensuring
more granular and efficient problem resolution. Moreover, our configuration empowers a dynamic
interplay of multi-turn web navigation interspersed with chat dialogues, thereby accommodating
more layered and adaptable user queries. By distinctly demarcating the roles and responsibilities
of the web-browsing agent and the chat agent, we pave the way for the independent evolution and
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continual refinement of each module. For a deeper dive into practical applications and the potential
of the web agent, we invite readers to peruse Appendix B.3.

5 FROM RESEARCH TO REAL-WORLD DEPLOYMENT

The section reflects on the crucial challenges encountered, the lessons imbibed from real-world
scenarios, and the evaluation complexities that surfaced through this transition.

Challenges of Transforming LLMs into Real-world Apps through Prompting When building
applications for real users based on LLM prompting, we specify certain requirements through the
instructions in the prompt. Some of these instructions are designed to ensure that the output of the
LLMs conforms to a specific format for our backend logic to process (e.g., output in the form of a
dictionary with specific keys). Others aim to enhance the aesthetic appeal of the output (e.g., listing
items separately whenever possible). Additionally, some instructions serve to defend against poten-
tial attacks (e.g., refuse maliciously crafted infinite loops in the program by users). As illustrated
in the §C, the accumulation of these instructions often results in several hundred tokens, thereby
demanding certain requirements on the instruction tracking ability and supported context length of
the LLMs. With inferior LLMs, sometimes the improper output format leads to an unsatisfactory
frontend appearance or even an inability to complete the response. A positive sign is that there
have been significant improvements in these aspects in current open-source models (i.a. Peng et al.,
2023a; Tworkowski et al., 2023; Zhou et al., 2023a; Peng et al., 2023b; Xiong et al., 2023; Xu et al.,
2023c). Additionally, a greater emphasis is required on the foundational development and research
of agent models, and on training dedicated agent models (maybe not LLMs) that are tailored for spe-
cific domains and requirements. This approach may turn out to be more effective and controllable
than relying on purely prompting a general powerful but fixed model.

Uncontrollable Real-world Factors Upon deployment in the real world, we encountered numer-
ous uncontrollable factors triggered by users, internet infrastructure, business logic, and so forth,
that haven’t been well-modeled, necessitating a reevaluation and often overturning of many assump-
tions and forms adopted in past research. We had to assume the possibility of the server hosting
the APIs we call crashing, monitoring and robustly completing user commands during such crashes
than those assumed in tool-use studies (i.a. Cheng et al., 2023; Schick et al., 2023; Qin et al., 2023a).
There could be instances where users may become dissatisfied during the response generation, in-
tervening and causing the language model to halt generation midway. Unpredictable occurrences
like CAPTCHAs popping up or advertisements altering the web page, could introduce a degree of
randomness even in relatively stable web structures, which is unconsidered in previous autonomous
web browsing works (i.a. Shi et al., 2017; Zhou et al., 2023b). These uncontrollable scenarios
beckon a deeper exploration or the proposition of more realistic modeling approaches.

Extra Metrics from Real-world Scenarios Research primarily emphasizes performance metrics,
frequently overlooking essential requirements derived from real-world scenarios. An instance we
learn during implementation is streaming. It allows users to quickly perceive system responses
instead of waiting for lengthy text to generate. Specially designed prompting makes the format of
agent response look prettier. These significantly impact user experience. Existing methods (i.a. Yao
et al., 2022b; Xu et al., 2023b; Lin et al., 2023) haven’t considered much of its effects, resulting in
slower response times and bad user experience in practical applications, regardless of their superior
performance metrics in accuracy. These findings should be contemplated in subsequent application-
driven studies. And we also need to mention the trade-offs between the performance and user
experience.

Evaluation Complexity Arising from System Issues While constructing agents directly aimed
at applications might cater to a broader user base and unearth more challenges for better evalua-
tion, building applications based on LLMs introduces extra complexity. This complexity makes it
challenging to discern whether certain failure cases stem from the limitations of the LLM-based
application or from inadequacies in our logic code. For instance, when a user attempts to download
the file generated from plugins and our system fails to support it, this doesn’t necessarily reflect the
capabilities of the agent. Another example is that after building for a specific application, due to
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the extended system chain and the instability of LLMs, it becomes challenging to adjust compo-
nents like prompt. Refinement of the system on design and operational logic of intelligent agents to
simplify the procedures is promising and essential in this way.

6 DISCUSSIONS AND FUTURE WORK

In this section, we aim to share some insights on future directions.

Agent Applications OpenAgents sets up a whole pipeline of building application-level language
agents, thus paving the way for other innovative applications such as customizable dialogue sys-
tems, multimodal interaction, and automated workflow integrations for end-users. Each of these
applications not only offers unique advantages but also collectively contributes to a richer and more
user-centric agent application environment.

Tool and Component Integration OpenAgents explores and addresses the fundamental requisites
for constructing a practical-level agent application, laying down a robust foundation that allows
the community to effortlessly expand horizontally by integrating additional components such as
tools (e.g., integrate from more diverse API sources like PublicAPIs2), extending more foundation
models (e.g., recent large multimodal models (i.a. Li et al., 2023a; Yang et al., 2023b)), adapting to
new UIs designs, etc.

Human-LM Interaction Benefiting from the easiness of building new LLM-based agent applica-
tions from our platform, we believe OpenAgents can consequently be helpful in building application
demos for the studies of Human-Computer Interaction (HCI) researchers to delve into the design
of more intuitive and user-friendly interfaces (i.a. Suh et al., 2023; Kim et al., 2023; Angert et al.,
2023), thereby enhancing user engagement and satisfaction.

Adaptive UI Generation Automatic creation of user interfaces that adjust or tailor themselves
based on specific criteria, such as the user’s device, preferences, or context (i.a. Ontanon & Zhu,
2021; Todi et al., 2021; Jiang et al., 2023) is another interesting but challenging direction. Re-
searchers can further explore the various ways LLMs can be employed in adaptive UI based on
OpenAgents, as well as their impact on user experience, in different formats.

In-the-wild Evaluation of LLMs Establishing robust, impartial evaluation methodologies for
LLMs is essential for an unbiased assessment of their capabilities and performance. Current agent-
around benchmarks (i.a. Yang et al., 2023a; Liu et al., 2023; Wang et al., 2023b) evaluate agents
through benchmarks with pre-collected data and under controlled environments. While these evalu-
ations are crucial, they often do not fully represent the dynamic challenges encountered in real-world
scenarios. Platforms like Vicuna Arena (Zheng et al., 2023a) have taken the lead in evaluating chat-
bots in the wild, marking a significant step towards more realistic evaluation settings. However,
there’s room for further development in metrics that cater to the nuances of language agents, es-
pecially those that tie language understanding with grounding in real-world contexts. Community
contributions in expanding or refining these evaluation metrics and platforms are highly encouraged
as they would significantly advance the field, providing more accurate insights into the practical
performance and capabilities of LLMs.

7 CONCLUSION

In this work, we introduced OpenAgents, an open-source platform, tailored to meld the advance-
ments of LLMs with practical, user-focused applications. OpenAgents has built agents for three
typical applications: data analysis, tool utilization, and web browsing, demonstrating its practical
utility. During the development of OpenAgents, we identified numerous challenges that were unique
to constructing in-the-wild agents. These challenges highlighted the complexities of transitioning
from theoretical designs to fully operational agents that cater to actual user needs and interactions.
By providing a holistic, transparent, and deployable platform, we aim not only to make the immense

2https://github.com/public-apis/public-apis
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potential of LLMs accessible to a wider audience beyond developers and researchers but also to
facilitate grounded research through exposure to real-world scenarios, empowering the community
to harness and refine the capabilities of state-of-the-art language agents. We sincerely hope Ope-
nAgents can inspire and pave the way for a plethora of applications and platforms, streamlining the
symbiotic relationship between humans and intelligent language agents.
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A IMPLEMENTATION DETAILS

A.1 IMPLEMENTATION DETAILS OF USER INTERFACE

A.1.1 DATA MODEL TO MAP DATA

Taking database objects as an example, it is common to encounter structures housing dozens or
hundreds of tables with thousands or even millions of records. For humans, this data is often inter-
preted through organized, scrollable windows or analyzed utilizing data visualization tools such as
Tableau3. On the other hand, an LLM typically cannot process this vast amount of data end-to-end,
necessitating a more selective, formulated presentation, e.g., linearization of the first few rows as
string. This discrepancy gives rise to the requirement for a more adaptable method of data storage,
transcending a mere string mapping or adherence to specific prompting templates.

To address this, we use DataModel, which serves as an encapsulating entity designed to intake spe-
cific forms of raw data, be it tabular structures, databases, or images. Its primary function is to
process and transform this raw data into various output formats that are compatible and compre-
hensible to a range of designated receivers, including humans, frontend interfaces, computational
systems, and LLMs, among others. We establish a suite of over ten fundamental classes to encap-
sulate data in various formulations, ensuring that each entity involved receives an angle of data that
is both relevant and manageable, enhancing efficiency in demo constructions and LLM prompting
processes. Through the implementation of the DataModel concept, we anticipate a transformative
shift in the way data is handled, fostering more coherent and dynamic interactions between humans
and AI.

A.1.2 STRATEGIC DATA STORAGE

Due to the multi-user nature of the actual application, and the numerous conversation records asso-
ciated with each user, we store data on different mediums based on varying requirements, instead of
simply ignoring them in memory or hacking into some temporary files. Temporary variables such
as constructed prompts are stored in computer memory; global variables essential within the appli-
cation are stored in Redis (Carlson, 2013); while user conversation data and distinct user data are
stored in a database system, we utilize MongoDB (Banker et al., 2016).

A.1.3 USER-CENTRIC INTERFACE

Academic-oriented agents typically employ text-based or command-line interfaces, which can im-
pede user interaction and practical task completion. Hence, we introduce an Adaptive User Inter-
face that seamlessly integrates user inquiries, agent actions, and associated outputs into the conven-
tional chat workflow. This interface parses tool usage data from backend outputs and responsively
renders rich media. Specifically, we design and implement various interfaces that adapt to each
environment.

For Data Agent, we interleave images, code snippets, console outputs, and interactive visualizations
with markdown text altogether, echoing the structure of computational notebooks frequently em-
ployed in data science tasks (McNutt et al., 2023). This enables users to track data analysis work-
flows interactively and conversationally with our data agent, providing immediate and responsive
feedback, thereby enhancing user engagement and sustaining analytical continuity.

For Plugins Agent, we support both user-selected and automated plugin selection. Given the diverse
real-world tasks served by different plugins, we render their outputs accordingly. For example,
we leverage Cards to hierarchically display relevant images and text, typically used for presenting
websites, articles, and online products. Thus, we provide users with an immersive and intuitive task-
focused experience, enhancing the efficiency and enjoyment of interaction with our plugin agent.

For Web Agent, we incorporate a different interaction method via a Chrome extension that activates
upon detection of potential user intents requiring web browsing by our web agent. This extension
operates within the browser sidebar, sequentially inspecting, manipulating, and interpreting auto-
matically opened web pages. Meanwhile, we display the execution plans and steps undertaken by

3https://www.tableau.com/
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our web agent, enabling users to comprehend and follow the process, and intervene if necessary.
This liberates users from the manual and tedious task of inspecting and interacting with web pages
by themselves.

A.1.4 REAL-TIME RESPONSE STREAMING

By default, when we request a text completion from a provider such as OpenAI, the entire com-
pletion is generated before being sent back in a single response. However, when we are generating
long completions, waiting for the response can take many seconds. To get responses sooner, we
can ’stream’ the completion as it’s being generated, considering the auto-regressive feature of GPT
models. This allows us to start printing or processing the beginning of the completion before the
full completion is finished. However, it introduces a significant challenge in delineating the specific
roles of each generated token in real-time, i.e. some tokens are plain text that can be directly printed
out, some tokens serve as API calls that need to be parsed and then can be printed out, some are
special tokens that need to be marked for special handling.

Traditionally, real-time identification of the distinct roles of individual tokens - be they directly dis-
played responses, undisclosed planning sequences, or internal thought processes (Wei et al., 2022;
Yao et al., 2022b) - has not been a focal point of research and development in dialogue systems and
existing agent frameworks, such as LangChain (Chase, 2022). Yet, in practical applications, this
facet is crucial in enhancing the user experience. ChatML4, aiming at facilitating the determina-
tion of dialogue termination points, and possibly updating grammar rules to handle complex role
dynamics within response characters.

We recognize the correlation between this process and automata theory, specifically drawing paral-
lels with pushdown automata (Autebert et al., 1997). Our approach focuses on the early identifica-
tion of the roles of characters in the data stream, thus enabling a prompt display to the user. This
early interaction not only bridges the gap between generation and user receipt but also fosters a more
interactive and engaging user experience.

A number of LLMs service providers or self-hosting open-source frameworks provide streaming
APIs, such as OpenAI 5, as well as FastChat 6.

For models solely used for chatting, the parsing is relatively simple. In fact, one might argue that
parsing isn’t required at all; one can merely render these tokens directly onto the frontend using
markdown. OpenAI designed a simple ChatML (Chat Markup Language) 7 for this purpose. How-
ever, for language agent applications prompted using LLMs, the situation becomes more intricate.
The tokens outputted by the LLM might be used to initiate a tool call, or they might signify the
tool itself, or even parameters for the tool. They can mark the beginning of a displayed response or
the content of the response itself. The roles are multifaceted. One direct approach involves setting
markers for the beginning and end of these roles, and then prompting LLMs to output according to
these markers. But this demands that LLMs have a strong ability to track instructions and general-
ize, especially when dealing with formats they have never encountered before. Hence, we shifted
the pressure from generation to parsing, attempting to address this using automata. We discovered a
strong correspondence between automata and the role identification of streaming tokens. Each state
s in the automaton can be mapped to a role of a token (though the granularity might differ slightly,
requiring further code-based adjustments). Each character read results in a state transition described
by

δ ∶ Q × (Σ ∪ {ϵ}) × Γ → P (Q × Γ
∗)

, leading to a new state s
′. The state s

′ indicates the current role of the chat.

A.1.5 SYSTEM ROBUSTNESS

The robustness of agents is important when it comes to realistic user experience, including but not
limited to failure handling, in-time response, and token overflow. Though previous agents might

4https://github.com/openai/openai-python/blob/main/chatml.md
5https://platform.openai.com/docs/api-reference/chat/create
6https://github.com/lm-sys/FastChat
7https://github.com/openai/openai-python/blob/main/chatml.md
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shed light on some of these aspects, OpenAgents offer wrapped-up components or off-the-shelf
examples, which developers can follow to build robustly functional agents.

Failure Handling is unpredictable, and may occur when utilizing real-world infrastructure, such
as various API services including the LLMs API service and Plugin API services from different
providers. Identifying the types of these failures and deciding whether to retry or terminate with
an error message is a problem that requires design and resolution. We have addressed this issue
wherever there is a potential for such problems to arise.

In-time Response is usually hindered by the LLM call overhead (both decoding time and rate
limits) or different plugin APIs’ response time. As these practical limits are bound by the service
providers, we make some workarounds from the client side to either reduce the response time or
improve the user experience. First, since multiple threads may call LLMs in parallel, we collect an
LLM key pool (e.g., OpenAI API key) to be queried in turn, alleviating the rate limit burden of each
single key. Second, we allow users to stop and retry each generation on will. This is crucial because
it gives users the freedom to choose whether they would like to wait for the current response when
the already generated tokens are not satisfied (also require the Streaming technique introduced later)
or there is a block or stuck in remote API calling underneath. Without it, users may end up waiting
so long for an unwanted response, if not no response. Third, we set a maximum waiting time for
each remote API call, and categorize detailed error information for each failed response, so that
users will always know what happened inside the agent and how to interact next.

Token Overflow is a common situation in prompting LLMs where the input and output tokens
exceed the max token limits of the LLM. We implement a MessageDataModel subclass to explicitly
truncate message history tokens and extract the information needed (e.g., actions, tool responses)
from history. Concretely, the whole chat history is in the agent memory by default, and will be
truncated from the beginning by round iteratively until the max token limit is met. Since information
in all types is wrapped in DataModel, we can seamlessly handle the token overflow by calling the
handling function anywhere in the data flow, otherwise developers have to design truncation and
parsing APIs according to different data types and modalities.

A.1.6 CHROME EXTENSION

It is difficult to control the browser on the user side since the website or application does not have
enough rights in most cases. Let applications run on the computer terminal (e.g. OpenInterpreter 8)
and open mock browser to navigate on the web is easier to implement. However, this method could
face some restrictions and some risks in the long shot. It also limits the development of large-scale
web assistant applications for demonstration, verification or other purposes. To build a publicly
accessible and user-friendly web agent application for demonstration, the agent should be able to
control the user’s browser directly and can be interrupted or taken over easily by the user. With this
in mind, we use the Chrome extension to implement our web agent. The agent can take actions on
the user’s browser through Chrome debugger API 9. We parse the output of the agent to extract the
action it takes and then use the sendCommand function in Chrome Debugger API to send the action
to take to the browser, and then the browser will execute the action instead of the user. During the
execution of Web Agent, the user can keep watch on the thinking and action process all the time and
can easily interrupt the execution.

8https://github.com/KillianLucas/open-interpreter
9https://developer.chrome.com/docs/extensions/reference/debugger/
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A.2 IMPLEMENTATION DETAILS OF LANGUAGE AGENTS

A.2.1 GROUNDING SOURCE

Herein, the grounding source represents the data or files that agents can utilize during interactions,
especially structured knowledge form (Xie et al., 2022) like Excel files, CSV files and JSON files,
etc. We integrate a file-uploading system that allows users to seamlessly upload their files for the
agents to process. Agents have the capability to either directly write code or employ alternative
methods to read, modify, and save these files. This enables agents to accomplish specific tasks as
humans require, rather than merely generating single actions. Consequently, we have implemented
a grounding source pool to store and represent data uploaded by human users. We leverage the
DataModel to provide a linearization method for each supported file type and use the file name
as the key for these files. Agents can access the content corresponding to file names and actively
invoke the file content as humans desire.

A.2.2 AUTO-SELECTION ON PLUGINS

Currently, users need to first select a plugin, like the OpenAI Plugins (OpenAI, 2023a), before the
system can execute their commands using these plugins. However, in a real-world scenario, choosing
an appropriate plugin from hundreds of options can be a daunting task. Oftentimes, even if users
know what they want, they might not know which specific plugin can best assist them. Therefore,
we’ve introduced a special feature. Each time the user provides new instruction, we employ a text
embedding technique, specifically Instructor (Su et al., 2023), to identify which tools described
match closely to the user’s instructions, eliminating the need for manual plugin selection.

A.2.3 AUTO-SCALING PLUGINS

While tools have been constructed under simpler models (Qian et al., 2023; Cai et al., 2023), de-
veloping tools for agent use presents unique challenges, requiring attention to both the agent and
the LLM infrastructure. Creating tools from scratch ensures quality but is resource-intensive Qin
et al. (2023a). We source API provider information from platforms like RapidAPI 10 and the Ope-
nAI plugins store, and test these providers for accessibility by LLMs, This method has enabled us
to introduce over 200 high-quality plugins. However, using LLMs for plugin construction has its
challenges and requires human intervention. Future work should investigate more efficient scaling
techniques.

A.2.4 EXECUTABLE ENVIRONMENTS

Code Execution Environment We provide SQL and Python environments for code execution. We
extract the SQL query from the agent output, and leverage SQL engine11 to execute the query. For
the Python environment, we largely referred to the official Kaggle Dockerfile12; the docker container
provides a safe and isolated sandbox for code execution.

API Calling Environment We make API calls to adhere to the principles of RESTful de-
sign (Fielding, 2000; Song et al., 2023). To make sure we’re ready for the different needs of each
API provider forehead, we organize API calls into separate functions. Within these functions, we
manage specific exceptional conditions, such as context overlength (we leverage DataModel to
handle that) or particular invocation methods. This strategic encapsulation ensures that the agent
can seamlessly operate without being encumbered by vendor-specific anomalies. Subsequently,
when the agent elects to utilize a particular plugin, the designated plugin name—along with requi-
site information like the API documentation (herein referenced as open API file)—is relayed to a
dedicated parsing and dispatching module. This module, also powered by prompting LLMs, orches-
trates the requisite function call and awaits its resultant output. Given that APIs are scattered across
various servers on the internet, and their quality and reliability can be inconsistent, the interfaces
may change unpredictably.

10https://rapidapi.com/hub
11https://www.sqlite.org/
12https://github.com/Kaggle/docker-python
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Web Environment We also explore the possibility of whether the web agent is capable of manipu-
lating real-world web navigation. We let the language agent control the web browser (Chrome in our
case) via the Chrome extension built by us and navigate on any websites accessible by the browser.
The extension can control the web page by performing actions such as clicking an element or typing
values into an element through Chrome Debugger 13. In this way, the web agent can act like a real
human user on the webpage, and the human can also interact with it anytime and continue to act on
the webpage. This environment makes the web navigation more real and visible and provides the
platform to build a generalist web assistant in the future. On the contrary, Browse with Bing can
only act behind the screen and the navigation process actually occurs on the server side rather than
the client side, which significantly limits the function of web navigation and can hardly be seen,
controlled or taken over by the user. This makes it quite hard to build a web assistant that can help
users execute daily tasks on the user’s computers, and enable more diverse scenarios for any website
in the wild unlike screenshotted or self-hosted ones (Shi et al., 2017; Yao et al., 2022a; Deng et al.,
2023; Zhou et al., 2023b). We also believe this feature can be beneficial to further research and
development in the automatic web agent area.

13https://developer.chrome.com/docs/extensions/reference/debugger/
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B USE CASES

Presented below are exemplary use cases for the OpenAgents deployed demo. For comprehensive
video demonstrations, refer to our documentation. The provided cases only represent a fraction
of OpenAgents’ capabilities. Also, we encourage users to delve into our source code for a deeper
understanding.

For quick reference, we demonstrate the use cases of data agent, plugin agent, and web agent in
Figure 6, Figure 7, and Figure 8 respectively.

B.1 DATA AGENT

(a) Kaggle Dataset Search: Input your subject or do-
main preference, and the Data Agent will traverse the
Kaggle API to identify datasets fitting your specifica-
tions.

(b) Python Code Execution: Utilize the Python tool
to craft Python code and execute rudimentary data
sanitization on a given table.

(c) SQL Query Execution: Using the SQL tool, the
Data Agent can execute data queries on an input table
or dataset.

(d) Interactive Echarts Visualization: The Data
Agent employs the pyecharts package, transforming
it into a JSON object. This object can be rendered
as an interactive Echarts plot, as facilitated by the
ECharts library.

(e) Image Operations: Beyond textual and tabular
data, the Data Agent can also perform basic manipu-
lations on images.

(f) Interesting Cases: Demonstrate the earth’s
roundness, create GIFs with descending letters, or
construct a word cloud from an academic article.

Figure 6: Use cases for Data Agent
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B.2 PLUGINS AGENT

(a) Shopping with ‘Klarna Shopping’: Specify a
product and the Plugins Agent, using ‘Klarna Shop-
ping’, will locate it, presenting it in an aesthetically
pleasing layout.

(b) Weather Updates via ‘XWeather’: Seeking
weather information? Communicate your location to
the Plugins Agent and ‘XWeather’ will fetch the lat-
est updates.

(c) Concept Visualization with ‘Show Me’: Desire
a visual representation of an idea? The ‘Show Me’
plugin, upon receiving your input, will generate and
elucidate the concept.

(d) Inquiry with ‘Wolfram Alpha’: Engage with the
‘Wolfram’ plugin to investigate and gain insights into
diverse topics.

(e) Workflow Configuration via ‘Zapier’: Harness
the ‘Zapier’ plugin to understand and manipulate
your Zaps.

(f) Travel Planning with Multiple Plugins: Com-
bine ‘Klook’, ‘Currency converter’, and ‘Weath-
erViz’ for an enriched travel experience.

(g) Automatic Plugin Selection: Uncertain about
plugin functionalities or choices? Convey your re-
quirements to the Plugins Agent, and it will au-
tonomously select the optimal plugin, simplifying
your experience.

Figure 7: Use cases for Plugins Agent
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B.3 WEB AGENT

(a) Flight Finder: Detail your travel information,
and the Web Agent will scout for flights, for instance,
the most economical ones.

(b) IMDb Comments Summarization: Consider-
ing a movie? The Web Agent will peruse IMDb
comments for your selected film, providing a concise
summary.

(c) Google Map Navigation: Supply your starting
point and destination to the Web Agent, and it will
delineate the route using Google Maps.

(d) Twitter Post Creation: Share your desired topic
with the Web Agent, and it will curate and post con-
tent to Twitter on your behalf.

(e) Google Form Assistance: For club registrations
or event sign-ups, provide the necessary form and de-
tails to the Web Agent, and it will adeptly complete
the submission.

Figure 8: Use cases for Web Agent

C KEY PROMPTS IN OpenAgents (AGENTS)

The main technique behind OpenAgents is LLMs prompting, it is crucial for building applications
upon LLMs and controls the quality (e.g. retrying after failure), functionalities (e.g. understanding
the context and available tools clearly), user experience (e.g. whether the response is in good format)
and even safety (e.g. refusing to respond to harmful questions or questions that attack the server)
of agent responses. Here we show key prompts we explore and use to prompt LLMs to serve as
real-world agents. These prompts are combined with the true response of the user, dialogue history
and environment. Refer to our code for more details about the variable inside the prompts and the
running logic.
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C.1 DATA AGENT

System Prompt

You are XLang Agent, a friendly and intuitive interface developed by
the XLang Team to guide human through every stage of human data

lifecycle. Whether human are loading, processing, or interpreting
data, XLang Agent is always at human’s fingertips through our
interactive chat system.

Empowered by an array of innovative tools that can generate and
execute code, XLang Agent delivers robust, reliable answers to human
queries. Whenever possible, You employs these tools to give human

rich insights, like dynamic code generation & execution and
compelling visualizations. And You will always proactively and
correctly using all tools to help with human.

Get ready for a seamless and insightful journey with XLang Agent,
the personal assistant for all things data!

TOOLS
------
You have direct access to following tools.

Format Instructions

RESPONSE FORMAT INSTRUCTIONS
----------------------------

When you use tools or generate final answer, please output a
response in one of two formats:
**Option 1: Explain and Use Tool**
If the response involves using a tool, you can start with a natural
language explanation[Optional], plus exactly one tool calling[MUST].
But **make sure no any words & answer appended after tool calling

json**. The tool calling format should be a markdown code snippet
with the following JSON schema:

‘‘‘json
{{{{

"action": string wrapped with \"\", // The action to take. Must
be one in the list [{tool_names}]
"action_input": string wrapped with \"\" // Natural language
query to be input to the action tool.

}}}}
‘‘‘

[**Restriction**] Please note that ONLY one tool should be used per
round, and you MUST stop generating right after tool calling and
make sure no any text appended after tool calling markdown code
snippet. Save your words.

NEVER EVER EVER make up a tool not in [{tool_names}]
NEVER EVER EVER generate code as action input when using tool. Just
input natural language by using/paraphrasing human query.

**Option #2:**
Use this if you want to respond directly to the human.
If you want to respond directly to the human without using a tool,
provide a plain natural language response. However, if you initially

24



Published as a Workshop paper at ICLR 2024

generated a natural language response and then decide to use a tool
, make sure to include the tool action and input after the initial
response.

Note if the human asks for malicious code, and just respond directly
to deny the request and give your professional reason. Don’t use

any tool.
The malicious code includes but not limited to:
1. Endless operations and excessive waiting (e.g., while True, long
print, input())
2. System crash (e.g., any risky system command)
3. Data loss (e.g., list or delete files)
4. Leak sensitive information (e.g., os.getenv())
5. Establish network connections (e.g., requests.get())
6. Cause any other security issues

[Mandatory to notice] It is imperative and a must to utilize tools
whenever the human’s query tasks that implies using tools, such as
searching online, generating code, executing code, or any other
complex functionalities. You must try to use tools to solve human
queries in these cases.

Begin.

Suffix

{input}

Tool Response Template

TOOL RESPONSE:
---------------------
{observation}

THOUGHT
--------------------

Okay, So what’s next? Let’s assess if the tool response is enough to
answer the human’s initial query. Please follow these instructions:

1. Evaluate Tool Response [Mandatory]: Carefully evaluate the tool’s
response and determine if it sufficiently addresses the human’s

query. Consider the content and implications of the tool’s response.

2. Consider Additional Tool Use [Optional 2 or 3]: If the tool
response does not fully address the query or if an error occurred
during execution, you may proceed with additional tool usage.
However, exercise caution and limit the number of iterations to a
maximum of three. You can start with a natural language explanation[
Optional], plus exactly one tool calling[MUST]. But **make sure no
any words & answer appended after tool calling json**. Follow this
format for additional tool usage:

‘‘‘json
{{{{

"action": string wrapped with \"\", // The action to take. Must
be one of [{tool_names}]
"action_input": string wrapped with \"\" // Natural language
query to be input to the action tool
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}}}}
‘‘‘
[**Restriction**] Please note that only one tool should be used per
round, and you MUST stop generating right after tool calling and
make sure no any text appended after tool calling markdown code
snippet.

3. Deliver Comprehensive Answer [Optional 2 or 3]: If the tool
response sufficiently addresses the query, deliver a comprehensive
answer to the human. Focus solely on the content and implications of
the tool’s response. MUST NOT include explanations of the tool’s

functions.

3.1. Avoid Tables, Images, and Code [Mandatory]: MUST NOT generate
tables or image links in the final answer, assuming the human has
already seen them. Avoid generating code in the final answer as well
. Instead, paraphrase the code into a human query if you need to
explain it.

Note. you must do 1; For 2 and 3, You must choose one between them
and generate output following the format.

Begin.

C.2 PLUGINS AGENT

System Prompt

You are XLang Plugins Agent, a friendly and intuitive assistant
developed by the XLang Team to guide you through every aspects of
your work and your daily life. XLang Agent is always at your
fingertips through our interactive chat system.

You can aware of what plugins you have, and use the plugins properly
in right order to finish what user wants.

Today is
""".strip() + " "

+ datetime.datetime.now().strftime("%Y-%m-%d")
+ """, and you should adapt the input to fit into the date, for
example, seasonal information, or today’s date as coordinate, etc
.

To make your response informative, always speak includes the
following information in MARKDOWN format when responding a message,
that is:
1. Natural language explanation, that make explain the API output in
a human readable way;

2. Organized information such as bullet points or MARKDOWN tables,
followed by the links to the items (that in the API output), news
etc. if API output contains the information;
3. The links should in MARKDOWN format and have value in it. If
reference information is provided in the API output, like links to
the items, news etc. Your explanation MUST provide the links on each
items and links can be clicked on when API output contains the

information. The links better attach on some natural language
explanation through MARKDOWN syntax, for example, - [Renewable
Energy - Center for Climate and Energy Solutions](https://www.c2es.
org/content/renewable-energy/);
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4. If there are image we would like to display, please use MARKDOWN
syntax to display it, for example, ![image](https://www.c2es.org/
content/renewable-energy/);
5. Try to speak more and show all the information you got in a
organized way, that will make you a better assistant, especially
when you are giving the final answer.

PLUGINS
------
The plugins you can use are:

Format Instructions

RESPONSE FORMAT INSTRUCTIONS
----------------------------

When you use tools or generate final answer, please output a
response in one of two formats:
**Option 1: Explain and Use plugin**
If the response involves using a plugin, you can start with a
natural language explanation[Optional], plus exactly one plugin
calling[MUST], and ends with no more words. The plugin calling
format should be a markdown code snippet with the following JSON
schema:

‘‘‘json
{{{{

"action": string wrapped with \"\", // The action to take. Must
be one in the list [{tool_names}]
"action_input": string wrapped with \"\" // Query to be input to
the action plugin. Pass as much information as possible to the
plugin from the history of the conversation.

}}}}
‘‘‘
NEVER EVER EVER make up a plugin not in [{tool_names}]
You MUST pass as much information as possible to the plugin from the
history of the conversation. It could be natural language or

structured language like jsonl, csv, etc. BUT MUST in a single line.
(Please note that ONLY ONE plugin should be used per response.)

**Option #2: **
If you want to respond directly to the human without using a plugin,
provide a plain natural language response. However, if you

initially generated a natural language response and then decide to
use a plugin, make sure to include the plugin action and input after
the initial response.

Begin.

Suffix

{input}

Tool Response Template

PLUGINS RESPONSE:
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---------------------
{observation}

THOUGHT
--------------------

Okay, So what’s next? Are the plugins’ response enough to answer
human’s initial query? Please follow these instructions:

1. Evaluate plugin Response [Mandatory]: Carefully evaluate the
plugin’s response and determine if it sufficiently addresses the
human’s query. Consider the content and implications of the plugin’s
response.

2. Consider Additional plugin Use [Optional 2 or 3]: If the plugin
response does not fully address the query or if an error occurred
during execution, you may proceed with additional plugin usage.
However, exercise caution and limit the number of iterations to a
maximum of 5. You can start with a natural language explanation[
Optional], plus exactly one plugin calling[MUST]. Follow this format
for additional plugin usage:

‘‘‘json
{{{{

"action": string wrapped with \"\", // The action to take. Must
be one of [{tool_names}]
"action_input": string wrapped with \"\" // Query to be input to
the action plugin. Pass as much information as possible to the
plugin from the history of the conversation.

}}}}
‘‘‘
(Please note that ONLY ONE plugin should be used per response.)

3. Deliver Comprehensive Answer [Optional 2 or 3]: If the plugin
response sufficiently addresses the query, deliver a comprehensive
answer to the human. Focus solely on the content and implications of
the plugin’s response. MUST NOT include explanations of the plugin’

s functions.

Note. you must do 1; For 2 and 3, You must choose one from them.

Begin.

C.3 WEB AGENT

System Prompt

You are XLanG WeBot Agent, a friendly and intuitive assistant
developed by the XLang Team to guide you through every aspects of
your work and your daily life. XLanG Agent is always at your
fingertips through our interactive chat system.
Here are detailed instruction for you. Each time you generate
response, you should think step by step to follow instructions below
. You are a helpful assistant that is provided with a plugin called
"WeBot" which is a web navigation agent tool and should leverage the
power of it to help human to fulfill their needs, such as booking a
hotel, buying a ticket, or searching for information, etc.

Human will ask you questions, and you can use WeBot to help them,
they are assumed to know nothing about the WeBot.
----------------------------
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Here are something you MUST remember:
1. After receiving output from the WeBot, you should check

1.1 whether WeBot was interrupted, if so you should NEVER try
again by yourself.
1.2 whether WeBot failed or had error(not because of interruption
), if so you should tell the human the error.

2. Today is
""".strip() + " "

+ datetime.datetime.now().strftime("%Y-%m-%d")
+ """, and you should adapt the input to fit into the date,
for example, seasonal information, or today’s date as
coordinate, etc.

NEVER EVER EVER use other plugins except WeBot.
TRY YOUR BEST to break the question down into several parts and
answer them one by one.
TRY YOUR BEST to use the WeBot to help you answer the question, you
don’t need to mention that you will use which WeBot, just use it.

To make your response informative, always speak includes the
following information in MARKDOWN format when responding a message,
that is:
1. Natural language explanation, that make explain the API output in
a human readable way;

2. Organized information such as bullet points or MARKDOWN tables,
followed by the links to the items (that in the API output), news
etc. if API output contains the information;
3. The links should in MARKDOWN format and have value in it. If
reference information is provided in the API output, like links to
the items, news etc. Your explanation MUST provide the links on each
items and links can be clicked on when API output contains the

information. The links better attach on some natural language
explanation through MARKDOWN syntax, for example, - [Renewable
Energy - Center for Climate and Energy Solutions](https://www.c2es.
org/content/renewable-energy/);
4. If there are image we would like to display, please use MARKDOWN
syntax to display it, for example, ![image](https://www.c2es.org/
content/renewable-energy/);
5. Try to speak more and show all the information you got in a
organized way, that will make you a better assistant, especially
when you are giving the final answer.

PLUGINS
------
The plugins you can use are:

Format Instructions

RESPONSE FORMAT INSTRUCTIONS
----------------------------

When you use tools or generate final answer, please output a
response in one of two formats:
**Option 1: Explain and Use WeBot**
If the response involves using a WeBot, you can start with a natural
language explanation[Optional], plus exactly one WeBot calling[MUST

], and ends with no more words. The WeBot calling format should be a
markdown code snippet with the following JSON schema:

‘‘‘json
{{{{
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"action": string wrapped with \"\", // The action to take. Must
be WeBot
"action_input": string wrapped with \"\" // Natural language
query to be input to the WeBot.

}}}}
‘‘‘
NEVER EVER EVER make up a plugin except [{tool_names}]
NEVER EVER EVER generate code as action input when using WeBot. Just
input natural language by using/paraphrasing human query.

(Please note that ONLY ONE WeBot should be used per response.)

**Option #2:**
If you want to respond directly to the human without using a WeBot,
provide a plain natural language response. However, if you initially
generated a natural language response and then decide to use a

WeBot, make sure to include the WeBot action and input after the
initial response.

Begin.

Suffix

{input}

Tool Response Template

PLUGINS RESPONSE:
---------------------
{observation}

THOUGHT
--------------------

Okay, So what’s next? Are the WeBot’s response enough to answer
human’s initial query? Please follow these instructions:

1. Evaluate WeBot Response [Mandatory]: Carefully evaluate the WeBot
’s response and determine if it sufficiently addresses the human’s
query. Consider the content and implications of the WeBot’s response
.

‘‘‘json
{{{{

"action": string wrapped with \"\", // The action to take. Must
be one of WeBot
"action_input": string wrapped with \"\" // Natural language
query to be input to the WeBot

}}}}
‘‘‘
(Please note that ONLY ONE WeBot should be used per response.)

3. Deliver Comprehensive Answer [Optional 2 or 3]: If the WeBot
response sufficiently addresses the query, deliver a comprehensive
answer to the human. Focus solely on the content and implications of
the WeBot’s response. MUST NOT include explanations of the WeBot’s

functions.

Note. you must do 1; For 2 and 3, You must choose one from them.
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Begin.

D KEY PROMPTS IN OpenAgents (EXECUTORS)

A number of Executors in OpenAgents are implemented by prompting as well. Here we show some
of the prompts as exemplars. Due to space limitations, we only show a few typical examples in the
article. Refer to our code for more details about the variable inside the prompts and the running
logic.

D.1 SQL DATABASE

Prompt

Here are chat histories you may refer to, maybe empty.
{chat_history}

Given an input question, first create a syntactically correct {
dialect} query to run, then look at the results of the query and
return the answer.
Never query for all the columns from a specific table, only ask for
a the few relevant columns given the question.
Pay attention to use only the column names that you can see in the
schema description. Be careful to not query for columns that do not
exist. Also, remember to wrap the table names in double quotes.
Use the following format:
Question: "Question here"
SQLQuery: "SQL Query to run"
SQLResult: "Result of the SQLQuery"
Answer: "Final answer here"
Only use the tables listed below.
{table_info}
Question: {question}

D.2 API CALLING

System Prompt

You are acting like plugin system that understand user’s needs and
call APIs precisely for them.

User Prompt

Here are the endpoints specs:
‘‘‘
{specs_str}
‘‘‘
Here is the input string:
‘‘‘
{input_str}
‘‘‘
Select the right endpoint called that can process the input string.
You need to wrap the input str into a json object, so that it could
be fed into the function you selected.
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During wrapping, you should:
1. modify the value of each key so that it satisfies the
requirements in function specs.For example, if the type of the value
should be a number, then you should modify it into a number;

2. ignore the information that is not useful or not applicable to
the function you selected.
You fill values into some slots in the input_json, and then call the
API. If the API returns a valid output, then you succeed. Otherwise

, you fail.
Return the function called and the json object in the following
format:
‘‘‘
{{

"endpoint": "xxx",
"input_json":{{

"xxx": "xxx",
"xxx": "xxx",
...

}}
}}
‘‘‘

Retry Prompt

Here are the function specs:
‘‘‘
{specs_str}
‘‘‘
Here is the input string:
‘‘‘
{input_str}
‘‘‘
Select the right function called that can process the input string.
You need to wrap the input str into a json object, so that it could
be fed into the function you selected. During wrapping, you should:
1. modify the value of each key so that it satisfies the
requirements in function specs.For example, if the type of the value
should be a number, then you should modify it into a number.

2. ignore the information that is not useful or not applicable to
the function you selected.
Return the function called and the json object in the following
format:
‘‘‘
{{

"endpoint": "xxx",
"input_json":{{

"xxx": "xxx",
"xxx": "xxx",
...

}}
}}
‘‘‘
You have tried to call function to process the input string but
failed. The output do not have enough information to answer the tool
input.

Here is the history of your trials, each element in this list means
a trial:
‘‘‘
{trial_history}
‘‘‘
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You should firstly analyze your trial history, find the value of the
key "errors" in the output of each trial and check whether there

are any errors
Then you may consider changing the input_json or endpoint based on
the error information in your trial history, function specs and the
input string.
Return the function called and the json object in the following
format:
‘‘‘
{{

"endpoint": "xxx",
"input_json":{{

"xxx": "xxx",
"xxx": "xxx",
...

}}
}}
‘‘‘

Stop Prompt

Here are the function specs:
‘‘‘
{specs_str}
‘‘‘
Here is the input string:
‘‘‘
{input_str}
‘‘‘
Here is the output that you get from calling the API:
‘‘‘
{api_output}
‘‘‘
You need to decide whether the returned_block contains valid
information or not. Some returned_block may not have enough
information to answer the tool input, for example, the
returned_block may be empty, or return a json that says some kind of
answer.

Answer only by ’yes’ or ’no’

D.3 WEBOT

System Prompt

You are a browser automation assistant.

You will be given a user request and DOM of current webpage at a
time, you need to take one action at a time and finally finish the
task.

The last page you visited will be further fed into another model who
is responsible for chatting with the user.

You MUST take one of the following actions. NEVER EVER EVER make up
actions that do not exist:

{formattedActions}
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You will be be given a task to perform and the current state of the
DOM. You will also be given previous actions that you have taken.
You may retry a failed action up to one time.

This is an example of an action:

<Thought>I should click the add to cart button</Thought>
<Action>click(223)</Action>

You MUST always include the <Thought> and <Action> open/close tags
or else your response will be marked as invalid.

Rules you MUST follow:
1. If you input something to a search box, YOU MUST FOLLOW:

1.1 YOU MUST convert the instruction into proper query into the
box rather than directly input it. e.g. YOU MUST input New York
rather than New York apartments in the input box of zillow.com
when user request about New York apartments.
1.1 If there are some options pop out, you MUST NOT directly go
to next action. You MUST click one of the options.

2. You must only take one step at a time. You cannot take multiple
actions in a single response.
3. You should check whether your action last time was successful. If
not, you should retry once. If it still fails, you should try

another way.
example 1: The box should be clicked and choose from the options
and you just setValue and failed, you may consider to use click
and then click the option.
example 2: You click a button once but after checking the page
you found that the button is not clicked, you should retry once.

4. You should not consider the action to present the result to the
user. You only need to do available actions. If info in current page
is enough for the user to solve the problem, you should finish.

5. The content on the page you saw might not be in English, you
should be aware of this.

{plan}

Remember: you do not need to follow this plan exactly, but you MUST
follow the rules above.
YOU MUST MUST check whether there are some options pop out if your
last action is setValue. If there are some options pop out, you MUST
click one of the options rather than go to the next action.

The id of the elements can be different each time. If you click(1)
last time you should not assume 1 is the same element this time.

User Prompt

The user requests the following task:

{user_query}

{previous_actions_string}

Current time: {current_time}

Current page contents:
{processed_html}

Retry Prompt
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The user requests the following task:

{user_query}

{previous_actions_string}

Current time: {current_time}

Current page contents:
{processed_html}

Your last answer has some problem:
{retry_message}
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