
Under review as submission to TMLR

Spawrious: A Benchmark for Fine Control
of Spurious Correlation Biases

Anonymous authors
Paper under double-blind review

Abstract

The problem of spurious correlations (SCs) arises when a classifier relies on non-predictive
features that happen to be correlated with the labels in the training data. For example, a
classifier may misclassify dog breeds based on the background of dog images. This happens
when the backgrounds are correlated with other breeds in the training data, leading to
misclassifications during test time. Previous SC benchmark datasets suffer from varying
issues, e.g., over-saturation or only containing one-to-one (O2O) SCs, but no many-to-many
(M2M) SCs arising between groups of spurious attributes and classes. In this paper, we
present Spawrious-{O2O, M2M}-{Easy, Medium, Hard}, an image classification benchmark
suite containing spurious correlations between classes and backgrounds. To create this
dataset, we employ a text-to-image model to generate photo-realistic images and an image
captioning model to filter out unsuitable ones. The resulting dataset is of high quality and
contains approximately 152k images. Our experimental results demonstrate that state-of-the-
art group robustness methods struggle with Spawrious, most notably on the Hard-splits with
none of them getting over 73% accuracy on the hardest split using a ResNet50 pretrained
on ImageNet. By examining model misclassifications, we detect reliances on spurious
backgrounds, demonstrating that our dataset provides a significant challenge.

1 Introduction

One of the reasons we have not deployed self-driving cars and autonomous kitchen robots everywhere is
their catastrophic behavior in out-of-distribution (OOD) settings that differ from the training distribution
(D’Amour et al., 2020; Geirhos et al., 2020). To make models more robust to unseen test distributions,
mitigating a classifier’s reliance on spurious, non-causal features that are not essential to the true label has
attracted lots of research interest (Sagawa et al., 2019a; Arjovsky et al., 2019; Kaddour et al., 2022b; Izmailov
et al., 2022). For example, classifiers trained on ImageNet (Deng et al., 2009) have been shown to rely on
backgrounds (Xiao et al., 2020; Singla & Feizi, 2022; Neuhaus et al., 2022), which are spuriously correlated
with class labels but, by definition, not predictive of them.

Recent work has focused substantially on developing new methods for addressing the spurious correlations
(SCs) problem (Kaddour et al., 2022b), yet, studying and addressing the limitations of existing benchmarks
remains underexplored. For example, the Waterbirds (Sagawa et al., 2019a), and CelebA hair color (Liu et al.,
2015) benchmarks remain among the most used benchmarks for the SC problem; yet, GroupDRO (Sagawa
et al., 2019a) achieves 90.5% worst-group accuracy using group adjusted data with a ResNet50 pretrained on
ImageNet.

Another limitation of existing benchmarks is their sole focus on overly simplistic one-to-one (O2O) spurious
correlations, where one spurious attribute correlates with one label. However, in reality, we often face
many-to-many (M2M) spurious correlations across groups of classes and backgrounds, which we formally
introduce in this work. Imagine that during summer, we collect training data of two groups of two animal
species (classes) from two groups of locations, e.g., a tundra and a forest in eastern Russia and a lake and
mountain in western Russia. Each animal group correlates with a background group. In the upcoming winter,
while looking for food, each group migrates, one going east and one going west, such that the animal groups
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Figure 1: Spawrious Challenges: Letters on the images denote the background, and the bottom bar
in Figure 1a indicates each class’s proportion of the spurious background. In the O2O challenge, each
class associates with a background during training, while the test data contains unseen combinations of
class-background pairs. In the M2M challenge, a group of classes correlates with a group of backgrounds
during training, but this correlation is reversed in the test data.

have now exchanged locations. The spurious correlation has now been reversed in a way that cannot be
matched from one class to one location.

While some benchmarks include multiple training environments with varying correlations (Koh et al., 2021),
they do not test classification performance on reversed correlations during test time. Such M2M-SCs are not
an aggregation of O2O-SCs and cannot be expressed or decomposed in the form of the latter; they contain
qualitatively different spurious structures, as shown in Figure 2. To our knowledge, this work is the first to
conceptualize and instantiate M2M-SCs in image classification problems.

Contributions We introduce Spawrious-{O2O, M2M}-{Easy, Medium, Hard}, a suite of image classification
datasets with O2O and M2M spurious correlations and three difficulty levels each. Recent work (Wiles et al.,
2022; Lynch et al., 2022; Vendrow et al., 2023) has demonstrated a proof-of-concept to effectively discover
spurious correlation failure cases in classifiers by leveraging off-the-shelf, large-scale, image-to-text models
trained on vast amounts of data. Here, we take this view to the extreme and generate a novel benchmark
with 152, 064 images of resolution 224 × 224, specifically targeted at the probing of classifiers’ reliance on
spurious correlations.

Our experimental results demonstrate that state-of-the-art methods struggle with Spawrious, most notably
on the Hard-splits with < 73% accuracy using ResNet50 pretrained on ImageNet. We probe a model’s
misclassifications and find further evidence for its reliance on spurious features. We also experiment with
different model architectures, finding that while larger architectures can sometimes improve performance, the
gains are inconsistent across methods, further raising the need for driving future research.

2 Existing Benchmarks

We summarize the differences between Spawrious and related benchmarks in Table 1. DomainBed (Gulrajani
& Lopez-Paz, 2021) is a benchmark suite consisting of seven previously published datasets focused on domain
generalization (DG), not on spurious correlations (excluding CMNIST, which we discuss separately). After
careful hyper-parameter tuning, the authors find that ERM, not specifically designed for DG settings, as well
as DG-specific methods, perform all about the same on average. They conjecture that these datasets may
comprise an ill-posed challenge. For example, they raise the question of whether DG from a photo-realistic
training environment to a cartoon test environment is even possible. In contrast, we follow the same rigorous
hyper-parameter tuning procedure by (Gulrajani & Lopez-Paz, 2021) and observe stark differences among
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Figure 2: Data distributions for our challenges: xi is a random image sampled, each si is a spurious
attribute, and each ci is a class label. The edges indicate the probability that the sample xi has a given
property, conditional on previous steps in the tree. The leaf nodes indicate the possible attribute-class
combinations in the distribution. The colors emphasize the distribution shift in the test data.

methods on Spawrious in Section 5.1, with ERM being the worst and 10.68% points worse than the best
method on average.

Dataset DG O2O-SC M2M-SC
CelebA-Hair Color Liu et al. (2015) ✗ ✓ ✗

Waterbirds Sagawa et al. (2019a) ✗ ✓ ✗

CMNIST Arjovsky et al. (2019) ✓ ✓ ✗

DomainBed∗ Gulrajani & Lopez-Paz (2021) ✓ ✗ ✗

WILDS Koh et al. (2021) ✓ ✗ ✗

NICO Zhang et al. (2023) ✓ ✗ ✗

MetaShift Liang & Zou (2022) ✓ ✗ ✗

Spawrious ✓ ✓ ✓

Table 1: Differences between Spawrious
and other benchmarks, according to
whether they pose a Domain Generalization
(DG), One-To-One- and/or Many-To-Many
Spurious Correlations challenge.

Like DomainBed, OoD-Bench (Ye et al., 2022) combines pre-
viously published datasets with the added contribution of char-
acterizing them as a combination of diversity shift and style
shift, allowing the evaluation of algorithms on a more compre-
hensive range of shifts. Methods that handle both shifts, like
(Huang et al., 2022), will consistently beat ERM. By testing
on unseen backgrounds-foreground combinations while having
correlated backgrounds, we can address the two types of shifts
they describe, while most datasets only address one type of
shift. WILDS (Koh et al., 2021), NICO (Zhang et al., 2023),
FOCUS (Kattakinda & Feizi, 2022), MetaShift (Liang & Zou,
2022) collect in-the-wild data and group data points with en-
vironment labels. However, these benchmarks do not induce
explicit spurious correlations between environments and labels. For example, WILDS-FMOW (Koh et al.,
2021; Christie et al., 2017) possesses a label shift between non-African and African regions; yet, the test
images pose a domain generalization (DG) challenge (test images were taken several years later than training
images) instead of reverting the spurious correlations observed in the training data. Waterbirds (Sagawa
et al., 2019a), and CelebA hair color (Liu et al., 2015; Izmailov et al., 2022) are binary classification datasets
including spurious correlations but without unseen test domains (DG). Further, Idrissi et al. (2022) illustrates
that a simple class-balancing strategy alleviates most of their difficulty, while Spawrious is class-balanced
from the beginning. ColorMNIST (Arjovsky et al., 2019) includes spurious correlations and poses a DG
problem. However, it is based on MNIST and, therefore, over-simplistic, i.e., it does not reflect real-world
spurious correlations involving complex background features, such as the ones found in ImageNet (Singla
& Feizi, 2022; Neuhaus et al., 2022). Hard ImageNet (Moayeri et al., 2022b) is a benchmark created by
collecting images in ImageNet that contain spurious features, however, they do not satisfy our desiderata of
multiple training environments and multiple difficulty levels Section 3. Like us, Li et al. (2023) create two
synthetic datasets, UrbanCars and ImageNet-W, to test for spurious feature reliance, but these datasets do
not satisfy our desiderata of photorealism and high-fidelity backgrounds Section 3. PUG (Bordes et al., 2023)
synthetically generate a dataset of unfamiliar object-location images, but they do not create a benchmark that
introducese explicit spurious correlations between environment and labels. None of the above benchmarks
include explicit training and test environments for M2M-SCs.
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3 Benchmark Desiderata

Motivated by the shortcomings of previous benchmarks discussed in Section 2, we want first to posit some
general desiderata that an improved benchmark dataset would satisfy. Next, we motivate and formalize the
two types of spurious correlations we aim to study.

3.1 Six Desiderata

1. Photo-realism, unlike datasets containing cartoon/sketch images (Gulrajani & Lopez-Paz, 2021) or
image corruptions (Hendrycks & Dietterich, 2019), which are known to conflict with current backbone
network architectures (Geirhos et al., 2018a;b; Hermann et al., 2020), possibly confounding the evaluation of
OOD algorithms. 2. Non-binary classification problem, to minimize accidentally correct classifications
achieved by chance. 3. Inter-class homogeneity and intra-class heterogeneity, i.e., low variability
between and high variability within classes, to minimize the margins of the decision boundaries inside the
data manifold (Murphy, 2022). This desideratum ensures that the classification problem is non-trivial. 4.
High-fidelity backgrounds including complex features to reflect realistic conditions typically faced in the
wild instead of monotone or entirely removed backgrounds (Xiao et al., 2020). 5. Access to multiple
training environments, i.e., the conditions of the Domain Generalization problem (Gulrajani & Lopez-Paz,
2021), which allow us to learn domain invariances, such that classifiers can perform well in novel test domains.
6. Multiple difficulty levels, so future work can study cost trade-offs. For example, one may budget higher
computational costs for methods succeeding on difficult datasets than those that succeed only on easy ones.

3.2 Spurious Correlations (One-To-One)

Here, we provide some intuition and discuss the conditions for a (one-to-one) spurious correlation (SC). We
define a correlated, non-causal feature as a feature that frequently occurs with a class but does not cause the
appearance of the class (nor vice versa). We abuse the term “correlated” as it is commonly used by previous
work, but we consider non-linear relationships between two random variables too. Further, we call correlated
features spurious if the classifier perceives them as a feature of the correlated class.

Next, we want to define a challenge that allows us to evaluate a classifier’s harmful reliance on spurious
features. Spurious features are not always harmful; even humans use context information to make decisions
(Geirhos et al., 2020). However, a spurious feature becomes harmful if it alone is sufficient to trigger the
prediction of a particular class without the class object being present in the image (Neuhaus et al., 2022).

To evaluate a classifier w.r.t. such harmful predictions, we evaluate its performance when the spurious
correlations are reverted. The simplest setting is when a positive/negative correlation exists between one
background variable and one label in the training/test environment.

O2O-SC Challenge
Let p(X, S, C) be a distribution over images X ∈ RD, spurious attributes S ∈ S = {s1, . . . , sK}, and
labels C ∈ C = {c1, . . . , cP }. Given p̂data ̸= ptest, and K = P it holds that for i ∈ [K],

corrp̂data (1(S = si),1(C = ci)) > 0, corrptest (1(S = si),1(C = ci)) < 0. (1)

where the indicator function 1(X = x) is non-zero when the variable X equals the value x.

Figure 1a illustrates the one-to-one (O2O) SC, in which pair-wise SCs between spurious features S and labels
C exist within training environments, which then differ in the test environment.

3.3 Many-To-Many Spurious Correlations

In this subsection, we conceptualize Many-To-Many (M2M) SCs, where the SCs hold over disjoint groups of
spurious attributes and classes.
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Figure 3: Spawrious Pipeline: We leverage text-to-image models for generation (Steps 1-3) and image-to-
text models for cleaning of bad images (Steps 4-6). Details in Section 4.1 and Appendix E.

M2M-SC Challenge
Consider p(X, S, C) defined in the O2O-SC Challenge. We further assume the existence of partitions
S = S1∪̇S2 and C = C1∪̇C2. Given p̂data, ptest, it holds that for j ∈ {1, 2}

corrp̂data (1(S ∈ Sj),1(C ∈ Cj)) = 1, corrptest (1(S ∈ Sj),1(C ∈ Cj)) = −1. (2)

Figure 2 shows an example of how to construct M2M-SCs, which contain richer spurious structures, following
an hierarchy of the class groups correlating with spurious attribute groups. As we will see later in Section 4.3,
the data-generating processes we instantiate for each challenge differ qualitatively.

4 The Spawrious Challenge

4.1 Dataset Construction

We instantiate the desiderata introduced in Section 3 by presenting Spawrious, a synthetic image classification
dataset containing images of four dog breeds (classes) in six background locations (spurious attributes).
Figure 3 summarizes the dataset construction pipeline, which we now discuss in more detail. The main idea is
to leverage recently proposed text-to-image models (Rombach et al., 2022) for photo-realistic image generation
and image-to-text models (NLP Connect, 2022) for filtering out low-quality images. We address potential
ethical concerns that may arise from using a generative model to construct this dataset in Appendix A.

A prompt template allows us to define high-level factors of variation. We then sample prompts by filling
in randomly sampled values for these high-level factors. The text-to-image model generates images given
a sampled prompt; we use Stable Diffusion v1.4 (Rombach et al., 2022). We pass the raw, generated images
to an image-to-text (I2T) model to extract a concise description; here, we use the ViT-GPT2 image
captioning model (NLP Connect, 2022). We perform a form of substring matching by checking whether
important keywords are present in the caption, e.g., “dog”. This step avoids including images without class
objects, which we sometimes observed due to the T2T model ignoring parts of the input prompt. We keep
only “clean” images whose captions include important keywords. More details on this pipeline and possible
failures are discussed in Appendix E, as well as a measure of the accuracy of the prompt-image alignment in
Appendix F.

4.2 Selecting train-test combinations

A priori, it is not apparent how the difficulty levels will vary across different combinations of training and test
environments. To elucidate this matter, we conduct comprehensive evaluations over a range of combinations,
utilizing a ResNet50 architecture trained with empirical risk minimization. Interestingly, we observe significant
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disparities in the difficulty levels of the combination splits. Notably, this trend in performance persisted
irrespective of the training loss Table 3 or architecture ?? employed. Hence, we present three difficulty levels
for both O2O and M2M spurious correlations, with full details in Table 2. One hypothesis is that there exists
a feature overlap in background features and core features that present difficulties to disentangle (Locatello
et al., 2019).

4.3 Satisfying Benchmark Desiderata

To ensure photorealism, we generate images using Stable Diffusion v1.4 (Rombach et al., 2022), trained on
a large-scale real-world image dataset (Schuhmann et al., 2022), while carefully filtering out images without
detectable class objects. We construct a 4-way classification problem to reduce the probability of accidentally
correct classifications compared to a binary classification problem (e.g., CelebA hair color prediction
or Waterbirds). Next, we chose dog breeds to reduce inter-class variance, inspired by the difference
in classification difficulty between Imagenette (easily classified objects) (Howard, 2019a), and ImageWoof
(Howard, 2019b) (dog breeds), two datasets based on subsets of ImageNet (Deng et al., 2009). We increase
intra-class variance by adding animal poses to the prompt template.

We add “[location] [time of day]” variables to the prompt template to ensure diverse backgrounds, and
select six combinations after careful experimentation with dozens of possible combinations, abandoning
over-simplistic ones. Our final prompt template takes the form “one [fur] [animal] [pose] [location], [time of
day]. highly detailed, with cinematic lighting, 4k resolution, beautiful composition, hyperrealistic, trending,
cinematic, masterpiece, close up”, and there are 72 possible combinations. The variables [location]/[animal]
correspond to spurious backgrounds/labels for a specific background-class combination. The other variables
take the following values: “fur: black, brown, white, [empty]; pose: sitting, running, [empty]; time of day:
pale sunrise, sunset, rainy day, foggy day, bright sunny day, bright sunny day”.

To construct multiple training environments, we randomly sample from a set of background-class
combinations, which we further group by their difficulty level into easy, medium, and hard. We construct
two datasets for each SC type with 3, 168 images per background-class combination, thus 2 SC types ×
4 environments × 6 difficulties × 3, 168 = 152, 064 images in total.

O2O-SC Challenge We select combinations such that each class is observed with two backgrounds,
spurious bsp and generic bge. For all images with class label ci in the training data, µ% of them have the
spurious background bsp

i and (100 − µ)% of them have the generic background bge. Importantly, each spurious
background is observed with only one class (p̂data(bsp

i | cj) = 1 if i = j and 0 for i ̸= j), while the generic
background is observed for all classes with equal proportion. We train on two separate environments (with
distinct data) that differ in their µ values. Thus, the change in this proportion should serve as a signal to a
robustness-motivated optimization algorithm (e.g. IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al.,
2019a) etc.) that the correlation is spurious.

For instance, in Figure 1a, training environment 1, 97% of the Bulldog images have spurious Jungle backgrounds,
while 3% have generic Beach backgrounds. The spurious background changes depending on the class, but the
relative proportions between each trio ci, bsp

i and bge
i are the same. In training env. 2, the proportions change

to 87% and 13% split of spurious and generic backgrounds.

M2M-SC Challenge First, we construct disjoint background and class groups S1, S2, C1, C2, each with two
elements. Then, we select background-class combinations for the training data such that for each class c ∈ Ci,
we pick a combination (s, b) for each s ∈ Si. Second, we introduce two environments as shown in Figure 1b.

Strength of the Spurious Correlation In the O2O case, the background features and core features are
equally as predictive when the correlation is set to 1, while in the M2M case, the background features are
less predictive than the core features. Thereby, we set the strength of the spurious correlation to be less
than 1 in the O2O challenge (Section 3.2) while equal to 1 in the M2M challenge (Section 3.3). For example,
desert background features would be equally as predictive as bulldog features in O2O-Easy (Table 2) without
additional data from the beach background in both environments. We thus vary the extent of the correlation
between the desert features and the class label in this challenge so that the training algorithms can learn to
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Class Train Env 1 Train Env 2 Test Train Env 1 Train Env 2 Test Train Env 1 Train Env 2 Test
O2O-Easy O2O-Medium O2O-Hard

Bulldog 97% De 3% B 87% De 13% B 100% Di 97% M 3% De 87% M 13% De 100% J 97% J 3% B 87% J 13% B 100% M
Dachshund 97% J 3% B 87% J 13% B 100% S 97% B 3% De 87% B 13% De 100% Di 97% M 3% B 87% M 13% B 100% S
Labrador 97% Di 3% B 87% Di 13% B 100% De 97% Di 3% De 87% Di 13% De 100% B 97% S 3% B 87% S 13% B 100% De

Corgi 97% S 3% B 87% S 13% B 100% J 97% J 3% De 87% J 13% De 100% S 97% De 3% B 87% De 13% B 100% J
M2M-Easy M2M-Medium M2M-Hard

Bulldog 100% Di 100% J 50% S 50% B 100% De 100% M 50% Di 50% J 100% B 100% S 50% De 50% M
Dachshund 100% J 100% Di 50% S 50% B 100% M 100% De 50% Di 50% J 100% B 100% S 50% De 50% M
Labrador 100% S 100% B 50% Di 50% J 100% Di 100% J 50% De 50% M 100% M 100% De 50% B 50% S

Corgi 100% B 100% S 50% Di 50% J 100% J 100% Di 50% De 50% M 100% M 100% De 50% B 50% S

Table 2: Proportions of Spurious Backgrounds By Class and Environment. Backgrounds include:
Beach (B), Desert (De), Dirt (Di), Jungle (J), Mountain (M), Snow (S).

Method One-To-One SC Many-To-Many SC Average
Easy Medium Hard Easy Medium Hard

ERM (Vapnik, 1991) 77.49%±0.05 76.60%±0.02 71.32%±0.09 83.80%±0.01 53.05%±0.03 58.70%±0.04 70.16%
GroupDRO (Sagawa et al., 2019a) 80.58%±0.74 75.96%±2.18 76.99%±2.60 79.96%±2.79 61.01%±4.64 60.86%±1.71 72.56%

IRM (Arjovsky et al., 2019) 75.45%±2.57 76.39%±2.22 74.90%±1.27 76.15%±2.83 67.82%±4.39 60.93%±1.09 71.94%
CORAL (Sun & Saenko, 2016) 89.66%±1.23 81.05%±1.20 79.65%±1.82 81.26%±1.61 65.18%±4.85 67.97%±0.91 77.46%

CausIRL (Chevalley et al., 2022) 89.32%±1.20 78.64%±0.62 80.40%±1.32 85.76%±1.02 63.15%±2.98 68.93%±0.28 77.20%
MMD-AAE (Li et al., 2018) 78.81%±0.02 75.33%±0.03 72.66%±0.01 80.55%±0.02 59.43%±0.04 54.39%±0.05 70.20%

Fish (Shi et al., 2021) 77.51%±1.58 77.72%±2.82 74.73%±2.40 81.60%±3.44 63.03%±1.96 58.94%±2.56 72.26%
VREx (Krueger et al., 2020) 84.69%±1.69 77.56%±0.62 75.41%±2.67 81.22%±1.25 54.28%±5.42 59.21%±5.08 72.06%
W2D (Huang et al., 2022) 81.94%±1.03 76.74%±0.70 76.84%±1.32 80.80%±2.24 62.82%±2.23 61.89%±2.71 73.50%

JTT (Zheran Liu et al., 2021) 90.24%±3.09 87.28%±0.91 87.41%±0.99 79.23%±1.83 60.56%±5.55 57.58%±3.86 77.05%
Mixup (Xu et al., 2019) // random shuffle 88.48%±0.74 82.75%±3.12 75.75%±1.16 89.61%±0.66 77.23%±0.97 71.21%±2.33 80.84%

Mixup // LISA (Yao et al., 2022) 88.64%±0.51 80.83%±1.33 72.54%±1.07 87.24%±2.51 71.78%±0.31 72.97%±4.23 79.00%

Table 3: Results for Spawrious-{O2O,M2M}-{Easy, Medium, Hard} using ImageNet-pretrained
ResNet-50: JTT (Zheran Liu et al., 2021) performs the best across the O2O challenges, while Mixup
methods (Xu et al., 2019) perform best across M2M challenges and overall attain the highest average.

rely on the core features in the classification problem. In M2M-Easy (Table 2), bulldog features are much
more predictive than dirt features when the M2M correlation is 1, with dirt features only present in half of
the bulldog images. Then, we expect the model to rely more on the core features.

5 Experiments

We fine-tune a ResNet50 (He et al., 2016) model pre-trained on ImageNet, following previous work on domain
generalization (Dou et al., 2019; Li et al., 2019; Gulrajani & Lopez-Paz, 2021). Given the size of our dataset,
in preliminary experiments, we also tried training a ResNet50 from scratch, which consistently led to worse
results. See Appendix B for analysis on the effect of ImageNet pretraining. We use various popular OOD
methods, as listed below.

Methods The field of worst-group-accuracy optimization is thriving with a plethora of proposed methods,
making it impractical to compare all available methods. We choose the following six popular methods
and their DomainBed implementation (Gulrajani & Lopez-Paz, 2021). ERM (Vapnik, 1991) refers to the
canonical, average-accuracy-optimization procedure, where we treat all groups identically and ignore group
labels, not targeting to improve the worst group performance. CORAL (Sun & Saenko, 2016) penalizes
differences in the first and second moment of the feature distributions of each group. IRM (Arjovsky et al.,
2019) is a causality-inspired (Kaddour et al., 2022b) invariance-learning method, which penalizes feature
distributions that have different optimal linear classifiers for each group. CausIRL (Chevalley et al., 2022) is
another causally-motivated algorithm for learning invariances, whose penalty considers only one distance
between mixtures of latent features coming from different domains. GroupDRO (Sagawa et al., 2019a)
uses Group-Distributional Robust Optimization to explicitly minimize the worst group loss instead of the
average loss. MMD-AAE (Li et al., 2018) penalizes distances between feature distributions of groups via the
maximum mean discrepancy (MMD) and learning an adversarial auto-encoder (AAE). JTT (Zheran Liu et al.,
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2021) runs ERM for a certain number of epochs, stops, then runs classifications on all the training samples;
then the misclassifications are up-weighted in the loss, and training continues. W2D (Huang et al., 2022)
upweights datapoints in the loss that have either high feature loss or sample loss . VREx (Krueger et al.,
2020) penalizes variance between the environment-specific training losses. Fish (Shi et al., 2021) rewards
large inner products between environment-specific training gradients. Mixup (Xu et al., 2019) linearly
interpolates between two images’ pixel values, and has been implemented with random shuffle (randomly
mix images across environments and labels) and LISA (Yao et al., 2022) (alternate between mixing across
environments for the same label, or across labels for the same environment).

Hyper-parameter tuning We follow the hyper-parameter tuning process used in DomainBed (Gulrajani
& Lopez-Paz, 2021) with a minor modification. We keep the dropout rate (0.1) and the batch size fixed (128
for ResNets and 64 for ViTs) because we found them to have only a very marginal impact on the performance.
We tune the learning rate and weight decay on ERM with a random search of 20 random trials. For all
other methods, we further tune their method-specific hyper-parameters with a search of 10 random trials.
We perform model selection based on the training domain validation accuracy of a subset of the training
data. We reuse the hyper-parameters found for Spawrious-{O2O}-{Easy} and Spawrious-{M2M}-{Hard} on
Spawrious-{O2O}-{Medium, Hard} and Spawrious-{M2M}-{Easy, Medium}, respectively. We also initially
explored the ViT (Dosovitskiy et al., 2020) architecture, with results shown in Appendix C. Due to its poor
performance, we chose to focus on ResNet50 results.

Evaluation We evaluate the classifiers on a test environment where the SCs present during training change,
as described in Table 2. For O2O, multiple ways exist to choose a test data combination; we evaluate one of
them as selected using a random search process. In M2M, because there are only two class groups and two
background groups, we only need to swap them as seen in Figure 1b.

5.1 Results

We find that JTT performs the best on the O2O challenges while being one of the worst methods on the
M2M challenges. Within the M2M challenge, we find Mixup to perform the best, for both random shuffle and
LISA, and overall Mixup attains the best average. This result contributes to the debate whether, for a fixed
architecture, most robustness methods perform about the same (Gulrajani & Lopez-Paz, 2021) or not (Wiles
et al., 2021). The performances of most methods get consistently worse as the challenge becomes harder.
Most often, the data splits of our newly formalized M2M-SC are significantly more challenging than the
O2O splits, most notably M2M-{Hard, Medium}. We conjecture that there is a strong need for new methods
targeting such. {ERM, GroupDRO} and {CORAL, CausIRL} perform about the same, despite much different
robustness regularization. All methods consistently achieve 98-99% in-distribution test performance (not
shown in Table 1 to save space) despite differences in OOD performance. ERM performs worst on average for
the ResNet50 set of results.

5.2 Misclassification analysis

In Section 5.1, we learned that ERM performs particularly poorly on both hard challenges. Now, we want to
investigate why by examining some of the misclassifications. For example, we observe in Figure 4 that on the
test set, the class “Bulldog” is misclassified as the classes whose most common training set background is the
same as “Bulldog” ’s test backgrounds.

Note that for all classes and in all data groups, both training and test environments, the number of data
points per class is always balanced; rendering methods like Subsampling large classes (Idrissi et al., 2022),
which achieve state-of-the-art performance on other SC benchmarks, inapplicable. Hence, we conjecture that
despite balanced classes, the model heavily relies on the spurious features of the “Mountains” and “Snow”
backgrounds.

We further corroborate that claim by examining the model’s confusion matrix in Figure 5. For example,
Figure 5a shows the highest non-diagonal value for actual “Dachshund” images being wrongly classified as
“Labrador”. We conjecture the reason being that in O2O-Hard, the background of “Dachshund” in the test set
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Misclassification: “Labrador”
O2O-Hard: Train Data: Corr(Dachshund, Mountains) > 0

Misclassification: “Dachshund” 

True Class of Shown Test Images: “Bulldog”

M2M-Hard: Train Data: Corr(Labrador, Snow) > 0

Figure 4: ERM misclassifications due to spurious correlations. The shown test images correspond
to the class “Bulldog” with spurious backgrounds “Mountains” in the O2O-Hard (left) and “Snow” in the
M2M-Hard (right) challenge.
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Figure 5: Confusion matrices for ERM models. X-axis: predictions; Y -axis: true labels.

is “Snow”, which is the most common background of the training images of “Labrador”, as shown in Table 2.
We examine the features learned by the ERM model using saliency maps in Appendix D.

6 Related Work

We summarized related benchmarks in Section 2. Further, we outline some works closest to ours here and
provide a more extensive discussion of related work in ?? due to space constraints.

Out-of-distribution Generalization approaches involve training a model simultaneously on multiple
related but different domains, exploiting additional environment index labels in the training data (Ben-David
et al., 2010; Blanchard et al., 2011; Muandet et al., 2013; Arjovsky et al., 2019), which our benchmark
provides too. In order to design effective training losses, approaches may optimize the loss on the worst
performing environment (Sagawa et al., 2019a), or enforce an invariance constraint, such as on the features
(Sun & Saenko, 2016; Arjovsky et al., 2019; Chevalley et al., 2022) or on the gradients (Rame et al., 2022a).
We discuss the methods we applied to our benchmark in Section 5.

Spurious Correlations have a long history in mathematical statistics (Pearson, 1897; Simon, 1954) and
recently entered the machine learning discourse Sagawa et al. (2019b; 2020); Izmailov et al. (2022). They
have been detected in common image classification settings via the usage of saliency maps (Moayeri et al.,
2022a; Singla & Feizi, 2022). We use saliency maps to validate that an ERM model trained on Spawrious
learned dependence on the spurious background feature in Appendix D.

Causal Inference The theory of causation provides another perspective on the sources and possible
mitigations of spurious correlations (Peters et al., 2016; 2017; Kaddour et al., 2022b). Namely, we can
formalize environment-specific data as samples from different interventional distributions, which keep the
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influence of variables not affected by the corresponding interventions invariant. This perspective has motivated
several invariance-learning methods that make causal assumptions on the data-generating process (Arjovsky
et al., 2019; Kaddour et al., 2022b). The field of treatment effect estimation also deals with mitigating
spurious correlations from observational data (Chernozhukov et al., 2018; Künzel et al., 2019; Kaddour et al.,
2021; Nie & Wager, 2021).

Test-time domain adaptation with labels involves either fine-tuning a model Rosenfeld et al. (2022);
Izmailov et al. (2022); Kirichenko et al. (2023) or in-context learning Dong et al. (2022) to leverage a small
amount of labeled test-domain examples.

Miscellaneous Nagarajan et al. (2020) analyze two different kinds of spurious correlations: geometric and
statistical skew. Geometric skew occurs when there is an imbalance between groups of types of data points
(i.e., data points from different environments) and leads to misclassification when the balance of groups
changes. This understanding has motivated simply removing data points from the training data to balance
between groups of data points (Arjovsky et al., 2022). In contrast, we study two particular types of SCs,
which persist in degenerating generalization performance despite perfect balances of classes among groups.
Further, Ye et al. (2022) provide a two-dimensional decomposition of OOD difficulty into correlation and
diversity shifts between the training and test set. The challenges in our work span both of these dimensions,
because the test environment contains unseen background-foreground combinations, a diversity shift, and the
background is spuriously correlated with the foreground in the training data, a correlation shift.

7 Limitations and Future Work

Instantiating our desiderata with non-background spurious attributes. For example, Neuhaus et al. (2022)
find that in the ImageNet (Deng et al., 2009) dataset, the class “Hard Disc” is spuriously correlated with
“label” ; however, “label” is not a background feature but rather part of the classification object. Instantiating
our desiderata for other data modalities, e.g., text classification, leveraging the text generation capabilities
of large language models (Brown et al., 2020). Evaluating more generalization techniques on Spawrious,
including different robustness penalties (Liu et al., 2021; Blumberg et al., 2019; Krueger et al., 2021; Cha
et al., 2021; Mahajan et al., 2021; Izmailov et al., 2022; Rame et al., 2022a), environment inference (Creager
et al., 2021; Li et al., 2022; Sohoni et al., 2022; Huang et al., 2022), meta-learning (Zhang et al., 2020; Collins
et al., 2020; Kaddour et al., 2020; Wang et al., 2021; Jiang et al., 2023), unsupervised domain adaptation
(Ganin & Lempitsky, 2015; Long et al., 2016; Xu et al., 2021), dropout (LaBonte et al., 2022), flat minima
(Cha et al., 2021; Kaddour et al., 2022a), weight averaging (Rame et al., 2022b; Wortsman et al., 2022;
Kaddour, 2022), (counterfactual) data augmentation (Kaddour et al., 2022b; Gowal et al., 2021; Yao et al.,
2022; Yin et al., 2023), fine-tuning of only specific layers (Kirichenko et al., 2022; Lee et al., 2023), diversity
(Teney et al., 2022; Rame et al., 2022b), etc. Possibility of bias creeping into the dataset via the generative
model. Chuang et al. (2023) and others (Teo & Cheung, 2021; Zhao et al., 2018) have studied debiasing
techniques for vision-language models, such as Stable Diffusion v1, and have moderate success in removing
unexpected sources of spurious correlations.

8 Conclusion

We present Spawrious, an image classification benchmark with two types of spurious correlations, one-to-
one (O2O) and many-to-many (M2M). We carefully design six dataset desiderata and instantiate them by
leveraging recent advances in text-to-image and image captioning models. Next, we conduct experiments,
and our findings indicate that even state-of-the-art group robustness techniques are insufficient in handling
Spawrious, particularly in scenarios with Hard-splits where accuracy is below 73%. Our analysis of model
errors revealed a dependence on irrelevant backgrounds, thus underscoring the difficulty of our dataset and
highlighting the need for further investigations in this area. A more extensive discussion of limitations and
future work can be found in Section 7.

10



Under review as submission to TMLR

References
Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv

preprint arXiv:1907.02893, 2019.

Martin Arjovsky, Kamalika Chaudhuri, and David Lopez-Paz. Throwing away data improves worst-class
error in imbalanced classification. arXiv preprint arXiv:2205.11672, 2022.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79:151–175, 2010.

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification tasks to a
new unlabeled sample. Advances in neural information processing systems, 24, 2011.

Stefano B. Blumberg, Marco Palombo, Can Son Khoo, Chantal M. W. Tax, Ryutaro Tanno, and Daniel C.
Alexander. Multi-stage prediction networks for data harmonization, 2019. URL https://arxiv.org/abs/
1907.11629.

Florian Bordes, Shashank Shekhar, Mark Ibrahim, Diane Bouchacourt, Pascal Vincent, and Ari S. Morcos.
Pug: Photorealistic and semantically controllable synthetic data for representation learning, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr, Borja Balle,
Daphne Ippolito, and Eric Wallace. Extracting Training Data from Diffusion Models, January 2023. URL
http://arxiv.org/abs/2301.13188. arXiv:2301.13188 [cs].

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and Sungrae
Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Information Processing
Systems, 34:22405–22418, 2021.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey,
and James Robins. Double/debiased machine learning for treatment and structural parameters, 2018.

Mathieu Chevalley, Charlotte Bunne, Andreas Krause, and Stefan Bauer. Invariant causal mechanisms
through distribution matching. arXiv preprint arXiv:2206.11646, 2022.

Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world, 2017. URL
https://arxiv.org/abs/1711.07846.

Ching-Yao Chuang, Varun Jampani, Yuanzhen Li, Antonio Torralba, and Stefanie Jegelka. Debiasing
vision-language models via biased prompts, 2023.

Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. Task-robust model-agnostic meta-learning. Advances
in Neural Information Processing Systems, 33:18860–18871, 2020.

Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant learning, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and Zhifang
Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

11

https://arxiv.org/abs/1907.11629
https://arxiv.org/abs/1907.11629
http://arxiv.org/abs/2301.13188
https://arxiv.org/abs/1711.07846


Under review as submission to TMLR

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization via
model-agnostic learning of semantic features. Advances in Neural Information Processing Systems, 32,
2019.

Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina
Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoffman, et al. Underspecification presents challenges
for credibility in modern machine learning. Journal of Machine Learning Research, 2020.

François-Guillaume Fernandez. Torchcam: class activation explorer. https://github.com/frgfm/torch-cam,
March 2020.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In International
conference on machine learning, pp. 1180–1189. PMLR, 2015.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland
Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and
robustness. arXiv preprint arXiv:1811.12231, 2018a.

Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Schütt, Matthias Bethge, and Felix A Wichmann.
Generalisation in humans and deep neural networks. Advances in neural information processing systems,
31, 2018b.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge,
and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):
665–673, 2020.

Soumya Suvra Ghosal, Yifei Ming, and Yixuan Li. Are vision transformers robust to spurious correlations?,
2022. URL https://arxiv.org/abs/2203.09125.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and Timothy A
Mann. Improving robustness using generated data. Advances in Neural Information Processing Systems,
34:4218–4233, 2021.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=lQdXeXDoWtI.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations, 2019. URL https://arxiv.org/abs/1903.12261.

Katherine Hermann, Ting Chen, and Simon Kornblith. The origins and prevalence of texture bias in
convolutional neural networks. Advances in Neural Information Processing Systems, 33:19000–19015, 2020.

Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet, March 2019a.
URL https://github.com/fastai/imagenette.

Jeremy Howard. Imagewoof: a subset of 10 classes from imagenet that aren’t so easy to classify, March 2019b.
URL https://github.com/fastai/imagenette#imagewoof.

Zeyi Huang, Haohan Wang, Dong Huang, Yong Jae Lee, and Eric P. Xing. The two dimensions of worst-case
training and the integrated effect for out-of-domain generalization, 2022.

Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data balancing
achieves competitive worst-group-accuracy. In Conference on Causal Learning and Reasoning, pp. 336–351.
PMLR, 2022.

Pavel Izmailov, Polina Kirichenko, Nate Gruver, and Andrew Gordon Wilson. On feature learning in the
presence of spurious correlations. arXiv preprint arXiv:2210.11369, 2022.

12

https://github.com/frgfm/torch-cam
https://arxiv.org/abs/2203.09125
https://openreview.net/forum?id=lQdXeXDoWtI
https://arxiv.org/abs/1903.12261
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette#imagewoof


Under review as submission to TMLR

Penghao Jiang, Ke Xin, Zifeng Wang, and Chunxi Li. Invariant meta learning for out-of-distribution
generalization. arXiv preprint arXiv:2301.11779, 2023.

Jean Kaddour. Stop wasting my time! saving days of imagenet and BERT training with latest weight
averaging. In Has it Trained Yet? NeurIPS 2022 Workshop, 2022. URL https://openreview.net/forum?
id=0OrABUHZuz.

Jean Kaddour, Steindor Saemundsson, and Marc Deisenroth (he/him). Probabilistic Active Meta-Learning.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 20813–20822. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/ef0d17b3bdb4ee2aa741ba28c7255c53-Paper.pdf.

Jean Kaddour, Yuchen Zhu, Qi Liu, Matt J Kusner, and Ricardo Silva. Causal effect inference for structured
treatments. Advances in Neural Information Processing Systems, 34:24841–24854, 2021.

Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt Kusner. When do flat minima optimizers work? In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022a. URL https://openreview.net/forum?id=vDeh2yxTvuh.

Jean Kaddour, Aengus Lynch, Qi Liu, Matt J. Kusner, and Ricardo Silva. Causal machine learning: A survey
and open problems. arXiv preprint arXiv:2206.15475, 2022b. URL https://arxiv.org/abs/2206.15475.

Priyatham Kattakinda and Soheil Feizi. Focus: Familiar objects in common and uncommon settings, 2022.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient for
robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient for
robustness to spurious correlations, 2023.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of
in-the-wild distribution shifts. In International Conference on Machine Learning, pp. 5637–5664. PMLR,
2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. In F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger (eds.), Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc., 2012. URL https://proceedings.
neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang,
Remi Le Priol, and Aaron Courville. Out-of-Distribution Generalization via Risk Extrapolation (REx).
arXiv e-prints, art. arXiv:2003.00688, March 2020. doi: 10.48550/arXiv.2003.00688.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang,
Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In
International Conference on Machine Learning, pp. 5815–5826. PMLR, 2021.

Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heterogeneous
treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10):
4156–4165, 2019.

Tyler LaBonte, Vidya Muthukumar, and Abhishek Kumar. Dropout disagreement: A recipe for group
robustness with fewer annotations. In NeurIPS 2022 Workshop on Distribution Shifts: Connecting Methods
and Applications, 2022.

Yoonho Lee, Annie S. Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea Finn.
Surgical Fine-Tuning Improves Adaptation to Distribution Shifts, March 2023. URL http://arxiv.org/
abs/2210.11466. arXiv:2210.11466 [cs].

13

https://openreview.net/forum?id=0OrABUHZuz
https://openreview.net/forum?id=0OrABUHZuz
https://proceedings.neurips.cc/paper/2020/file/ef0d17b3bdb4ee2aa741ba28c7255c53-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ef0d17b3bdb4ee2aa741ba28c7255c53-Paper.pdf
https://openreview.net/forum?id=vDeh2yxTvuh
https://arxiv.org/abs/2206.15475
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/2210.11466
http://arxiv.org/abs/2210.11466


Under review as submission to TMLR

Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M Hospedales. Episodic training
for domain generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 1446–1455, 2019.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adversarial feature
learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5400–5409,
2018.

Zhiheng Li, Anthony Hoogs, and Chenliang Xu. Discover and mitigate unknown biases with debiasing
alternate networks, 2022.

Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cristian Canton Ferrer, Chenliang Xu,
and Mark Ibrahim. A whac-a-mole dilemma: Shortcuts come in multiples where mitigating one amplifies
others, 2023.

Weixin Liang and James Zou. Metashift: A dataset of datasets for evaluating contextual distribution
shifts and training conflicts. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=MTex8qKavoS.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy
Liang, and Chelsea Finn. Just train twice: Improving group robustness without training group information.
In International Conference on Machine Learning, pp. 6781–6792. PMLR, 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier
Bachem. Challenging common assumptions in the unsupervised learning of disentangled representations,
2019.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation with
residual transfer networks. Advances in neural information processing systems, 29, 2016.

Aengus Lynch, Jean Kaddour, and Ricardo Silva. Evaluating the impact of geometric and statistical skews
on out-of-distribution generalization performance. In NeurIPS 2022 Workshop on Distribution Shifts:
Connecting Methods and Applications, 2022. URL https://openreview.net/forum?id=wpT79coXAu.

Divyat Mahajan, Shruti Tople, and Amit Sharma. Domain generalization using causal matching. In
International Conference on Machine Learning, pp. 7313–7324. PMLR, 2021.

Raghav Mehta, Vítor Albiero, Li Chen, Ivan Evtimov, Tamar Glaser, Zhiheng Li, and Tal Hassner. You only
need a good embeddings extractor to fix spurious correlations. arXiv preprint arXiv:2212.06254, 2022.

Mazda Moayeri, Phillip Pope, Yogesh Balaji, and Soheil Feizi. A comprehensive study of image classification
model sensitivity to foregrounds, backgrounds, and visual attributes, 2022a.

Mazda Moayeri, Sahil Singla, and Soheil Feizi. Hard imagenet: Segmentations for objects with strong spurious
cues. Advances in Neural Information Processing Systems, 35:10068–10077, 2022b.

Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant feature
representation. In International conference on machine learning, pp. 10–18. PMLR, 2013.

Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022. URL probml.ai.

Vaishnavh Nagarajan, Anders Andreassen, and Behnam Neyshabur. Understanding the failure modes of
out-of-distribution generalization, 2020. URL https://arxiv.org/abs/2010.15775.

Yannic Neuhaus, Maximilian Augustin, Valentyn Boreiko, and Matthias Hein. Spurious features everywhere –
large-scale detection of harmful spurious features in imagenet, 2022. URL https://arxiv.org/abs/2212.
04871.

14

https://openreview.net/forum?id=MTex8qKavoS
https://openreview.net/forum?id=wpT79coXAu
probml.ai
https://arxiv.org/abs/2010.15775
https://arxiv.org/abs/2212.04871
https://arxiv.org/abs/2212.04871


Under review as submission to TMLR

Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 108
(2):299–319, 2021.

NLP Connect. vit-gpt2-image-captioning (revision 0e334c7), 2022. URL https://huggingface.co/
nlpconnect/vit-gpt2-image-captioning.

Daniel Omeiza, Skyler Speakman, Celia Cintas, and Komminist Weldermariam. Smooth grad-cam++: An
enhanced inference level visualization technique for deep convolutional neural network models, 2019.

Karl Pearson. Mathematical contributions to the theory of evolution.—on a form of spurious correlation
which may arise when indices are used in the measurement of organs. Proceedings of the royal society of
london, 60(359-367):489–498, 1897.

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant prediction:
identification and confidence intervals. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 78(5):947–1012, 2016.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and
learning algorithms. The MIT Press, 2017.

Alexandre Rame, Corentin Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for out-of-
distribution generalization. In International Conference on Machine Learning, pp. 18347–18377. PMLR,
2022a.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. arXiv preprint
arXiv:2205.09739, 2022b.

Robin Rombach and Patrick Esser. License - a Hugging Face Space by CompVis, 2022. URL https:
//huggingface.co/spaces/CompVis/stable-diffusion-license.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684–10695, 2022.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. Domain-adjusted regression or: Erm may already
learn features sufficient for out-of-distribution generalization. arXiv preprint arXiv:2202.06856, 2022.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust neural
networks for group shifts: On the importance of regularization for worst-case generalization, 2019a. URL
https://arxiv.org/abs/1911.08731.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural
networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint
arXiv:1911.08731, 2019b.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why overparameteri-
zation exacerbates spurious correlations. In International Conference on Machine Learning, pp. 8346–8356.
PMLR, 2020.

Pamela Samuelson. Generative AI meets copyright. Science, 381(6654):158–161, July 2023. doi: 10.1126/
science.adi0656. URL https://www.science.org/doi/10.1126/science.adi0656. Publisher: American
Association for the Advancement of Science.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa Kundurthy,
Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. Laion-5b: An open large-scale
dataset for training next generation image-text models, 2022. URL https://arxiv.org/abs/2210.08402.

15

https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
https://huggingface.co/spaces/CompVis/stable-diffusion-license
https://huggingface.co/spaces/CompVis/stable-diffusion-license
https://arxiv.org/abs/1911.08731
https://www.science.org/doi/10.1126/science.adi0656
https://arxiv.org/abs/2210.08402


Under review as submission to TMLR

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
Batra. Grad-CAM: Visual explanations from deep networks via gradient-based localization. International
Journal of Computer Vision, 128(2):336–359, oct 2019. doi: 10.1007/s11263-019-01228-7. URL https:
//doi.org/10.1007%2Fs11263-019-01228-7.

Yuge Shi, Jeffrey Seely, Philip H. S. Torr, N. Siddharth, Awni Hannun, Nicolas Usunier, and Gabriel Synnaeve.
Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937, 2021.

Herbert A Simon. Spurious correlation: A causal interpretation. Journal of the American statistical
Association, 49(267):467–479, 1954.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Sahil Singla and Soheil Feizi. Salient imagenet: How to discover spurious features in deep learning?, 2022.

Nimit S. Sohoni, Jared A. Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass left
behind: Fine-grained robustness in coarse-grained classification problems, 2022.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Understanding
and Mitigating Copying in Diffusion Models, May 2023. URL http://arxiv.org/abs/2305.20086.
arXiv:2305.20086 [cs].

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In Computer
Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings,
Part III 14, pp. 443–450. Springer, 2016.

Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton Van den Hengel. Evading the simplicity bias:
Training a diverse set of models discovers solutions with superior ood generalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16761–16772, 2022.

Christopher T. H Teo and Ngai-Man Cheung. Measuring fairness in generative models, 2021.

Vladimir Vapnik. Principles of risk minimization for learning theory. Advances in neural information
processing systems, 4, 1991.

Joshua Vendrow, Saachi Jain, Logan Engstrom, and Aleksander Madry. Dataset interfaces: Diagnosing model
failures using controllable counterfactual generation. arXiv preprint arXiv:2302.07865, 2023.

Zhenyi Wang, Tiehang Duan, Le Fang, Qiuling Suo, and Mingchen Gao. Meta learning on a sequence of
imbalanced domains with difficulty awareness. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 8947–8957, 2021.

Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre Alvise-Rebuffi, Ira Ktena, Krishnamurthy Dvijotham,
and Taylan Cemgil. A fine-grained analysis on distribution shift. arXiv preprint arXiv:2110.11328, 2021.

Olivia Wiles, Isabela Albuquerque, and Sven Gowal. Discovering bugs in vision models using off-the-shelf
image generation and captioning. arXiv preprint arXiv:2208.08831, 2022.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: averaging weights
of multiple fine-tuned models improves accuracy without increasing inference time. In International
Conference on Machine Learning, pp. 23965–23998. PMLR, 2022.

Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The role of image
backgrounds in object recognition. arXiv preprint arXiv:2006.09994, 2020.

Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang. Adversarial
domain adaptation with domain mixup, 2019.

16

https://doi.org/10.1007%2Fs11263-019-01228-7
https://doi.org/10.1007%2Fs11263-019-01228-7
http://arxiv.org/abs/2305.20086


Under review as submission to TMLR

Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, and Rong Jin. Cdtrans: Cross-domain
transformer for unsupervised domain adaptation. arXiv preprint arXiv:2109.06165, 2021.

Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Improving
Out-of-Distribution Robustness via Selective Augmentation. In Proceedings of the 39th International
Conference on Machine Learning, pp. 25407–25437. PMLR, June 2022. URL https://proceedings.mlr.
press/v162/yao22b.html. ISSN: 2640-3498.

Nanyang Ye, Kaican Li, Haoyue Bai, Runpeng Yu, Lanqing Hong, Fengwei Zhou, Zhenguo Li, and Jun
Zhu. Ood-bench: Quantifying and understanding two dimensions of out-of-distribution generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7947–7958,
2022.

Yuwei Yin, Jean Kaddour, Xiang Zhang, Yixin Nie, Zhenguang Liu, Lingpeng Kong, and Qi Liu. Ttida:
Controllable generative data augmentation via text-to-text and text-to-image models, 2023.

Marvin Zhang, Henrik Marklund, Abhishek Gupta, Sergey Levine, and Chelsea Finn. Adaptive risk
minimization: A meta-learning approach for tackling group shift. arXiv preprint arXiv:2007.02931, 8:9,
2020.

Xingxuan Zhang, Yue He, Tan Wang, Jiaxin Qi, Han Yu, Zimu Wang, Jie Peng, Renzhe Xu, Zheyan Shen,
Yulei Niu, et al. Nico challenge: Out-of-distribution generalization for image recognition challenges. In
European Conference on Computer Vision, pp. 433–450. Springer, 2023.

Shengjia Zhao, Hongyu Ren, Arianna Yuan, Jiaming Song, Noah Goodman, and Stefano Ermon. Bias and
generalization in deep generative models: An empirical study, 2018.

Evan Zheran Liu, Behzad Haghgoo, Annie S. Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just Train Twice: Improving Group Robustness without Training Group
Information. arXiv e-prints, art. arXiv:2107.09044, July 2021. doi: 10.48550/arXiv.2107.09044.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for
discriminative localization, 2015.

17

https://proceedings.mlr.press/v162/yao22b.html
https://proceedings.mlr.press/v162/yao22b.html


Under review as submission to TMLR

A Ethical Concerns

A.1 Biases

We first acknowledged that generative models can inherit biases from their training data, including those
related to dog breed representation and dog breed characteristics. We utilized various measures to mitigate
these biases:

• Dog Breed Representation: By design, we ensured that the breeds in our dataset are balanced,
avoiding underrepresentation or overrepresentation of any particular breed.

• Dog Breed Characteristics: We examined the characteristics associated with each breed and verified
that our model does not exaggerate or stereotype them.

Further, we employed quality control measures, as described in Section 4.1, to guarantee that images are
realistic and high-quality, regardless of breed. We manually reviewed the generated images to ensure they
were free from harmful associations and stereotypes.

A.2 Copyright Considerations

We purposefully decided to use StableDiffusion, which offers a permissive license that allows for commercial
and non-commercial usage. See more info in (Rombach & Esser, 2022).

Further, we are aware of possible copyright and fair use offenses, which are still debated. To our knowledge,
under US law, fair uses of in-copyright works do not infringe copyrights Samuelson (2023). Courts consider
four factors when assessing fair use defenses: (1) the purpose of the challenged use, (2) the nature of the
copyrighted works, (3) the amount and substantiality of the taking, and (4) the effect of the challenged use
on the market for or value of the copyrighted work, which we address as follows:

1. Purpose and character : Academic research is nonprofit and educational.

2. Nature of the work: Academic research often involves factual or informational works.

3. Amount and substantiality: We use generated images, which are likely to include only small portions
if any of copyrighted works (Carlini et al., 2023; Somepalli et al., 2023).

4. Effect on the market: Academic research is unlikely to harm the market for the original work.

B Effect of ImageNet Pre-Training

Method One-To-One SC Many-To-Many SC Average
Easy Medium Hard Easy Medium Hard

ERM 45.75%±1.26 46.86%±1.10 41.85%±0.56 57.67%±2.55 30.03%±0.28 30.05%±1.34 42.04%
GroupDRO 46.50%±0.91 46.52%±0.95 39.80%±1.66 60.82%±0.58 31.72%±0.35 31.62%±1.72 42.83%
MMD-AAE 44.09%±1.80 46.87%±1.46 39.67%±0.84 61.24%±0.93 32.10%±0.47 30.77%±1.58 42.46%

ERM 77.49%±0.05 76.60%±0.02 71.32%±0.09 83.80%±0.01 53.05%±0.03 58.70%±0.04 70.16%
GroupDRO 80.58%±0.74 75.96%±2.18 76.99%±2.60 79.96%±2.79 61.01%±4.64 60.86%±1.71 72.56%
MMD-AAE 78.81%±0.02 75.33%±0.03 72.66%±0.01 80.55%±0.02 59.43%±0.04 54.39%±0.05 70.20%

Table 4: Impact of ImageNet pretraining: ResNet-50 without ImageNet pretraining (top) vs ResNet-50
with ImageNet pretraining (bottom) results

We have included ImageNet pretraining for all of our main body results in Table 1, as has been done for results
comparisons on Waterbirds (Sagawa et al., 2019a) and CelebA (Liu et al., 2015) and has become standard
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practice for image classification (Krizhevsky et al., 2012). However, we also measure the performance of a
ResNet50 trained just on the Spawrious challenges and report our results in Table 4. We find that pretraining
makes a consistently positive impact on the performance of the classifiers, with a 28.12% point difference
between the ERM performances.

C Effect of Model Architecture

Method One-To-One SC Many-To-Many SC Average
Easy Medium Hard Easy Medium Hard

ERM 36.28%±1.17 32.78%±2.55 30.2%±0.83 55.56%±0.75 32.78%±2.55 30.20%±0.83 40.44%
GroupDRO 41.14%±1.62 51.43%±0.53 40.21%±1.76 53.79%±1.35 30.79%±1.75 25.45%±1.15 40.47%
MMD-AAE 40.64%±3.11 53.36%±0.95 38.54%±1.92 58.42%±1.77 24.75%±0.59 28.91%±2.68 40.77%

ERM 77.49%±0.05 76.60%±0.02 71.32%±0.09 83.80%±0.01 53.05%±0.03 58.70%±0.04 70.16%
GroupDRO 80.58%±0.74 75.96%±2.18 76.99%±2.60 79.96%±2.79 61.01%±4.64 60.86%±1.71 72.56%
MMD-AAE 78.81%±0.02 75.33%±0.03 72.66%±0.01 80.55%±0.02 59.43%±0.04 54.39%±0.05 70.20%

Table 5: Impact of Vit-B instead of ResNet-50: Vit-B pretrained on ImageNet (top) vs ResNet-50
pretrained on ImageNet (bottom) results

We experiment with the ViT-B/16 (Dosovitskiy et al., 2020), following (Izmailov et al., 2022; Mehta et al.,
2022). Based on Table 5, we make the following observations: The ViT backbone architecture worsens the
performance for both MMD-AAE and ERM, underperforming the ResNet50. The best results for ERM were
obtained with ResNet50, which performs 29.72% points better than the best ViT. In the debate on whether
ViTs (Dosovitskiy et al., 2020) are generally more robust to SCs (Ghosal et al., 2022) than CNNs or not
(Izmailov et al., 2022; Mehta et al., 2022), our results side with the latter. We observe that a ViT-B/16
pretrained on ImageNet22k had worse test accuracies than the ResNet architecture.

D Saliency maps for misclassifications

Saliency maps (Simonyan et al., 2013; Zhou et al., 2015; Selvaraju et al., 2019; Omeiza et al., 2019) are a
method for investigating the input features that most positively affect a model’s particular classification.
We applied the Smooth Grad-CAM++ saliency map method (Omeiza et al., 2019; Fernandez, 2020) to the
misclassified images from an ERM model in the test domains of the O2O-Hard and M2M-Hard challenges.
The saliency maps we obtained in Figure 6 and Figure 7 suggest that the ERM model was sensitive to
(spurious) background features, although seemingly more in the O2O challenge than the M2M challenge.

Figure 6: O2O-Hard saliency maps: all images were misclassifications of Bulldog as Dachshund

19



Under review as submission to TMLR

Figure 7: M2M-Hard saliency maps: all images were misclassifications of Bulldog as Labrador

Next, we compare qualitatively the difference in saliency maps between the Mixup and ERM optimization
methods, which can be seen in Figure 8. While the exact saliency patter differs between the two methods,
they ultimately seem to be attending to the same image features.

Figure 8: Saliency comparisons between Mixup and ERM

E Failure Analysis of the Generation Pipeline

We conduct a failure analysis in two ways: manual and automatic. In our manual visual examination, we
inspected large samples of the generated images via human annotators (the authors). Our automated failure
analysis pipeline is described in Section 4.2. For example, to test the quality of a prompt, we only accept it
under two conditions: at least 95 images out of 100 look realistic and fit the prompt. Second, all remaining
images must only be unfit because of the absence of a dog in the image. Identifying a dog in an image is a
relatively easy task for the image captioning model. We confirmed by evaluating on the unfit images and
assessing that they all get flagged by the image captioning model (the caption does not contain the word
dog).

F Cleanliness Analysis of the Dataset

We have checked the accuracy of prompt-image alignment of images such as those in Figure 9 from a random
sample of our dataset using human annotators (10 volunteers). We collected a random sample of 480 images
from our dataset, appended with the intended caption for the image, and then partitioned this dataset into
10 folders. We asked 10 volunteers to scan the images and return a score for the number of correctly aligned
images. Our scores were: 48, 46, 46, 46, 47, 47, 46, 46, 47, 48; resulting in an average of 46.7/48 = 97.2%.

G Discussion of M2M vs O2O

In order to understand how the M2M challenge leads to poor generalisation performance, consider the
following situation, where the classifier achieves low loss in training by simulating a decision tree within the
network, as depicted in Figure 2b of the submission. The model first represents the background, and then
decides which group of dogs the image could be representing conditioned on the background. Within this
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Figure 9: Volunteers decided on prompt-image alignment for 224x224 images: We asked 10
volunteers to scan images such as the three shown above and return a score for the number of correctly
aligned images

setting, the spurious feature dependence arises at the beginning of the decision tree. In the test data, this
decision tree fails to work because the background group is wholly unpredictive of the class groups. As seen
in Figure 2d, the blue background group (s3, s4) is a feature used by the model to decide between classes (c3,
c4), when in fact the model should be deciding between (c1, c2).
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