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Abstract

Static leaderboards and single turn judgments correlate
weakly with deployment outcomes, especially in multilin-
gual and resource constrained settings. This position paper
argues that credible evaluation hinges on verifiability: ex ante
specifications that permit observable checks, repeatable scor-
ing, and auditable evidence. We propose a minimal standard
that makes verifiability first class while remaining compati-
ble with existing workflows. The standard has four artifacts:
a task schema, a validator entry point, a run card, and required
reporting fields. We ground the proposal in prior work on cov-
erage and transparency (Wang et al. 2019; Hendrycks et al.
2021; Liang et al. 2023) and on specification based checks
(Chen et al. 2021; Jimenez et al. 2024; Zhou et al. 2023;
Ribeiro et al. 2020). We present a prototype evaluation task
for schema constrained instruction following with robustness
probes and a multilingual protocol, and we attach measure-
ment and governance procedures that link scores to validity
arguments. The goal is to replace generic win rates with ver-
ifiable claims about task success that better predict real use
across languages and contexts.

Introduction
Benchmarks accelerate iteration, yet widely cited scores of-
ten fail to predict whether systems succeed on real tasks
(Wang et al. 2019; Hendrycks et al. 2021). Holistic work
shows that conclusions change once scenario breadth and
multi metric reporting are considered (Liang et al. 2023).
The missing ingredient is stronger verifiability. By verifia-
bility we mean three conditions: success criteria are speci-
fied before evaluation, compliance is observable through re-
peatable checks, and evidence is preserved for audit.

We advocate naturalistic and functional evaluation with
verifiability at its core. Naturalistic tasks mirror real goals,
constraints, and noise. Functional checks determine whether
outputs satisfy user relevant specifications. Preference win
rates and single turn scores remain useful diagnostics, but
they are insufficient when reliability, integration, and equity
are at stake. Verifiable functional checks provide clearer sig-
nals, especially where data, and expertise are constrained.
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Contributions.

• A verifiability first framework for naturalistic, functional
evaluation that replaces single scores with interpretable
scorecards.

• A minimal, interoperable standard with four artifacts for
task exchange and reporting: task schema, validator entry
point, run card, and required reporting fields.

• A prototype schema constrained instruction following
task with robustness probes and a multilingual protocol
to illustrate the standard in practice.

• Measurement and governance protocols that tie results
to explicit validity arguments and preserve an auditable
evidence trail.

Background and Motivation
Limits of static leaderboards and contamination.
Benchmark leaderboards have accelerated iteration, yet sin-
gle aggregate numbers often fail to predict whether sys-
tems accomplish real tasks in deployment (Wang et al. 2019;
Hendrycks et al. 2021). Even broad dashboards can mask
whether a model satisfied concrete, task-specific require-
ments (Liang et al. 2023). Overlap between training corpora
and evaluation sets further erodes score interpretability and
can produce apparent gains without robust capability im-
provements (Liang et al. 2023; Deng et al. 2024). Recent
surveys document contamination pathways in modern LLM
pretraining and fine-tuning pipelines and argue for stronger
provenance controls and test-set hygiene (Deng et al. 2024).

From preference to verifiable outcomes. Human or
LLM preference signals are valuable for fluency and help-
fulness, but they can reward surface qualities while over-
looking requirement satisfaction, formatting constraints, or
brittle reasoning (Zheng et al. 2023). Empirical studies re-
port sensitivity of LLM judges to position and verbosity as
well as substantial variance across prompts, seeds, and judge
models, motivating randomized presentation, gold calibra-
tion, and uncertainty reporting (Jung, Brahman, and Choi
2024; Son et al. 2025). We therefore treat preference as sup-
plemental evidence and place verifiable checks at the center
of the measurement strategy.



Naturalistic evaluation lineage. The field has progressed
from static, exam-style testing toward naturalistic and func-
tional tasks. Dynabench formalized dynamic, human-in-the-
loop collection to preserve difficulty and ecological valid-
ity (Kiela et al. 2021). Executable benchmarks such as Hu-
manEval and SWE-bench judge success by running code or
resolving real issues end-to-end (Chen et al. 2021; Jimenez
et al. 2024). IFEval operationalizes instruction-following
through programmatic constraints, while CheckList turns
robustness into measurable perturbation families (Zhou et al.
2023; Ribeiro et al. 2020). Concurrently, live or simulated
interactive arenas e.g., WildBench-style in-the-wild tasks
and web interaction suites seek to approximate user goals
and environments (Lin et al. 2024; Chiang et al. 2024).
These strands collectively support a shift from average win-
rates to outcome-based, verifiable completion of realistic
tasks.

Multilingual and underserved contexts. Large cross-
lingual evaluations continue to show persistent disparities
across languages and varieties (Hu et al. 2020; Clark et al.
2020; Team et al. 2022; Adelani et al. 2021). Code-mixing
resources such as GLUECoS, LinCE and CodeMixBench
further highlight phenomena that typical English-centric
benchmarks ignore (Khanuja et al. 2020; Aguilar, Kar, and
Solorio 2020; Yang and Chai 2025). Real deployments in
underserved settings often rely on strict schemas, locale-
aware number and date formats, and intermittent or low-
resource operation. Evaluations should make these con-
straints explicit and verifiable, report per-language break-
downs with uncertainty, and include code-mix and locale
perturbations.

Why verifiability. Putting verifiability first aligns evalu-
ation with responsible measurement practice. Ex ante suc-
cess criteria reduce researcher degrees of freedom, observ-
able checks and repeatable scoring enable independent re-
production, and preserved artifacts connect scores to evi-
dence for governance uses complementing model cards and
datasheets (Mitchell et al. 2019; Gebru et al. 2021). To-
gether, these practices raise the floor on reliability and make
claims portable across languages, resource profiles, and tool-
ing stacks.

Naturalistic Functional Evaluation
Naturalistic task settings. A naturalistic evaluation draws
tasks from realistic scenarios and preserves their context and
messiness. Efforts that curate difficult, user relevant queries
captured in live settings surface challenges missed by cu-
rated exam style prompts (Liang et al. 2023). Naturalistic
tasks may require multi turn clarification, adherence to user
specific constraints, and awareness of domain or locale con-
ventions. Evaluations that keep these properties intact better
approximate downstream behavior.

Functional success criteria. Functional evaluation asso-
ciates each task with explicit criteria that define what it
means to complete the task(Srivastava et al. 2024; Ojew-
ale, Raji, and Venkatasubramanian 2025). Criteria are ex-
pressed as checks that can be verified. In code genera-

tion, hidden unit tests provide the decision rule (Chen et al.
2021). In instruction following, verifiable constraints such
as length, required phrases, or structural conformance can
be checked directly (Zhou et al. 2023). Extending this ap-
proach, multilingual functional evaluation demonstrates that
these specification-based checks can be applied consistently
across languages and resource contexts to test cross-lingual
equivalence and schema compliance (Ojewale, Raji, and
Venkatasubramanian 2025). Many deployments also require
outputs to match strict schemas, for example JSON ob-
jects consumed by tools, where an output validator can test
parseability, exact keys, and required fields. This shifts eval-
uation from subjective impressions to verifiable task com-
pletion.

Scorecards over single scores. Rather than a single rank,
we propose compact scorecards that summarize decision
outcomes per task. Each scorecard records whether the
model met the specification, how many criteria were sat-
isfied, whether retries were needed, stability under small
perturbations (Ribeiro et al. 2020), and an error class label
such as syntax, format, logic, retrieval, tool, or safety. Ag-
gregating scorecards across tasks yields success rates and
failure mixes while preserving interpretability. This mirrors
multi metric reporting norms from HELM while centering
specification satisfaction and robustness (Liang et al. 2023).
For practitioners, such reports indicate not only how often a
model works but also how and why it fails.

A Minimal Standard for Verifiable Evaluation
The standard operationalizes verifiability with four artifacts.
It is intentionally small to reduce engineering burden and to
interoperate with existing runners.

Artifact 1: Task schema
A machine readable object that declares prompts, inputs,
languages, criteria, and perturbations. It describes what to
check, not how to optimize.

Artifact 2: Validator entry point
A callable that maps model outputs and optional inputs to
criterion level decisions. Checks can be automated or man-
ual. Manual checks require a rubric, a two pass adjudication
plan, and agreement reporting.

Artifact 3: Run card
A structured record that enables repeatable scoring and later
audit. Include model identifier and version, decoding set-
tings, seeds, judge settings if any, software and hardware,
fixture hashes, languages, time stamps, and pointers to raw
outputs and validator logs.

Artifact 4: Required reporting fields
Publish at minimum: task success rate, mean specification
compliance, invalid output rate, retry distribution, stability
under perturbations, and error class distribution. Report per
language and per capability family. Include inter rater agree-
ment when humans are involved.



Listing 1: Minimal task schema for schema constrained in-
struction following.
1 {
2 "id": "task.schema_follow.v1",
3 "languages": ["en","yo"],
4 "prompt": {"turns":[
5 {"role":"user",
6 "text":"Return a JSON object with

keys point1, point2, point3 and
mention ’carbon emissions’ at
least once."}

7 ]},
8 "schema": {
9 "type":"object",

10 "required":["point1","point2","
point3"],

11 "properties":{
12 "point1":{"type":"string","

minLength":1},
13 "point2":{"type":"string","

minLength":1},
14 "point3":{"type":"string","

minLength":1}
15 },
16 "additionalProperties": false
17 },
18 "criteria": [
19 {"name":"json_parse"},
20 {"name":"exact_keys"},
21 {"name":"keyword_present","args":{"

phrase":"carbon emissions"}},
22 {"name":"non_empty_values"}
23 ],
24 "perturbations":[
25 {"name":"reorder_requirements"},
26 {"name":"inject_distractors"},
27 {"name":"code_mix_instruction"},
28 {"name":"whitespace_variants"}
29 ],
30 "report": ["success","spec_compliance

","retries","stability","
error_class"]

31 }

Proposed Prototype Evaluation Task Scenario
Scenario. A product team requires strict JSON outputs
from natural language instructions. Downstream services re-
ject malformed structures. Reliability must hold across En-
glish, one additional language, and a light code–mix variant.
Decision rules are executable (Zhou et al. 2023) and robust-
ness is probed via controlled surface changes (Ribeiro et al.
2020). The task surface and checks are encoded in the task
schema of Listing 1. The validator’s return contract is shown
in Listing 2. Each evaluation run is documented with the run
card in Listing 3 for reproducibility and later audit.

Task Surface
User goal: “Give three brief points that address topic t.”
Schema: exact keys point1, point2, point3; string
values(see Listing 1, field schema). Lexical constraint:
phrase p must appear in at least one value (Listing 1, cri-

Listing 2: Validator output contract with evidence fields.
1 {"success": true,
2 "spec_compliance": 1.0,
3 "retries": 1,
4 "stability": 0.90,
5 "checks": {
6 "json_parse": true,
7 "exact_keys": true,
8 "keyword_present": true,
9 "non_empty_values": true

10 },
11 "evidence": {
12 "parsed_json":"{...}",
13 "keyword_hits":["carbon emissions"]
14 },
15 "error_class": null}

Listing 3: Illustrative run card fields.
1 {
2 "model": {"name":"X-Model","version

":"2025-09"},
3 "decode": {"temperature":0.2,"

max_tokens":512},
4 "seeds": {"sampling":123,"eval":7},
5 "env": {"python":"3.11","os":"linux-

amd64"},
6 "fixtures": {"schema_sha256":"...","

prompt_sha256":"..."},
7 "languages": ["en","yo"],
8 "judge": null,
9 "artifacts": {

10 "outputs_path":"runs/2025-10-01/
outputs.jsonl",

11 "logs_path":"runs/2025-10-01/
validator.log"

12 },
13 "summary": {"success_rate":0.74,"

mean_spec":0.88}
14 }

terion keyword present). Languages: en, L2, and a
code–mix prompt that keeps JSON keys in Latin script (List-
ing 1, fields languages, perturbations).

Required Behaviors
1. Return a single JSON object that parses under a strict

JSON parser (json parse in Listing 1).
2. Use exactly the key set {point1, point2, point3}

(exact keys).
3. Satisfy schema types and minimal lengths

(schema types, non empty values).
4. Include the lexical constraint p in at least one value

(keyword present).

Validator Entry Point
The deterministic validator maps to criterion booleans and
evidence as specified in Listing 2. Success is the conjunc-
tion of all criteria. Failures receive an error class from
{SYNTAX, KEYS, SCHEMA, LEXICAL, OTHER}. Minimal



evidence snippets that triggered each decision are logged for
audit.

Robustness Probes
Controlled perturbations preserve the functional require-
ment and are enumerated in the perturbations field of
Listing 1. We instantiate:
1. Reorder bullets in the instruction.
2. Insert short distractor sentences.
3. Whitespace and punctuation variants.
4. Code–mix a fixed list of operators and meta–verbs while

freezing JSON keys.
5. Same–language synonym substitutions for content

words.
Stability in this regard would be the fraction of perturbed
prompts that still pass all checks.

Multilingual and Code–Mix Protocol
Parallel prompts in L2 are produced with forward translation
and independent review. A lightweight code–mix substitutes
function words while protecting numerals, quoted spans, and
schema keys. The same validator applies across en, L2, and
code–mix. Report per–language results to surface disparities
(Liang et al. 2023).

Measurement and Reporting
We allow a small retry budget R ∈ {0, 1, 2} under fixed
decoding and seeds. Publish a per–language scorecard:
• Success rate (any–pass within R).
• Mean specification compliance (mean of criterion

booleans).
• Invalid output rate (strict parse failures).
• Stability under perturbations.
• Retries to success and error–class distribution.

Each run includes a run card as in Listing 3.

Measurement and Governance Protocols
We adopt validity as an argument about score interpretations
supported by multiple strands of evidence (Messick 1989;
AERA, APA, and NCME 2014). The protocols below make
those strands concrete for naturalistic, specification based
evaluation and connect them to governance practices.

Content validity. Define the construct precisely and map
tasks to capability families. Provide a coverage matrix by
language, domain, and interaction pattern. Justify task selec-
tion with stakeholder or domain expert review and summa-
rize changes after pilot runs. For multilingual settings, doc-
ument varieties and code mix types covered and note gaps
that remain.

Response process evidence. Describe how tasks,
prompts, and translations are produced and checked. For
translation, specify forward translation, independent review,
and accept–reject rules for edits. For instruction following,
publish the logic of each check and examples of borderline
cases. If any manual decisions are used, provide rubrics,
annotator training materials, and the adjudication workflow.

Internal structure and reliability. Report reliability of
checks and stability under perturbations (Ribeiro et al.
2020). Include seeds, prompt variants, and retry budgets in
a small factorial design and quantify variance attributable to
each factor. Provide bootstrap confidence intervals for suc-
cess and specification compliance. Track failure modes by
error class and report the concentration of errors per task
and per language.

Relations to other variables. Assess convergence and di-
vergence with established aggregates such as HELM style
metrics (Liang et al. 2023). Where feasible, correlate success
with downstream outcomes such as human utility ratings or
integration success in a target workflow. If LLM judges are
used for qualities that resist hard specifications, report agree-
ment against small gold sets, position randomization, and
bias controls (Zheng et al. 2023; Li et al. 2024).

Transparency artifacts. Publish an “evaluation card” that
complements model cards and datasheets (Mitchell et al.
2019; Gebru et al. 2021). The card should summarize con-
structs, task sources, languages, check logic, reliability, un-
certainty, and known limitations in one place. Include a short
checklist of reproducibility items that must be satisfied for
third parties to rerun the suite.

Interoperability and Reproducibility
Align runners with HELM style execution to enable sce-
nario level aggregation and release of prompts and outputs
(Liang et al. 2023). Provide seed control and fixture hashes.
Containerize validators where possible or publish detailed
rubrics and annotation interfaces. Release schemas, valida-
tors, and small fixtures under research friendly licenses. For
restricted data, publish redacted fixtures and replication in-
structions, and state constraints clearly.

Discussion and Limitations
Our proposal for naturalistic, functional, and verifiable eval-
uation is motivated by a simple question: what does good
performance mean when an LLM is actually deployed to
do real work? In deployment, a good model is one that
consistently produces useful, correct outputs for the tasks
that users need, while avoiding failures that cause harm or
break downstream systems. This is not fully captured by to-
day’s dominant evaluation signals. Human or LLM prefer-
ence judgments tend to favor outputs that are eloquent and
safe, which is valuable, but they can overlook subtle errors,
missed requirements, or brittle reasoning. A user might rate
an answer highly because it sounds plausible, even if it is
slightly incorrect or not precisely what they needed. Cali-
bration metrics tell us whether a model knows when it does
not know, but a well calibrated model can still be uniformly
wrong on an entire class of tasks.

Functional evaluation instead targets deployment time be-
havior by testing models in scenarios that approximate real
use and by measuring concrete success. For a coding assis-
tant, what matters is how often a model produces working
code that passes tests, not only whether the code looks syn-
tactically plausible. For a customer support assistant, suc-



cess might mean resolving an issue within a small num-
ber of turns using the right policies and tools. For mul-
tilingual deployments, success includes meeting users in
their languages and varieties while respecting strict schemas
and locale formats. By constructing evaluations that mirror
these realities, we reduce the gap between benchmark per-
formance and practical reliability and avoid the familiar sit-
uation where models ace static tests yet disappoint in pro-
duction.

A key advantage of naturalistic, specification based tasks
is that they expose robustness and edge cases. Because each
task has explicit criteria and we can vary inputs and condi-
tions, we can interrogate failure modes. Perturbation fami-
lies, such as adding distractors, rephrasing instructions, or
code mixing prompts while holding schemas fixed, make
it possible to see where performance collapses despite su-
perficial similarity. Compact scorecards that record success,
specification compliance, retries, stability, and error classes
provide more actionable feedback than a single scalar. They
help distinguish models that fail cleanly and transparently
from those that produce confident but subtly non compliant
outputs.

At the same time, there are important limitations and risks
that temper how far a verifiability first approach can go. A
first limitation is the specifiability ceiling. Not all valuable
capabilities admit crisp, executable criteria. Creativity, cul-
tural nuance, and value alignment often require rubric based
or human adjudication, which introduces variability and po-
tential bias even with careful training and agreement checks.
LLM judge pipelines increase throughput but remain sensi-
tive to verbosity, position, and self agreement, so residual
bias can persist even when combined with functional filters.

A second limitation concerns gaming and brittleness.
Specification centered evaluation can itself be overfit. Sys-
tems may learn to satisfy surface checks without robust com-
petence, for example by overproducing required phrases or
rigid JSON shells while still making reasoning errors inside
fields. Public fixtures and schemas also increase contami-
nation risk, especially when reused during model training.
Perturbation families and multilingual variants reduce these
risks but do not eliminate them, and aggregate scorecards
can still mask rare but harmful failures that matter dispro-
portionately in high stakes settings.

A third limitation involves cost, coverage, and repro-
ducibility. Designing precise checks, building validators,
curating naturalistic tasks, and running multilingual pilots
impose nontrivial costs. Language and variety coverage will
remain incomplete, particularly for code mixing and locale
specific phenomena, so uncertainty reporting and explicit
gap documentation are necessary. Closed models and rapid
versioning further limit exact replication. Run cards, and re-
leased fixtures mitigate these issues by making evaluations
more transparent, but they cannot fully resolve drift across
providers and time.

Taken together, these limitations suggest that naturalis-
tic, functional, and verifiable evaluation should be viewed
as a core layer rather than a complete replacement for exist-
ing practices. Our position is that specification based checks
and scorecards should form the backbone of evaluation,

especially where reliability and governance matter, while
preference judgments and qualitative analyses remain im-
portant complements for aspects that resist formalization.
If the community invests in shared schemas, validators,
and multilingual fixtures, the costs of this approach can
be reduced and its benefits made accessible beyond well re-
sourced organizations.

Conclusion
Verifiability is central to credible model evaluation. A small
standard that foregrounds ex ante specifications, observable
compliance, repeatable scoring, and auditable evidence can
raise the floor on reliability, improve multilingual cover-
age, and make progress claims comparable. We recommend
adding specification based checks to existing suites, report-
ing scorecards rather than single ranks, publishing run cards
and evidence artifacts, and using perturbation probes to ex-
pose brittleness. The community can build a shared library
of schemas, validators, and fixtures that lowers adoption
costs and improves trust.
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