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Abstract

In this paper, we introduce FITS, a lightweight yet powerful model for time series1

analysis. Unlike existing models that directly process raw time-domain data, FITS2

operates on the principle that time series can be manipulated through interpolation3

in the complex frequency domain. By discarding high-frequency components with4

negligible impact on time series data, FITS achieves performance comparable to5

state-of-the-art models for time series forecasting and anomaly detection tasks,6

while having a remarkably compact size of only approximately 10k parameters.7

Such a lightweight model can be easily trained and deployed in edge devices,8

creating opportunities for various applications. The anonymous code repo is9

available in: https://anonymous.4open.science/r/FITS10

1 Introduction11

Time series analysis plays a crucial role in numerous domains, including finance, energy, weather12

forecasting, and signal processing, where understanding and predicting temporal patterns are essential.13

Existing time series analysis methods primarily focus on extracting features in the time domain (Zhou14

et al., 2021; Liu et al., 2022; Zeng et al., 2022; Nie et al., 2023; Zhang et al., 2022). However, due to15

the inherent complexity and dynamic nature of time series data, the information contained in the time16

domain tends to be sparse and dispersed. Consequently, researchers design intricate methodologies17

and complex models to capture and exploit this information, often relying on approaches such as18

transformer architectures (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022a). However, these19

sophisticated techniques often lead to the proliferation of large-scale and computationally demanding20

models, posing challenges in terms of efficiency and scalability.21

Conversely, the frequency domain representation of time series data offers a more concise and22

compact representation of its underlying information. Recognizing this potential, previous studies23

have explored the utilization of frequency domain information in time series analysis. For instance,24

FEDformer (Zhou et al., 2022a) incorporates spectral information as a supplementary feature, en-25

hancing the modeling capabilities of transformer-based time series models. Another approach,26

FNet (Lee-Thorp et al., 2022), leverages frequency domain multiplication to replace convolution27

operations, thereby reducing computational overhead. Moreover, LTSF-Linear (Zeng et al., 2022)28

has demonstrated that highly accurate predictions can be achieved by solely learning the dominant29

periodicity. Similarly, methods like TimesNet (Wu et al., 2023) segment the time series based on30

frequencies with high amplitude and employ CNNs for multi-periodicity feature extraction.31

However, existing methodologies often overlook the fundamental nature of the frequency domain32

representation, which utilizes complex numbers to express both amplitude and phase information.33

Motivated by the fact that longer time series segments provide a higher-resolution frequency rep-34

resentation, we propose FITS (Frequency Interpolation Time Series Analysis Baseline). The core35

component of FITS is a complex-valued linear layer that can explicitly learn amplitude scaling and36

phase shift to perform interpolation in the complex frequency domain. Although FITS conducts37

interpolation in the frequency domain, it remains an end-to-end time domain model incorporating38
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the rFFT (Brigham & Morrow, 1967). Specifically, we project the input segment to the complex39

frequency domain for frequency interpolation using rFFT. We then project the interpolated frequency40

representation back to the time domain as a longer segment for supervision. This end-to-end design41

enables FITS to adapt to various downstream tasks with commonly-used time domain supervision,42

such as forecasting and reconstruction.43

Additionally, FITS incorporates a low-pass filter to obtain a compact representation with minimal44

information loss, resulting in small model volume and minimal computational overhead while45

maintaining state-of-the-art (SOTA) performance. Notably, under most settings, FITS achieves46

SOTA performance with under 10k parameters, which is 50 times smaller than the lightweight47

temporal linear model DLinear (Zeng et al., 2022) and approximately 10,000 times smaller than48

other mainstream models. The low memory and computation overhead make FITS suitable for49

deploying or even training on edge devices for forecasting or anomaly detection.50

To summarize, our contributions are twofold:51

• We introduce FITS, a lightweight model containing merely 5k∼10k parameters for time52

series analysis. Despite its compact size which is several orders of magnitude smaller than53

mainstream models, FITS delivers exceptional performance in various tasks, including54

long-term forecasting and anomaly detection, achieving state-of-the-art performance in55

several datasets.56

• FITS employs the complex-valued neural network for time series analysis, which provides a57

novel perspective that simultaneously captures amplitude and phase information, leading to58

more comprehensive and efficient modeling of time series data.59

2 Related Work and Motivation60

2.1 Frequency-aware Time Series Analysis Models61

Recent advancements in time series analysis have witnessed the utilization of frequency domain62

information to capture and interpret underlying patterns. FNet (Lee-Thorp et al., 2022) leverages a63

pure attention-based architecture to efficiently capture temporal dependencies and patterns solely in64

the frequency domain, eliminating the need for convolutional or recurrent layers. On the other hand,65

FEDFormer (Zhou et al., 2022a) and FiLM (Zhou et al., 2022b) incorporate frequency information as66

supplementary features to enhance the model’s capability in capturing long-term periodic patterns67

and speed up computation.68

The other line of work aims to capture the periodicity inherent in the data. For instance, DLinear (Zeng69

et al., 2022) adopts a single linear layer to extract the dominant periodicity from the temporal domain70

and surpasses a range of deep feature extraction-based methods. More recently, TimesNet (Wu et al.,71

2023) achieves state-of-the-art results by identifying several dominant frequencies instead of relying72

on a single dominant periodicity. Specifically, they use the Fast Fourier Transform (FFT) to find the73

frequencies with the largest energy and reshape the original 1D time series into 2D images according74

to their periods.75

However, these approaches still rely on feature engineering to identify the dominant period set.76

Selecting this set based on energy may only consider the dominant period and its harmonics, limiting77

the information captured. Moreover, these methodologies are still considered inefficient and prone to78

overfitting.79

2.2 Divide and Conquer the Frequency Components80

Treating a time series as a signal allows us to break it down into a linear combination of sinusoidal81

components without any information loss. Each component possesses a unique frequency, initial82

phase, and amplitude. Forecasting directly on the original time series can be challenging, but83

forecasting each frequency component is comparatively straightforward, as we only need to apply a84

phase bias to the sinusoidal wave based on the time shift. Subsequently, we linearly combine these85

shifted sinusoidal waves to obtain the forecasting result.86

This approach effectively preserves the frequency characteristics of the given look-back window87

while maintaining semantic consistency between the look-back window and the forecasting horizon.88
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Specifically, the resulting forecasted values maintain the frequency features of the original time series89

with a reasonable time shift, ensuring that semantic consistency is maintained.90

However, forecasting each sinusoidal component in the time domain can be cumbersome, as the91

sinusoidal components are treated as a sequence of data points. To address this, we propose conducting92

this manipulation in the complex frequency domain, which offers a more compact and information-93

rich representation, as described below.94

3 Method95

3.1 Preliminary: FFT and Complex Frequency Domain96

The Fast Fourier Transform (FFT, (Brigham & Morrow, 1967)) is a widely used algorithm for97

efficiently computing the Discrete Fourier Transform (DFT) of a sequence of complex numbers. The98

DFT is a mathematical operation that converts a discrete-time signal from the time domain to the99

complex frequency domain. In cases where the input signal is real, such as in time series analysis,100

the Real FFT (rFFT) is commonly used to obtain a compact representation. With an input of N real101

numbers, the rFFT produces a sequence of N/2 + 1 complex numbers that represent the signal in the102

complex frequency domain.103

Complex Frequency Domain104

In Fourier analysis, the complex frequency domain is a representation of a signal in which each105

frequency component is characterized by a complex number. This complex number captures both106

the amplitude and phase of the component, providing a comprehensive description. The amplitude107

of a frequency component represents the magnitude or strength of that component in the original108

time-domain signal. In contrast, the phase represents the temporal shift or delay introduced by that109

component. Mathematically, the complex number associated with a frequency component can be110

represented as a complex exponential element with a given amplitude and phase:111

X(f) = |X(f)|ejθ(f),

where X(f) is the complex number associated with the frequency component at frequency f , |X(f)|112

is the amplitude of the component, and θ(f) is the phase of the component. As shown in Fig. 1(a), in113

the complex plane, the complex exponential element can be visualized as a vector with a length equal114

to the amplitude and angle equal to the phase:115

X(f) = |X(f)|(cos θ(f) + j sin θ(f))

Therefore, the complex number in the complex frequency domain provides a concise and elegant116

means of representing the amplitude and phase of each frequency component in the Fourier transform.117
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(b) Complex number multiplication

Figure 1: Illustration of Complex Number Visualization and Multiplication

Time Shift and Phase Shift. The time shift of a signal corresponds to the phase shift in the frequency118

domain. Especially in the complex frequency domain, we can express such phase shift by multiplying119

a unit complex exponential element with the corresponding phase. Mathematically, if we shift a120

signal x(t) forward in time by a constant amount τ , resulting in the signal x(t − τ), the Fourier121

transform is given by:122
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Xτ (f) = e−j2πfτX(f) = |X(f)|ej(θ(f)−2πfτ) = [cos(−2πfτ) + jsin(−2πfτ)]X(f)

The shifted signal still has an amplitude of |X(f)|, while the phase θτ (f) = θ(f)− 2πfτ shows a123

shift which is linear to the time shift.124

In summary, the amplitude scaling and phase shifting can be simultaneously expressed as the125

multiplication of complex numbers, as shown in Fig. 1(b).126

3.2 FITS Pipeline127

Motivated by the fact that a longer time series provides a higher frequency resolution in its frequency128

representation, we train FITS to generate an extended time series segment by interpolating the129

frequency representation of the input time series segment. We use a complex-valued linear layer to130

learn such interpolation. According to the fact that the amplitude scaling and phase shifting can be131

conveniently expressed as the multiplication of complex numbers, such complex linear combination132

allows FITS to effectively incorporate both the amplitude scaling and phase shift of frequency133

components during the interpolation process. As shown in Fig. 2, we use rFFT to project time series134

segments to the complex frequency domain. After the interpolation, the frequency representation is135

projected back with inverse rFFT (irFFT).136
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Figure 2: Pipeline of FITS, with a focus on the forecasting task. The reconstruction task follows the
same pipeline, except for the reconstruction supervision loss.

However, we cannot directly use the frequency representation of the original input time series segment137

because the mean of such segments will result in a very large 0-frequency component in its complex138

frequency representation. To eliminate the 0-frequency component, we pass it through reversible139

instance-wise normalization (RIN) (Kim et al., 2022) to obtain a zero-mean instance. As a result,140

the normalized complex frequency representation now has a length of N/2, where N represents the141

original length of the time series.142

Furthermore, we incorporate a low-pass filter (LPF) into the FITS model to further reduce its size.143

The LPF removes high-frequency components above a specified cutoff frequency, resulting in a more144

compact model representation while retaining the important information of the time series. The145

rationale behind this design will be elaborated in the subsequent section. Despite operating in the146

frequency domain, FITS is supervised in the time domain using common loss functions such as Mean147

Squared Error (MSE) after the irFFT, allowing for diverse supervision tailored to different time series148

downstream tasks.149

In the case of forecasting tasks, we generate the look-back window along with the horizon as shown150

in Fig. 2. This allows us to provide supervision for forecasting and backcasting, where the model151

is encouraged to accurately reconstruct the look-back window. Our ablation study reveals that152

combining backcast and forecast supervision can yield improved performance in certain scenarios.153

For reconstruction tasks, we downsample the original time series segment based on a specific154

downsampling rate. Subsequently, FITS is employed to perform frequency interpolation, enabling155

the reconstruction of the downsampled segment back to its original form. Thus, direct supervision156

is applied using reconstruction loss to ensure faithful reconstruction. The reconstruction tasks also157

follow the pipeline in Fig. 2 with the supervision replaced with reconstruction loss.158
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3.3 Key Mechanisms of FITS159

Complex Frequency Linear Interpolation. To control the output length of the model, we introduce160

an interpolation rate denoted as η, which represents the ratio of the model’s output length Lo to its161

corresponding input length Li.162

It is worth noting that frequency interpolation operates on the normalized complex frequency repre-163

sentation, which has half the length of the original time series. Importantly, this interpolation rate can164

also be applied to the frequency domain, as indicated by the equation:165

ηfreq =
Lo/2

Li/2
=

Lo

Li
= η

Based on this formula, with an arbitrary frequency f , the frequency band 1 ∼ f in the original166

signal is linearly projected to the frequency band 1 ∼ ηf in the output signal. As a result, we define167

the input length of our complex-valued linear layer as L and the interpolated output length as ηL.168

Notably, when applying the Low Pass Filter (LPF), the value of L corresponds to the cutoff frequency169

(COF) of the LPF. After performing frequency interpolation, the complex frequency representation is170

zero-padded to a length of Lo/2, where Lo represents the desired output length. Prior to applying the171

irFFT, an additional zero is introduced as the representation’s zero-frequency component.172

Low Pass Filter (LPF). The primary objective of incorporating the LPF within FITS is to compress173

the model’s volume while preserving essential information. The LPF achieves this by discarding174

frequency components above a specified cutoff frequency (COF), resulting in a more concise fre-175

quency domain representation. The LPF retains the relevant information in the time series while176

discarding components beyond the model’s learning capability. This ensures that a significant portion177

of the original time series’ meaningful content is preserved. As demonstrated in Fig. 3, the filtered178

waveform exhibits minimal distortion even when only preserving a quarter of the original frequency179

domain representation. Furthermore, the high-frequency components filtered out by the LPF typically180

comprise noise and trends, which are inherently irrelevant for effective time series modeling.
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Figure 3: Waveform (1st row) and amplitude spectrum (2nd row) of a time series segment selected
from the ’OT’ channel of the ETTh1 dataset, spanning from the 1500th to the 1980th data point. The
segment has a length of 480, and its dominant periodicity is 24, corresponding to a base frequency of
20. The blue lines represent the waveform/spectrum with no applied filter, while the orange lines
represent the waveform/spectrum with the filter applied. The filter cutoff frequency is chosen based
on a harmonic of the original time series.

181

Selecting an appropriate cutoff frequency (COF) remains a nontrivial challenge. To address this,182

we propose a method based on the harmonic content of the dominant frequency. Harmonics, which183

are integer multiples of the dominant frequency, play a significant role in shaping the waveform of184

a time series. By aligning the cutoff frequency with these harmonics, we keep relevant frequency185

components associated with the signal’s structure and periodicity. This approach leverages the186

inherent relationship between frequencies to extract meaningful information while suppressing noise187

and irrelevant high-frequency components. The impact of COF on different harmonics’ waveforms is188

shown in Fig. 3. We further elaborate on the impact of COF in our experimental results.189
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4 Experiments for Forecasting190

4.1 Forecasting as Frequency Interpolation191

Typically, the forecasting horizon is shorter than the given look-back window, rendering direct192

interpolation unsuitable. Instead, we formulate the forecasting task as the interpolation of a look-back193

window, with length L, to a combination of the look-back window and forecasting horizon, with194

length L+H . This design enables us to provide more supervision during training. With this approach,195

we can supervise not only the forecasting horizon but also the backcast task on the look-back window.196

Our experimental results demonstrate that this unique training strategy contributes to the improved197

performance of FITS. The interpolation rate of the forecasting task is calculated by:198

ηFore = 1 +
H

L
,

where L represents the length of the look-back window and H represents the length of the forecasting199

horizon.200

4.2 Experiment Settings201

Datasets. All datasets used in our experiments are widely-used and publicly available real-world202

datasets, including, Traffic, Electricity, Weather, ETT (Zhou et al., 2021). We summarize the203

characteristics of these datasets in Tab. 1. Apart from these datasets for long-term time series204

forecasting, we also use the M4 dataset to test the short-term forecasting performance.205

Table 1: The statistics of the seven used forecasting datasets.

Dataset Traffic Electricity Weather ETTh1&ETTh2 ETTm1 &ETTm2

Channels 862 321 21 7 7
Sampling Rate 1hour 1hour 10min 1hour 15min
Total Timesteps 17,544 26,304 52,696 17,420 69,680

Baselines. To evaluate the performance of FITS in comparison to state-of-the-art time series forecast-206

ing models, including PatchTST (Nie et al., 2023), TimesNet (Wu et al., 2023), FEDFormer (Zhou207

et al., 2022a), FiLM (Zhou et al., 2022b) and LTSF-Linear (Zeng et al., 2023), we directly refer to208

the reported results in the original papers under the same settings. We report the comparison with209

other transformer-based methods in the appendix.210

Evaluation metrics. We follow the previous works (Zhou et al., 2022a; Zeng et al., 2022; Zhang211

et al., 2022) to compare forecasting performance using Mean Squared Error (MSE) as the core212

metrics. Moreover, to evaluate the short-term forecasting, we symmetric Mean Absolute Percentage213

Error (SMAPE) following TimesNet (Wu et al., 2023).214

Implementation details. Following the settings of LTSF-Linear (Zeng et al., 2023), we set the215

look-back window of FITS as 720 for any forecasting horizon. Further experiments also show that a216

longer look-back window can result in better performance. To avoid information leakage, We choose217

the hyper-parameter based on the performance of the validation set.218

4.3 Comparisons with SOTAs219

Competitive Performance with High Efficiency220

We present the results of our experiments on long-term forecasting in Tab. 2 and Tab. 3. The results221

for short-term forecasting on the M4 dataset are provided in the Appendix. Remarkably, our FITS222

consistently achieves comparable or even superior performance across all experiments.223

Tab. 4 presents the number of trainable parameters for various TSF models using a look-back window224

of 96 and a forecasting horizon of 720 on the Electricity dataset. The table clearly demonstrates the225

exceptional efficiency of FITS compared to other models.226

Among the listed models, the parameter counts range from millions down to thousands. Notably,227

large models such as TimesNet and Pyraformer require a staggering number of parameters, with228
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Table 2: Long-term forecasting results on ETT dataset in MSE. The best result is highlighted in bold,
and the second best is highlighted with underline. IMP is the improvement between FITS and the
second best/ best result, where a larger value indicates a better improvement.
Dataset ETTh1 ETTh2 ETTm1 ETTm2
Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

PatchTST 0.370 0.413 0.422 0.447 0.274 0.341 0.329 0.379 0.293 0.333 0.369 0.416 0.166 0.223 0.274 0.362
TimesNet 0.384 0.436 0.491 0.521 0.340 0.402 0.452 0.462 0.338 0.374 0.410 0.478 0.187 0.249 0.321 0.408

FEDFormer 0.376 0.420 0.459 0.506 0.346 0.429 0.496 0.463 0.379 0.426 0.445 0.543 0.203 0.269 0.325 0.421
FiLM 0.371 0.414 0.442 0.465 0.284 0.357 0.377 0.439 0.302 0.338 0.373 0.420 0.165 0.222 0.277 0.371

Dlinear 0.374 0.405 0.429 0.440 0.338 0.381 0.400 0.436 0.299 0.335 0.369 0.425 0.167 0.221 0.274 0.368
FITS 0.375 0.408 0.429 0.427 0.274 0.333 0.340 0.374 0.305 0.339 0.367 0.418 0.164 0.217 0.269 0.347
IMP -0.005 -0.003 -0.007 0.013 0 0.008 -0.011 0.005 -0.012 -0.006 0.002 -0.002 0.002 0.004 0.005 0.015

Table 3: Long-term forecasting results on three popular datasets in MSE. The best result is highlighted
in bold and the second best is highlighted with underline. IMP is the improvement between FITS
and the second best/ best result, where a larger value indicates a better improvement.

Dataset Electricity Traffic Weather
Horizon 96 192 336 720 96 192 336 720 96 192 336 720

PatchTST 0.129 0.147 0.163 0.197 0.360 0.379 0.392 0.432 0.149 0.194 0.245 0.314
TimesNet 0.168 0.184 0.198 0.220 0.593 0.617 0.629 0.640 0.172 0.219 0.280 0.365

FEDFormer 0.193 0.201 0.214 0.246 0.587 0.604 0.621 0.626 0.217 0.276 0.339 0.403
FiLM 0.154 0.164 0.188 0.236 0.416 0.408 0.425 0.520 0.199 0.228 0.267 0.319

Dlinear 0.140 0.153 0.169 0.203 0.410 0.423 0.435 0.464 0.176 0.218 0.262 0.323
FITS 0.138 0.152 0.166 0.205 0.401 0.407 0.420 0.456 0.145 0.188 0.236 0.308
IMP -0.009 -0.005 -0.003 -0.008 -0.041 -0.028 -0.028 -0.024 0.004 0.006 0.009 0.006

300.6M and 241.4M, respectively. Similarly, popular models like Transformer, Informer, Autoformer,229

and FEDformer have parameter counts in the range of 13.61M to 20.68M. Even the lightweight yet230

state-of-the-art model PatchTST has a parameter count of over 1 million.231

Table 4: Number of trainable parameters
and MACs of TSF models under look-
back window=96 and forecasting hori-
zon=720 on the Electricity dataset.

Model Parameters MACs

TimesNet 301.7M 1226.49G
Pyraformer 241.4M 0.80G
Transformer 13.61M 4.03G

Informer 14.38M 3.93G
Autoformer 14.91M 4.41G

FiLM 14.91M 5.97G
FEDformer 20.68M 4.41G
PatchTST 1.5M 5.07G

DLinear 139.7K 40M
FITS (Ours) 4.5K∼10K 1.6M∼8.9M

In contrast, FITS stands out as a highly efficient model232

with an impressively low parameter count. With only 4.5K233

to 16K parameters, FITS achieves comparable or even234

superior performance compared to these larger models.235

It is worth highlighting that FITS requires significantly236

fewer parameters compared to the next smallest model,237

Dlinear, which has 139.7K parameters. For instance, when238

considering a 720 look-back window and a 720 forecast-239

ing horizon, the Dlinear model requires over 1 million240

parameters, whereas FITS achieves similar performance241

with only 10k-50k parameters.242

This analysis showcases the remarkable efficiency of FITS.243

Despite its small size, FITS consistently achieves compet-244

itive results, making it an attractive option for time series245

analysis tasks. FITS demonstrates that achieving state-of-246

the-art or close to state-of-the-art performance with a considerably reduced parameter footprint is247

possible, making it an ideal choice for resource-constrained environments.248

Case Study on ETTh2 Dataset249

We conduct a comprehensive case study on the performance of FITS using the ETTh2 dataset, which250

further highlights the impact of the look-back window and cutoff frequency on model performance.251

We provide a case study on other datasets in the Appendix. In our experiments, we observe that252

increasing the look-back window generally leads to improved performance, while the effect of253

increasing the cutoff frequency is minor.254

Tab. 5 showcases the performance results obtained with different look-back window sizes and cutoff255

frequencies. Larger look-back windows tend to yield better performance across the board. On the256

other hand, increasing the cutoff frequency only results in marginal performance improvements.257

However, it is important to note that higher cutoff frequencies come at the expense of increased258

computational resources, as illustrated in Tab. 6.259
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Table 5: The results on the ETTh2 dataset. Values are visualized with a green background, where
darker background indicates worse performance. The top-5 best results are highlighted with a red
background, and the absolute best result is highlighted with red bold font. F represents supervision
on the forecasting task, while B+F represents supervision on backcasting and forecasting tasks.

Look-back Window 90 180 360 720
Horizon COF/nth Harmonic F B+F F B+F F B+F F B+F

2 0.297687 0.296042 0.291606 0.289387 0.278644 0.278403 0.277708 0.27696
3 0.297796 0.297377 0.290061 0.288239 0.277512 0.277746 0.276537 0.277068
4 0.297106 0.295624 0.290725 0.287993 0.27624 0.27693 0.274207 0.27449896

5 0.296168 0.296698 0.288518 0.287375 0.276367 0.277935 0.275989 0.275636

2 0.380163 0.379868 0.360591 0.359769 0.336552 0.337976 0.334854 0.335887
3 0.37983 0.381802 0.359088 0.359498 0.336384 0.336358 0.334666 0.335507
4 0.379657 0.380439 0.359087 0.358536 0.334803 0.349995 0.333522 0.333382192

5 0.378556 0.379883 0.358809 0.359376 0.335451 0.343227 0.33384 0.335053

2 0.402706 0.404805 0.373257 0.374678 0.344241 0.344414 0.341869 0.342549
3 0.403238 0.404878 0.372231 0.373948 0.345578 0.344976 0.341436 0.342793
4 0.402702 0.407712 0.376199 0.374435 0.343004 0.344167 0.340795 0.342245336

5 0.403484 0.409516 0.375102 0.37462 0.344333 0.342731 0.341043 0.342214

2 0.420072 0.424272 0.403985 0.407392 0.379822 0.38519 0.376871 0.37677
3 0.418323 0.420538 0.400986 0.40686 0.379638 0.386397 0.376236 0.376004
4 0.417485 0.420982 0.399987 0.408128 0.379096 0.386409 0.375865 0.375637720

5 0.419122 0.420355 0.400776 0.407871 0.378665 0.390754 0.377138 0.374586

Table 6: The number of parameters under different
settings on ETTh1 & ETTh2 dataset.

Look-back Window
Horizon COF/nth Harmonic 90 180 360 720

96

2 703 1053 2279 5913
3 1035 1820 4307 12064
4 1431 2752 6975 20385
5 1922 3876 10374 31042

192

2 1064 1431 2752 6643
3 1564 2450 5192 13520
4 2187 3698 8475 22815
5 2914 5253 12558 34694

336

2 1615 1998 3483 7665
3 2392 3395 6608 15704
4 3321 5160 10725 26460
5 4402 7293 15834 40006

720

2 3078 3510 5418 10512
3 4554 5950 10266 21424
4 6318 9030 16650 36180
5 8370 12750 24570 54780

Considering these observations, we find utiliz-260

ing a longer look-back window in combination261

with a low cutoff frequency to achieve near262

state-of-the-art performance with minimal com-263

putational cost. For instance, FITS surpasses264

other methods when employing a 720 look-back265

window and setting the cutoff frequency to the266

second harmonic. Remarkably, FITS achieves267

state-of-the-art performance with a parameter268

count of only around 10k. Moreover, by reduc-269

ing the look-back window to 360, FITS already270

achieves close-to-state-of-the-art performance271

by setting the cutoff frequency to the second272

harmonic, resulting in a further reduction of the273

model’s parameter count to under 5k (as shown274

in Tab. 6).275

These results emphasize the lightweight nature276

of FITS, making it highly suitable for deploy-277

ment and training on edge devices with limited278

computational resources. By carefully selecting the look-back window and cutoff frequency, FITS can279

achieve excellent performance while maintaining computational efficiency, making it an appealing280

choice for real-world applications.281

5 Experiment for Anomaly Detection282

5.1 Reconstruction as Frequency Interpolation283

As discussed before, we tackle the anomaly detection tasks in the self-supervised reconstructing284

approach. Specifically, we make a N time down-sampling on the input and train a FITS network with285

an interpolation rate of ηRec = N to up-sample it.286

5.2 Experiment Settings287

Datasets. We use five commonly used benchmark datasets: SMD (Server Machine Dataset (Su et al.,288

2019)), PSM (Polled Server Metrics (Abdulaal et al., 2021)), SWaT (Secure Water Treatment (Mathur289

& Tippenhauer, 2016)), MSL (Mars Science Laboratory rover), and SMAP (Soil Moisture Active290

Passive satellite) (Hundman et al., 2018).291
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Baselines. We compare FITS with models such as TimesNet (Wu et al., 2023), Anomaly Trans-292

former (Xu et al., 2022), THOC (Shen et al., 2020), Omnianomaly (Su et al., 2019). Following293

TimesNet (Wu et al., 2023), we also compare the anomaly detection performance with other mod-294

els (Zeng et al., 2023; Zhang et al., 2022; Woo et al., 2022; Zhou et al., 2022a).295

Evaluation metrics. Following the previous works (Xu et al., 2022; Shen et al., 2020; Wu et al.,296

2023), we use Precision, Recall, and F1-score as metrics.297

Implementation details. We use a window size of 200 and downsample the time series segment by a298

factor of 4 to match the original segment during training with the FITS model. Anomaly detection299

follows the methodology of the Anomaly Transformer (Xu et al., 2022), where time points exceeding300

a certain reconstruction loss threshold are classified as anomalies. The threshold is selected based301

on the highest F1 score achieved on the validation set. To handle consecutive abnormal segments,302

we adopt a widely-used adjustment strategy (Su et al., 2019; Xu et al., 2018; Shen et al., 2020),303

considering all anomalies within a specific successive abnormal segment as correctly detected when304

one anomalous time point is identified. This approach aligns with real-world applications, where an305

abnormal time point often triggers the attention to the entire segment.306

Table 7: Anomaly detection result of F1-scores on 5 datasets. The best result is highlighted in bold,
and the second best is highlighted with underline. Full results are reported in the Appendix.

Models FITS TimesNet Anomaly
Transformer THOC Omni

Anomaly
Stationary

Transformer LightTS Dlinear IMP

SMD 99.95 85.81 92.33 84.99 85.22 84.72 82.53 77.1 7.62
PSM 93.96 97.47 97.89 98.54 80.83 97.29 97.15 93.55 -3.93
SWaT 98.9 91.74 94.07 85.13 82.83 79.88 93.33 87.52 4.83
SMAP 70.74 71.52 96.69 90.68 86.92 71.09 69.21 69.26 -25.95
MSL 78.12 85.15 93.59 89.69 87.67 77.5 78.95 84.88 -15.47

5.3 Comparisons with SOTAs307

As shown in Tab. 7, FITS achieves remarkable results on several datasets. Notably, on the SMD and308

SWaT datasets, FITS exhibits exceptional performance with F1-scores almost reaching perfection309

at around 99.95% and 98.9%, respectively. This demonstrates FITS’ ability to accurately detect310

anomalies and classify them correctly. In comparison, other models, such as TimesNet, Anomaly311

Transformer, and Stationary Transformer, struggle to match FITS’ performance on these datasets.312

However, FITS shows comparatively lower performance on the SMAP and MSL datasets. These313

datasets present a challenge due to their binary event data nature, which may not be effectively314

captured by FITS’ frequency domain representation. While models specifically designed for anomaly315

detection, such as THOC and Omni Anomaly, achieve higher F1-scores on these datasets.316

For a more comprehensive evaluation, waveform visualizations and detailed analysis can be found317

in the appendix, providing deeper insights into FITS’ strengths and limitations in different anomaly318

detection scenarios. It is important to note that the reported results are achieved with a parameter319

range of 1-4K and MACs (Multiply-Accumulate Operations) of 10-137K, which will be further320

detailed in the appendix.321

6 Conclusions and Discussion322

In this paper, we propose FITS for time series analysis, a low-cost model with 10k parameters that can323

achieve performance comparable to state-of-the-art models that are often several orders of magnitude324

larger. As a frequency-domain modeling technique, FITS has difficulty handling binary-valued time325

series and time series with missing data. For the former category, time-domain modeling is preferable326

as the raw data format is sufficiently compact. For the latter category, we could first employ simple327

yet effective time-domain imputation techniques and then apply FITS for efficient analysis.328
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