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ABSTRACT

Interpretability studies in language models often investigate forward-looking repre-
sentations of activations. However, as language models become capable of doing
ever longer time horizon tasks, methods for understanding activations often remain
limited to testing specific concepts or tokens. We develop a framework of Residual
Stream Decoders as a method of probing model activations for paragraph-scale
and document-scale plans. We test several methods and find information can be
decoded equivalent to 5+ tokens of future context in small models. These results lay
the groundwork for better monitoring of language models and better understanding
how they might encode longer-term planning information.

1 THE PLANNING DECODABILITY HYPOTHESIS

Large Language Models (LLMs) generate coherent multi-paragraph text through autoregressive
prediction. However, coherence over increasingly long time horizons (Kwa et al., 2025) suggests
some degree of forward-thinking in writing. In this paper, rather than asking whether models “plan”
in an anthropomorphic sense, we operationalize a test for planning: planning at scale X exists if
information about scale-X content is decodable from activations prior to being generated. This
planning Decodability Hypothesis makes planning empirically testable while remaining agnostic
about the underlying mechanisms, yet presents two main potential issues. The first concern is that a
sufficiently complex probe may implicitly infer plans that are not actually present due to correlations.
The second is that negative results would not necessarily rule out the existence of plans that our
methods cannot decode.

We primarily investigate this hypothesis at the paragraph scale outputs, but also briefly investigate
outline of full outputs. We choose this scale because some minimal level of planning is likely to
be functionally useful, as maintaining topic coherence requires some representation of upcoming
content. Additionally, paragraph boundaries (“\n\n” tokens) provide natural intervention points for
studying information transitions. Our investigation reveals that some information is decodable with
relative ease in models as small as Llama 3.2 3B, providing evidence of limited planning.

2 RELATED WORK

Much interpretability work has been focused on understanding the hidden-layer activations of
language models. There are various methods ranging from simple Logit Lens analysis (nostalgebraist,
2020), to circuit analysis (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022), to concept
analysis with Sparse Auto Encoders Cunningham et al. (2023); Anthropic Interpretability Team
(2023); Gao et al. (2024). Additionally, there is much work on probing models (Belinkov, 2022),
predominantly for a single trait Burns et al. (2023) or specific aspect(s) (Tenney et al., 2019; Zou
et al., 2023) of the output. Each of these predominantly focuses on understanding the effect of the
layer activations on some immediate token or concept.

Recent work has investigated forward-thinking mechanisms in language models (Vaswani et al.,
2017) across multiple scales and methodological approaches. At the token level, Pal et al. (2023)
pioneered probing hidden states to predict future tokens, while Wu et al. (2024) distinguished between
"pre-caching" versus "breadcrumbs" explanations for future-oriented representations. Moving to
higher semantic levels, Pochinkov et al. (2024) and Ghandeharioun et al. (2024) introduced limited
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methods for decoding model activations by transferring them to a new context, and we build upon
this work.

Mechanistic circuit analysis has provided some of the strongest evidence for planning. Lindsey
et al. (2025) demonstrated "Planning in Poems" through circuit tracing, while their companion work
on "Hidden Goals" (Marks et al., 2025) showed that models can represent goal states that guide
generation. In specialized domains, Jenner et al. (2024) found evidence of learned look-ahead in
chess-playing networks, and Taufeeque et al. (2024) studied planning in block movement games.
This paper aims to provide a more general method for studying longer-horizon planning in LLMs.

The relationship between agency and planning has also received attention, with Li et al. (2024)
finding that RLHF changes the way models represent future information, leading to more structured
generation patterns. Methodologically, work on representation engineering (Zou et al., 2023), activa-
tion patching (Turner et al., 2023), and interpretability frameworks like Patchscopes (Ghandeharioun
et al., 2024) and LatentQA (Pan et al., 2024), have all developed tools applicable to planning research,
without directly focusing on interpretability of longer-term planning.

Additionally, there is a variety of work that tries to modify model training to explicitly plan ahead,
either to improve inference speed (Bhendawade et al., 2024), or to try to get the model to write
explicit plans (LCM Team, 2024; Yin et al., 2024). The focus of this paper is instead on understanding
how existing transformers might already encode future text information.

3 RESIDUAL STREAM DECODERS AND PARASCOPES

Figure 1: Simple diagram showing the idea behind ParaScopes. The residual stream of an LLM is
taken at a specific point, and we try to use ParaScope methods to infer what the LLM might say next.

When language models generate text, they likely need to maintain some form of forward thinking to
produce coherent output. While there are many aspects of cognition that one can call "planning", we
focus on a specific operationalizable question: Does a language model encode information about its
likely future outputs within its internal representations?

To investigate planning, we need a systematic way to extract information from a model’s internal
representations. We define a Residual Stream Decoder (RSD) as any method that can reconstruct
future content from current activations better than chance.

Formally, given a transformer’s residual stream Ri ∈ RL×d at position i, a decoder consists of:

• An activation extractor that selects relevant information from Ri

• A mapping function that transforms this information into predictions about future content
• An evaluation metric that measures how well these predictions match actual outcomes

The key insight is that if models truly maintain forward-looking information, then decoders trained
on this internal state should outperform baselines that lack access to the model’s "planning" represen-
tations. This information-theoretic perspective allows us to sidestep debates about whether models
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truly "plan" in a cognitive sense, instead asking what forward-looking information can be decoded
from the model’s activations, and use these as methods to test the Decodability Hypothesis.

We additionally coin the term ParaScope to be a Residual Stream Decoder specifically used to decode
the next paragraph or section of text. See Figure 1 for a simple illustration. for a basic illsimple
illustration.

3.1 CORE METHODS AND SETUP

We examine how language models encode information about upcoming paragraphs within their
residual stream. Our focus is on the transition points marked by “\n\n,” where we hypothesize that
the model may already represent aspects of the next section. Throughout this work, we treat each
span of text separated by this delimiter as a paragraph. In practice, this boundary aligns well with the
model’s own segmentation and supports paragraph-level analysis of planning.

For our experiments, we use Llama-3.2-3B-Instruct (Dubey et al., 2024) as the primary model, with
temperature=0.3 for all generation tasks. We additionally employ SONAR models (Duquenne et al.,
2023) for text auto-encoding (TAE) tasks, and Qwen 3 embedding model (Zhang et al., 2025) for text
vectorization as a method to compare outputs.

For our dataset, we require data that represents the outputs of the LLM so we can understand its
thinking process. We use synthetic question prompts based on FineWeb-Edu (Lozhkov et al., 2024),
and generate a diverse set of LLM model outputs based on each prompt, up to 1 million text examples
with a temperature of 0.3. See Appendix A for more details.

In order to evaluate how well our extraction of potential future context worked, we also need a way
to compare similarity between text outputs. The main methods we use are: 1. traditional methods
including cosine similarity from text-embed models (Zhang et al., 2025), and BLEURT-20 (Pu et al.,
2021), and 2. LLM-as-a-Judge (Zheng et al., 2023b; Liu et al., 2023; Kim et al., 2024b; or Various,
2025) with rubric scoring. For our LLM rubric, we focus on relevant topics in text, coherence, subject
match, entity preservation, and detail preservation. For more details on the rubric and our setup, see
Appendix C

3.1.1 RESIDUAL STREAM DECODER METHODS

Figure 2: Continuation Parascope (Left) and TAE Parascope (Right). The former takes the whole
residual stream of the model and passes it into a blank-context copy of the model for decoding. The
latter takes the residual stream of the model and trains a map to output a text autoencoder vector.

We introduce two complementary Residual Stream Decoder approaches (as shown in Figure 2):

Continuation ParaScope: This method, inspired by Ghandeharioun et al. (2024) and Pochinkov
et al. (2024), intervenes directly on model activations to probe what the model might generate. We
insert a blank prompt consisting of ‘<bos>\n\n’, replace the residual stream activations of the ‘\n\n’
token with the activations saved from an original generation, then generate up to 128 tokens. This
approach requires no training, instead relying on the model to access any information it may have
stored.

TAE ParaScope: the Text AutoEncoder ParaScope learns a mapping from the residual stream to a
structured text auto-encoder embedding space from the SONAR model. We normalize the residual
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stream activations (treating each dimension as independent, using mean and standard deviation
normalization) and train a map to predict the TAE embedding vectors of the upcoming paragraph.

We choose to use a linear map, which takes the normalized residual diffs from some subset of layers,
and outputs a SONAR vector of dimension 1024. See Appendix H.1 for details.

The predicted embedding vectors are then decoded using SONAR’s decoder to produce human-
readable text. This structured approach allows us to leverage the semantic understanding encoded in
the SONAR embedding space.

3.1.2 BASE EVALUATION FRAMEWORK

Figure 3: Basic diagram explaining the next-paragraph prediction task (left) and showing how we
produce the baseline generation and cheat-k predictions (right)

To evaluate our methods, we must first establish appropriate baselines for comparison.

Random/Blind Baseline: Generation with only a blank ‘<bos>\n\n’ context, providing a lower
bound worst-case for performance. (See Figure 3)

Cheat-K Baseline: Generation with ‘<bos>\n\n’ plus K tokens of the actual upcoming section
revealed (K ∈ 1, 5, 10). In Appendix B we briefly investigate the degree to which a model is able to
reproduce a similar text from revealing cheat-K tokens, showing saturation at around 20 tokens.

Regeneration: Taking the whole previous context (prompt + generated sections up until the current
section) and generating what could come next, giving us the ground truth we aim to match.

Auto-Decoded: Taking the reference text, encoding it with SONAR, and decoding it again, providing
an upper bound on SONAR-based methods.

Additionally, we filter examples shorter than 20 tokens so the "cheat" methods do not have completed
examples for fairness (see Appendix D.1 for unfiltered plots).

4 PARAGRAPH-LEVEL PLANNING: EVIDENCE AND STRUCTURE

We first test using traditional methods, including cosine similarity from Qwen 3 Embed 0.6B, and
BLEURT score. Figure 4 show similar results for both, with standard errors are <0.002. For cosine
similarity, we find that Continuation ParaScope (mean 0.39) and TAE ParaScope (0.53) both perform
significantly better than random baselines (0.15), while being significantly worse than ground truth
(regenerated 0.81, auto-decoded 0.92). Both methods are comparable to the cheat-5 baseline (0.48).

These suggests that the model is storing some limited plans about the future within its activations,
giving evidence for the Decodability Hypothesis, comparable to revealing around five future tokens.

We test for more fine-grained features using rubric-based LLM-as-a-judge approach, shown in Figure
5. We primarily compare how well general subjects (on a scale from -1 to 4) and fine-grained details
(on a scale from -1 to 3) match the baseline generation (see Appendix E for details).

When looking at subject match, we find that TAE ParaScopes generally seem to outperform Continu-
ation ParaScopes. With a score threshold of ≥ 2 corresponding to being in a related general domain
or better, 75% of TAE ParaScopes achieved this level, compared to 43% for Continuation ParaScopes
and 50% for the cheat-10 baseline. This significantly outperforms the random baseline of 0.1%, while
still being short of the 99% achieved by ground-truth regeneration.

However, when looking at details match, we find an interesting difference. When it comes to achieving
at least Minimal Depth Details (score ≥ 1, Basic shared details without specifics), both TAE (58%)
and Continuation (53%) ParaScopes perform similarly well to each other, and similar to a cheat-5
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Figure 4: Violin plots showing the performance of TAE ParaScope and Continuation ParaScope
against the baselines (0, 1, 5, and 10 tokens) and ground truth (regenerated, auto-decoded) on Cosine
sim (left) and BLEURT (right). We filter out short examples < 20 tokens (see Appendix D.1)

.

baseline (55%). However, when it comes to achieving at least Moderate Depth details (score ≥ 2,
Shared details with some supporting facts), Continuation ParaScope (16%) is significantly better than
the TAE ParaScope (3%), which in turn falls just short of a cheat-5 baseline (18%). Even ground
truth regenerated outputs often fell short, with only 80% achieving a score ≥ 1 and 18% achieving a
score ≥ 2.

This is qualitatively in line with results from manually looking at examples (see Appendix J), where
Continuation ParaScope often either completely miss the task, or give a quite accurate reconstruction.

Figure 5: Cumulative bars showing the performance of TAE ParaScope and Continuation ParaScope
against the baselines (0, 1, 5, and 10 cheat tokens) and ground truth (regenerated, auto-decoded).
(left) shows subject match to original paragraph on a scale from -1 to 4, and (right) shows detail
preservation on a scale from -1 to 3. Proportions have standard error of ±0.001 to ±0.006

Importantly, both ParaScope methods show significant performance above random baselines, often
being able to reconstruct key details about the upcoming text. TAE ParaScope seems to preserve gen-
eral subject match well, and mostly gets approximate details correct, while Continuation ParaScope
seems to work inconsistently but can sometimes restore more fine-grained details. These results give
positive evidence for the Decodability Hypothesis, while falling short of ground-truth baselines.

5 OUTLINE-LEVEL RESIDUAL STREAM DECODERS

We extend the Decodability Hypothesis to outline-level representations. We take the method of
SONAR ParaScopes to construct a TAE Outline RSD, which aims to map residual at the start of
generation to a general outline of the text the model is likely to produce. See Figure 6.

We construct a dataset of outlines for this experiment. We take the dataset of model generations we
had from Section 3.1, and use Llama 3.2 70B to summarize the text into a bullet-point outline of key
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Figure 6: Diagram of experiments for TAE Outlines RSD. We create an outline of the generated
dataset, and encode this outline with SONAR. We then train a linear map between the residual stream
diffs of the model to the SONAR TAE embedding vector.

details. We then encode these outlines into a SONAR TAE vector to be used as the training target. As
the training input, we use the model residuals at the newline token after the prompt.

The architecture for TAE Outline RSD is a linear map identical to that of TAE ParaScope (see Ap-
pendix H.1), but this time mapping the normalized residual stream diffs to SONAR TAE embeddings,
which contain the outline of the upcoming document.

We then evaluate this with an LLM-as-a-Judge (GPT-4o-mini, as before) and compare it against
ground-truth outlines generated by another model following the same process, Gemma 3 27B Instruct
(Gemma Team, 2025). We focus mainly on Coverage of Key Points, Ordering/Flow, Subject Match,
Entities Match, and Details Match. See the full rubric in Appendix F.

Figure 7: LLM-as-a-Judge comparison between outlines decoded by the TAE Outline RSD scored
against the original Llama 3.2 70B outline. We compare against ground truth, which are the scores
achieved by Gemma 3 27B with access to the full text & prompt.

We show results in Figure 7. We find that the TAE Outline RSD is able to decode some amount of
information from the residuals stream, but that the performance is not as good as it was with the TAE
ParaScope. We find that the subject match is generally high (61% at least minor match, 54% at least
moderate match), but detail preservation is worse (24% minimal depth, i.e., very limited overlap),
which is lower than for TAE ParaScope, which achieved minimal details 52% of the time.

Results on planning at the outline scale are relatively weak, aside from matching general subject matter.
See example outputs in Appendix K. This gives some evidence for the Decodability Hypothesis,
showing that the relatively small 3B-parameter model either does not plan at the outline scale or
that such information is not linearly decodable. Experiments in the next section will provide some
evidence for the former over the latter.

6 DEEPER ANALYSIS INTO INFORMATION AVAILABILITY

With this evidence for the Decoability Hypothesis, we apply the ParaScopes to understand when the
model may be forming planning information.

6
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6.1 LAYER-WISE INFORMATION ANALYSIS

Figure 8: (left) explanation and (right) results of "layer scrubbing" for layer-wise information analysis

We employ a simple causal scrubbing methodology (Chan et al., 2022) with Continuation ParaScope
to determine which layers contribute most to paragraph planning. See Figure 8 for illustration. We
take the activations of the model across all the layers for two examples, and attempt to interpolate
between the two examples to observe when the model chooses to write about one versus the other. In
particular, we take the following prompt:

Base Prompt: "Tell me about cleaning your house in 50 words, then tell me about [A or B] in 50
words. Structure it as 2 paragraphs, 1 paragraph each."

We design our experiments using a controlled prompt structure where the model first writes about
cleaning a house, then transitions to one of two dramatically different topics: either polycystic kidney
disease (Paragraph A) or monster trucks (Paragraph B). This stark contrast allows us to distinguish
which information is encoded at different layers.

For each layer K between 0 and N , we perform a layer scrubbing procedure that isolates the
contribution of different network depths from the paragraph transition token (“\n\n”) . We use
activations from RESA for layers 0 to K, and RESB for K + 1 to N . See Appendix C.3 for details.

In Figure 8, this layer scrubbing analysis reveals a clear pattern of information processing. The
early layers (0-25 out of 42 total) show minimal contribution to paragraph planning, with cosine
similarity deltas below 0.05. The middle layers (25-35) demonstrate the strongest impact on future
paragraph content, showing substantial cosine similarity deltas of 0.15 to 0.25. Finally, the output
layer exhibits a distinct jump of approximately 0.1 in similarity delta, which we attribute to output
embedding effects (directly influencing the first generation token) rather than planning computation.
This suggests that layers 60%-80% into the model have the most planning-relevant activations.

6.2 TEMPORAL DYNAMICS: WHEN PLANNING HAPPENS

To investigate when paragraph information appears, we analyze token-wise dynamics around para-
graph transitions and attempt to understand when the model starts encoding follow-up information.
We use Gemma-2-9B (Gemma Team, 2024) 1 and perform Continuation ParaScope on each of the
different tokens, as shown in Figure 9.

We perform a few steps: 1) Generate paired paragraphs with controlled pairs of topics. 2) Extract
residual streams from tokens within ±10 positions of "\n\n". 3) Apply Continuation ParaScope at
each position. 4) Generate 64 possible completions per position. 5) Compare against original first or
second paragraph using text embeddings. Results are shown in Figure 10

We first focus on an example where the initial topic is blockchain and the subsequent topic is ancient
Mayan architecture, and in Table 6.2 compare the cosine similarities to both topics. We see that
representation of the later topic only becomes significant at the newline token.

Averaging across 20 different pairs of topics, we then look at similarity to Topic 2. We find pre-
transition it is 0.12 (±0.08), at transition it is 0.48 (±0.15), and post-transition it is 0.65 (±0.12). This
gives moderate evidence that Gemma 2 9b is relatively just-in-time when it comes to forming plans
in its activations, and mostly focuses on the specific immediate paragraph to write.

1we wanted to do a more fine-grained test of tokens "." and "\n\n", and llama 3 combines these into one token
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Figure 9: explanation of how we do token-wise analysis to see when the LLM prominently seems to
be looking forward

Figure 10: We get cosine similarity of Contination ParaScope generations at tokens near the newline
token. We compare similarity to paragraph 1 (left) and paragraph 2 (right), for a specific example
(bottom) and averaged over 20 examples (top)

Pre-transition Transition token Post-transition

Topic 1 (blockchain) 0.45–0.55 0.20–0.30 0.10–0.20
Topic 2 (architecture) 0.05–0.15 0.50–0.60 0.70–0.80

Table 1: Cosine similarity when using Continuation ParaScope at different positions relative to
‘\n\n’.

In Appendix G we present additional experiments to examine whether "\n\n" causes formation of
plans in particular. We find evidence that it can in certain cases, but does not do so generally.

6.3 TESTING ON WIDER SET OF MODELS

We investigate the Decodability Hypothesis on a wider set of models and measure how paragraph-
scale planning capacity changes with model size. We extend our experiments to the Gemma 3
(Gemma Team, 2025) family of models ranging from 270M to 27B in size. In Table 2, we find
performance to be generally similar between model sizes, with TAE ParaScope seeming to perform
better than Continuation ParaScope.

7 DISCUSSION

We have investigated how language models encode and utilize paragraph-scale prospective structure
by probing their residual streams at transition points. Our paragraph-level Residual Stream Decoder
methods, Continuation ParaScope and TAE ParaScope, reveal that models carry significant infor-
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Gemma Gemma Gemma Gemma Gemma
Llama-3B 270M 1B 4B 12B 27B

TAE 0.534 0.484 0.485 0.501 0.498 0.512
Cont. 0.390 0.307 0.390 0.373 0.331 0.341

Table 2: Cosine similarity (Standard error ±0.002) for ground truth, Llama-3B, and Gemma-3 models.
These compare to Llama-3 baselines of Auto-decoded 0.922 and Regenerated 0.806

mation about upcoming content, comparable to having a limited "lookahead" of a 5-10 tokens, and
find evidence for the Decodability Hypothesis. We additionally expand the method to a TAE Outline
Residual Stream Decoder to probe for longer-context data, and found weak limited results, suggesting
that while long-horizon prospective structure may be present, it is likely limited in Llama 3.2 3B.

More specifically, we found a linear TAE ParaScope model can often capture broad semantic signals
from residual stream activations, such as topic or subject domain, while the Continuation ParaScope is
more inconsistent, but offers greater textual coherence in the generated paragraphs and can sometimes
reveal more specific details. Together, these findings shed light on the hidden mechanisms of
paragraph-scale future-oriented information in large language models.

We additionally used Continuation ParaScope to investigate distribution of planning-related signals,
and found it is not uniform across all layers. Instead, we see that the middle layers (roughly 60 – 80%
of the model’s depth) concentrate these signals, in line with previous research (Meng et al., 2022).
Earlier layers focus on local processing and later layers finalize immediate token decisions, whereas
the middle layers integrate context to guide broader text generation.

Furthermore, when observing activations at different tokens, we find a sharp shift at paragraph
boundaries: the model of study typically creates or refines its "plan" precisely when it processes the
\n\n token. This myopic behavior suggests a form of just-in-time updating of anticipatory signals.

These results combine to start forming a picture of how future-content encoding behavior in LLMs
works.

7.1 FUTURE WORK AND LIMITATIONS

We have so far focused on validation of various methods for Residual Stream Decoding, and found
evidence for the Docodability Hypothesis. Since we use two different methods, and run additional
tests with Continuation ParaScope, there is some evidence to rule out that the planning information
we extract is completely spurious. However, there is room for further research into understanding the
degree to which the planning signals we find are strictly causal to model performance.

Additionally, we have focused on short structured paragraphs and full-output outlines. These are
not guaranteed to be the most natural scales when it comes to investigating models, and does not
generalize cleanly to domains of math, code, and chemistry. It may be the case that there are other
units of text, such as sentences, which are more "natural" to probe for. It may also be the case
that planning information may be distributed across many tokens, and may not always be cleanly
represented in one token.

Finally, our tests are primarily limited to Llama 3.2 3B and Gemma 3 models, and future work would
investigate the degree to which planning differs in models of various different sizes beyond 27B.

Nevertheless, our results emphasize that large language models do maintain recognizable paragraph-
level plans — albeit mostly confined to the immediate next section — and that these signals can
be partially decoded. Future work may extend this approach to different horizons, investigate how
these mechanisms interact with factual correctness or stylistic consistency, and refine interpretability
techniques to further clarify the planning processes within large-scale transformer architectures.

These approaches may also lay the groundwork for tools such as monitoring of models in advance of
writing an output, and may help in understanding a model’s original intentions prior to completion of
an output. We leave these applications to future work.
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A DATASET GENERATION DETAILS

A.1 NEXT-PARAGRAPH PREDICTION

Figure 11: Multi-step dataset generation process.

First, we extract chunks from FineWeb Edu (Penedo et al., 2024), and use Gemma 2 27B (Gemma Team, 2024)
to convert these into structured writing prompts of the form "Write a [type], titled [name], which includes
[topics], approximately [length]". This intermediate step helps ensure diversity in our final dataset. We do this
for 1 million text samples.

Here is the prompt used to generate the dataset of generated prompts:

Write a prompt based on the above text, that is a single-paragraph,
high-level description. Make the prompt in the format format similar to:
"Write a (news feed/chapter/piece/article/wiki entry/...),
titled (document name)’, which includes (1-2 sentence list
of topics to cover, kept very vague). The full piece
should be approximately (n-paragraphs or other unit of length)".
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We then take these prompts, and generate outputs with the model we are studying. Ie: Llama 3.2 3b instruct
(Dubey et al., 2024). We split these by ‘\n\n’ and the result is that we have 1 million model generations with
approximately 10 million paragraphs which we use as our dataset of model paragraph outputs.

For Gemma 3 models of various sizes, we get 100,000 model generations for each model, outputting a total of
around 900,000 paragraphs for each model.

For running evaluation, we use a holdout test set of 1000 prompts and generations that are not used during
training.

A.2 OUTLINE PREDICTION

For outlines, we take the model generations from before, and pass them to a new model. We tried various open
source models for reproducability, including "openai/gpt-oss-120b", "meta-llama/Meta-Llama-3-8B-Instruct",
"meta-llama/Llama-3.3-70B-Instruct", and "Qwen/Qwen2-72B-Instruct".

We found Llama 3 70B (Dubey et al., 2024) had the best results on the tradeoff between precision and brevity.

The prompt we used was as follows:

Return a short, high-level bullet-point outline of the main ideas from
the text you are given. Do NOT include any reasoning.

Rules:
- Make as 4-5 bullet points maximum
- Use numbers to enumerate the bullet points
- Aim to capture main ideas of the whole text in the bullet points
- At most 2 short subpoints per point
- Short phrases only (no lengthy sentences)
- Specific to this text (not generic).

B BASELINES

Figure 12: Comparison of how generations starting with some number of cheat tokens compare to
regeneration and auto-encoding, using cosine similarity of text embed vectors.

Using the model generated dataset, we compare with the regenerated baseline with the cosine similarity of a
text-encoding model (see Appendix C.1). We see that with 10 cheat tokens, the model is already very good at
inferring what the model will say, and with 20 cheat tokens there is no substantial difference compared to adding
even 100 cheat tokens.

There may be confounders. For example, it has been shown that text-embed models over index on the first few
tokens of the embedded text (Lee et al., 2024; Wu et al., 2025). It is also possible that for very short texts, the
model may choose to continue the paragraph when it would have counted the paragraph as completed were it to
see the text in context. We leave further improvement of this methodology to future work.

C EVALUATION

C.1 AUTOMATED METRIC EVALUATION

We first evaluate our methods using established NLP metrics. Using the all-mpnet-base-v2 text embedding
model, we compute cosine similarity between generated and reference texts. The SONAR ParaScope methods
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(both Linear and MLP variants) achieve mean similarity scores of 0.51 (±0.20) and 0.50 (±0.20) respectively,
significantly outperforming the Continuation ParaScope at 0.33 (±0.20). These results position both SONAR
methods as comparable to the cheat-5 baseline (0.44), while falling short of full regeneration (0.82).

We supplement these findings with BLEURT scores, which show consistent patterns: SONAR ParaScopes
achieve scores of 0.404 (±0.144) and 0.395 (±0.138), again comparable to the cheat-5 baseline at 0.396 (±0.102).
The Continuation ParaScope achieves 0.364 (±0.135), significantly above random baseline (0.192 ±0.094) but
below the regeneration baseline (0.619 ±0.216).

C.2 SCORING COMPARISON WITH LLM-AS-A-JUDGE

To complement the automated metrics, we performed a fine-grained evaluation using GPT-4o-mini as an
evaluator2, following the "LLM-as-a-judge" paradigm (Zheng et al., 2023a). We developed a detailed rubric
covering multiple aspects of text quality and prompted the LLM to provide brief reasoning before assigning a
score for each dimension, a technique shown to improve reliability in rubric-based LLM evaluation (Kim et al.,
2024a; Gattani et al., 2024).

We choose 4 main aspects to focus on:

Key dimensions assessed included Coherence (evaluating flow and logical progression, scale 0-3), Subject Match
(comparing topic similarity from unrelated to identical focus, scale -1 to 4), Entity Preservation (comparing
specific entities mentioned, scale -1 to 4), and Detail Preservation (comparing the specificity of information,
scale -1 to 3). The full rubric is provided in Appendix E.

This qualitative assessment revealed distinct trade-offs: the AutoEncoder Map ParaScope methods (Linear and
MLP) demonstrated superior preservation of high-level semantic content (Subject and Entities), often matching
or exceeding baselines like cheat-5/cheat-10 in topic relevance. Conversely, the Continuation ParaScope
consistently generated more coherent and fluent text, scoring higher on the Coherence dimension, though it
captured less specific subject matter and fewer entities compared to the reference paragraphs.

C.3 LAYER SCRUBBING DETAILS

For each layer K between 0 and N , we perform a layer scrubbing procedure that systematically isolates the
contribution of different network depths. We first extract residual stream activations RESA and RESB from the
paragraph transition token (“\n\n”) for both test conditions.

We then create hybrid activations by combining layers [1...K] from one condition with layers [K + 1...N ] from
the other, generating outputs in both directions to capture the full effect of layer-wise information transfer. For
each configuration, we generate 100 samples and compare the resulting outputs against reference texts using
‘all-mpnet-base-v2’ (Song et al., 2020) embeddings.

To ensure our measurements reflect genuine information availability rather than limitations in our probing
methodology, we generate 64 samples per condition and compare the best-matching outputs against references A
and B.

D ADDITIONAL FIGURES

D.1 FILTERED VS UNFILTERED COMPARISONS OF SCORES

In addition to Figure 4, we plot graphs of the unfiltered data in Figure 13. That is, we allow examples that are
"too short" for fair evaluation, such that the full examples are shown in cheat-10. Hence we see that as more
tokens are exposed, cheat-5 and cheat-10 have some examples with perfect match.

E FULL RUBRIC DETAILS

In this section, we provide the complete evaluation rubric used to assess the quality and similarity of generated
paragraphs in our experiments. This rubric was designed to capture multiple dimensions of text quality and
semantic similarity between the reference paragraphs and those generated by our ParaScope methods.

E.1 COMPLEXITY ASSESSMENT

• 0: Trivial - Text contains minimal content (e.g., only section headers or placeholder text)

2Using ’gpt-4o-mini-2024-07-18’ via the OpenAI API
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Figure 13: Violin plots showing the performance of TAE ParaScope and Continuation ParaScope
against the baselines (0, 1, 5, and 10 cheat tokens) and ground truth (regenerated, auto-decoded) on
Cosine sim (left) and BLEURT (right), including short examples < 20 tokens

• 1: Simple - Basic content with minimal detail (e.g., simple section headers with brief descriptions)

• 2: Some detail - Contains short, undetailed sentences about the topic

• 3: Many details - Contains detailed paragraphs with specific information and nuanced content

E.2 COHERENCE

• 0: Completely incoherent - Text contains excessive repetition, nonsensical phrases, or strange
symbols

• 1: Partially coherent - Text is repetitive or has formatting issues (e.g., repeated key phrases, awkward
pauses)

• 2: Mostly coherent - Text has minor errors but maintains logical progression

• 3: Flawless flow - Text demonstrates logical progression, clear transitions, and no repetition

E.3 STRUCTURE

• 0: No alignment - Structural mismatch (e.g., one is a title, the other a paragraph)

• 1: Partial overlap - Some structural similarities but significant differences

• 2: Highly similar structure - Matching structural elements and organization

E.4 SUBJECT MATCH

• -1: No subjects to compare - Insufficient content for comparison

• 0: Completely unrelated subjects - Topics from entirely different domains (e.g., "corporate law" vs.
"particle physics")

• 1: Vaguely similar field - Subjects from broadly related areas (e.g., "biology" vs. "physics" as
sciences)

• 2: Related general domain - Adjacent fields or related domains (e.g., "history" vs. "archaeology")

• 3: Same subject - Both discuss the same general topic (e.g., "ancient Mayans")

• 4: Identical focus - Both analyze the exact same specific topic (e.g., "ancient Mayan architecture")

E.5 ENTITIES

• -1: No entities to compare - Insufficient entities for comparison

• 0: Completely unrelated - Entities from different categories (e.g., "Norway" vs. "smartphone")

• 1: Vaguely similar category - Entities of the same type (e.g., countries, people, cities)

• 2: Similar category - Entities with categorical similarities (e.g., related countries, similar professions)

• 3: Partial identical entities - Some matching entities with some differences

• 4: Almost all key entities match - High degree of entity overlap between texts
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E.6 DETAILS

• -1: Neither text has details to compare - Insufficient details for comparison

• 0: Details differ completely - No overlap in specific information provided

• 1: Minimal depth - Basic shared details without specifics

• 2: Moderate depth - Shared details with some supporting facts

• 3: Highly specific details - Precise, quantitative, or technical details match

E.7 TERMINOLOGY

• -1: No terminology to compare - Insufficient terminology for comparison

• 0: No shared terms - Completely different vocabulary and terminology

• 1: Some overlap - Partial matching of domain-specific terms

• 2: Domain-specific alignment - Consistent use of field-appropriate terminology

E.8 TONE

• 0: Mismatched - Different registers or sentiment (e.g., clinical vs. casual, positive vs. negative)

• 1: Consistent - Similar register, formality level, and sentiment

E.9 IDENTICAL ASSESSMENT

• 0: Not identical - Texts differ in content, even if similar

• 1: Identical - Texts are essentially the same with only minor variations

This comprehensive rubric allowed us to systematically evaluate the quality of our ParaScope-generated para-
graphs across multiple dimensions, providing a nuanced understanding of how well our methods capture and
reproduce the planning signals present in the model’s residual stream.

F OUTLINE RUBRIC DETAILS

In this section, we provide the complete outline evaluation rubric used to assess the quality and similarity of
generated outlines in our experiments. The rubric was designed to capture the key aspects of outline structure
and semantic similarity between the reference outlines and those produced by decoding outline embeddings
(SONAR). The embeddings are predictions resulting from a linear probe trained to map normalized residual
stream diffs to SONAR TAE embeddings.

F.1 COMPLEXITY ASSESSMENT

• 0: Trivial - Text contains minimal content (e.g., only section headers or placeholder text)

• 1: Simple - Basic content with minimal detail (e.g., simple section headers with brief descriptions)

• 2: Some detail - Contains short, undetailed sentences about the topic

• 3: Many details - Contains detailed paragraphs with specific information and nuanced content

F.2 COHERENCE (OUTLINE-LEVEL)

• 0: Completely incoherent - Excessive repetition, nonsensical phrases, or strange symbols

• 1: Partially coherent - Repetitive or has formatting issues (e.g., repeated key phrases, awkward
pauses)

• 2: Mostly coherent - Minor grouping or ordering issues, but overall logical

• 3: Clear and coherent - Logical outline structure with clarity

F.3 HIERARCHY / STRUCTURE

• 0: No recognizable hierarchy - Flat or malformed structure

• 1: Basic levels exist - Often inconsistent

• 2: Mostly correct hierarchy - Some mismatches present

• 3: Highly similar structure - Matches closely with minimal deviations
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F.4 COVERAGE OF KEY SECTIONS

• 0: Most key sections missing - Outline 2 omits or replaces core sections

• 1: About half present - Roughly 50% of major sections covered

• 2: Most sections present - Minor omissions or regroupings allowed

• 3: Full coverage - All major sections appear (synonyms/regrouping acceptable)

F.5 ORDERING / FLOW

• 0: Largely shuffled - Illogical or inconsistent ordering

• 1: Partial overlap - Frequent swaps in order

• 2: Mostly consistent - Minor order swaps only

• 3: Closely aligned - Order follows reference outline closely

F.6 SUBJECT MATCH

• -1: No subjects to compare - Insufficient content for evaluation

• 0: Completely unrelated - Topics from entirely different domains (e.g., "corporate law" vs. "particle
physics")

• 1: Vaguely similar field - Broad overlap only (e.g., "biology" vs. "physics")

• 2: Related general domain - Adjacent or related fields (e.g., "history" vs. "archaeology")

• 3: Same subject - Both discuss the same general topic (e.g., "ancient Mayans")

• 4: Identical focus - Both focus on the exact same subject (e.g., "ancient Mayan architecture")

F.7 ENTITIES / KEY CONCEPTS

• -1: No entities to compare - Insufficient key terms/entities

• 0: Completely unrelated - Entities from unrelated categories

• 1: Same category, little overlap - Entities belong to same type but differ

• 2: Partial overlap - Some matching entities or synonyms

• 3: Mostly preserved - Majority of key entities retained

• 4: Nearly identical - Almost all entities preserved

F.8 DETAILS

• -1: No details to compare - Neither outline provides details

• 0: Completely different - Details differ entirely (e.g., benefits vs. generic notes)

• 1: Minimal depth - Very limited overlap (e.g., one shared concept only)

• 2: Moderate depth - Shared details plus some supporting facts

• 3: Highly specific details - Quantitative or precise overlaps (e.g., percentages, statistics)

F.9 CONCISENESS OF HEADINGS

• 0: Verbose - Headings too wordy or sentence-like

• 1: Mixed clarity - Some concise, others verbose

• 2: Mostly concise - Headings generally outline-appropriate

F.10 IDENTICAL ASSESSMENT

• 0: Not identical - Outlines differ in content, even if similar

• 1: Identical - Outlines essentially the same (ignoring trivial formatting)
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Original Outline Generate TAE Outline Residual Stream Decoder
Outline: 1. Quantum Uncertainty Principle - Lim-
its measurement precision 2. Implications of the
principle - Challenges classical determinism 3.
Quantum mechanics nature - Probabilistic and un-
certain 4. Measurement impact - Collapses wave
function 5. Fundamental concept

Summary:
1.Quantum involution principle
- Uncertainty of the quantum work
2. Relativity
- Uncertainty of the quantum work
3. Implications of boundedness
- Theoretical estimation
4. Implications of the uncertainty of the quantum
work
5. Implications of the quantum work
3. Implications of the uncertainty of the quantum
work
4. Implications of the quantum work
5.

Table 3: Comparison of Original Outline Generate vs TAE Outline Residual Stream Decoder -
Example 5

G TEMPORAL DYNAMICS: TOKEN REPLACEMENT ANALYSIS

Given that the model does not seem to form plans for the next paragraph, we attempt to further understand what
causes the model to plan for the next paragraph. We perform the same procedure as we did in Section 6.3 but
when generating the residual stream, replace the input token with "\n\n" to see if the specific token is responsible
for the model generating the plans.

Figure 14: explanation of how we do token-wise analysis with manipulation to replace \n\n to see
when the LLM prominently seems to be looking forward

We conduct detailed analysis of how the model handles artificially inserted paragraph transitions. For each text
pair, we:

1) Take original text with natural "\n\n" transition 2) Replace tokens at positions [-10, +10] with "\n\n" 3) Apply
Continuation ParaScope 4) Compare outputs with original second paragraph

Results show position-dependent effects: - Peak similarity at original transition (0.62 ±0.14) - Gradual decline
pre-transition (0.45 ±0.12 at -5 tokens) - Steeper decline post-transition (0.31 ±0.13 at +5 tokens) - High variance
in token-specific effects (σ = 0.18)

H SONAR LINEAR MAP

H.1 SONAR PARASCOPE LINEAR MAP DETAILS

We train the model on a subset of 100,000 samples, taking the normalized residual stream activations as the
input, and SONAR embeds of the paragraphs as the output.
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Activations were normalized by using Welford’s Online Algorithm on the first 10,000 texts (approx 100,000
samples) to compute mean and standard deviations, and using this to achieve approximately unit normal
distribution on each dimension.

We train only on the output of the MLP and Attention (residual diff) of the final 12 layers (giving a total of 24
sub-layers) from Llama 3.2 3B’s model’s total of 28 layers.

In principle, one could use any text auto-encoder, or use a more complex probe such as an MLP probe.

Training hyperparameters were as follows:

- Linear map:
- Batch size: 1,024
- Weight decay: 1e-7
- Learning rate: 2e-5 with x0.8 decay/epoch
- Epochs: 10

H.2 SONAR LINEAR MAP ANALYSIS

Figure 15: Layerwise Frobenius norm of Linear Regression Map from Sonar Map ParaScope

We perform detailed analysis of the learned SONAR mappings:

Layer-wise Weight Distribution: - Computed per-layer Frobenius norms - Attention layers: mean norm 3.56
(±0.42) - MLP layers: mean norm 3.39 (±0.38) - Layer-wise correlation τ = 0.73

H.3 CORRELATION ANALYSIS

We examine inter-method correlations using Kendall’s τ , including preliminary results with an MLP-based probe
3.

Between Methods: - MLP vs Linear: τ = 0.82 - MLP vs Continuation: τ = 0.41 - Linear vs Continuation: τ =
0.43

Between Metrics (Linear ParaScope): - Length vs Subject: τ = 0.58 - Coherence vs Detail: τ = 0.45 - Entity
vs Subject: τ = 0.61

Between Metrics (Continuation): - Length vs Subject: τ = 0.39 - Coherence vs Detail: τ = 0.31 - Entity vs
Subject: τ = 0.44

These results suggest SONAR variants learn similar mappings but capture different aspects than Continuation
ParaScope.

I USAGE OF LLMS

We use LLMs at various parts of the process.

We use tools such as ChatGPT, Claude, Github Copilot, and Cursor when writing code and running experiments,
and were iteratively used to create rubrics for scoring outputs, though all code is ultimately human-reviewed.

3This includes preliminary results where we trained an MLP Sonar ParaScope probe with 8192 hidden layers.
We did not include MLP results these in the final paper as the results were not appreciably better than with the
Linear model, and highly correlated with the Linear model.
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For the literature review process of finding papers, tools like Google Scholar, Semantic Scholar, Connected
Papers, we used, with supplemental search often done by ChatGPT, Claude, and Perplexity.

When it comes to paper writing, spell checker tools and LLMs were used to sometimes check for writing clarity
and sometimes suggest edits that were accepted.

J EXAMPLES OF PARASCOPE OUTPUTS

We show a randomly selected set of 5 examples of TAE ParaScope and Continuation ParaScope examples, with
the reference generation side by side.

TAE Cont. Original
Understanding your migraine
disorders is a key to managing
and preventing migraine symp-
toms. By understanding your
symptoms and preventing them,
you can identify the best ways
to manage and prevent migraine
symptoms. By learning about
your symptoms and preventing
them, you can help manage your
symptoms and prevent them.

Understanding the importance
of sleep and establishing a con-
sistent sleep schedule can have
a significant impact on overall
health and well-being. By mak-
ing sleep a priority and creating
a sleep-conducive environment,
individuals can improve the qual-
ity of their sleep and wake up
feeling refreshed and revitalized.
Whether you’re looking to im-
prove your sleep hygiene or sim-
ply need some tips to help you
get a good night’s sleep, there
are many resources available to
help. So, take the first step to-
wards better sleep and start mak-
ing it a priority today.

Understanding your migraine
triggers is the first step towards
managing your symptoms and
improving your overall quality
of life. By exploring your
individual triggers and taking
action to manage them, you
can reduce the frequency and
severity of your migraines and
take control of your health.

Table 4: Comparison of TAE vs Cont. vs Original - Example 1
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TAE Cont. Original
The CDF International Confer-
ence on Poetry 2019 was a presti-
gious event held in Cologne, Ger-
many, that brought together the
world’s leading scholars in po-
etry and literature. The event cel-
ebrated the 35th anniversary of
the conference, which featured
a comprehensive presentation of
poetry and literature from across
the globe. The conference was
designed to bring together schol-
ars from different backgrounds
and disciplines. The conference
featured a wide range of exhibi-
tions on poetry, poetry, and liter-
ature.

The [Year] conference, held
on [Date] at [Location], was
a groundbreaking event that
brought together leading experts
in the field of [Field] to discuss
the latest advancements and chal-
lenges in [Specific Area of In-
terest]. The conference featured
a diverse range of speakers, in-
cluding [Notable Speakers], who
shared their insights and expe-
riences on topics such as [Key
Topics]. The event was well-
attended by [Number] of dele-
gates, who engaged in lively dis-
cussions and networking oppor-
tunities.

The 2015 CDI Poetry Confer-
ence was a premier event for
poets and literature enthusiasts,
held in the vibrant city of
Toronto, Canada, from May
13th to 16th, 2015. The con-
ference brought together over
200 poets, writers, and scholars
from across Canada and around
the world to share their work,
engage in lively discussions,
and explore the latest trends
and themes in Canadian poetry.
The conference featured an
impressive lineup of notable
attendees, including poet and
Nobel laureate Margaret At-
wood, critically acclaimed poet
and essayist Tanya Talagant, and
renowned publisher and literary
critic Greg Gellenbeck.

Table 5: Comparison of TAE vs Cont. vs Original - Example 2

TAE Cont. Original
In the meantime, the new rules
on investing are likely to lead to
greater transparency and trans-
parency in the decision-making
process.

Overall, the recent developments
in the field of quantum comput-
ing and the emergence of new
technologies have created a new
landscape for the development
of quantum algorithms and ap-
plications. As researchers con-
tinue to push the boundaries of
what is possible with quantum
computing, we can expect to see
new breakthroughs and innova-
tions in the years to come.

In the meantime, startups and
investors are already taking
steps to prepare for the new
rules. Many crowdfunding
platforms are offering educa-
tional resources and training
programs to help investors better
understand the risks and benefits
of investing in startups.

Table 6: Comparison of TAE vs Cont. vs Original - Example 3

K EXAMPLES OF TAE OUTLINE RSD OUTPUTS

We show a randomly selected set of y5 examples of TAE Outline Residual Stream Decoder outputs.
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TAE Cont. Original
In the final analysis, the legacy
of pluralism is a question of
challenging and unique human-
ity. By combining the notions of
progress and accountability, we
are able to recognize the unique
complexity of humanity. By pur-
suing the notions of responsi-
bility and inclusiveness, we are
able to foster a vision of the fu-
ture.

In conclusion, the concept of
"nothingness" is a complex and
multifaceted idea that has been
explored in various philosophi-
cal, scientific, and cultural con-
texts. From the perspective of
physics, nothingness is often
seen as the absence of matter
and energy. However, from a
philosophical standpoint, noth-
ingness can be understood as a
fundamental aspect of existence,
a void that gives rise to the pos-
sibility of creation and mean-
ing. Ultimately, the concept of
nothingness challenges our un-
derstanding of reality and en-
courages us to think critically
about the nature of existence. By
exploring the concept of nothing-
ness, we can gain a deeper un-
derstanding of the world and our
place within

In conclusion, the concept of
meritocracy is both a promise
and a paradox. On the one
hand, it has the power to inspire
individuals to strive for excel-
lence and promote social mo-
bility. On the other hand, it
can perpetuate existing power
structures, reinforce competition,
and overlook systemic inequal-
ities. As we move forward in
an increasingly complex and in-
terconnected world, it is essen-
tial that we confront the para-
dox at the heart of meritocracy
and begin to rethink our assump-
tions about success and achieve-
ment. Only by acknowledging
the true nature of meritocracy
can we create a more inclusive
and equitable society that re-
wards achievement, rather than
just talent.

Table 7: Comparison of TAE vs Cont. vs Original - Example 4

TAE Cont. Original
"We are looking forward to the
opening of the new premises".
"We are looking forward to the
opening of the new premises. "

**Expected outcomes:** "We’re committed to providing
our customers with a world-
class storage experience," said
[Name], President of Murphy
Brothers Contracting. "Our
partnership with BETCO Inc.
has enabled us to push the
boundaries of self-storage
innovation, creating a facility
that’s not only functional but
also environmentally friendly."

Table 8: Comparison of TAE vs Cont. vs Original - Example 5
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Original Outline Generate TAE Outline Residual Stream Decoder
Outline:
1. Rising college costs
- Increased student loan debt
2. Types of student loans
- Federal and private loans
3. Consequences of student loan debt
- Defaulting and credit damage
4. Navigating student loan borrowing
- Responsible borrowing practices
5. Prioritizing financial success
- Exploring financial aid options

Summary:
- 1st Grade School Expenditure
- Increased Financial Liabilities
- 2nd Grade School Expenditure
- Reasonable Income
- 3rd Grade School Liabilities
- Increased Expenditure
- Privacy Policy
- 3rd Grade School Liability
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure
- Increased Expenditure

Table 9: Comparison of Original Outline Generate vs TAE Outline Residual Stream Decoder -
Example 1

Original Outline Generate TAE Outline Residual Stream Decoder
Outline:
1. Discovery of Homo floresiensis
- 3 feet 7 inches tall
- Robust and resourceful species
2. Genetic analysis findings
- Interbred with other human species
- Hybrid offspring created
3. Implications for human evolution
4. Public lecture event
- Featuring Dr. Michael Morwood
- Special exhibit on fossil remains
5. Event details
- Free and open to the public
- Registration recommended

Summary:
1.Discovery of small-scale dinosaurs
- Life-changing experiments at the University of
Leeds
2.Classical humanities
- Explorations and discoveries of the 2nd-century
dinosaur
- Common knowledge of anatomy
- Explorations and discoveries of the 3rd-century
dinosaur
- Interesting connections to the living environment
- Physiology of the 5th-century dinosaur
- Explanation of scientific findings
- Participation of the population of the 5th-century
dinosaur
- Research Needs
- Significance of natural discoveries and explo-
ration

Table 10: Comparison of Original Outline Generate vs TAE Outline Residual Stream Decoder -
Example 2
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Original Outline Generate TAE Outline Residual Stream Decoder
Outline:
1. Decline of labor conditions
- Low wages and poor working conditions
2. Shift to precarious labor market
- Rise of automation and globalization
3. Negative future implications
- Widespread unemployment and inequality
4. Need for policy change
- Support for workers in transition
5. Transformation of economic systems
- Prioritizing worker well-being

Summary:
1. Labor market volatility
-
5. Employment inequality
-
3. Disproportionate impact on labour market
-
2. Ageing of labour and basic labour
-
4. Employment restrictions
-
3. Disproportionate impact on productivity
-
3. Changes in labour market conditions
-
4. Necessity for innovative work
-
5. Changes in the labour market
-
5. Sustainability of human rights
-
3. Necessity for improved labour market practices

Table 11: Comparison of Original Outline Generate vs TAE Outline Residual Stream Decoder -
Example 3

Original Outline Generate TAE Outline Residual Stream Decoder
Outline:
1. Pacific Flyway waterfowl trends
- Mixed breeding conditions
- Population increases and declines
2. Regional population changes
- Western: Mallard increase, Canada Goose decline
- Central: Wood Duck increase, Merganser decline
3. Eastern Pacific Flyway trends
- American Golden-Plover increase
- Harlequin Duck decline
4. Alaska waterfowl trends
- Snow Goose increase
- Ross’s Goose decline
5. Conservation importance
- Habitat protection
- Research and monitoring

Summary:
1. Range of Pacific Waterfowl
- Decline in habitats
2. Range of Wild Waterfowl
- Increased Prevalence
3. Bay and Swamp Areas
- Conservation Effects
4. Pacific Waterfowl
- Increased Prevalence
3. Habitats and Swamp Areas
- Negative Flooding
4. Environmental Effects
- Conservation Effects on Birds
5. Refugee Reservation
- Continued Changes
5. Requirements for monitoring and wildlife con-
servation

Table 12: Comparison of Original Outline Generate vs TAE Outline Residual Stream Decoder -
Example 4
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Original Outline Generate TAE Outline Residual Stream Decoder
Outline:
1. Quantum Uncertainty Principle
- Limits measurement precision
2. Implications of the principle
- Challenges classical determinism
3. Quantum mechanics nature
- Probabilistic and uncertain
4. Measurement impact
- Collapses wave function
5. Fundamental concept

Summary:
1.Quantum involution principle
- Uncertainty of the quantum work
2. Relativity
- Uncertainty of the quantum work
3. Implications of boundedness
- Theoretical estimation
4. Implications of the uncertainty of the quantum
work
5. Implications of the quantum work
3. Implications of the uncertainty of the quantum
work
4. Implications of the quantum work
5.

Table 13: Comparison of Original Outline Generate vs TAE Outline Residual Stream Decoder -
Example 5
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