
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REFORMER: A DEEP LEARNING MODEL FOR RUN-
TIME SELECTION OF CONVOLUTION KERNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As neural networks grow larger, optimizing GPU kernel selection becomes in-
creasingly essential to minimizing the time, cost, and energy demands of model
training and inference. Current methods rely on hand-written rules-based heuris-
tics, which often yield suboptimal performance, are labor-intensive to develop,
and are difficult to adapt across hardware architectures and firmware releases. In
this paper, we frame kernel selection as a sequence classification problem solved
on the CPU, thereby leaving GPU resources free for user training and inference
tasks. Traditional transformers are less effective in this context because CPU de-
ployment limits the advantages of parallelism in attention mechanisms. In this
regard, we propose the Γ -block, which performs only three matmul operations
compared to the six required by a transformer block, while maintaining the same
depth in terms of learnable layers. Our experiments on the IMDB and Reuters
datasets demonstrate that a small model based on the Γ-block delivers comparable
sequence classification accuracy to a similar model based on transformer blocks,
while also providing faster inference times on the CPU. By stacking multiple Γ-
blocks, we develop a lightweight model for kernel selection, named Reformer. To
train the model, we propose a novel approach that assigns optimality probabilities
to kernels based on their runtimes, offering a more robust alternative to one-hot
probabilities. We demonstrate the effectiveness of Reformer by integrating it into
MIOpen for convolution kernel selection, achieving an average speed-up of ap-
proximately 3x in convolution operations on the AMD Instinct™ MI100 GPU.

1 INTRODUCTION

Over the last decade, neural network sizes and data set sizes have had a reinforcing relationship: as
more data has become available, models have been enlarged to better learn from it, and concurrently,
larger models have driven the collection of more data to fully harness their potential. This feedback
loop has led to exponential growth in model sizes over time (Figure 1), resulting in a significant
increase in the compute and energy requirements (Strubell et al., 2020; Patterson et al., 2022; Dodge
et al., 2022) for training and deploying these models. Although researchers have worked to scale
down neural networks to reduce their compute footprint (Hinton et al., 2015; Cheng et al., 2017;
Micikevicius et al., 2017), recent findings suggest that large neural networks are not merely a passing
trend but a key element of high-performing machine learning systems (Bubeck & Sellke, 2021).

To meet the increasing compute demands of large models, researchers from both academia and in-
dustry have been actively developing solutions. On the hardware front, these efforts have led to
improvements in GPU architectures (AMD, 2021; Nvidia, 2020) and the introduction of advanced
AI accelerators (Jouppi et al., 2023; Keller et al., 2022). On the software side, research endeavors
have focused on developing computationally-efficient, hardware-optimized kernels1 for common
machine learning operations. However, since these kernels are hardware-specific and their perfor-
mance varies across the problem space in a highly discontinuous and non-linear fashion, choosing
the optimal kernel for any given problem is a non-trivial task. Brute-force approaches are gener-
ally impractical in this regard. Exhaustively searching the problem space and benchmarking all
applicable kernels to determine the best one leads to combinatorial complexity, determined by the

1In this article, the word ”kernel” refers to a compute kernel (also known as a GPU kernel). To avoid
ambiguity, we will refrain from using the term ”kernel” to refer to the filter of a convolution operation.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: A illustrates the growth in the number of floating-point operations (FLOPs) required for
training deep models, starting from the inception of AlexNet (Krizhevsky et al., 2012). B depicts
the corresponding increase in training costs (USD – 2020). C and D show the same trends but
specifically for computer vision models. The data used in this analysis is sourced from Sevilla et al.
(2022).

number of features describing both the operation and the operands, as well as the total number of
available kernels. 2 While hand-written heuristic rules have shown some success in optimizing ker-
nel selection, they are imperfect and their design requires significant time and effort from hardware
experts and kernel writers. Moreover, such heuristics need to be manually adjusted or written anew
for each new GPU architecture or firmware release. Given the rapid advancements in AI hardware
and frequent firmware updates aimed at supporting the continuously evolving AI technologies, this
approach introduces additional complications and delays, increasing the cost and complexity of the
release process.

In this paper, we frame the kernel selection problem as a sequence classification task, where a se-
quence describing a mathematical operation and its operands needs to be mapped to the fastest
kernel. This makes the problem suitable for attention-based sequence processing models, such as
transformers (Vaswani et al., 2017). However, it is essential that any model for kernel selection be
deployed on the CPU to avoid using GPU resources that are meant for user training and inference
workloads. This constraint limits the effectiveness of transformer models, as their parallelism, es-
pecially in attention mechanisms, cannot be fully exploited on a CPU. As a result, the inference
latency of a transformer-based model for kernel selection on a CPU can undermine the advantages
gained from optimizing kernel selection. To this end, the contributions of our paper are as follows:

1. We present Γ -block, an alternative to transformer block with lesser operations. Our exper-
iments on the IMDB and Reuters text classification tasks demonstrate that substituting the
conventional transformer block with a Γ-block considerably reduces inference time while
preserving comparable accuracy in smaller models. Additionally, we observe a substan-
tial decrease in training time, which is particularly important given the frequent retraining
required for kernel selection models in response to continuous firmware and hardware up-
dates.

2. Using Γ-blocks, we propose a powerful yet lightweight model for kernel selection, named
the Reformer. To train Reformer to predict the optimal kernel, we present a novel approach
that assigns optimality probabilities based on kernel runtimes, as opposed to using one-hot
probabilities that are highly sensitive to noise in runtime measurements.

3. We demonstrate Reformer’s efficacy by deploying it to optimize convolution kernel selec-
tion in MIOpen (Khan et al., 2019), AMD’s open-source library of high-performance com-
pute kernels for machine learning operations. Our results on the AMD Instinct™ MI100

2For example, convolution operations are defined by features such as padding size, stride length, and dila-
tion, and they involve tensors as operands, which are themselves characterized by multiple features, such as
dimensionality, data types, and layouts. In addition, numerous algorithms exist for computing convolutions,
each of which may be implemented using a range of optimized GPU kernels, whose performance depends heav-
ily on the underlying hardware. Given all these variables, performing an exhaustive search over all possible
convolution configurations to identify the optimal kernel for each problem configuration and hardware setup is
impractical. And even if it were practical, the memory footprint of the mapping from convolution problems to
best kernels would make this approach inefficient.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

GPU show that the Reformer model outperforms MIOpen’s hand-written heuristics, speed-
ing up convolution operations by at least threefold. Furthermore, it streamlines and acceler-
ates the release process for AI hardware and software, since training a neural network with
automatic procedures like gradient descent is significantly less labor-intensive compared to
manually writing and calibrating hand-tuned heuristics.

4. Deep learning’s success is heavily owed to the efficiency enabled by GPUs. As the field
advances, it’s crucial to maintain this efficiency in GPU-accelerated AI computing. While
significant contributions have been made by kernel designers towards this goal, our research
showcases the alternative pathway: using deep learning methods to optimize deep learning
hardware, which directly involves the deep learning community itself in GPU optimization.

This paper is structured as follows: Section 2 provides an overview of the kernel selection problem.
Section 3 introduces the Reformer model, constructed using Γ-blocks, and demonstrates its perfor-
mance on the IMDB and Reuters text classification datasets. In Section 4, we apply the Reformer
model to optimize convolution kernel selection within MIOpen, presenting a novel method for es-
timating the likelihood of a kernel being optimal based on runtime data, followed by our results.
Finally, Section 5 concludes with a brief review of related literature on kernel optimization, as well
as works on transformers and ResNets, both of which share design similarities with our model.

2 BACKGROUND

Deep learning frameworks, such as PyTorch (Paszke et al., 2019) and Tensorflow (Abadi et al.,
2016), represent neural networks as dataflow graphs, with each node corresponding to a specific
mathematical operation, such as convolution, matmul, or softmax. These high-level operations are
subsequently compiled into hardware-specific high-performance primitives, known as kernels, for
GPU-accelerated computation. To achieve this, frameworks rely on kernel libraries, such as MIOpen
(Khan et al., 2019), an open-source kernel library from AMD, and cuDNN (Chetlur et al., 2014),
Nvidia’s kernel library specific to Nvidia GPUs.

In this paper, we focus specifically on optimizing kernel selection for convolution operations, though
the proposed model is general and can be deployed to optimize any operation. Both MIOpen and
cuDNN offer a range of highly optimized kernels for convolution operations, which serve as the
backbone of Convolutional Neural Networks (CNNs). CNNs have been at the forefront of many
breakthroughs in computer vision (Lecun et al., 1998; Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2014; Szegedy et al., 2015; He et al., 2016), primarily because convolution naturally encodes
the spatial equivariance bias which facilitates the learning of general purpose visual representations
Raghu et al. (2021). Therefore, despite the recent introduction of transformers (Vaswani et al.,
2017) to the vision world (Dosovitskiy et al., 2020), CNNs continue to maintain a critical position
in this domain, either on their own or as extensions to vision transformers (Dai et al., 2021; Xiao
et al., 2021; Wu et al., 2021; Graham et al., 2021). Thus, improving the computational efficiency
of CNNs can reduce the time and cost of training computer vision models while also enhancing
energy efficiency and reducing the carbon footprint of data centers used for hosting, training, and
serving deep learning models (Strubell et al., 2020; Patterson et al., 2022; Dodge et al., 2022). Be-
yond this, compute-efficient CNNs can also improve the inference speed and memory footprint of
vision models deployed on edge devices, thus facilitating the adoption of deep neural networks in
resource-constrained applications, such as robotics, smartphones, and IoT (Canziani et al., 2016).

Since convolutions are one of the primary operations in a CNN, the computational efficiency, eval-
uation time, and energy consumption of a CNN – both during training and inference – are heavily
influenced by the kernels provided by the underlying kernel library for these operations. In partic-
ular, MIOpen employs hand-written rule-based heuristics specific to each GPU skew and firmware
version to determine the most suitable kernel to serve from its pool.3 However, these heuristics are
imperfect, thus often leading to MIOpen serving suboptimal kernels to the upstream library, slowing
down convolution operations. Since these suboptimal kernels may be invoked tens of thousands of

3MIOpen also maintains a small internal lookup table, referred to as FindDB, which catalogs “common”
convolution problems and their corresponding fastest kernels, derived through exaustive benchmarking (Khan
et al., 2019). For a given convolution problem, MIOpen first checks FindDB; if a match is found, it retrieves
the kernel from the table. Otherwise, MIOpen uses heuristics to select a kernel.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

A

B

Learnable
Matmul

Matmul

O(n) Op.

Matmul

Matmul

Matmul

Matmul Matmul Matmul

Matmul

Matmul Matmul

Matmul

Matmul

N
O

N
L

IN
E

A
R

L
IN

E
A

R

L
IN

E
A

R

N
O

N
L

IN
E

A
R

COMBINE &
PROCESS

COMBINE &
PROCESS

Figure 2: Wireframe diagrams of the transformer block (A) from Vaswani et al. (2017) and the
Γ-block (B) proposed in this paper. Both blocks process input through nonlinear and linear path-
ways, subsequently combining and further processing the outputs of these pathways. The Γ-block
is designed to have fewer operations and a narrower structure compared to the transformer block.
Specifically, the Γ-block includes half as many matrix multiplications (matmuls) as the transformer
block (3 versus 6), while maintaining the same depth in terms of learnable layers (2 versus 2). Ad-
ditionally, the transformer block features six elementwise (O(n)) operations (two nonlinearities, two
norms, and two additions), whereas the Γ-block includes only three to four such operations (one
nonlinearity, one norm, and one to two additions, depending on the presence of a skip connection).

times during training and potentially millions of times when the model is served, this accumulated
latency can cause significant slowdowns, increased costs, and higher energy consumption. More-
over, maintaining hand-tuned heuristics is both time-consuming and error-prone, as these heuristics
must be manually designed and adjusted by experts whenever new hardware or firmware updates
are released. In this paper, we present the Reformer neural network, which we show can address all
of these concerns: it is not only significantly more accurate than hand-tuned heuristics but can also
readily be adapted across different hardware architectures and firmware releases.

3 REFORMER MODEL

We define a reformer model as a composition of Γ-blocks. That is, a reformer model Γ : Rd → RC

of depth L is a transformation defined as4

Γ(x) = Ξ (ΓL (. . .Γ2 (Γ1(Υ(x))) . . . )) ,

where Γℓ : Rdℓ−1 → Rdℓ , for ℓ = 1, . . . , L, denotes a Γ-block, Υ : Rd → Rd0 represents an initial
transformation on the input x, and Ξ : RdL → RC denotes a transformation on the output of the
final Γ-block, ΓL. Denoting Rd0 ∋ x0 = Υ(x), we define the Γ-blocks Γℓ as:

Γℓ(xℓ−1) = (A1)ℓ xℓ−1 + (b1)ℓ + (A3)ℓ Tℓ(xℓ−1) + (b3)ℓ := xℓ. (1)

Here (A1)ℓ ∈ Rdℓ−1×dℓ , (b1)ℓ ∈ Rdℓ , (A3)ℓ ∈ Rd′
ℓ×dℓ , and (b3)ℓ ∈ Rdℓ are learnable parameters

of the layer, and Tℓ : Rdℓ−1 → Rd′
ℓ denotes a fully-connected network, consisting of ReLU, nor-

malization (batchnorm or layernorm) and dropout. Figure 2 shows a comparison of the transformer
4In the context of the kernel selection problem, d corresponds to the number of features that characterize an

operation and its operands, while C represents the number of kernels available for that operation in the library.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

xℓ−1 ∈ Rdℓ−1

xℓ ∈ Rdℓ

x0 ∈ Rd0

+
Norm

Γℓ

y ∈ Rc

A B

x1

x2

x3

ReLU

Norm

ReLU

Fe
ed

-f
or

w
ar

d
N

et
w

or
k

Dropout

d′1 = 64

d1 = 128

Γ1

Afx3 + bf

Af∈RC×d3

bf∈RC

(A1)ℓxℓ−1 + (b1)ℓ

(A1)ℓ∈Rdℓ−1×dℓ

(b1)ℓ∈Rdℓ

(A2)ℓxℓ−1 + (b2)ℓ

(A2)ℓ∈Rdℓ−1×d′
ℓ

(b2)ℓ∈Rd′
ℓ

Γ3

d′3 = 64

d3 = 32

Γ2

d′2 = 256

d2 = 64

(A3)ℓx
′
ℓ + (b3)ℓ

(A3)ℓ∈Rd′
ℓ×dℓ

(b3)ℓ∈Rdℓ

modulated input
transformed
input

x′
ℓ

Γ
-B

lo
ck

sk
ip

-c
on

ne
ct

io
n

(o
pt

io
na

l)

Figure 3: A shows the architecture of the proposed Reformer model for convolution kernel selection
in MIOpen. At the heart of the network are three Γ-blocks – Γ1,Γ2 and Γ3 – where the size of
each block Γℓ is controlled by two attributes: d′ℓ and dℓ. Each Γ-block Γℓ features two pathways
that independently process the input to the layer, xℓ−1, as shown in B. The pathway to the right
(shaded cyan) processes the input through a feedforward network followed by an affine mapping,
and the other pathway (shaded blue) allows the input signal to flow unhindered except for an affine
projection. The outputs of these pathways are then combined element-wise and passed through
a ReLU activation function. Although the Γ-block architecture resembles blocks used in ResNet
variants, its original inspiration was the transformer block, with the goal of simplifying it for CPU
compute.

block from Vaswani et al. (2017) to the Γ-block. It can be seen that the Γ-block is narrower, with
half the number of matmul operations as the transformer block, while being equally deep in terms
of the number of learnable layers. Moreover, the Γ-block entails fewer element-wise operations.
However, at a higher level, one can see that both the Γ-block and the transformer block share a
similar structure: they each generate independent nonlinear and linear representations of the input,
combine these representations, and then process the combined output. This process is detailed in
Figure 3(B) for the Γ-block. The cyan-shaded pathway projects the input xℓ−1 ∈ Rdℓ−1 onto a
nonlinear manifold in Rd′

ℓ defined by Tℓ, which is described in Rdℓ through an affine map defined
by (A3)ℓ, and (b3)ℓ. The blue-shaded pathway, on the other hand, uses an affine map defined by
(A1)ℓ, and (b1)ℓ to directly describe the input in Rdℓ , without utilizing an intermediate nonlinear
representation. These two representations are additively combined, and subsequently ReLU-ed.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

R
e
L
U

M
a
t
m
u
l

D
r
o
p
o
u
t

M
a
t
m
u
l

S
o
f
t
m
a
x

P
o
o
l

D
r
o
p
o
u
t

E
m
b
e
d

Can be Γ-block or transformer block

Figure 4: A small text classification model inspired from the transformer architecture. The unnamed
block can be either the transformer block or Γ-block. The model’s performance on the IMDB and
Reuters datasets in both scenarios is provided in Table 1.

Table 1: Comparison of the Γ-block and transformer block performances on the IMDB and Reuters
text classification datasets. The full model architecture is illustrated in Figure 4. All tests were
conducted on an Intel®Core™ i7-6700K CPU.

IMDB Reuters

Γ-Block
(Ours)

Train Accuracy 99.99% 94.32%
Test Accuracy 87.07% 75.96%
Training Time 9.28 sec/epoch 2.99 sec/epoch
Inference Time 12.04 sec 12.27 sec

Transformer
Block

Train Accuracy 100% 96.04%
Test Accuracy 87.14% 76.24%
Training Time 23.05 sec/epoch 7.31 sec/epoch
Inference Time 15.19 sec 15.32 sec

3.1 CASE STUDY: TEXT CLASSIFICATION

We present a case study on the IMDB and Reuters text classification datasets to demonstrate the
Γ-block’s performance and compare it to that of the transformer block. To ensure a level playing
field for a direct model comparison, we design a small model inspired by the transformer model, as
shown in Figure 4, that can be instantiated with either a transformer block or Γ-block. Our findings,
summarized in Table 1, show that the model utilizing the Γ-block achieves comparable accuracy to
its transformer block counterpart while being significantly faster to train and having a considerably
lower inference time.

It is important to note that these experiments were conducted using a small model. While results
may vary for larger model sizes, we intentionally chose a smaller size to align with the scale suitable
for deployment in a kernel selection application. Kernel selection takes place at the lowest level of
the deep learning stack, where minimizing resource consumption is essential in order to maximize
the amount of resources available to upstream libraries.

Table 2: Example of a convolution problem with six applicable kernels, labeled A through F for
readability. Kernel E is identified as optimal, with a runtime of 0.0036ms. The table also illustrates
various methods for assigning probabilities to these kernels, indicating their likelihood of being op-
timal. This demonstrates the various ways that kernel selection can be formulated as a classification
problem aimed at predicting the label of the optimal kernel.

Kernel
Runtime

One-hot
Probability

Softmax
Probability

Ratio-preserving
Probability (ours)

Kernel A 0.0136ms 0 0.19048 0.17384
Kernel B 0.0507ms 0 0.18354 0.04645
Kernel C 0.0282ms 0 0.18772 0.08358
Kernel D 0.0573ms 0 0.18233 0.04112
Kernel E 0.0036ms 1 0.19239 0.65290
Kernel F 1.1114ms 0 0.06354 0.00212

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 CONVOLUTION KERNEL SELECTION

Figure 5: Performance comparison between
the Reformer model (red) and hand-written
rules-based heuristics (blue) for convolution
kernel selection on the AMD Instinct™ MI100
GPU. The x-axis represents unique convolu-
tion problems, and the y-axis shows the run-
time (in microseconds) for each kernel.

We show our particular instantiation of the Re-
former architecture for convolution kernel selec-
tion in Figure 3(A). We use three Γ-blocks, i.e.,
L = 3, and we choose Υ to be z-score normaliza-
tion and Ξ to be a learnable linear layer defined as
Ξ(xL) = σ (Af (xL) + bf ), where σ is the softmax
function. These simple choices for Υ and Ξ were
made to keep the model’s compute footprint low.
Although more complex layers, such as an input
embedding for Υ, yielded marginal improvements
in accuracy, they came at the cost of increased in-
ference time, ultimately negating the benefits of ac-
curacy improvement. We interpret the model’s out-
put, RC ∋ y := Γ(x), as a “probability distribu-
tion” over the kernels, where yi indicates the likeli-
hood that the i-th kernel is optimal for solving the
convolution problem with features x.

We treat kernel selection as a classification task,
where the objective is to identify the label of the
optimal kernel from a set of candidates. Typically,
classification models are trained to generate a one-
hot distribution, concentrating all probability mass
on the correct class (which in this case would be the
label of the optimal kernel) and treating all other
classes as equally undesirable. However, this mod-
eling assumption oversimplifies the problem of ker-
nel selection. For instance, consider a convolution
problem that can be solved by six different kernels,
with runtimes listed in Table 2. Kernel E, with
the shortest runtime, is clearly the optimal choice.
However, not all other kernels are equally undesir-
able; some are significantly less desirable than oth-
ers. For instance, Kernel F is considerably slower
than Kernel A and is thus much less preferable.
This distinction becomes crucial in cases where two
kernels have nearly identical performance on a set
of problems, and random noise causes one kernel
to appear optimal in some of the problems and the
other to appear optimal in others. Assigning one-
hot probabilities can mask the fact that the two ker-
nels are actually close in performance and either
may be regarded as optimal.

One can find a better prior, capturing kernel rank-
ings as a continuous function of their runtimes,
by applying softmax on the runtimes, as shown
in Table 2. However, this yields probabilities re-
lated to the kernel runtimes on a logarithmic scale
(because of the exponentiation operation involved
in softmax), which can often be undesirable, giv-
ing two kernels with significantly different perfor-
mance similar probability weights. For example, in
Table 2, Kernel E and Kernel D have very similar softmax-assigned probabilities even though Kernel
E is about 16 times faster than Kernel D.

To address this, we propose a novel approach to convert kernel runtimes into probabilities that follow
the ratios between kernel runtimes. Given a vector t of all kernel runtimes for a problem, we compute

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

probabilities p as follows:

pi =
1∑C

k=1 max(t)/tk

(
max(t)

ti

)
.5

Here, C is the number of kernels available in the library, where we take ti = ∞ if the i-th kernel
is not applicable to the problem. This ensures that pj/pi = ti/tj , meaning if the i-th kernel is β
times faster than the j-th kernel, then pi will be β times lower than pj . For example, using this
method, Kernel D is assigned a probability mass about 16 times lower than Kernel E, inline with
their runtimes.

We use the probabilities p as the ground-truth to train our Reformer model for kernel selection.
Specifically, we define the loss function as the cross-entropy between p and the predicted distribution
y output by the Reformer model:

L (x) = H (p, y) = −
C∑
i=1

pi log yi.

To generate the training/testing dataset, we used a collection of 500,000 convolution problems cu-
rated internally at AMD for the purposes of tuning and QA testing. For each of these convolution
problems, we evaluated every applicable kernel inside MIOpen on the AMD Instinct™ MI100 GPU,
and created a dataset mapping convolution problems to optimal kernels. We subsequently split this
dataset into an 80% training set and a 20% test set.

Figure 6: Comparison of the Reformer model
(red) and MIOpen’s hand-tuned heuristics (blue)
for kernel selection across 100 different convo-
lution problems, averaged over FWD, BWD, and
WRW directions.

We note that our data collection process en-
countered some noise due to distributed bench-
marking across machines in different locations.
Despite ensuring that all machines had identical
hardware and software environments, perfect
consistency could not be guaranteed. More-
over, minor variations in external factors, such
as ambient temperature around the machines,
along with other sources of random machine
noise, also introduced some inconsistencies
into the dataset. Nonetheless, we trained the
Reformer model on this dataset, achieving an
overall test accuracy of 91.7% in predicting
the optimal kernel. For comparison, we also
trained an off-the-shelf ResNet18 model on the
same dataset. Despite being much larger in
size, it achieved only a marginally higher test
accuracy of 92.1%.

Figure 5 illustrates the Reformer model’s per-
formance on 100 different convolution prob-
lems in all three directions: Forward (FWD),
Backward (BWD), and Backward with Weights
(WRW). These problems were proposed by an
engineer with no prior knowledge or involvement in this study, making them effectively out-of-
distribution for the model. Despite this, the Reformer model’s predicted kernels demonstrated sig-
nificant efficiency gains over the heuristics in MIOpen. Specifically, the Reformer model was 3.40
times faster in the FWD direction, 1.51 times faster in the BWD direction, and 5.46 times faster
in the WRW direction compared to the heuristics in MIOpen on the AMD Instinct™ MI100 GPU.
Overall, as shown in Figure 6, integrating the Reformer model for convolution kernel selection into
MIOpen led to an average speedup of approximately 3x across all convolution directions.

This particular instantiation of the Reformer model contains 80,978 parameters, requiring only about
160 kB of memory when stored in FP16 precision, with potential further reductions through quan-
tization. Its inference time on the CPU clocks at about 49 µs, which is typically much shorter than
the runtime of the slowest kernel for most convolution problems. Importantly, this inference is only

5It is straightforward to show that the expression for pi adheres to the Kolmogorov Axioms for ti > 0.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

needed during the initial pass of a deep learning model to identify the optimal kernels. Once identi-
fied, these kernels are cached and the Reformer model is unloaded from memory. For all subsequent
passes – which can range from tens of thousands during training to millions when a deep learning
model is deployed – the kernels are simply retrieved from the cache. Consequently, the inference
time of the Reformer model becomes essentially negligible when amortized over thousands, if not
millions, of runs of a deep learning model. Moreover, the memory footprint is also significantly re-
duced after the first run, as the model is unloaded from memory and replaced by a cache/dictionary.

It is worth reiterating here that the Reformer model is not just considerably more accurate but also
more scalable than rules-based heuristics. In contrast to hand-written rules, which may require ex-
tensive revisions for new firmware releases and complete rewrites by experts for new GPU releases,
the Reformer model can be easily deployed and updated using automated routines. It simply takes
benchmarking a set of convolution problems on the new hardware and/or firmware6 and training the
model on the resulting dataset using the gradient descent algorithm. Because of this automation, the
Reformer-based kernel selection is also less error-prone and more consistent, as illustrated by Figure
6, which shows significantly more performance spikes and variation when kernels are chosen using
rule-based heuristics despite the considerable effort put into their design by kernel developers and
QA teams.

5 RELEVANT WORK

5.1 KERNEL OPTIMIZATION

Previous work on optimizing the performance of compute kernels has mostly concerned itself with
methods for tuning/optimizing kernel parameters (Guerreiro et al., 2015; Lloyd et al., 2018; Gale
et al., 2020; Bhaskaracharya et al., 2020). Additionally, the problem of kernel scheduling has also
received some attention. For instance, Shekofteh et al. (2019) propose a method to select kernels
based on whether they are compute-bound or memory-bound in order to optimize concurrent ker-
nel scheduling on modern GPUs. Ahmed et al. (2022) propose a machine learning approach for
selecting the best kernels to fuse together so as to maximize GPU utilization. The work of Jeon
et al. (2022) presents a system for selecting the optimal backend to pick a kernel for deep learning
operations. Some other relevant works include: Oyama et al. (2018), Liu et al. (2021a), Xiao et al.
(2020), and the review article on parallel deep learning by Ben-Nun & Hoefler (2019). However,
while these works share overlapping themes with our research, to the best of our knowledge, none
of them specifically address the problem of mapping high-level deep learning operations to fastest
GPU kernels from a pool of kernels, particularly using deep learning methods.

5.2 RESIDUAL NETWORKS

Deep Residual Networks (ResNets), introduced by He et al. (2016), pioneered the use of skip con-
nections, which have since become a common fixture in neural network architectures. Despite its
design inspiration from Transformers, the Reformer model also shares some architectural similar-
ities with ResNets, including skip connections. However, unlike ResNets, the Reformer features
skip connections only between blocks rather than within them. Additionally, whereas ResNets use
convolutional layers within their blocks, the Reformer model employs fully connected layers similar
to those in attention modules of Transformers.

5.3 TRANSFORMERS

Introduced as a machine translation model by Vaswani et al. (2017), the transformer architecture has
since seen wide success in other applications of deep learning as well (Devlin et al., 2018; Carion
et al., 2020; Dosovitskiy et al., 2020). However, the necessity of the core architectural element of
the transformer model – the powerful yet compute-expensive self-attention mechanism – has since
been brought to question. Recent works have replaced the attention blocks with units composed of

6Kernel benchmarking for data collection can be streamlined using a tool like MITuna, an open-source
library developed at AMD that enables kernel benchmarking to be configured and monitored through user-
friendly Jenkins pipelines, with the ability to distribute tasks via SLURM across multiple machines that meet
hardware requirements, while automatically setting up the necessary software environment.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

MLPs, and achieved comparable performance (Liu et al., 2021b; Tolstikhin et al., 2021). Our work
also aligns with these works, but our architecture is optimized specifically for CPU deployment.
Furthermore, while many of these existing architectures were developed for language modeling
tasks, our architecture is designed specifically for the task of kernel selection.

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. TensorFlow: A System for
Large-Scale Machine Learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pp. 265–283, 2016.

Usman Ahmed, Jerry Chun-Wei Lin, and Gautam Srivastava. A ML-based resource
utilization OpenCL GPU-kernel fusion model. Sustainable Computing: Informat-
ics and Systems, 35:100683, 2022. ISSN 2210-5379. doi: https://doi.org/10.1016/
j.suscom.2022.100683. URL https://www.sciencedirect.com/science/article/
pii/S2210537922000245.

AMD. Introducing AMD CDNA™ 2 Architecture: Propelling humanity’s foremost research with
the world’s most powerful HPC and AI accelerator. Technical report, Advanced Micro Devices,
Inc., 2021.

Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learning: An in-depth
concurrency analysis. ACM Computing Surveys (CSUR), 52(4):1–43, 2019.

Somashekaracharya G Bhaskaracharya, Julien Demouth, and Vinod Grover. Automatic kernel gen-
eration for volta tensor cores. arXiv preprint arXiv:2006.12645, 2020.

Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry. Advances in
Neural Information Processing Systems, 34:28811–28822, 2021.

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural network
models for practical applications. arXiv preprint arXiv:1605.07678, 2016.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catan-
zaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. Advances in neural information processing systems, 34:3965–3977,
2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark, Roy Schwartz, Emma
Strubell, Alexandra Sasha Luccioni, Noah A Smith, Nicole DeCario, and Will Buchanan. Mea-
suring the carbon intensity of AI in cloud instances. In Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency, pp. 1877–1894, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10

https://www.sciencedirect.com/science/article/pii/S2210537922000245
https://www.sciencedirect.com/science/article/pii/S2210537922000245


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse GPU kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE, 2020.

Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou,
and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 12259–12269,
2021.

João Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomás. Multi-kernel Auto-Tuning on
GPUs: Performance and Energy-Aware Optimization. In 2015 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, pp. 438–445, 2015. doi:
10.1109/PDP.2015.44.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Byungsoo Jeon, Sunghyun Park, Peiyuan Liao, Sheng Xu, Tianqi Chen, and Zhihao Jia. Collage:
Seamless integration of deep learning backends with automatic placement. In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques, pp. 517–529,
2022.

Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil,
Suvinay Subramanian, Andy Swing, Brian Towles, et al. TPU v4: An optically reconfigurable
supercomputer for machine learning with hardware support for embeddings. In Proceedings of
the 50th Annual International Symposium on Computer Architecture, pp. 1–14, 2023.

Ben Keller, Rangharajan Venkatesan, Steve Dai, Stephen G. Tell, Brian Zimmer, William J. Dally,
C. Thomas Gray, and Brucek Khailany. A 17–95.6 tops/w deep learning inference accelerator
with per-vector scaled 4-bit quantization for transformers in 5nm. In 2022 IEEE Symposium on
VLSI Technology and Circuits (VLSI Technology and Circuits), pp. 16–17, 2022. doi: 10.1109/
VLSITechnologyandCir46769.2022.9830277.

Jehandad Khan, Paul Fultz, Artem Tamazov, Daniel Lowell, Chao Liu, Michael Melesse, Murali
Nandhimandalam, Kamil Nasyrov, Ilya Perminov, Tejash Shah, et al. MIOpen: An open source
library for deep learning primitivs. arXiv preprint arXiv:1910.00078, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Guodong Liu, Sa Wang, and Yungang Bao. Seer: A time prediction model for cnns from gpu
kernel’s view. In 2021 30th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pp. 173–185, 2021a. doi: 10.1109/PACT52795.2021.00020.

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to MLPs. Advances in Neural
Information Processing Systems, 34:9204–9215, 2021b.

Taylor Lloyd, Artem Chikin, Sanket Kedia, Dhruv Jain, and José Nelson Amaral. Automated GPU
Grid Geometry Selection for OPENMP Kernels. In 2018 30th International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD), pp. 442–449, 2018. doi:
10.1109/CAHPC.2018.8645848.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nvidia. NVIDIA A100 Tensor Core GPU Architecture: Unprecedented acceleration at every scale.
Technical report, Nvidia, 2020.

Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, and Satoshi Matsuoka. µ-cuDNN: Accelerating
Deep Learning Frameworks with Micro-Batching. arXiv preprint arXiv:1804.04806, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035. Cur-
ran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.

David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Hung Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeffrey Dean. The Carbon Footprint of Machine
Learning Training Will Plateau, Then Shrink. 4 2022. doi: 10.36227/techrxiv.19139645.v4. URL
https://www.techrxiv.org/articles/preprint/The_Carbon_Footprint_
of_Machine_Learning_Training_Will_Plateau_Then_Shrink/19139645.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? Advances in Neural Information
Processing Systems, 34:12116–12128, 2021.

Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and Pablo Villalobos.
Compute trends across three eras of machine learning. In 2022 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8. IEEE, 2022.

S.-Kazem Shekofteh, Hamid Noori, Mahmoud Naghibzadeh, Hadi Sadoghi Yazdi, and Holger
Fröning. Metric Selection for GPU Kernel Classification. 15(4), jan 2019. ISSN 1544-3566.
doi: 10.1145/3295690. URL https://doi.org/10.1145/3295690.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 13693–13696, 2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. MLP-mixer: An
all-MLP architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 22–31, 2021.

Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and Ross Girshick. Early
convolutions help transformers see better. Advances in neural information processing systems,
34:30392–30400, 2021.

Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. AntMan: Dynamic scaling on GPU clusters for deep learning. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pp. 533–548, 2020.

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.techrxiv.org/articles/preprint/The_Carbon_Footprint_of_Machine_Learning_Training_Will_Plateau_Then_Shrink/19139645
https://www.techrxiv.org/articles/preprint/The_Carbon_Footprint_of_Machine_Learning_Training_Will_Plateau_Then_Shrink/19139645
https://doi.org/10.1145/3295690

	Introduction
	Background
	Reformer model
	Case study: text classification

	Convolution kernel selection
	Relevant work
	Kernel optimization
	Residual networks
	Transformers


