
Under review as a conference paper at ICLR 2021

META-LEARNING WITH IMPLICIT PROCESSES

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper presents a novel implicit process-based meta-learning (IPML) algo-
rithm that, in contrast to existing works, explicitly represents each task as a contin-
uous latent vector and models its probabilistic belief within the highly expressive
IP framework. Unfortunately, meta-training in IPML is computationally challeng-
ing due to its need to perform intractable exact IP inference in task adaptation. To
resolve this, we propose a novel expectation-maximization algorithm based on the
stochastic gradient Hamiltonian Monte Carlo sampling method to perform meta-
training. Our delicate design of the neural network architecture for meta-training
in IPML allows competitive meta-learning performance to be achieved. Unlike
existing works, IPML offers the benefits of being amenable to the characteriza-
tion of a principled distance measure between tasks using the maximum mean
discrepancy, active task selection without needing the assumption of known task
contexts, and synthetic task generation by modeling task-dependent input distribu-
tions. Empirical evaluation on benchmark datasets shows that IPML outperforms
existing Bayesian meta-learning algorithms. We have also empirically demon-
strated on an e-commerce company’s real-world dataset that IPML outperforms
the baselines and identifies “outlier” tasks which can potentially degrade meta-
testing performance.

1 INTRODUCTION

Few-shot learning (also known as meta-learning) is a defining characteristic of human intelligence.
Its goal is to leverage the experiences from previous tasks to form a model (represented by meta-
parameters) that can rapidly adapt to a new task using only a limited quantity of its training data.
A number of meta-learning algorithms (Finn et al., 2018; Jerfel et al., 2019; Ravi & Beatson, 2018;
Rusu et al., 2019; Yoon et al., 2018) have recently adopted a probabilistic perspective to characterize
the uncertainty in the predictions via a Bayesian treatment of the meta-parameters. Though they can
consequently represent different tasks with different values of meta-parameters, it is not clear how
or whether they are naturally amenable to (a) the characterization of a principled similarity/distance
measure between tasks (e.g., for identifying outlier tasks that can potentially hurt training for the new
task, procuring the most valuable/similar tasks/datasets to the new task, detecting task distribution
shift, among others), (b) active task selection given a limited budget of expensive task queries (see
Appendix A.2.3 for an example of a real-world use case), and (c) synthetic task/dataset generation
in privacy-aware applications without revealing the real data or for augmenting a limited number of
previous tasks to improve generalization performance.

To tackle the above challenge, this paper presents a novel implicit process-based meta-learning

(IPML) algorithm (Sec. 3) that, in contrast to existing works, explicitly represents each task as a
continuous latent vector and models its probabilistic belief within the highly expressive IP1 frame-
work (Sec. 2). Unfortunately, meta-training in IPML is computationally challenging due to its need
to perform intractable exact IP inference in task adaptation.2 To resolve this, we propose a novel

1An IP (Ma et al., 2019) is a stochastic process such that every finite collection of random variables has an
implicitly defined joint prior distribution. Some typical examples of IP include Gaussian processes, Bayesian
neural networks, neural processes (Garnelo et al., 2018), among others. An IP is formally defined in Def. 1.

2The work of Ma et al. (2019) uses the well-studied Gaussian process as the variational family to perform
variational inference in general applications of IP, which sacrifices the flexibility and expressivity of IP by
constraining the distributions of the function outputs to be Gaussian. Such a straightforward application of IP
to meta-learning has not yielded satisfactory results in our experiments (see Appendix A.4).

1

Under review as a conference paper at ICLR 2021

expectation-maximization (EM) algorithm to perform meta-training (Sec. 3.1): In the E step, we per-
form task adaptation using the stochastic gradient Hamiltonian Monte Carlo sampling method (Chen
et al., 2014) to draw samples from IP posterior beliefs for all meta-training tasks, which eliminates
the need to learn a latent encoder (Garnelo et al., 2018). In the M step, we optimize the meta-learning
objective w.r.t. the meta-parameters using these samples. Our delicate design of the neural network
architecture for meta-training in IPML allows competitive meta-learning performance to be achieved
(Sec. 3.2). Our IPML algorithm offers the benefits of being amenable to (a) the characterization of a
principled distance measure between tasks using maximum mean discrepancy (Gretton et al., 2012),
(b) active task selection without needing the assumption of known task contexts in (Kaddour et al.,
2020), and (c) synthetic task generation by modeling task-dependent input distributions (Sec. 3.3).

2 BACKGROUND AND NOTATIONS

For simplicity, the inputs (outputs) for all tasks are assumed to belong to the same input (output)
space. Consider meta-learning on probabilistic regression tasks:3 Each task is generated from a task
distribution and associated with a dataset (X ,yX) where the set X and the vector yX , (yx)>x2X

denote, respectively, the input vectors and the corresponding noisy outputs
yx , f(x) + ✏(x) (1)

which are outputs of an unknown underlying function f corrupted by an i.i.d. Gaussian noise ✏(x) ⇠
N (0,�2) with variance �2. Let f be distributed by an implicit process (IP), as follows:
Definition 1 (Implicit process for meta-learning). Let the collection of random variables f(·) denote

an IP parameterized by meta-parameters ✓, that is, every finite collection {f(x)}x2X has a joint

prior distribution p(fX , (f(x))>x2X
) implicitly defined by the following generative model:

z ⇠ p(z), f(x) , g✓(x, z) (2)
for all x 2 X where z is a latent task vector to be explained below and generator g✓ can be an

arbitrary model (e.g., deep neural network) parameterized by meta-parameters ✓.

Definition 1 defines valid stochastic processes if z is finite dimensional (Ma et al., 2019). Though, in
reality, a task may follow an unknown distribution, we assume the existence of an unknown function
that maps each task to a latent task vector z satisfying the desired known distribution p(z), like
in (Kaddour et al., 2020).4 Using p(yX |fX) = N (fX ,�2I) (1) and the IP prior belief p(fX) from
Def. 1, we can derive the marginal likelihood p(yX) by marginalizing out fX .
Remark 1. Two sources of uncertainty exist in p(yX): Aleatoric uncertainty in p(yX |fX) reflects
the noise (i.e., modeled in (1)) inherent in the dataset, while epistemic uncertainty in the IP prior
belief p(fX) reflects the model uncertainty arising from the latent task prior belief p(z) in (2).5

Let the sets T and T⇤ denote the meta-training and meta-testing tasks, respectively. Following the
convention in (Finn et al., 2018; Gordon et al., 2019; Ravi & Beatson, 2018; Yoon et al., 2018),
for each meta-training task t 2 T , we consider a support-query (or train-test) split of its dataset
(Xt,yXt) into the support set (or training dataset) (X s

t ,yX
s
t
) and query set (or test/evaluation

dataset) (X q
t ,yX

q
t
) where Xt = X

s
t [X

q
t and X

s
t \ X

q
t = ;. Specifically, for a N -way K-shot

classification problem, the support set has K examples per class and N classes in total.

Meta-learning can be defined as an optimization problem (Finn et al., 2017; 2018) and its goal is to
learn meta-parameters ✓ that maximize the following objective defined over all meta-training tasks:

Jmeta , log
Y

t2T

p
�
yX

q
t
|yX

s
t

�
=

X

t2T

log

Z
p
�
yX

q
t
|fX q

t

�
p
�
fX q

t
|yX

s
t

�
dfX q

t
. (3)

Task adaptation p(fX q
t
|yX

s
t
) is performed via IP inference after observing the support set:

p
�
fX q

t
|yX

s
t

�
=

Z

z
p
�
fX q

t
|z
�
p
�
z|yX

s
t

�
dz . (4)

3We defer the discussion of meta-learning on probabilistic classification tasks using the robust-max likeli-
hood (Hernández-Lobato et al., 2011) to Appendix A.1.

4p(z) is often assumed to be a simple distribution like multivariate Gaussian N (0, I) (Garnelo et al., 2018).
5Our work here considers a point estimate of meta-parameters ✓ instead of a Bayesian treatment of ✓ (Finn

et al., 2018; Yoon et al., 2018). This allows us to interpret the epistemic uncertainty in p(fX) via p(z) directly.

2

Under review as a conference paper at ICLR 2021

The objective Jmeta (3) is the “test” likelihood on the query set, which reflects the idea of “learning
to learn” by assessing the effectiveness of “learning on the support set” through the query set. An
alternative interpretation views p(fX q

t
|yX

s
t
) as an “informative prior” after observing the support set.

The objective Jmeta (3) is also known as the Bayesian held-out likelihood (Gordon et al., 2019). In
a meta-testing task, adaptation is also performed via IP inference after observing its support set and
evaluated on its query set. Similar to GP or any stochastic process, the input vectors of the dataset
are assumed to be known/fixed beforehand. We will relax this assumption by allowing them to be
unknown when our IPML algorithm is exploited for synthetic task generation (Sec. 3.3).

3 IMPLICIT PROCESS-BASED META-LEARNING (IPML)

3.1 EXPECTATION MAXIMIZATION (EM) ALGORITHM FOR IPML

Recall that task adaptation requires evaluating p(fX q
t
|yX

s
t
) (4). From Def. 1, if generator g✓ (2)

can be an arbitrary model (e.g., deep neural network), then p(fX q
t
|yX

s
t
) and p(fX q

t
) cannot be eval-

uated in closed form and have to be approximated by samples. Inspired by the Monte Carlo EM
algorithm (Wei & Tanner, 1990) which utilizes posterior samples to obtain a maximum likelihood
estimate of some hyperparameters, we propose an EM algorithm for IPML: The E step uses the
stochastic gradient Hamiltonian Monte Carlo (SGHMC) sampling method to draw samples from
p(fX q

t
|yX

s
t
) (4), while the M step maximizes the meta-learning objective Jmeta (3) w.r.t. meta-

parameters ✓:

Expectation (E) step. Note that since fX q
t
= (g✓(x, z))>x2X

q
t

(2), no uncertainty exists in p(fX q
t
|z)

in (4). So, p(fX q
t
|yX

s
t
) can be evaluated using the same generator g✓ (2) and the latent task posterior

belief p(z|yX
s
t
), as follows:

Remark 2. Drawing samples from p(fX q
t
|yX

s
t
) is thus equivalent to first drawing samples of z from

p(z|yX
s
t
) and then passing them as inputs to generator g✓ to obtain samples of fX q

t
. Hence, given a

task t, adaptation p(fX q
t
|yX

s
t
) (4) essentially reduces to a task identification problem by performing

IP inference to obtain the latent task posterior belief p(z|yX
s
t
). This is a direct consequence of

epistemic uncertainty arising from p(z|yX
s
t
) and p(z) (Remark 1).

In general, p(z|yX
s
t
) also cannot be evaluated in closed form. Instead of using variational infer-

ence (VI) and approximating p(z|yX
s
t
) with a potentially restrictive variational distribution (Gar-

nelo et al., 2018; Kaddour et al., 2020; Ma et al., 2019), we draw samples from p(z|yX
s
t
) us-

ing SGHMC (Chen et al., 2014). SGHMC introduces an auxiliary random vector r and sam-
ples from a joint distribution p(z, r|yX

s
t
) following the Hamiltonian dynamics (Brooks et al.,

2011; Neal, 1993): p(z, r|yX
s
t
) / exp(�U(z) � 0.5r>M�1r) where the negative log-probability

U(z) , � log p(z|yX
s
t
) resembles the potential energy and r resembles the momentum. SGHMC

updates z and r, as follows:

�z = ↵M�1r, �r = �↵rzU(z)� ↵CM�1r+N (0, 2↵(C�B))

where ↵, C, M, and B are the step size, friction term, mass matrix, and Fisher informa-
tion matrix, respectively.6 Note that rzU(z) = �rz log p(z|yX

s
t
) = �rz log p(z,yX

s
t
) =

�rz[log p(yX
s
t
|fX s

t
= (g✓(x, z))>x2X

s
t
) + log p(z)] can be evaluated tractably.

Maximization (M) step. We optimize Jmeta (3) w.r.t. ✓ using samples of z. The original objective
Jmeta =

P
t2T

log(Ep(z|yXs
t
)[p(yX

q
t
|fX q

t
= (g✓(x, z))>x2X

q
t
)]) is not amenable to stochastic opti-

mization with data minibatches, which is usually not an issue in a few-shot learning setting. When a
huge number of data points and samples of z are considered, we can resort to optimizing the lower
bound Js-meta of Jmeta by applying the Jensen’s inequality:

Jmeta � Js-meta ,
P

t2T
Ep(fXq

t
|yXs

t
)

⇥
log p(yX

q
t
|fX q

t
)
⇤
=

P
t2T

Ep(z|yXs
t
)

⇥
log p(yX

q
t
|fX q

t
)
⇤
.

6The sampler hyperparameters ↵, C, M, and B are set according to the auto-tuning method of Springenberg
et al. (2016) which has been verified to work well in our experiments; more details are given in Appendix A.2.1.

3

Under review as a conference paper at ICLR 2021

𝐲

𝐟

𝐳𝜒
𝑔𝜃 𝜃

[𝜃 ⊙ 𝐳]

ω
ℎ

𝐱

𝐳
𝜓

𝜙
𝐳 ω⊕

𝐱

𝐳 ⊕

(a) (b) (c) (d)

⊕

⊙

observed variable

unobserved variable

known constant

concatenation

pointwise product
𝐱

𝐟

𝜒

Figure 1: (a) Graphical model corresponding to IPML. (b) DNN implementation of generator g✓
where ✓ , (✓a, ✓b) and ✓a can be convolutions to obtain high-level representations of the input
vector, while ✓b is the last DNN layer’s parameters which are masked by z during the forward
passes. (c) Graphical model corresponding to input generation by X-Net. (d) CVAE implementation
of X-Net (i.e., decoder neural network with parameters �).

3.2 ARCHITECTURE DESIGN FOR META-TRAINING

Our generator g✓ is implemented using a deep neural network (DNN) parameterized by meta-
parameters ✓. Under this setup, we have empirically observed that the design of the coupling of
z with the DNN g✓(x, ·) is crucial to achieving competitive performance of our IPML algorithm.
A naive design by concatenating z with x (or higher-level abstractions of x) as a contextual input
during forward passes has not worked well as the resulting gradients w.r.t. z may not have provided
enough guidance for SGHMC to learn a sufficiently useful representation of z in meta-training.

To this end, inspired by the attention mechanism (Vaswani et al., 2017) and dropout method (Sri-
vastava et al., 2014), we introduce a design of the coupling by applying z as a mask to the last DNN
layer’s parameters: The last DNN layer’s parameters are first masked by z (i.e., point-wise prod-
uct with z), as illustrated in Figs. 1a and 1b. Different tasks can now be distinguished by different
masks, hence resembling different attentions on the last DNN layer’s connections during forward
propagation. We adopt soft masks7 (i.e., continuous values) instead of hard masks (i.e., either 0 or
1). Such a design of the coupling is empirically demonstrated to be effective in our experiments
(Appendix A.4.3).

3.3 ARCHITECTURE DESIGN FOR SYNTHETIC TASK GENERATION

Recall the assumption of known/fixed input vectors in Xt in the last paragraph of Sec. 2,8 which we
will have to relax here. Synthetic task generation can be performed by the following procedure if
x is task-independent (e.g., p(x, z) = p(x)p(z)): After meta-training is completed (Sec. 2), draw
a sample of latent task vector z ⇠ p(z), draw samples of x ⇠ p(x) to form Xt, and then generate
noisy outputs yXt = (g✓(x, z) + ✏(x))>x2Xt

to obtain the dataset (Xt,yXt) for task t.

When x is task-dependent (e.g., for image classifications of different objects, p(x, z) 6= p(x)p(z)),
not modeling p(x|z) limits the ability to generate t-dependent Xt. To resolve this, our IPML al-
gorithm includes an X-generative network (X-Net): x , h�(z,!) that learns to generate an input
vector x given samples of the latent task vector z and random vector ! ⇠ p(!) = N (0, I) where
! models the diversity of the input distribution given a fixed task represented by the sample of z.
There are several options to implement X-Net: Note that during the training of X-Net, both Xt

and the samples of z ⇠ p(z|yX
s
t
) for all meta-training task t 2 T are available. So, generative

models such as the conditional variational autoencoder (CVAE) (Sohn et al., 2015) or conditional
generative adversarial networks (Mirza & Osindero, 2014) are suitable for X-Net as they can utilize
z as the contextual information. Our work here uses (the decoder of) CVAE to implement X-Net.
Figs. 1c and 1d illustrate such a design. We have empirically observed that a simple concatenation
with z suffices here as our delicate architecture design for meta-training (Sec. 3.2) can yield a useful
representation of z for training X-Net well. Further details and a method to ensure balanced data
generation are given in Appendix A.5. The training objective for synthetic task generation is the

7The latent task prior belief p(z) is thus assumed to be a multivariate Gaussian N (1, I).
8This assumption is reasonable for meta-training since only p(yX) (and not p(x)) needs to be modeled.

4

Under review as a conference paper at ICLR 2021

empirical lower bound (Sohn et al., 2015) of VI on p(!|x, z):

JX , P
t2T

Ez⇠p(z|yXs
t
)

h
|Xt|

�1
P

x2Xt

�
Eq (!|x,z)[log p�(x|z,!)]�DKL[q (!|x, z)kp(!)]

� i

where � and are, respectively, the parameters of X-Net (decoder neural network) and the encoder
neural network, and DKL denotes the KL distance. In the training of X-Net, we sample one z per
update. We also sample one ! per update to train with reparameterization tricks. Algorithms 1 and 2
describe meta-training (with training of X-Net) and synthetic task generation, respectively.

Algorithm 1: IPML: Meta-Training
while not converged do

Sample task t from T

E step : Sample {z1, . . . , zn} with SGHMC
M step : Sample z from {z1, . . . , zn}
M step : ✓ ✓ + ⌘r✓Jmeta
Update X-Net with z and Xt :
� �+ ⌘r�JX , + ⌘r JX

return ✓, �,

Algorithm 2: Synthetic Task Generation
Sample z ⇠ p(z)
Initialize synthetic task t and Xt = ;
for i = 1, . . . , final size of Xt do

Sample ! ⇠ N (0, I)
Compute x = h�(z,!)
Compute yx = g✓(x, z) + ✏(x)
(Xt,yXt) (Xt [{x},yXt[{x})

return (Xt,yXt) for task t

4 EXPERIMENTS AND DISCUSSION

Benchmark datasets: sinusoid regression and few-shot image classification. We first empirically
evaluate the performance of our IPML algorithm against that of several Bayesian meta-learning
baselines like the neural process (NP) (Garnelo et al., 2018), Bayesian model-agnostic meta-

learning (BMAML) (Yoon et al., 2018), PLATIPUS (Finn et al., 2018), and amortized Bayesian

meta-learning (ABML) (Ravi & Beatson, 2018) on benchmark meta-learning datasets. For few-
shot image classification, we also empirically compare IPML with a strong baseline: prototypical

network (PN) (Snell et al., 2017). We run experiments on three datasets: sinusoid, Omniglot (Lake
et al., 2011), and mini-ImageNet (Ravi & Larochelle, 2017). Sinusoid is a regression task of sine
waves with uniformly sampled amplitude in [0.1, 5.0], phase in [0,⇡], and input x in [�5, 5]. The
generator of IPML and the baseline regressors are neural networks with 2 hidden layers of size 40
with ReLU nonlinearities. The Omniglot dataset consists of 20 instances of 1623 characters from 50
different alphabets. The mini-ImageNet dataset involves 64 training classes, 12 validation classes,
and 24 test classes. For Omniglot and mini-ImageNet, our implementation and baselines all use the
same data pre-processing, same train-test split, and same data augmentation as that in (Finn et al.,
2017). The generator of IPML and the baseline classifiers are convolutional neural networks with 4
modules of 3⇥3 convolutions and 64 filters, followed by batch normalization, ReLU nonlinearities,
and strided convolutions (Omniglot) or 2 ⇥ 2 max-pooling (mini-ImageNet). More details of the
experimental settings can be found in Appendix A.2.2.

For sinusoid regression (Table 1), IPML outperforms MAML and BMAML by a fair margin. For
Omniglot (Table 2), IPML is competitive with MAML and PN. For mini-ImageNet (Table 3), IPML
outperforms MAML and all tested Bayesian meta-learning algorithms,9 while being competitive
with PN. PN achieves a higher classification accuracy for 1-shot 20-way Omniglot and 5-shot 5-way
mini-ImageNet because PN utilizes more information from the extra classes during training (Snell
et al., 2017). Specifically, though meta-testing involves N -way classification for all tested algo-
rithms, the training of PN requires more than N classes, that is, 60-way classification which is also
the setting adopted in (Snell et al., 2017). As a result, since PN utilizes more information from
the extra classes during training, it is reasonable to expect that PN achieves a higher classification
accuracy at times. Overall, IPML is effective for benchmark datasets.

For both sinusoid regression (Table 1) and Omniglot (Table 2), NP performs unsatisfactorily as
compared to IPML, likely because (a) it performs amortized variational inference of z through a
heavily parameterized encoder which may introduce optimization difficulties and overfitting during
meta-training, and (b) the encoder of NP takes in the simple concatenation of (x, yx) and thus does
not explicitly capture the x! yx relationship in the support set.10

9Some of the results are taken from (Finn et al., 2018; Nguyen et al., 2020; Yoon et al., 2018). The 5-shot
5-way results for PLATIPUS and ABML are missing because there are no publicly available implementations.

10An ablation study of the limitations of NP can be found in Appendix A.8.

5

Under review as a conference paper at ICLR 2021

Table 1: Mean square error (MSE) on few-shot
sinusoid regression.

Sinusoid 5-shot Sinusoid 10-shot
NP 0.460 0.264

MAML 0.712 0.287
BMAML 0.409 0.200

IPML(Ours) 0.373 0.123

Table 2: Few-shot classification accuracy (%) on
held-out Omniglot characters.

Omniglot
1-shot 5-way

Omniglot
1-shot 20-way

NP 95.9 55.3
MAML 98.7 92.5

PN 98.8 96.0

IPML(Ours) 98.8 94.0

Table 3: Few-shot classification accuracy
(%) on mini-Imagenet test set.

mini-ImageNet
1-shot 5-way

mini-ImageNet
5-shot 5-way

MAML 48.6 65.9
PN 49.4 68.2

PLATIPUS 50.1 -
BMAML 49.1 64.2
ABML 45.0 -

IPML(Ours) 50.5 67.6

(a) (b)

Figure 2: Results of active task selection on (a) 5-shot
sinusoid and (b) 1-shot 5-way mini-ImageNet.

Active task selection. We can evaluate the effectiveness of the uncertainty measure arising from la-
tent task posterior belief p(z|yX

s
t
) by performing active task selection. Unlike previous works (Yoon

et al., 2018; Finn et al., 2018) that can only perform active learning by querying data points, IPML
can perform active learning by querying tasks and does not need the assumption of known task
contexts in (Kaddour et al., 2020). In every iteration, a set of tasks are proposed with only the sup-
port set (X s

t ,yX
s
t
) given; in image classification, it is usually one-shot. IPML will select among

them the task with the maximum variance in p(z|yX
s
t
) (with samples from the E step/SGHMC):

argmaxt Var(z|yX
s
t
), and request for its query set to perform meta-training. This corresponds

to a variance-based active task selection criterion. We test on both sinusoid regression and mini-
ImageNet classification. Fig. 2 shows that the performance of IPML with active task selection
improves over that of both MAML or IPML without active task selection, that is, it reaches a
given MSE/accuracy with less training tasks. This shows that the uncertainty measure arising from
p(z|yX

s
t
) can be exploited to benefit meta-training.

Measuring distance between tasks using latent task representation. A most interesting question
yet to be answered is the following: Does IPML learn a useful latent task representation? IPML
learns to model the task through z. If IPML learns the correct representation, then it can reflect
patterns of task distribution in the latent space. While a solid criterion for assessing the correctness
of learned latent task representation is hard to define, we can resort to an oracle (e.g., human expert
with prior knowledge in designing the tasks). Our visualization of the latent task representation
and quantitative evaluation of distance measure between tasks using maximum mean discrepancy

(MMD) (Gretton et al., 2012) provide ways to assess the correctness of the learned task representa-
tion. We denote the set of samples from p(z|yX

s
t
) as Zt. The MMD between tasks t1 and t2 can be

calculated using

MMD[H, t1, t2] , sup{2H

⇣
|Zt1 |

�1
P

z2Zt1
{(z)� |Zt2 |

�1
P

z2Zt2
{(z)

⌘

where H is a unit ball in the reproducing kernel Hilbert space with a radial basis function kernel.

We conduct experiments with the following 5-way 1-shot settings. Setting A: For subsampled
Omniglot, we applied one rotation out of 4 possibilities (0,⇡/2,⇡, 3⇡/2) uniformly across all the
input images for each sampled task.11

Setting B: For subsampled mini-ImageNet, a random artistic
filter (normal, brighten, or darken) is applied for each sampled task. Setting C: For subsampled
mini-ImageNet, a random artistic filter (3 different types of hue) is applied for each sampled task.
Setting D: For subsampled mini-ImageNet, a random zooming (no zooming, zooming 3 times, or
zooming 10 times) is applied for each sampled task. Setting E: On subsampled mini-ImageNet,
a random artistic filter (normal, low contrast, or high contrast) is applied for each sampled task.
Setting A has 4 types of tasks while settings B to E result in 3 types of tasks.

11In the previous experiment, the Omniglot dataset is augmented with rotations, but is random across the
classes in a single task.

6

Under review as a conference paper at ICLR 2021

0 π/2 π 3π/2 normal brightness -0.5
brightness +0.5

hue1 (red) hue2 (green)
hue3 (blue)

normal 3 X zoom-in
10 X zoom-in

normal contrast=1/10
contrast=100

(A) (B) (C) (D) (E)

Figure 3: Visualization of latent task embeddings from settings A to E.

Table 4: Values of MMD metric between 4 types of tasks for
Omniglot (setting A). Larger value means larger dissimilarity.

Rotations 0 ⇡/2 ⇡ 3⇡/2
0 0 1.166 0.594 1.134
⇡/2 1.166 0 0.913 0.596
⇡ 0.594 0.913 0 0.917

3⇡/2 1.134 0.596 0.917 0

Table 5: Results of meta-testing
for training with real and generated
tasks.

Train on Accuracy (%)
real 73.83

generated 78.33
real + generated 88.16

For each setting mentioned above, we first train our models in IPML to converge, and then sample
tasks from their latent task posterior beliefs (i.e., one sample of z per task). Finally, we visual-
ize their latent task embeddings in the 2D space using TSNE (van der Maaten & Hinton, 2008).
Furthermore, for setting A, we evaluate the distance measure between tasks using the well-known
MMD metric with radial basis function kernels on the z samples. It can be observed from Fig. 3
and Table 4 that IPML successfully distinguishes 4 types of rotations for Omniglot. Both Fig. 3 and
Table 4 contemporaneously show that flipping upside down (i.e., either right half of the embedding
0 � ⇡ or left half of the embedding ⇡/2 � 3⇡/2) are reckoned to be closer tasks compared with
rotation of ⇡/2, thus revealing that our visualization and evaluation of distance measure between
tasks are in accordance. From Fig. 3B to Fig. 3D, IPML successfully distinguishes different types of
transformations on the tasks while revealing interesting facts: for example, tasks of high brightness
are more isolated from that of low or normal brightness. Fig. 3E shows that tasks of low contrast
are more distinct from that of normal or high contrast. The values of MMD metric for settings B
to E and more details of the experiments are provided in Appendix A.6. On the overall, both the
visualization and evaluation of distance measure between tasks reveal that IPML successfully learns
useful latent task representations and even provides interesting insights.

Synthetic task generation for Omniglot. We assess the usefulness of latent task representation
z by performing synthetic task generation. The training tasks we consider are three types of sub-
sampled binary classifications: classification of characters A vs. B, B vs. C, and C vs. A, as in
Fig. 4a. During meta-learning, we train a X-Net concurrently to learn to generate task-related input
images (Sec. 3.3). The CVAE implementation of X-Net contains a decoder neural network with 3

Task
type 3:

Task
type 2:

Task
type 1:

(a) (b) (c)
Figure 4: (a) TSNE visualization of (samples of) 3 types of binary classification tasks; images of
black/white background are black/white samples (yx = 1/yx = 0). (b) Visualization of latent em-
bedding of real tasks in (normalized) z space [�2, 2]2. (c) Sampled generated task data by walking
through the (normalized) z space [�2, 2]2; note that the inversion of color is only for visualization
to distinguish black and white samples. In training, NO images are inverted.

7

Under review as a conference paper at ICLR 2021

3 Personal nursing and Cosmetics

9 Antique collection

19 Domestic and Daily-use

21 Cellular

23 Costume and accessories

36 Network equipment

39 Watches and glasses

44 In-game currencies

46 Gaming accounts

47 Gaming items

(a) (b)

Figure 5: (a) TSNE visualization of latent task embedding of
10 meta-testing categories and (b) their analysis (see main text).
Legend shows IDs and names of categories.

Table 6: Averaged meta-testing
performance on 10 meta-testing
categories.

Accuracy (%) F1
IPML 84.5 70.5

Multi-task 84.1 60.5

Table 7: Averaged meta-testing
performance on 5 desired cate-
gories (IDs 19, 21, 23, 36, 44).

Accuracy (%) F1
Setting A 87.4 75.8

Setting B 86.4 74.4

hidden layers of size [128, 128, 256] and ReLU nonlinearity, and a symmetric design of the encoder.
After meta-training is completed, we continue to train the X-Net to converge. In this experiment,
the dimension of z is set as 2, which further allows walking through such a latent space/embedding
to visualize how the generated tasks map to their latent representations. Fig. 4b shows the latent
embedding of real tasks. Fig. 4c shows the sampled synthetic tasks by walking through the latent
space. It can be observed that X-Net successfully captures the task-dependent input distributions
and can generate high-quality data of task type 1, 2, and 3 when sampled from their corresponding
latent clusters (see samples of task type 1, 2, and 3 in the colored bounding boxes in Fig. 4c).

We further evaluate the quality of generated tasks by training on it. We hold out half of the images
for each character during meta-training to construct the meta-testing tasks. The results are presented
in Table 5. When training on both real and generated tasks, we first train on the generated tasks to
converge and then train on the real tasks for another 30 iterations. It can be observed that compared to
only using real tasks, a higher accuracy is achieved with training merely using generated tasks. When
training on both real and generated tasks, a huge boost in accuracy is observed. We conjecture that
due to their diversity, generated tasks (i.e., sometimes containing more ambiguous tasks) alleviate
overfitting and provide a promising direction on meta-task augmentation.

Real-world risk detection. We perform experiments on a real-world risk detection dataset provided
by an anonymous e-commerce company. The task is to classify whether an item in the online shop
has risks (e.g., fraud, pornography, contraband). Such risks appear in different forms and in different
categories (of items). It is hard to detect risks in different categories by training models separately
for each category because some categories have only very limited amounts of black samples (i.e.,
< 50). The similarities of the detected risks in different categories, if discovered, can help improve
the performance. Meta-learning is thus a suitable algorithm for its ability to perform (a) detection
of risks across different categories of items and (b) adaptation to new categories. The input x of the
dataset is the text (title and descriptions) embedding obtained from self-supervised learning, while
its label is a binary variable indicating whether it contains risks (i.e., yx = 1 for black samples and
yx = 0 for white samples). The data are separated by categories of items to yield 47 categories in
total. Initially, we hold out 10 categories for meta-testing12 while the rest are used for meta-training.

Table 6 shows results comparing the performance of IPML vs. a multi-task learning baseline.13 It
can be observed that IPML outperforms multi-task learning, which indicates its stronger ability to
generalize to unseen categories. Fig. 5 visualizes the latent task embedding of the 10 meta-testing
categories for analysis. IPML learns useful latent task representations: For example, from Fig. 5a,
gaming-related categories with IDs 46 and 47 are mapped closely in the latent task space/embedding.

The individual meta-testing performance on the 10 meta-testing categories, which are given in Ap-
pendix A.3, can be further examined: For the five categories with IDs 19, 21, 23, 36, and 44 covered
by the shaded light green zone in Fig. 5b, IPML outperforms multi-task learning by a large margin.
They are mapped to the center of the latent task space (Fig. 5b), which may imply that IPML’s adap-
tations to them can largely build on previous experiences of the meta-training categories and IPML’s
exploitation of such similarities allows their performance to improve over multi-task learning. For

12Their category names and IDs are given in Fig. 5.
13When testing on an unseen category, multi-task learning performs adaptation by randomly initializing its

untied parameters for retraining on the few-shot support data.

8

Under review as a conference paper at ICLR 2021

the three categories with IDs 3, 9, and 39 covered by the shaded light orange zone, IPML does not
have a performance advantage over multi-task learning. For the two categories with IDs 46 and 47
covered by the shaded light pink zone, both IPML and multi-task learning perform unsatisfactorily.
As a matter of fact, for IPML, the categories with unsatisfactory performance (i.e., either covered
by the shaded light orange or pink zone) are all mapped to be some distance away from the center,
which indicates that they are likely considered by IPML as “outlier”/dissimilar tasks.

We further compare meta-learning on (A) the same setting as before by holding out the 10 meta-
testing categories vs. (B) training on all categories in setting A as well as the dissimilar ones with
IDs 3, 9, 39, 46, and 47. Table 7 shows results on the desired categories with IDs 19, 21, 23, 36,
and 44. It can be observed that when a meta-learning model is trained to perform well (during meta-
testing) on the desired categories/tasks, training alongside with dissimilar ones can compromise its
performance. More details of the experimental settings and data preparation, experimental results,
and analysis are given in Appendix A.3. We have also empirically compared the time efficiency of
IPML against that of several meta-learning baselines and reported the results in Appendix A.7.

5 RELATED WORK

A number of meta-learning algorithms (Finn et al., 2018; Ravi & Beatson, 2018; Yoon et al., 2018)
have proposed a Bayesian extension of the MAML framework (Finn et al., 2017). Their difference
with IPML is that they model the uncertainty in the predictions with a set of particles (Yoon et al.,
2018) or a variational distribution (Finn et al., 2018; Ravi & Beatson, 2018), which does not allow
latent task modeling. The work of Rusu et al. (2019) introduces a generative model that decodes
latent vectors into the meta-parameters, but does not scale well in the dimension of meta-parameters.
In comparison, IPML explicitly represents each task as a latent continuous vector and models its
probabilistic belief and is hence scalable in the dimension of meta-parameters. Moreover, MAML-
based algorithms usually require evaluating computationally-intensive second-order derivatives of
the meta-parameters during meta-training because they approximate the Bayesian inference through
an inner loop of gradient descent. Although this issue can be addressed by methods such as first-
order approximations (e.g., first-order MAML (Finn et al., 2017), Reptile (Nichol et al., 2018)) or
implicit MAML (Rajeswaran et al., 2019) using implicit gradient, these works are not Bayesian. In
contrast, our IPML algorithm naturally utilizes Bayes’ rule to perform sampling during Bayesian
inference and does not need second-order derivatives.

The work of Kaddour et al. (2020) uses latent information to perform active task selection, but
assumes known task-descriptor (task context) which is usually unknown. The work of Garnelo et al.
(2018) introduces the first use of stochastic processes (i.e., neural processes) in meta-learning and
learns a heavily parameterized encoder to encode a dataset into its latent representation, which might
introduce optimization difficulties and overfitting and can only output Gaussian posterior beliefs. In
comparison, our IPML algorithm is the first to consider SGHMC in task adaptation/inference of
meta-learning, which can capture a non-Gaussian posterior belief to achieve a better performance
(Appendix A.4). Our IPML algorithm is also the first to explicitly model task-dependent input
distributions, which is lacking in the literature. Such a modeling enables synthetic task generation
of complex image classification tasks for the first time.

6 CONCLUSION

This paper describes a novel IPML algorithm that, in contrast to existing works, explicitly repre-
sents each task as a continuous latent vector and models its probabilistic belief within the highly
expressive IP framework. Unlike existing works, IPML offers the benefits of being amenable to
(a) the characterization of a principled distance measure between tasks using MMD, (b) active task
selection without needing the assumption of known task contexts in (Kaddour et al., 2020), and (c)
synthetic task generation of complicated image classifications via modeling of task-dependent input
distributions using our X-Net. Empirical evaluation on benchmark datasets shows that IPML out-
performs existing Bayesian meta-learning algorithms. We have also empirically demonstrated on an
anonymous e-commerce company’s real-world dataset that IPML outperforms the multi-task learn-
ing baseline and identifies “outlier”/dissimilar tasks which can degrade meta-testing performance.

9

Under review as a conference paper at ICLR 2021

REFERENCES

S. Brooks, A. Gelman, G. Jones, and X. Meng. Handbook of Markov chain Monte Carlo. CRC
Press, 2011.

T. Chen, E. Fox, and C. Guestrin. Stochastic gradient Hamiltonian monte carlo. In Proc. ICML, pp.
1683–1691, 2014.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep net-
works. In Proc. ICML, pp. 1126–1135, 2017.

C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-learning. In Proc. NeurIPS, pp.
9516–9527, 2018.

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. Eslami, and Y. W. Teh. Neural
processes. arXiv:1807.01622, 2018.

J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. E. Turner. Meta-learning probabilistic infer-
ence for prediction. In Proc. ICLR, 2019.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test.
Journal of Machine Learning Research, 13(25):723–773, 2012.

D. Hernández-Lobato, J. M. Hernández-Lobato, and P. Dupont. Robust multi-class Gaussian process
classification. In Proc. NeurIPS, pp. 280–288, 2011.

G. Jerfel, E. Grant, T. Griffiths, and K. A. Heller. Reconciling meta-learning and continual learning
with online mixtures of tasks. In Proc. NeurIPS, pp. 9119–9130, 2019.

J. Kaddour, S. Sæmundsson, and M. P. Deisenroth. Probabilistic active meta-learning. In Proc.

NeurIPS, 2020.

B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learning of simple visual concepts.
In Proc. CogSci, 2011.

C. Ma, Y. Li, and J. M. Hernández-Lobato. Variational implicit processes. In Proc. ICML, pp.
4222–4233, 2019.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv:1411.1784, 2014.

R. M. Neal. Bayesian learning via stochastic dynamics. In Proc. NeurIPS, pp. 475–482, 1993.

C. Nguyen, T. Do, and G. Carneiro. Uncertainty in model-agnostic meta-learning using variational
inference. In Proc. WACV, pp. 3090–3100, 2020.

A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms. arXiv:1803.02999,
2018.

A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradients. In
Proc. NeurIPS, pp. 113–124, 2019.

S. Ravi and A. Beatson. Amortized Bayesian meta-learning. In Proc. ICLR, 2018.

S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In Proc. ICLR, 2017.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. Meta-
learning with latent embedding optimization. In Proc. ICLR, 2019.

J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In Proc. NeurIPS,
pp. 4077–4087, 2017.

K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. In Proc. NeurIPS, pp. 3483–3491, 2015.

J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust Bayesian
neural networks. In Proc. NeurIPS, pp. 4134–4142, 2016.

10

Under review as a conference paper at ICLR 2021

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):
1929–1958, 2014.

L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning

Research, 9(Nov):2579–2605, 2008.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Proc. NeurIPS, pp. 5998–6008, 2017.

G. C. Wei and M. A. Tanner. A Monte Carlo implementation of the EM algorithm and the poor
man’s data augmentation algorithms. Journal of the American Statistical Association, 85(411):
699–704, 1990.

J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn. Bayesian model-agnostic meta-learning.
In Proc. NeurIPS, pp. 7332–7342, 2018.

11

	Introduction
	Background and Notations
	Implicit Process-based Meta-Learning (IPML)
	Expectation Maximization (EM) Algorithm for IPML
	Architecture Design for Meta-Training
	Architecture Design for Synthetic Task Generation

	Experiments and Discussion
	Related Work
	Conclusion
	Appendix: Additional Details, Experimental Settings, Results, and Analysis
	Classification with Robust-Max Likelihood
	Details of Experimental Settings
	Sampler Hyperparameters
	Meta-training Settings
	Active Task Selection Settings

	Experiments on an Anonymous E-Commerce Company's Risk Detection Dataset
	Ablation Study of the Effectiveness of IPML Components
	SGHMC vs. VI and Amortized VI
	EM Algorithm vs. Variational Gaussian Process Framework
	Coupling of Latent Task Vector z with DNN Generator g

	Doubly-Contextual X-Net
	Evaluation of Distance Measure between Tasks for Settings B to E in Sec. 4
	Empirical Evaluation of Time Efficiency of IPML on the Anonymous E-Commerce Company's Risk Detection Dataset
	Ablation Study of the Limitations of Neural Process

