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ABSTRACT

Dimensionality reduction is widely used to visualize and analyze high-dimensional
data, but most methods assume centralized access to all pairwise similarities, which
is infeasible in privacy-sensitive, decentralized settings. We introduce SENSE, a
geometry-aware framework for privacy-preserving decentralized representation
learning. SENSE reconstructs global structure from sparse, locally observed dis-
tances via structured matrix completion, requiring no raw data sharing or iterative
communication. It supports both Euclidean and hyperbolic geometries, adapts to
flat and hierarchical structures, and operates under four deployment regimes reflect-
ing real-world data availability. By design, SENSE safeguards raw features while
producing faithful embeddings. Our theoretical analysis establishes formal privacy
guarantees, and experiments on diverse benchmark datasets show that SENSE
matches centralized baselines while remaining efficient and privacy-preserving.
Our code is publicly available here.

1 INTRODUCTION

Dimensionality reduction (DR) projects high-dimensional data into lower-dimensional spaces where
patterns are easier to interpret (Jolliffe & Cadima, 2016). A prominent family is neighbor embedding
(NE) methods, which preserve local similarity relationships (Sorzano et al., 2014). Notable examples
include t-SNE (van der Maaten & Hinton, 2008) and UMAP (McInnes et al., 2020), widely used in
visualization (Cavallo & Demiralp, 2018), anomaly detection (Sadr et al., 2019), and exploratory
analysis (Ding et al., 2002). Contrastive Neighbor Embedding (CNE) (Damrich et al., 2023) ex-
tends these ideas by casting neighborhood preservation into a contrastive learning framework that
emphasizes the role of negatives. In contrast, PHATE (Moon et al., 2019) departs from NE altogether,
leveraging diffusion geometry to capture both local and global structures. Together, these methods
illustrate the diversity and impact of modern DR. However, most similarity-based DR approaches
assume centralized access to all pairwise similarities, a condition rarely met in practice. In domains
from healthcare and finance to IoT and social media, data are distributed across clients under strict
privacy and communication constraints (Dwork et al., 2014; McMahan et al., 2017; Qiao et al., 2023),
leaving inter-client similarities inaccessible. This fragmented view of the data yields embeddings that
misrepresent relationships and fail to preserve the underlying structure (Li et al., 2024).

Related Work. Several approaches have addressed these challenges but are constrained by
scalability, privacy, or deployment practicality. SMAP (Xia et al., 2020) offers strong privacy via
Secure Multi-party Computation (SMC), but its cryptographic overhead makes large-scale use
infeasible and prevents support for methods like UMAP. FedNE (Li et al., 2024) allows federated NE
but lacks intrinsic privacy, relies on heavy server-client interaction, and is vulnerable to inversion
attacks. Fed-tSNE and Fed-UMAP (Qiao et al., 2024) generate synthetic anchors via MMD
alignment but assume multi-sample clients, fail in single-sample regimes, and remain susceptible
to adversarial corruption. These limitations call for frameworks that are communication-efficient,
privacy-preserving, and yield faithful embeddings. To this end, we propose SENSE, a geometry-
aware framework for decentralized representation learning. It supports both Euclidean and hyperbolic
spaces, the latter crucial for capturing hierarchical structures in domains such as social and biological
networks (Malik et al., 2025). At its core, SENSE reconstructs global structure from sparse local
distances, avoiding raw data sharing, iterative communication, or centralized storage. The completed
distance matrix is then used with classical NE methods, CNE, PHATE, or hyperbolic CoSNE (Guo
et al., 2022), enabling scalable and privacy-preserving embeddings in decentralized environments.

The discussion so far has emphasized privacy as a key barrier to decentralized representation learning,
but this naturally raises a deeper question: what do we actually mean by privacy? The term is
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Figure 1: Observed entries in the global distance matrix D under four SENSE configurations: (1) Pointwise-
Full, (2) Pointwise-Partial, (3) Multisite-Full, and (4) Multisite-Partial. Configurations differ by visibility of
Anchor–NonAnchor (A–NA) and NA–NA blocks, determined by client data locality and anchor access. In
Pointwise, each client contributes a single NA (e.g., 1, 2, . . . , 9), whereas Multisite allows intra-client NA–NA
observations (e.g., A1, A2, . . . , C2). Full modes grant all NAs access to the global anchor set (e.g., A–E),
yielding complete A–NA blocks, while Partial modes restrict clients to disjoint anchor subsets, producing sparse
structured observations.

inherently contextual. Across domains such as healthcare, finance, and social platforms, data often
encode highly sensitive attributes such as medical records, geolocation traces, genomic records,
financial transactions, and social interactions (Dwork et al., 2014; Rieke et al., 2020; Byrd &
Polychroniadou, 2020; Lim et al., 2020). Over the years, privacy has been formalized in diverse ways,
from cryptographic guarantees to statistical indistinguishability and database anonymity, reflecting
that there is no single universal notion, only definitions shaped by the threat model and application
context (Yao, 1982; Goldreich, 1998; Dwork et al., 2006; Abadi et al., 2016; Sweeney, 2002; Kairouz
et al., 2021). So, what does privacy mean in our setting?

In SENSE, clients may typically hold sensitive datasets, such as patient health records, demographic
attributes, or financial profiles, making the raw feature vectors {xi} the sensitive objects. Disclosing
such data would be a severe violation. Instead, SENSE relies on distances to some anchor points as
safe coordination signals, reconstructing inter-client similarity (i.e., who is close to whom) without
exposing raw features, thereby producing faithful low-dimensional embeddings under strict privacy
and communication constraints.

Anchors therefore play a central role in our framework, and their use is both practical and robust.
Curated by a trusted server, they can be synthetic, anonymized, or drawn from public data, decoupled
from private client records. This avoids leakage risks from client-generated anchors, especially in
small or skewed regimes (Qiao et al., 2024) while providing stability, auditability, and adversarial
robustness. Such strategies are already common in healthcare (Johnson et al., 2016; Bycroft et al.,
2018), genomics (Regev et al., 2017; Litviňuková et al., 2020), finance (Awosika et al., 2024a),
mobile/NLP applications (Hard et al., 2019; Li et al., 2019), and wireless sensor networks (Di Franco
et al., 2017), illustrating their practical viability. Motivated by this, we treat anchors as core archi-
tectural components. SENSE leverages them, together with tools from distance matrix completion,
network localization, and low-rank recovery, to provide formal privacy guarantees for reconstructing
global structure from partial observations. It introduces the following key innovations:

• Privacy and communication efficiency: Distance estimation is decoupled from raw data, avoiding
reliance on external mechanisms such as Homomorphic Encryption or Differential Privacy. Also, it
requires only a single client–server interaction with no iterative training.

• Geometric and deployment flexibility: Supports both Euclidean and hyperbolic spaces and adapts
to four observation regimes. As shown in Figure 1, these regimes dictate which entries of the
distance matrix are observable. SENSE estimates/infers the missing inter-client similarity from
this incomplete information while preserving privacy across all scenarios. In the Pointwise setting,
each client contributes only a single non-anchor (NA), typical of edge/mobile devices, whereas in
the Multisite setting, clients hold multiple NAs, such as patients in hospitals or customers in banks.

• Provable reliability: Provides formal privacy guarantees, complemented by empirical validation
across diverse datasets and geometries.

Practical Impact. These properties make SENSE broadly applicable to privacy-sensitive,
structurally diverse domains. Hospitals can jointly visualize patient data without violating
HIPAA/GDPR (Sheller et al., 2019), banks can detect fraud patterns without exposing transac-
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tions (Awosika et al., 2024b), and even mobile/IoT devices with a single sample can contribute to
global embeddings (Pape & Rannenberg, 2019; Baran, 1964). Genomic labs can embed single-cell
transcriptomes into a shared hyperbolic space that preserves both cellular hierarchy and privacy (Agni-
hotry et al., 2022; Tasissa & Lai, 2019). Crucially, SENSE also supports dynamic participation: new
clients or samples can be incorporated by estimating partial distances to existing entities, avoiding full
re-computation while maintaining global coherence. Thus, SENSE is not only privacy-preserving
and geometry-aware but also inherently scalable to dynamic federated ecosystems.

2 BACKGROUND AND PROBLEM FORMULATION.
Neighbor Embedding (NE). Methods like t-SNE (van der Maaten & Hinton, 2008) and UMAP
(Damrich & Hamprecht, 2021) embed high-dimensional data X = {xi}ni=1 ⊂ Rdh into a low-
dimensional space Y = {yi}ni=1 ⊂ Rdℓ by preserving pairwise structure. These methods are
distance-driven. They transform distances into similarities via kernels to preserve relational structure
(see Appendix A.1, A.2). Let Ddh

ij = ∥xi − xj∥ and Ddℓ
ij = ∥yi − yj∥ denote distances in the high-

and low-dimensional spaces respectively. These are mapped to similarities via kernel functions:
Sdh
ij = f(Ddh

ij ), Sdℓ
ij = g(Ddℓ

ij ), where f and g are typically Gaussian, Laplacian, or Cauchy
kernels. The general NE objective minimizes the divergence between the two similarity matrices:

L(Y) =
∑
i,j

D(Sdh
ij , S

dℓ
ij ), (1)

where D is a divergence measure such as KL divergence or binary cross-entropy.
Contrastive Neighbor Embedding. CNE (Damrich et al., 2023) extends NE into the contrastive
learning framework by training an encoder fθ to map xi to yi = fθ(xi) such that the neighborhood
structure from a k-NN graph is preserved (Li et al., 2024). CNE uses a distance-aware contrastive
loss (see Def A.3 in Appendix), framed as a binary similarity matching problem. Let Sdh ∈
{0, 1}n×n denote ground-truth neighborhood indicators and Sdl denote kernel-based similarities in
the embedding space. The loss is a weighted binary cross-entropy:

L(Y) = −
∑
i,j

[
Sdh
ij logSdl

ij + b(1− Sdh
ij ) log(1− Sdl

ij )
]
. (2)

where b > 0 balances the repulsion term; for more details on Eq. 2 see A.3.
Key Challenges in Decentralized Settings. (C1) CNE, like NE, relies on a full similarity matrix, which
is unavailable in privacy-sensitive, decentralized settings. (C2) Conventional distributed learning
captures only intra-client structure, omitting crucial inter-client neighbor information. (C3) Clients
lack access to global data, leading to incorrect kNN graphs and biased negative sampling, as true
neighbors may reside on other clients.

CO-SNE (for Hyperbolic Data). Hierarchical structures in social, biological, and knowledge
graphs grow exponentially, making Euclidean embeddings unsuitable due to distortion of tree-like
geometry. Hyperbolic space, with constant negative curvature, naturally models such growth and
supports hierarchy-aware learning (Malik et al., 2025; Ganea et al., 2018) (see Appendix A.3.1).
Standard methods like t-SNE assume Euclidean geometry and distort global structure when applied
to hyperbolic data, collapsing depth and relative positioning. CO-SNE (Guo et al., 2022) extends
t-SNE to hyperbolic geometry by using distance-aware kernels: Sdh

ij = f(dBn(xi, xj)), Sdl
ij =

g(dB2(yi, yj)), where f is a hyperbolic normal kernel and g a heavy-tailed Cauchy kernel. A
depth-regularization term aligns norms across spaces. The objective is:

L(Y) = λ1 · D(Sdh , Sdl) + λ2

∑
i

(ρ(xi)− ρ(yi))
2, (3)

where ρ(x) = ∥x∥ and D is typically KL divergence. For more details see Def A.4.

2.1 PROBLEM FORMULATION
We consider a decentralized system with M clients {C1, . . . , CM} coordinated by a central server
owned by a private company, hospital, bank, or government agency. Each client Cm holds a private
dataset Dm = {xm

i }
Nm
i=1 ⊂ Rdh , which remains local and disjoint, i.e., Dm ∩ Dm′ = ∅ for m ̸= m′.

Let N =
∑M

m=1 Nm be the total number of data points, indexed globally by i ∈ [N ]. We consider two
real-world configurations: A) SENSE-Pointwise, where each client holds a single sample xm ∈ Rdh ,
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and B) SENSE-Multisite, where each client holds a local dataset Xm = [xm
1 , . . . ,xm

Nm
] ∈ RNm×dh .

Let D ∈ RN×N denote the full squared distance matrix. In Euclidean space, Dij = ∥xi − xj∥2; in
hyperbolic space, it reflects squared distances in the Poincaré ball Bdh or Lorentz model Hdh (see
Appendix A.3). Due to privacy constraints, only a subset of entries is observable. Let Ω ⊆ [N ]× [N ]
be the set of observed indices, and define the projection operator PΩ : RN×N → RN×N as:

[PΩ(D)]ij =

{
Dij , if (i, j) ∈ Ω,

0, otherwise.
(4)

Goal 1 Our goal is to reconstruct the full distance matrix from partial observations DΩ = PΩ(D) via
structured matrix completion. Rather than estimating distances directly, we infer latent embeddings
X̂ ∈ RN×dh whose induced distances agree with the observed entries. Formally, we solve:

X̂⋆ = argmin
X̂

∥∥∥PΩ

(
D(X̂)

)
−DΩ

∥∥∥2
F
, (5)

and define the reconstructed distance matrix as D̂ = D(X̂⋆), which serves as an approximation of
the true but unknown D. Here D(X̂) denotes the induced pairwise distance matrix under the chosen
geometry (Euclidean or hyperbolic). From D̂, we then derive a global low-dimensional embedding
Y = {yi}Ni=1 ⊂ Rdℓ with dℓ ≪ dh, which preserves the neighborhood structure.
We use D̂ to find the similarities, defined in Eq. 6 and optimized via divergence D(Sdh , Sdℓ) (Eq. 1).

Sdh
ij = exp

(
−D̂ij

2σ2

)
, Sdℓ

ij = g(∥yi − yj∥2), (6)

For contrastive learning, we build binary similarities using k-nearest neighbors:

Sdh
ij =

{
1, if j ∈ kNN(i; D̂),

0, otherwise,
Sdℓ
ij = ϕ(yi,yj) =

1

1 + ∥yi − yj∥2
, (7)

and minimize the contrastive loss (Eq. 2). For hierarchical data, we apply CO-SNE, treating D̂ as
squared hyperbolic distances in the Poincaré model to compute similarities (Eq. 16 in Appendix).
The embedding Y ⊂ Bdℓ is optimized using the CO-SNE loss (Eq. 3).

3 PROPOSED FRAMEWORK: SENSE
As described in Section 2.1, we consider two decentralized settings: SENSE-Pointwise and SENSE-
Multisite. In both, each client holds private non-anchor (NA) data and accesses a shared anchor set
A = {a1, . . . , aK} with feature matrix XA = [p1, . . . ,pK ]⊤ ∈ RK×dh . Anchors, broadcast by the
server, may be global or client-specific (see Appendix A.8). Let X = {x1, . . . , xN} be the set of all
private NA points (raw features), where N =

∑M
m=1 Nm. Each client computes squared distances

between its NAs and accessible anchors:
dm
i =

[
∥xm

i − p1∥2, . . . , ∥xm
i − pK∥2

]
,

and transmits these to the server, masking unshared local anchors. In Pointwise, each client contributes
one NA-anchor vector, in Multisite, intra-client NA–NA distances may also be known. The global
incomplete squared distance matrix D ∈ R(K+N)×(K+N) is partitioned as:

D =

[
E F
F⊤ G

]
, (8)

where E is anchor–anchor, F is anchor–NA, and G is NA–NA. The observed subset is indexed by
Ω ⊆ [K+N ]2, based on anchor visibility and client configuration. We consider four configurations:
Pointwise-Full, Pointwise-Partial, Multisite-Full, and Multisite-Partial which differ in the extent
of observed entries in F (anchor–NA) and G (NA–NA). These define distinct visibility patterns in
Ω, summarized in Appendix Table 6 and illustrated in Figure 1, and determine which distances are
available for structured matrix completion. To reconstruct the unobserved blocks of D (notably G)
and obtain the reconstructed matrix D̂ (or Ĝ) we use geometry-specific solvers: anchored-MDS in
Euclidean space (Sec. 3.1) and LHYDRA (Keller-Ressel & Nargang, 2022) in hyperbolic space. The
complete pipeline is outlined in Algorithm 1 (Appendix).

Remark 1 In practice, F may be only partially or fully visible due to bandwidth, privacy, or data
limitations. SENSE is designed to operate under such conditions.
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3.1 SENSE VIA ANCHORED-MDS
Classical MDS embeds N points by minimizing stress over a fully observed distance matrix D ∈
RN×N . The embedding X ∈ RN×dh minimizes: σ(X) =

∑
i<j (∥xi − xj∥ − δij)

2
, where δij is

the input Euclidean distance between points i and j. SMACOF solves this using a majorization-
based surrogate (De Leeuw, 2005) (details in Appendix A.5), τ(X,Z) = C + tr(X⊤VX) −
2 tr(X⊤B(Z)Z), with the iterative update:

X(k) = V†B(X(k−1))X(k−1). (9)

In SENSE, we do not observe the full matrix D (in Eq. 8), instead, we only access the observed
entries DΩ = PΩ(D), which contain distances on a subset of pairs. Let the embedding be X =

[XA XNA]
⊤, where XA and XNA are anchor and NA embeddings, respectively. Stress is minimized

over observed entries only: σ(X) = ∥PΩ(D(X)−D)∥2F , where PΩ projects onto observed indices
Ω, and D(X) computes pairwise distances. The SMACOF updates are restricted to Ω, with:

Vij =


|{j : (i, j) ∈ Ω}|, i = j

−1, (i, j) ∈ Ω, i ̸= j

0, otherwise
, Bij(X) =


− δij

∥xi−xj∥
, (i, j) ∈ Ω, i ̸= j

−
∑

k ̸=i, (i,k)∈Ω

Bik, i = j

0, otherwise

We partition V and B as defined in Eq. 10, where VAA, BAA ∈ RK×K , VAN , BAN ∈ RK×N , and
VNN , BNN ∈ RN×N :

V =

[
VAA VAN

V⊤
AN VNN

]
, B =

[
BAA BAN

B⊤
AN BNN

]
(10)

The update rule for NA embeddings becomes:

X
(k)
NA = V†

NN

(
BNNX

(k−1)
NA +B⊤

ANPΩ(XA)−V⊤
ANPΩ(XA)

)
. (11)

This projection-aware update ensures XNA uses only observed/available distances. The projection
operatorPΩ acts as a binary mask over observed entries. While V and B are derived from Ω, we apply
PΩ to XA in Eq. 11 to retain only anchors with observed anchor–NA distances. This avoids leakage
from inaccessible anchors and ensures privacy-compliant updates (pseudocode in Appendix A.7).
Furthermore, to preserve privacy, the number of shared anchors K must be limited. Theorems 3.1,
3.2 (Euclidean) and Lemma 1 (hyperbolic) characterize how K relates to embedding dimension dh
across SENSE configurations, establishing privacy conditions for faithful reconstruction.
Theorem 3.1 Let X = {x1, . . . ,xN} ⊂ Rdh be the set of NA data points, and let A =
{a1, . . . ,aK} ⊂ Rdh be the set of K anchor points. Suppose we observe the pairwise Euclidean
distances {∥xi−aj∥}i∈[N ],j∈[K] between each NA and all anchors. If the number of anchors satisfies
K < dh, then the original NA features {xi}Ni=1 cannot be exactly reconstructed from these distances,
guaranteeing the privacy of the individual client data.
Proof. Deferred in Appendix, check A.1.

While Theorem 3.1 ensures privacy, the reconstructed embeddings (Eq. 11) must also remain useful.
We capture this through reconstruction fidelity, defined as preserving neighborhood structure rather
than exact features. In SENSE, such fidelity is guaranteed by well-established results from MDS
distance-based recovery (Drineas et al., 2006; Zhang et al., 2019; Lichtenberg & Tasissa, 2024a).
These solvers are known to produce embeddings consistent up to Euclidean isometries (translation,
rotation, and scaling) (Mardia & Riley, 2021; Khan et al., 2009). These invariances ensure that
geometric relationships are preserved for downstream tasks, while exact feature values remain
unrecoverable, achieving precisely the balance required in privacy-sensitive settings.

SENSE supports multiple configurations, which critically influence embedding fidelity and privacy.
Theorem 3.2 formalizes privacy guarantees when only partial anchor–NA distances (block F ) are
available, covering both pointwise and multisite regimes. 1) SENSE-Pointwise: Each client j ∈ [N ]
holds a single private point xj ∈ Rdh and accesses a subset of anchors indexed by Ij ⊆ [K]. The
corresponding anchor set is Aj = {ai}i∈Ij , comprising: (i) global anchors AG = {a1, . . . ,aMG

},
shared across all clients, and (ii) local anchors A(j)

L , unique to client j. The total of anchors observed
is rj = |Ij | = MG + M

(j)
L . 2) SENSE-Multisite: Each client m ∈ [M ] holds a local dataset

X (m) = {xm,1, . . . ,xm,nm} ⊂ Rdh , where N =
∑M

m=1 nm. Each point xm,i observes distances
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to (i) a shared global anchor set AG, and (ii) a local anchor set A(m)
L exclusive to client m. Let

Im,i = IG ∪ I(m)
L be index set of accessible anchors, with rm,i = |Im,i| denoting number observed.

Theorem 3.2 Let X = {x1, . . . ,xN} ⊂ Rdh be the set of all non-anchor (NA) points across
all clients, where each xi computes squared distances only to a subset of accessible anchors
Ai = {aj}j∈Ii

, with |Ii| = ri. If ri < dh for all i ∈ [N ], then exact recovery of each xi is
impossible. The inverse map from anchor distances to features is non-unique, preserving privacy
under both pointwise and multisite configurations.
Proof. Deferred in Appendix, check A.2.
Lemma 1 Let {x1, . . . , xK+N} ⊂ Hdh be K anchors and N NA points in hyperbolic space with
curvature −κ. Suppose only blocks E and F of distance matrix D are observed. If K < dh, the NA
coordinates cannot be exactly recovered up to isometry in Hdh , ensuring the privacy of the client data
in SENSE. This follows from the contrapositive of the L-HYDRA theorem (Keller-Ressel & Nargang,
2022), which guarantees exact recovery only when K ≥ dh and anchors span a full subspace.

In SENSE, we deliberately restrict anchors to K < dh rather than K ≤ dh. Fewer anchors enlarge
the feasible solution space, introducing geometric ambiguity (Wei et al., 2015; Liberti et al., 2014)
that strengthens privacy while still preserving neighborhood structure (Fig. 3). This design holds in
both Euclidean and hyperbolic spaces, making it a general, geometry-agnostic choice. A detailed
theoretical discussion and supporting examples are provided in Appendix A.10.

4 EXPERIMENTS
In this section, we first outline the experimental setup, followed by an evaluation of SENSE across
diverse datasets and deployment settings.

4.1 EXPERIMENTAL SETUP
Datasets. We evaluate SENSE on 14 public datasets widely used in DR and representation learn-
ing (Fu et al., 2024). These include three benchmarks: MNIST (Deng, 2012), Fashion-MNIST (Xiao
et al., 2017), and CIFAR-10 (Giuste & Vizcarra, 2020); seven MedMNIST datasets (Yang et al., 2023):
DermaMNIST, PneumoniaMNIST, RetinaMNIST, BreastMNIST, BloodMNIST, OrganCMNIST,
OrganSMNIST; and the German Credit dataset (Hofmann, 1994). For hyperbolic, we use three graph
datasets: Airport (Malik et al., 2025), Amazon (Yang & Leskovec, 2012), and DBLP (Kataria et al.,
2024). Detailed dataset stats and system specifications are in Appendix Table 7 and A.13.
Baselines. We compare SENSE against centralized (Van) baselines: t-SNE (van der Maaten &
Hinton, 2008), UMAP (McInnes et al., 2020), PHATE (Moon et al., 2019), and CNE (Damrich et al.,
2023) (with s ∈ {0, 0.5, 1}). These assume full raw data access at a central server and serve as upper
bounds for evaluating SENSE’s privacy-preserving performance.
Implementation Details. SENSE has two stages: matrix completion and global embedding. In
the first stage, data is partitioned across M clients. In Pointwise, each client holds one NA point,
sampled randomly. In Multisite, clients hold multiple NA points under IID or non-IID splits (bal-
anced/unbalanced). A subset of 10% of the total data points is designated as anchors. In Full settings,
all anchors are global, and in Partial, anchors are split into global and client-specific local sets. The
total of anchors (global + local) is fixed at dh − 1, where dh is the original feature dimension. In
the embedding stage, we use the completed distance matrix to generate privacy-preserving embed-
dings using multiple neighbor embedding methods. For Euclidean geometry, we use the official
implementations of t-SNE (van der Maaten & Hinton, 2008), UMAP (McInnes et al., 2020), and
PHATE (via its standard Python library). For CNE, we adopt the implementation from (Damrich
et al., 2023), where the parameter s controls the attraction-repulsion tradeoff: s = 0 mimics t-SNE,
s = 1 aligns with UMAP, and intermediate values interpolate between them. CNE operates within
a contrastive learning framework using negative sampling. For hyperbolic embeddings, we use the
CO-SNE implementation from (Guo et al., 2022).

Remark 2 The 10% anchor sharing in the multisite setting is used only for empirical evaluation.
These anchors are not private; they act as public or semi-public landmarks, akin to those in GPS
(Shang & Ruml, 2004) or radar systems (Iannucci et al., 2020). This is standard in localization
literature (Di Franco et al., 2017; Khan et al., 2009), where landmarks aid positioning but are not
privacy-sensitive (Koledoye et al., 2017). Our privacy definition protects only the high-dimensional
features of NA points. Anchors are fixed, visible, and either synthetic, public, or explicitly consented.
Not part of any client’s private data. For details on anchor generation, see Appendix A.8.
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Table 1: Full vs. Partial comparison in MULTISITE under non-IID (unbalanced) splits. Evaluation spans
centralized and privacy-preserving SENSE variants across different embedding quality metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

— Multisite-Partial Setting —

MNIST

Trust. 0.9890 0.9898 0.9553 0.9552 0.8741 0.8763 0.9517 0.9521 0.9524 0.9538 0.9455 0.9476
Cont. 0.9575 0.9639 0.9774 0.9771 0.9811 0.9804 0.9806 0.9797 0.9799 0.9787 0.9799 0.9787
Stead. 0.7719 0.7861 0.7639 0.7635 0.6628 0.6746 0.7840 0.7790 0.7752 0.7768 0.7634 0.7658
Cohes. 0.8189 0.8458 0.8865 0.8853 0.8668 0.8877 0.9229 0.9112 0.9107 0.9196 0.9158 0.9087

fashionMNIST

Trust. 0.9902 0.9914 0.9140 0.9148 0.9579 0.9557 0.9765 0.9752 0.9784 0.9769 0.9765 0.9731
Cont. 0.9608 0.9590 0.9812 0.9818 0.9910 0.9906 0.9915 0.9913 0.9905 0.9903 0.9900 0.9901
Stead. 0.8415 0.8643 0.7570 0.7622 0.7836 0.7891 0.8632 0.8638 0.8643 0.8660 0.8493 0.8513
Cohes. 0.6496 0.6559 0.6748 0.7069 0.7051 0.7115 0.7680 0.7669 0.7637 0.7508 0.7792 0.7666

— Multisite-Full Setting —

MNIST

Trust. 0.9890 0.9852 0.9553 0.9570 0.8741 0.8780 0.9517 0.9516 0.9524 0.9542 0.9455 0.9452
Cont. 0.9575 0.9518 0.9774 0.9754 0.9811 0.9797 0.9806 0.9772 0.9799 0.9763 0.9799 0.9761
Stead. 0.7719 0.7953 0.7639 0.7726 0.6628 0.6688 0.7840 0.7808 0.7752 0.7828 0.7634 0.7690
Cohes. 0.8189 0.8328 0.8865 0.8665 0.8668 0.8818 0.9229 0.9047 0.9107 0.8926 0.9158 0.9106

fashionMNIST

Trust. 0.9902 0.9895 0.9140 0.9076 0.9579 0.9555 0.9765 0.9752 0.9784 0.9769 0.9765 0.9725
Cont. 0.9608 0.9731 0.9812 0.9797 0.9910 0.9902 0.9915 0.9906 0.9905 0.9895 0.9900 0.9891
Stead. 0.8415 0.8604 0.7570 0.7530 0.7836 0.7981 0.8632 0.8608 0.8643 0.8649 0.8493 0.8538
Cohes. 0.6496 0.6936 0.6748 0.7019 0.7051 0.7039 0.7680 0.7503 0.7637 0.7591 0.7792 0.7695

— Pointwise-Full Setting —

MNIST

Trust. 0.9661 0.9679 0.9484 0.9467 0.8457 0.8469 0.9218 0.9166 0.9164 0.9138 0.9137 0.9151
Cont. 0.9418 0.9410 0.9376 0.9396 0.9546 0.9538 0.9434 0.9422 0.9428 0.9417 0.9409 0.9403
Stead. 0.8083 0.8113 0.7878 0.7763 0.6953 0.6958 0.8024 0.8003 0.8041 0.7996 0.8025 0.7914
Cohes. 0.7904 0.7998 0.7855 0.7819 0.7912 0.7843 0.7988 0.7982 0.8034 0.7894 0.7931 0.7919

fashionMNIST

Trust. 0.9647 0.9681 0.9441 0.9434 0.8407 0.8375 0.9283 0.9264 0.9255 0.9245 0.9256 0.9196
Cont. 0.9430 0.9454 0.9386 0.9373 0.9542 0.9528 0.9464 0.9460 0.9456 0.9440 0.9451 0.9429
Stead. 0.8118 0.8103 0.7797 0.7779 0.6923 0.6931 0.8087 0.8049 0.8085 0.8003 0.8082 0.8150
Cohes. 0.7570 0.7882 0.7685 0.7670 0.7564 0.7599 0.7876 0.7786 0.7843 0.7788 0.7838 0.7710

Data Partitioning. To simulate realistic distributed settings, we evaluate SENSE under both IID
and non-IID distributions using Dirichlet-based partitioning. For each class c, client-wise proportions
are drawn from qc ∼ Dir(α), where lower α yields greater heterogeneity and class imbalance (Wang
et al., 2020; Zhao et al., 2018). We set α = 0.5 in all experiments. Three partitioning schemes are
used: IID (uniform class mix), non-IID balanced (varying class distributions, equal client sizes), and
non-IID unbalanced (both class and size vary).

Evaluation Metrics. We assess SENSE using both reconstruction and embedding quality metrics.
For fidelity, we compute Relative Distance Error (DE) and F-score (FS) between the reconstructed
distance matrix (NA-NA) Ĝ and ground truth Gtrue: DE = ∥Ĝ−Gtrue∥F

∥Gtrue∥F
, and FS = 2 tp

2 tp+fp+fn , where tp,
fp, and fn are true, false positive, and false negative neighbors respectively (Egilmez et al., 2017). To
evaluate 2D embeddings, we compute Trustworthiness and Continuity (Venna & Kaski, 2005), which
measure neighborhood agreement between original and embedded spaces. We also report Steadiness
and Cohesiveness (Jeon et al., 2021) to assess global structural reliability: steadiness detects false
groupings and cohesiveness quantifies how well true input clusters are preserved.

4.2 RESULT ANALYSIS.
We comprehensively evaluate SENSE across: 1) Standard image datasets (MNIST, FashionMNIST,
CIFAR-10): These are evaluated under Pointwise-Full, Multisite-Full, and Multisite-Partial with
non-IID unbalanced splits. As shown in Table 1 and in Appendix 10, SENSE closely matches
centralized baselines across Cont., Trust., Stead., and Cohes. Notably, the Partial configuration
performs comparably to Full, indicating that accurate reconstruction of the global distance matrix
is possible even with partial anchor–NA observations. Table 9 further confirms high F-score and
low distance error, validating strong neighborhood preservation under strict privacy constraints.

Table 2: FS and DE for hyperbolic
datasets in POINTWISE setting.

Dataset FS DE

AIRPORT 0.9992 0.000067
AMAZON 0.9945 0.00052
DBLP 0.9929 0.00073

2) MedMNIST datasets: These are evaluated across unbalanced
non-IID, balanced non-IID, and IID splits. SENSE consistently
matches centralized performance (Tables 3,12,11), even under
high heterogeneity. Table 8 in Appendix, further shows low DE
and high FS, confirming strong structural and similarity preserva-
tion. 3) Hyperbolic datasets (Airport, Amazon, DBLP): For these
datasets, the results in Table 2 highlight SENSE’s geometry-aware
design, achieving high FS and very low DE in non-Euclidean
spaces. This confirms its adaptability across geometric regimes. Overall, SENSE effectively ensures:

• Neighbor preservation: High continuity and trustworthiness show SENSE keeps similar points
close in the embedding, preserving semantics across clients.
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Table 3: Performance of centralized (Van.) and SENSE variants under non-IID unbalanced splits.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

PneumoniaMNIST

Trust. 0.9723 0.9712 0.7699 0.7673 0.8570 0.8590 0.9027 0.9008 0.8976 0.8952 0.8832 0.8806
Cont. 0.9418 0.9383 0.9140 0.9154 0.9624 0.9608 0.9594 0.9591 0.9590 0.9583 0.9606 0.9599
Stead. 0.7868 0.7932 0.6258 0.6168 0.7247 0.7204 0.7552 0.7591 0.7496 0.7461 0.7283 0.7341
Cohes. 0.6991 0.6591 0.6318 0.6250 0.6953 0.6957 0.6983 0.7085 0.7052 0.7142 0.7015 0.7065

BloodMNIST

Trust. 0.9633 0.9609 0.8674 0.8632 0.8493 0.8513 0.8841 0.8816 0.8814 0.8795 0.8737 0.8715
Cont. 0.9256 0.9375 0.9411 0.9401 0.9435 0.9428 0.9555 0.9552 0.9558 0.9556 0.9555 0.9552
Stead. 0.7498 0.7480 0.6889 0.6874 0.6781 0.6851 0.7172 0.7323 0.7186 0.7216 0.7100 0.7132
Cohes. 0.7242 0.7178 0.7253 0.7253 0.7456 0.7448 0.7462 0.7440 0.7384 0.7540 0.7533 0.7379

BreastMNIST

Trust. 0.9379 0.9378 0.7817 0.7998 0.8921 0.8884 0.9133 0.9117 0.9124 0.9113 0.9108 0.9108
Cont. 0.9508 0.9481 0.8140 0.8247 0.9616 0.9563 0.9519 0.9515 0.9516 0.9513 0.9510 0.9509
Stead. 0.8417 0.8329 0.5605 0.5550 0.8037 0.8149 0.8438 0.8480 0.8491 0.8495 0.8490 0.8398
Cohes. 0.6091 0.6137 0.4095 0.4112 0.5668 0.5570 0.5777 0.5695 0.5807 0.5689 0.5675 0.5585

DermaMNIST

Trust. 0.9757 0.9770 0.7496 0.7466 0.8737 0.8728 0.9130 0.9121 0.9119 0.9116 0.9020 0.9021
Cont. 0.9461 0.9572 0.9127 0.9122 0.9736 0.9730 0.9709 0.9713 0.9706 0.9707 0.9716 0.9715
Stead. 0.7977 0.7979 0.5945 0.5936 0.7308 0.7319 0.7739 0.7689 0.7682 0.7686 0.7578 0.7553
Cohes. 0.7147 0.7111 0.5586 0.5459 0.7127 0.7108 0.7268 0.7321 0.7385 0.7502 0.7438 0.7383

RetinaMNIST

Trust. 0.9797 0.9736 0.8793 0.8636 0.9161 0.9050 0.9486 0.9357 0.9475 0.9348 0.9451 0.9336
Cont. 0.9496 0.9669 0.9273 0.9244 0.9738 0.9734 0.9720 0.9714 0.9707 0.9701 0.9678 0.9680
Stead. 0.8442 0.8498 0.6307 0.5923 0.7559 0.7636 0.8267 0.8176 0.8196 0.8138 0.8158 0.8040
Cohes. 0.6734 0.7281 0.5832 0.5828 0.6957 0.6991 0.7100 0.7137 0.7089 0.6982 0.6883 0.6990

OrganCMNIST

Trust. 0.9621 0.9387 0.8887 0.8867 0.8850 0.8871 0.9134 0.9041 0.9159 0.9056 0.9019 0.8907
Cont. 0.9207 0.9170 0.9268 0.9247 0.9691 0.9699 0.9733 0.9693 0.9729 0.9685 0.9737 0.9696
Stead. 0.7011 0.7855 0.7527 0.7718 0.7935 0.8093 0.8666 0.8755 0.8733 0.8722 0.8597 0.8607
Cohes. 0.4685 0.5037 0.3322 0.3373 0.5431 0.5444 0.4653 0.5096 0.5681 0.5233 0.5745 0.5375

OrganSMNIST

Trust. 0.9552 0.9357 0.8741 0.8625 0.8792 0.8821 0.9114 0.9028 0.9126 0.9040 0.8993 0.8912
Cont. 0.9214 0.9169 0.9246 0.9213 0.9684 0.9700 0.9738 0.9682 0.9731 0.9675 0.9736 0.9683
Stead. 0.6765 0.7311 0.7222 0.7485 0.7809 0.7995 0.8609 0.8659 0.8664 0.8708 0.8561 0.8582
Cohes. 0.4951 0.4814 0.3603 0.3211 0.5198 0.5343 0.4704 0.44009 0.5192 0.4833 0.5155 0.5033

german-credit

Trust. 0.9745 0.9543 0.9514 0.9294 0.8555 0.8394 0.9337 0.9124 0.9380 0.9072 0.9336 0.9092
Cont. 0.9583 0.9424 0.9604 0.9410 0.9481 0.9255 0.9571 0.9438 0.9576 0.9438 0.9571 0.9440
Stead. 0.8576 0.8248 0.8313 0.7933 0.7483 0.7061 0.8398 0.7921 0.8479 0.7855 0.8436 0.7906
Cohes. 0.6774 0.6755 0.6638 0.6568 0.6893 0.6745 0.6446 0.6551 0.6575 0.6481 0.6513 0.6676

• Similarity recovery: Despite no raw data access, SENSE accurately approximates pairwise dis-
tances evidenced by low DE and high FS.

• Cluster structure: Comparable steadiness and cohesiveness confirm that SENSE maintains cluster
alignment without fragmentation.

Visualization. Figure 2 shows global embeddings learned by SENSE on MNIST in the MULTISITE
setting with 25,000 NA samples across 10 clients in an unbalanced non-IID split. Using only 783
anchors (dh − 1), SENSE constructs high-quality embeddings without accessing or sharing raw
features. Embeddings from t-SNE, UMAP, PHATE, and CNE cleanly separate semantic groups,
preserving local neighborhoods and global cluster topology. By estimating inter-client similarities,
SENSE enables meaningful inter-client positive/negative contrastive pairs. This highlights its ability
to learn structure-preserving, privacy-compliant embeddings in decentralized, heterogeneous settings.
Additional visualizations are in the Appendix A.14.

4.3 ABLATION STUDY.
To validate Theorems 3.1, 3.2, and Lemma 1, we perform an ablation study by varying anchor
count from dh − ϵ to dh + ϵ. We evaluate SENSE using five normalized metrics, plotted in
Figure 3: (i) Cosine Similarity (Nguyen & Bai, 2010) between ground-truth X ′

NA and reconstructed
latent embeddings X̂NA; (ii) Distance Error and (iii) F-score (Sec. 4.1); (iv) Pearson Correlation
(ρ) (Sedgwick, 2012) over NA–NA distances; and (v) Frobenius Norm Error (Xfrob) (Kannan, 1989),
capturing reconstruction loss (full definitions in Appendix A.15). Key observations from the study:
• Effective with few anchors: Even with anchor count well below dh (e.g., dh − 100), SENSE

achieves high F-score, low distance error, and strong cosine similarity, showing robust neighborhood
preservation in resource-constrained settings.

• Privacy-compliant reconstruction: As anchors approach dh, cosine and Pearson scores improve.
Beyond dh + 1, near-zero Frobenius error indicates possible exact recovery highlighting the need
to limit anchor count to preserve privacy.

• Structural consistency: Pearson correlation rises with anchor count, saturating near 1.0 at dh + 1,
with corresponding drops in Frobenius error confirming theoretical bounds for exact recovery.

• Metric alignment with theoretical thresholds: Across datasets, all metrics converge near dh, with
diminishing gains beyond matching theoretical thresholds.

These results validate that SENSE achieves high-fidelity, privacy-compliant reconstruction with
minimal anchors, making it scalable and effective in decentralized settings with limited observability.
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Figure 2: Global embeddings of MNIST under the MULTISITE setting. Top: CNE spectrum with SENSE.
Bottom: t-SNE, PHATE, and UMAP embeddings generated via SENSE without any raw feature sharing. All
embeddings preserve global structure while ensuring privacy.

(a) MNIST (b) German-credit (c) RetinaMNIST (d) PneumoniaMNIST

Figure 3: Impact of anchor count on normalized metric scores under non-IID unbalanced distributions. The red
vertical line denotes the theoretical privacy threshold at dh − 1 (783 for MNIST, 19 for German Credit), beyond
which exact recovery may be possible. For Retina and Pneumonia, this threshold lies outside the x-axis range,
resulting in monotonic performance gains. Trends confirm trade-offs between reconstruction fidelity and privacy
risk as anchor count increases.

4.4 DISCUSSION.
Due to space constraints, we provide the extended discussion of SENSE and additional empirical
results in Appendix A.16. It addresses four key aspects: (i) how SENSE adapts to dynamic evolving
distributed environments via out-of-sample embedding; (ii) scalability and runtime on large-scale
datasets such as Tiny ImageNet (Le & Yang, 2015) and SVHN (Netzer et al., 2011) (Table 13), with
a detailed breakdown of pipeline stages and complexity analysis in Table 14; (iii) a curated privacy
example showing that embeddings preserve structural relationships while preventing recovery of
sensitive attributes (Table 15); and (iv) why SENSE avoids noise-based privacy (Table 16 and 17),
since injected noise quickly degrades embedding quality, whereas geometric underdetermination
preserves both fidelity and privacy.

5 CONCLUSION

We proposed SENSE, a geometry-aware framework for decentralized representation learning that
reconstructs global geometry from sparse anchor-based distances, enabling projections without raw
data exchange. By combining structured matrix completion with classical DR methods, SENSE
supports both Euclidean and hyperbolic spaces and adapts to multiple deployment settings. Exper-
iments show that SENSE is effective even with few anchors, achieving strong neighborhood and
cluster preservation while matching centralized baselines under strict privacy and communication con-
straints. These results highlight SENSE as a scalable, privacy-preserving solution for collaborative
representation learning in heterogeneous, non-IID environments.
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A APPENDIX

A.1 NEIGHBOR EMBEDDING (NE).
Definition A.1 t-SNE models pij as symmetrized conditional probabilities using Gaussian kernels:
pj|i ∝ exp(−∥xi − xj∥2/2σ2

i ), with pij =
pj|i+pi|j

2n . Low-dimensional similarities are computed
using a heavy-tailed Student-t kernel: qij ∝ (1 + ∥yi − yj∥2)−1. The loss minimizes the KL
divergence:

LtSNE =
∑
i̸=j

pij log
pij
qij

.

Definition A.2 UMAP defines pj|i = exp(−(∥xi−xj∥−ρi)/τi) using adaptive exponential kernels,
where ρi is the local connectivity threshold. Symmetrized pij is computed via fuzzy set union. In the
embedding space, qij = (1 + a∥yi − yj∥2)−b with fixed parameters (a, b). The loss is a weighted
binary cross-entropy:

LUMAP =
∑
i̸=j

[
pij log

pij
qij

+ (1− pij) log
1− pij
1− qij

]
.

A.2 CONTRASTIVE NEIGHBOR EMBEDDING (CNE).
Definition A.3 Given a kNN graph, high-dimensional similarities are binary: Sdh

ij = 1 if xj ∈
kNN(xi), and 0 otherwise. In the embedding space, similarities are defined using a Cauchy kernel:
Sdl
ij = ϕ(yi,yj) =

1
1+∥yi−yj∥2 . The CNE objective combines attractive and repulsive forces:

L(θ) = −E(i,j)∼pi
log ϕ(fθ(xi), fθ(xj))− bE(i,j) log(1− ϕ(fθ(xi), fθ(xj))),

where pi samples positive pairs and b > 0 balances the repulsion term.

A.3 HYPERBOLIC MODELS AND DISTANCE CALCULATION.
There are several equivalent models of hyperbolic geometry exist, including the Poincaré ball model,
lorentz model (or hyperboloid model) and the upper half-space model. The mathematical framework
of the d-dimensional hyperboloid model of hyperbolic geometry is deined as follows:

For x, y ∈ Rd+1, the Lorentz product is an indefinite inner product given by,

x ◦ y := x1y1 − (x2y2 + · · ·+ xd+1yd+1). (12)

The real vector space Rd+1 equipped with this inner product is called Lorentz space, denoted by R1,d.
It contains the positive Lorentz space as a subset:

R1,d
+ :=

{
x ∈ R1,d : x1 > 0

}
.

Within R1,d
+ , the single-sheet hyperboloid Hdh is given by

Hdh :=
{
x ∈ R1,d : x ◦ x = 1, x1 > 0

}
. (13)

The hyperboloid model in dimension d with curvature −κ (for κ > 0) consists of Hdh endowed with
the hyperbolic distance:

dκH(x, y) =
1√
κ

arcosh(x ◦ y), x, y ∈ Hdh . (14)

The distance dκH is a valid metric on Hdh , it is positive definite and satisfies the triangle inequality.
Moreover, equipped with the metric tensor:

ds2 =
1

κ
(dx ◦ dx),

the hyperboloid Hdh becomes a Riemannian manifold of constant sectional curvature −κ, and dκH
corresponds exactly to its geodesic distance. In particular, the curvature κ does not alter the definition
of the manifold Hdh itself, but only scales the distance metric. Just as Euclidean space is the canonical
model for zero curvature, hyperbolic space is the canonical geometry for constant negative curvature.
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A.3.1 POINCARÉ BALL MODEL.
The Poincaré ball model is the most widely used formulation of hyperbolic space in machine
learning (Nickel & Kiela, 2017; Ganea et al., 2018). It defines the n-dimensional hyperbolic space as

Bn = {x ∈ Rn : ∥x∥ < 1} with Riemannian metric gx =
(

2
1−∥x∥2

)2
In. The hyperbolic distance

between two points u, v ∈ Bn is:

dBn(u, v) = arcosh

(
1 +

2∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
. (15)

This distance increases exponentially near the boundary, enabling natural hierarchical embeddings
where central points correspond to root nodes and peripheral points to leaves.

A.4 CO-SNE
Definition A.4 CO-SNE defines the similarities via hyperbolic normal kernels in the high-
dimensional Poincaré ball Bn: pj|i = exp

(
−dBn(xi, xj)

2/2σ2
i

)
/Zi, with pij = (pj|i + pi|j)/2m.

In the embedding space B2, similarities use a hyperbolic Cauchy kernel: qij = γ2/(dB2(yi, yj)
2 +

γ2)/Z. The loss combines KL divergence with a norm-based regularizer:

LCO-SNE = λ1

∑
i,j

pij log
pij
qij

+ λ2

∑
i

(∥xi∥2 − ∥yi∥2)2. (16)

A.5 CLASSICAL MDS
Utilizing the measurements of distances among pairs of objects, MDS (multidimensional scaling)
finds a representation of each object in d - dimensional space such that the distances are preserved in
the estimated configuration as closely as possible. To validate the goodness-of-fit measure, MDS
optimizes the loss function (known as ”Stress”(σ)) given by:

σ(X) = min
X

∑
i<j≤N

wij (δij − dij(X))
2
, (17)

, where the observation mask is W where wij = 1 if the distance δij is known and wij = 0 otherwise,
with the block structure:

W =

[
0N×N 1N×M

1⊤
M×N 1M×M

]
(18)

where 0 and 1 denote matrices of zeros and ones, respectively and X represents the computed
configuration, dij(X) = ∥xi − xj∥ is the Euclidean distance between nodes i and j, δij is the
measured distance computed privately. Placing the weights of unknown inter-user distance to zero,
the weight matrix W can be partitioned into block matrices as shown in 18, where 11N,M is a matrix
of ones with shape N×M . De Leeuw (De Leeuw, 2005) applied an iterative method called SMACOF
(Scaling by Majorizing a Convex Function) to estimate the configuration X . As the objective is a
non-convex function, SMACOF minimizes the stress using the simple quadratic function τ(X,Z)
which bounds σ(X) (the complicated function) from above and meets the surface at the so-called
supporting point Z as defined below:

σ(X) ≤τ(X,Z) =
∑
i<j

wijδ
2
ij +

∑
i<j

wijd
2
ij(X)− 2

∑
i<j

wijδij
2 (xi − xj)

T
(zi − zj)

∥zi − zj∥
(19)

Equation 19 can be written in matrix form as:

τ(X,Z) = C + tr
(
XTV X

)
− 2 tr

(
XTB(Z)Z

)
. (20)

The iterative solution which guarantees monotone convergence of stress (De Leeuw, 1988) is given
by equation 21, where Z = Xk−1:

X(k) = min
X

τ(X,Z) = V †B(X(k−1))X(k−1) (21)

This algorithm offers flexibility to embed features in any dimension other than d, which enables the
handling of high-dimensional data and also meets privacy constraints. As V is not of full rank, hence
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the Moore-Penrose pseudoinverse V † is used. The elements of the matrix B(X) and V are defined
in equation 22.

bij =


− wijδij
dij(X)

, if dij(X) ̸= 0, i ̸= j

0, if dij(X) = 0, i ̸= j

−
N∑

j=1, j ̸=i

bij , if i = j

vij =


−wij , if i ̸= j

−
N∑

j=1, j ̸=i

vij , if i = j

(22)

A.6 SENSE: PSEUDOCODE

Algorithm 1 SENSE Framework

Require: Anchors XA ∈ RK×dh , client datasets {Dm = {xm
i }

Nm
i=1}Mm=1, target dim dℓ, high/low

geometry Ghigh ∈ {Rdh ,Hdh}, Glow ∈ {Rdℓ ,Hdℓ}
Ensure: Global embeddings {Ym ∈ GNm

low }Mm=1
1: Server broadcasts XA to all clients
2: for each client Cm do
3: Compute distances dm

i = DGhigh(x
m
i ,XA) for all xm

i ∈ Dm

4: Send {dm
i }

Nm
i=1 to server

5: end for
6: Server builds observed matrix DΩ using E, F , (optionally G)
7: Complete D̂ via structured matrix completion; extract Ĝ
8: Compute similarities Sdh from Ĝ using kernel f (see Eqns 6, 7)
9: Learn embedding Y in Glow using NE, contrastive, or CO-SNE objective

A.7 SENSE VIA ANCHORED-MDS: PSEUDOCODE

Algorithm 2 SENSE via Anchored-MDS

Require: Anchor embeddings XA ∈ RK×dh , observed entries PΩ(D), target dim dh, tolerance ϵ,
max iterations T

Ensure: Reconstructed embeddings XNA ∈ RN×dh

1: Initialize X
(0)
NA randomly, set k ← 1

2: while k ≤ T do
3: Form X(k−1) =

[
XA X

(k−1)
NA

]T
4: Compute PΩ(D(X(k−1)))
5: Construct W and compute V , B(X(k−1)) respecting Ω

6: Update X
(k)
NA using Eq. 11

7: If stress improvement < ϵ, break; else k ← k + 1
8: end while
9: return X

(k)
NA

A.8 ANCHOR GENERATION
In the proposed method, distribution of the anchor data is critical. These anchors are not private;
they act as public or semi-public landmarks, akin to those in GPS (Shang & Ruml, 2004) or radar
systems (Iannucci et al., 2020). This is standard in localization literature (Di Franco et al., 2017;
Khan et al., 2009), where landmarks aid positioning but are not privacy-sensitive (Koledoye et al.,
2017). Our privacy definition protects only the high-dimensional features of NA points. Anchors are
fixed, visible, and either synthetic, public, or explicitly consented. Not part of any client’s private
data. We do not rely on anchor secrecy but instead limit their quantity to preserve ambiguity.

The anchor is a common information shared between all the clients. The anchor data is generated
randomly or by open data for securing privacy. The proper scheduling of the anchors has a significant
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impact on the overall performance and accuracy of the framework. There are several factors to
consider when developing the anchor scheduling strategy, including:

1) Number of anchors : The number of anchors used in the framework has a direct impact on
the algorithmic performance. Too few anchors may not preserve the structural information while
ensuring privacy, while too many anchors may violate privacy.

Choice of K: We sample anchors such that the total (global + local) anchors satisfy K = dh − 1,
where dh is the input dimension. This is not arbitrary; it is theoretically optimal under our privacy
guarantee. By Theorem 3.1, if K < dh, privacy is ensured. Thus, K = dh − 1 is the largest
safe choice that preserves privacy while still yielding strong approximations. There is an inherent
privacy-utility-compute trade-off:

1. Higher K: better fidelity, higher runtime, weaker privacy.
2. Lower K: stronger privacy, lower compute cost, possible fidelity drop.

We empirically validate this trade-off on a synthetic dataset where we took K anchors and N NA
points in a pointwise setting with dh dimension.

For low-dimensional data (dh = 100, N = 500):

• K = 99 ⇒ FS = 0.79, time = 16s
• K = 90 ⇒ FS = 0.78, time = 13s

For high-dimensional data (dh = 700, N = 500):

• K = 699 ⇒ FS = 0.82, time = 660s
• K = 350 ⇒ FS = 0.78, time = 312s

Thus, for high-dimensional settings where dh ≫ N , using fewer anchors (e.g., K < dh − 1) yields
substantial computational gains while preserving utility. This is particularly useful in large-scale
deployments such as hospital networks, financial networks, social media platforms and IOT networks.

2) Anchor Geometry: Beyond count, anchor geometry also impacts fidelity. We show that affinely
independent anchors improve reconstruction quality. On the DIGITS dataset (N = 1797, dh = 64)
(Alpaydin & Kaynak, 1998), we fixed K = 63 and varied the anchor matrix rank r. The non-anchor
set consisted of 1000 points, split across 10 clients (multisite-full). Table 4 validates that higher affine
rank of anchors improves neighborhood fidelity, consistent with our theory.

Table 4: Effect of anchor matrix rank r on FS and DE in the DIGITS dataset (K = 63). Higher rank improves
fidelity.

r FS DE

10 0.524 0.0829
20 0.6242 0.0604
30 0.716 0.0479
40 0.7955 0.0361
50 0.8315 0.0311
60 0.858 0.0259
63 0.861 0.0263

3) Selection criteria : The criteria used to select anchors can also impact the performance of the
system. Selecting anchors from the same probability distribution as of the underlying user data
may be more effective than selecting them at random. For example, the data distribution of patient
similarity networks or social networks will depend on factors including a number of patients/users
or similarity of patients/connection between users. We also empirically study how anchor selection
affects downstream performance. Random anchor sampling performs worse than anchors sampled
from the underlying data distribution. Table 5 confirms that in-distribution anchors preserve structure
better. Setup: 10 clients, 1000 non-anchor points, multisite-full setting.

4) Practical Anchor Sources. In practical deployments, anchors are selected based on domain
knowledge and are not sampled arbitrarily from private data. Eg, Healthcare: Publicly released
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Table 5: Effect of anchor selection on fidelity (FS) and distance error (DE). In-distribution anchors outperform
random anchors across datasets.

Data Anchor-Type K FS DE

Digits In-Distri 60 0.900 0.027
Rand 60 0.345 0.382

MNIST In-Distri 783 0.967 0.006
Rand 783 0.170 0.602

BloodMNIST In-Distri 2351 0.961 0.005
Rand 2351 0.176 0.892

reference scans or patient-consented samples (Johnson et al., 2016). Finance: Standard transaction
patterns or aggregated customer profiles (Awosika et al., 2024b). Genomics: Population-level
reference genomes (e.g., 1000 Genomes, UK Biobank) (Bycroft et al., 2018; Regev et al., 2017).
Synthetic Anchors: Via MMD minimization (Qiao et al., 2024), though limited in coverage and
potentially adversarial. Trusted server-curated anchors are auditable, robust, and independent of
client records, reducing leakage risks like membership inference (Shokri et al., 2017). This design
is further supported by theory on low-rank recovery via anchor distances (Lichtenberg & Tasissa,
2024b), matrix completion in non-orthogonal bases (Tasissa & Lai, 2019), and Gram matrix-based
localization (Mishra et al., 2011).

Table 6: Observed index sets Ω used for SENSE under each client configuration. Here, AG denotes global
anchors, A(j)

L are local anchors accessible only to client j, and X (m) are NA indices at client m. Binary masks
WF and WG indicate anchor-to-NA and intra-client NA–NA visibility. Observed distances are used to construct
V , B(X), and select relevant rows of XA for embedding computation.

SENSE Setting Observed Index Set Ω

Pointwise-Full Each client holds one NA. All anchor-to-NA distances are known; no NA–NA or
local anchor information.
Ω = {(i, j) : i ∈ AG, j ∈ [K + 1,K + N ]} ∪ {(j, i) : i ∈ AG, j ∈
[K + 1,K +N ]}

Pointwise-Partial Each client holds one NA. Global anchors AG are shared across all clients. Local
anchors A(j)

L are only accessible to client j.
Ω =

⋃N
j=1

(
(AG ∪ A(j)

L )× {K + j} ∪ {K + j} × (AG ∪ A(j)
L )

)
Multisite-Full Each client holds multiple NAs. All anchor-to-NA distances are known. Intra-

client NA–NA distances are observed.
Ω = {(i, j) : i ∈ AG, j ∈ [K + 1,K + N ]} ∪ {(j, i) : i ∈ AG, j ∈
[K + 1,K +N ]} ∪

⋃M
m=1(X

(m) ×X (m))

Multisite-Partial Each client holds multiple NAs. Anchor-to-NA distances are partially known
via WF (global + local anchors). Intra-client NA–NA distances are observed via
WG.
Ω = {(i, j + K) : WF [i, j] = 1} ∪ {(j + K, i) : WF [i, j] = 1} ∪ {(i, j) :
WG[i, j] = 1}

A.9 THEORETICAL PROOFS.
Unlike some EDG (Tasissa & Lai, 2019) methods that assume uniform random sampling of pairwise
distances, SENSE uses a structured sampling scheme where anchor-to-NA distances are measured
by design. This enables deterministic recovery guarantees based on geometric conditions (e.g.,
connectivity to affinely independent anchors), avoiding reliance on probabilistic bounds from random
sampling.

Proof A.1 Consider a network in dh-dimensional Euclidean space Rdh , comprising anchors A =
{A1, A2, . . . , AK} and non-anchor nodes P = {P1, P2, . . . , PN}, with feature vectors xi ∈ Rdh .
Anchors locations are known, while non-anchors need estimation. Previous work (Khan et al., 2009)
shows that in Rdh , a minimum of (d+ 1) anchors with known locations is required to locate N non-
anchor nodes. The utilization of anchors for distributed sensor localization constitutes a thoroughly
investigated domain, underpinned by the following assumptions:
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• (A1) Non-anchor nodes lie inside the convex hull of the anchors, i.e., C(P ) ⊆ C(A).
• (A2) Each non-anchor node Pi has at least one set of neighbor nodes Ni ⊂ (A ∪ P ) with
|Ni| = dh + 1 such that i lies inside C(Ni).

• (A3) In the set {i ∪Ni}, every non-anchor node i can obtain the inter-node distances among all
nodes.

However, to accurately recover features in Rdh , at least dh anchors are necessary, even if non-anchors
are placed in any location. Thus, having fewer than dh anchors, i.e., K < dh, guarantees that exact
feature embeddings cannot be obtained, ensuring privacy.

Proof A.2 Each NA point xj ∈ Rdh computes squared distances to a subset of anchors indexed by
Ij , with rj = |Ij |. This yields rj quadratic constraints of the form:

∥xj − ai∥2 = d2hij , ∀i ∈ Ij .

To analyze identifiability, fix a reference anchor ak ∈ IG from the global anchor set, and consider
the difference of equations relative to this reference:

∥xj − ai∥2 − ∥xj − ak∥2 = d2hij − d2hkj .

Expanding and simplifying yields the linear system:

2(ak − ai)
⊤xj = ∥ak∥2 − ∥ai∥2 + d2hij − d2hkj , ∀i ∈ Ij \ {k}.

Letting Aj ∈ R(rj−1)×d denote the coefficient matrix and bj the RHS vector, we write:

Ajxj = bj .

This is a system of rj−1 linear equations in dh unknowns. If rj < dh+1, then rank(Aj) ≤ rj−1 <
dh, and the solution set {xj ∈ Rdh : Ajxj = bj} forms an affine subspace of dimension at least
dh − rj + 1. Hence, infinitely many solutions exist that satisfy the same anchor distances, preventing
exact recovery of xj .

To ensure privacy across all clients (both pointwise and multisite), we enforce:

|Ij | = KG +K
(j)
L ≤ dh, ∀j ∈ [N ],

where K
(j)
L is the number of local anchors accessible to xj . In the multisite case, local anchors

are restricted to the corresponding client, and global anchors are common across all clients. This
structure ensures that even with partial anchor visibility, each client’s feature vector cannot be
uniquely recovered from its observed distances.

Remark 3 Each anchor distance imposes a quadratic constraint on the unknown xj ∈ Rdh . If the
number of constraints rj is less than the ambient dimension d, the system is underdetermined and
has infinitely many solutions. Thus, SENSE preserves privacy by bounding the number of anchor
distances accessible to each client.

Proof A.3 From Theorem 3.1 (Exact Recovery) in (Keller-Ressel & Nargang, 2022), the L-HYDRA
algorithm guarantees recovery up to isometry only if K ≥ dh and the K anchors are in general
position (not lying on a single hyperbolic hyperplane). If K < dh, then the system of equations
defined by E and F is underdetermined: the landmarks do not span Hdh

h , and multiple embeddings of
the NA points are consistent with the observed distances. Hence, SENSE ensures privacy by choosing
K < dh, preventing unique reconstruction of private client embeddings.

A.10 WHY K < dh AND NOT K ≤ dh?
While both k < d and k = d can contribute to privacy, our choice of k < d is a deliberate design
decision driven by the well-known mirror ambiguity problem (details in NOTE2) inherent in certain
geometric transformations when k = d.

Why Choosing K < d Anchors is Better for Privacy than K = d: In distance-based reconstruction
problems such as the Distance Geometry Problem (DGP) (Liberti et al., 2014), network localization
(Lichtenberg & Tasissa, 2024b), or hyperbolic embedding recovery (Keller-Ressel & Nargang, 2022),
the number and configuration of anchor points (i.e., known reference points with distance access to
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an unknown point) directly affect how precisely an adversary can reconstruct the hidden point. From
a privacy perspective, we aim to make the reconstruction problem ambiguous, so that the true point
remains hidden among many plausible candidates. We argue that choosing K = D − 1 (or fewer)
anchors is preferable to choosing K = D, especially when protecting sensitive features such as
location or identity (in case of hospital patients or other critical attributes). This relates to ambiguity,
recoverability, and robustness under both Euclidean and hyperbolic regimes.

Case 1: K = D, Affinely Independent Anchors → Small, Structured Ambiguity: When an
adversary knows distances from an unknown point x ∈ RD to D affinely independent anchors,
the solution set for x becomes tightly constrained: The point lies on a 1D manifold, typically a
circle (in 2D/3D). This is the intersection of D hyperspheres in RD, reducing degrees of freedom
to 1 (rotation around the affine hull of the anchors). Example: In 2D: 2 non-collinear anchors⇒
two symmetric positions across the anchor line. In 3D: 3 non-coplanar anchors ⇒ solution lies
on a circle (Liberti et al., 2014) and also in (Liberti et al., 2014; Biswas & Ye, 2004; Fang, 1986).
This is called structured ambiguity: the solution isn’t unique, but the adversary can narrow it down
to a small, reversible set, which weakens privacy. BUT: K = D Affinely Dependent Anchors →
Degeneracy Risk: If the D anchors are affinely dependent (e.g., lie on a hyperplane), the problem
becomes ill-posed. The linear system degenerates, and the solution set can inflate from a curve to a
surface or even higher. Example: In 2D: 2 collinear anchors⇒ infinite feasible points on a circle. In
3D: 3 coplanar anchors⇒ solution lies on a cylinder surface (2D ambiguity) (Liberti et al., 2014).
Thus, while ambiguity helps privacy, this case is fragile and depends on affine dependence, which is
difficult to control/detect in high dimensions.

Case 2: K = D − 1, Affinely Independent Anchors→ Robust, Structured Ambiguity: When
the number of anchors is reduced to K = D − 1 and they are affinely independent: The intersection
of D − 1 hyperspheres in RD leaves the unknown point on a 1D manifold (if K = D − 1) or a 2D
manifold (if K = D − 2). This increases ambiguity while preserving structure and analyzability.
Example: In 3D: 2 non-collinear anchors⇒ solution lies on a sphere surface (2D ambiguity). In 4D:
3 anchors⇒ solution lies on a 2D manifold in R4 (Liberti et al., 2014). This ambiguity is independent
of affine structure: even with poorly placed anchors, ambiguity remains large enough to preserve
privacy.

Case 3: Moreover, L-HYDRA Shows, K ≥ d Enables Exact Recovery→ Privacy Violation: In
hyperbolic space, the L-HYDRA framework (Keller-Ressel & Nargang, 2022) (Theorem 3.1) shows
that if l ≥ d well-placed landmarks are known, exact recovery up to isometry is possible. While
useful for learning, this completely breaks privacy at K = d. Thus, in the SENSE framework, we
limit the number of anchor constraints to prevent identifiability, ensure privacy, and make it more
generic and applicable across all cases.

Why K = D− 1 is the safe design choice for privacy? We prefer using K = D− 1 anchors because:

1. More Ambiguity = More Privacy: Reducing constraints expands the feasible set (e.g., from a 1D
curve to a 2D surface). This makes inference harder for an adversary.

2. Independent of Affine Structure: Unlike K = D, where affine dependence can create degeneracy,
K = D − 1 is robust regardless of anchor configuration.

3. No Added Utility Beyond Isometry: Recovering up to isometry is sufficient for many applica-
tions (e.g., visualization, clustering). Adding more anchors increases identifiability risk without
improving downstream performance anymore.

Thus, choosing K < d affinely independent anchors is a principled design choice for privacy-
preserving recovery. It: maximizes geometric ambiguity without losing structure, avoids degeneracy
from affine dependence, and preserves robustness in both Euclidean and hyperbolic settings. In
contrast, using K = D leads to tight constraints, small ambiguity, and easy inference, enabling
potential attacks. Our design choice in SENSE and related frameworks deliberately limits anchor
access to protect against such risks.

Note1: In decentralized or federated settings, adversaries aiming to reconstruct private data using
techniques such as model inversion, membership inference, attribute inference, gradient leakage, or
reconstruction attacks, gain a significant advantage when the solution space is small and structured
(Fredrikson et al., 2015; Shokri et al., 2017; Fredrikson et al., 2014; Zhu et al., 2019; Geiping et al.,
2020; Nasr et al., 2019). A constrained set of possible solutions (e.g., a one-dimensional curve or a
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mirrored pair of points) reduces uncertainty, making it easier to link gradients or model updates back
to the original data. Conversely, a larger and more ambiguous solution space (e.g., a high-dimensional
manifold) introduces uncertainty and increases the difficulty of pinpointing a unique inverse mapping.
In such cases, adversarial inference becomes more challenging, as multiple plausible candidates
exist. Therefore, introducing geometric ambiguity—for instance, by designing the solution space
such that K < d—can serve as an effective defense mechanism in privacy-sensitive scenarios. Also,
non-uniqueness alone is not sufficient: we must consider how large, diverse, and unstructured the
solution set is to ensure meaningful privacy.

Note2: The mirror ambiguity problem arises in localization when distances to a limited set of
anchors admit multiple, equally valid solutions that are reflections of each other (Wei et al., 2015;
Bose et al., 2017; Hou, 2022; Gerok et al., 2009; Betti et al., 1993; Teunissen, 2017; Saxe, 1979).
This occurs especially when the number of anchors k equals the dimensionality d. For instance, in
2D with two anchors, the target point lies at the intersection of two circles, yielding two symmetric
solutions across the anchor line; in 3D with three anchors, the solution lies on a mirrored circle. In
wireless networks, this is referred to as flip ambiguity, where measurement noise exacerbates the
uncertainty (Wei et al., 2015). Detecting such ambiguity is equivalent to finding a plane intersecting all
error spheres of the anchors. The root cause is geometric: distance measurements lack directionality,
and k = d anchors do not sufficiently constrain the solution, leading to mirror symmetry. Practical
implications include localization errors and navigation failures in robotics and sensor networks. In
graph-theoretic terms (Saxe, 1979), the problem corresponds to embedding a weighted graph (nodes
as points, edges as distances) into k-space. When anchors equal the embedding dimension, the
embedding is ambiguous up to reflections, producing multiple valid placements across a plane or
hyperplane defined by the anchors.

A.11 METRIC USED.
• Cosine Similarity (CosSim): Measures angular similarity between the original NA feature matrix
X ′

NA ∈ RN×dh and the reconstructed version XNA ∈ RN×dh from SENSE-anchored MDS. Cosine
similarity is computed as:

CosSim(X ′
NA, XNA) =

1

N

N∑
i=1

⟨(X ′
NA)

(i), X
(i)
NA⟩

∥(X ′
NA)

(i)∥ · ∥X(i)
NA∥

High values (close to 1) indicate strong alignment between original and reconstructed embeddings.
• Distance Error (DE): and F-score (FS): defined in Section 4.1.
• Pearson Correlation (ρ): Quantifies linear correlation between the original and reconstructed

NA–NA distance matrices:
ρ = Pearson(Gij , Ĝij), ∀i < j

where G and Ĝ denote the ground-truth and reconstructed distance matrices respectively. Values
close to 1 indicate that the relative distance structure is preserved.

• Frobenius Norm Error (Xfrob): Measures reconstruction error in the embedding space:

Xfrob =
∥XNA −X ′

NA∥F
∥X ′

NA∥F
A value of 0 implies perfect reconstruction; higher values suggest increasing deviation.
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A.12 DATASET STATISTICS.

Table 7: Dataset statistics and learning setups grouped by embedding geometry. For hyperbolic, the stats are for
Pointwise setting.

Space Dataset #Classes #Datapoints #Clients (M) Dimension

Euclidean

MNIST 10 25000 10 784
Fashion-MNIST 10 25000 10 784

CIFAR-10 10 25000 5/10 1024
DermaMNIST 7 10015 10 784

PneumoniaMNIST 2 5856 10 784
Euclidean RetinaMNIST 5 1600 10 784

BreastMNIST 2 780 10 784
BloodMNIST 8 17092 10 784

OrganCMNIST 11 23583 10 784
OrganSMNIST 11 25211 10 784
German-Credit 2 1000 10 20

Hyperbolic
Airport 4 3185 3185 11

Hyperbolic Amazon - 5000 5000 128
DBLP - 5000 5000 128

A.13 SYSTEM SPECIFICATIONS
All experiments are conducted on a server equipped with two NVIDIA RTX A6000 GPUs (48 GB
memory each) and an Intel Xeon Platinum 8360Y CPU with 1 TB RAM.

A.14 VISUALIZATION RESULTS

Figure 4: Pointwise setting: CIFAR-10 (1000 non-anchor points, 783 anchors)
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Figure 5: Pointwise setting: FashionMNIST (1000 non-anchor points, 783 anchors)

Figure 6: Pointwise setting: MNIST (1000 non-anchor points, 783 anchors)
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A.15 RESULTS.
Table 8: FS and DE across IID, and non-IID balanced and unbalanced splits.

Data IID Bal Unbal
FS DE FS DE FS DE

PNEU. 0.92 0.0052 0.87 0.0066 0.91 0.0055
BLOOD 0.90 0.0052 0.89 0.0051 0.90 0.0052
BREAST 0.95 0.0092 0.92 0.0113 0.91 0.0124
DERMA 0.96 0.0029 0.93 0.0031 0.96 0.0029
RETINA 0.96 0.0221 0.94 0.0272 0.96 0.0214
ORGANC 0.80 0.0092 0.79 0.0089 0.79 0.0092
ORGANS 0.81 0.0089 0.80 0.0085 0.81 0.0093
GERMAN 0.75 0.0565 0.73 0.0621 0.72 0.0629

Table 9: FS and DE under POINTWISE, IID, and NON-IID settings, comparing MULTISITE-FULL and
MULTISITE-PARTIAL.

Dataset Pointwise IID-Full IID-Partial Non-IID-Full Non-IID-Partial

FS DE FS DE FS DE FS DE FS DE

MNIST 0.9557 0.0057 0.8034 0.0097 0.9266 0.0438 0.7864 0.0101 0.9275 0.0434
FashionMNIST 0.9560 0.0058 0.7586 0.0070 0.8726 0.0153 0.7534 0.0070 0.8754 0.0156
CIFAR-10 0.9562 0.0057 0.9303 0.0049 0.9277 0.0044 0.9308 0.0049 0.9380 0.0044

Table 10: Multisite setting comparison Non-iid unbalanced: Full vs Partial: Evaluation of different methods
(Vanilla and SENSE variants) across different metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

— Multisite-Partial Setting —

CIFAR-10

Trust. 0.9259 0.9274 0.7447 0.7476 0.8175 0.8174 0.8334 0.8336 0.8322 0.8321 0.8232 0.8244
Cont. 0.9107 0.9391 0.8756 0.8804 0.9369 0.9381 0.9554 0.9552 0.9552 0.9549 0.9565 0.9561
Stead. 0.8099 0.8165 0.6904 0.6938 0.7363 0.7349 0.7609 0.7654 0.7619 0.7580 0.7415 0.7487
Cohes. 0.4707 0.4806 0.3725 0.3752 0.4927 0.4857 0.4708 0.4630 0.4716 0.4778 0.4766 0.4793

— Multisite-Full Setting —

CIFAR-10

Trust. 0.9259 0.9270 0.7447 0.7482 0.8175 0.8168 0.8334 0.8336 0.8322 0.8329 0.8232 0.8247
Cont. 0.9107 0.9364 0.8756 0.8808 0.9369 0.9366 0.9554 0.9553 0.9552 0.9550 0.9565 0.9561
Stead. 0.8099 0.8229 0.6904 0.6875 0.7363 0.7357 0.7609 0.7624 0.7619 0.7580 0.7415 0.7464
Cohes. 0.4707 0.4673 0.3725 0.3674 0.4927 0.4831 0.4708 0.4662 0.4716 0.4690 0.4766 0.4811

— Pointwise-Full Setting —

CIFAR-10

Trust. 0.9683 0.9659 0.9435 0.9419 0.8488 0.8531 0.9112 0.9123 0.9082 0.9079 0.9021 0.9035
Cont. 0.9465 0.9448 0.9379 0.9333 0.9533 0.9527 0.9446 0.9442 0.9458 0.9437 0.9445 0.9442
Stead. 0.8061 0.8081 0.7793 0.7825 0.7111 0.7165 0.7992 0.7878 0.7887 0.8005 0.7808 0.7920
Cohes. 0.7482 0.7672 0.7415 0.7336 0.7431 0.7365 0.7485 0.7451 0.7513 0.7473 0.7435 0.7350

A.16 DISCUSSION.
SENSE in Evolving Distributed Environments. In dynamic settings, new data points arrive
continuously e.g., a hospital admitting a patient, a bank processing a transaction, or a platform
onboarding a user. Recomputing the full embedding for each arrival is inefficient and may disrupt
global structure. Existing decentralized NE methods (Li et al., 2024; Qiao et al., 2024; Saha
et al., 2017; Saha et al.) assume static datasets and lack support for incremental updates, making
them unsuitable for streaming environments. SENSE, by contrast, is modular and compatible with
out-of-sample embedding methods (Herath et al., 2021; Bengio et al., 2003; Oster et al., 2021).
Once the global embedding is constructed via anchor-based completion and NE optimization, it
defines a geometry-aware coordinate space that supports new points without full recomputation.
Let XNA = [x1, . . . ,xN ] ∈ RN×dh be the reconstructed NA embeddings. When a new point y
arrives, we select K existing points as pseudo-anchors A = {a1, . . . , aK} ⊂ XNA, with coordinates
XA = [p1, . . . ,pK ]⊤ ∈ RK×dh . Given dissimilarities {δliy}Ki=1 to these anchors, we compute the
embedding ŷ by solving:

σ̂(ŷ) =

K∑
i=1

(∥pi − ŷ∥2 − δliy)
2
. (23)
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Table 11: IID setting: Evaluation of different dimensionality reduction methods (Vanilla and SENSE variants)
across various metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

PneumoniaMNIST

Trust. 0.9718 0.9700 0.7687 0.7700 0.8573 0.8590 0.9016 0.9026 0.8973 0.8967 0.8837 0.8795
Cont. 0.9395 0.9442 0.9145 0.9143 0.9616 0.9598 0.9592 0.9587 0.9591 0.9582 0.9606 0.9598
Stead. 0.7840 0.7844 0.6203 0.6272 0.7158 0.7228 0.7554 0.7516 0.7439 0.7424 0.7369 0.7263
Cohes. 0.7031 0.6963 0.6081 0.6272 0.6902 0.6898 0.7013 0.7112 0.6981 0.6970 0.7006 0.7050

BloodMNIST

Trust. 0.9628 0.9611 0.8643 0.8633 0.8515 0.8527 0.8847 0.8820 0.8793 0.8820 0.8729 0.8736
Cont. 0.9312 0.9280 0.9416 0.9391 0.9444 0.9440 0.9555 0.9558 0.9556 0.9558 0.9553 0.9556
Stead. 0.7515 0.7436 0.6899 0.6764 0.6967 0.6871 0.7259 0.7211 0.7228 0.7211 0.7164 0.7133
Cohes. 0.7085 0.7106 0.7233 0.7261 0.7416 0.7469 0.7435 0.7339 0.7329 0.7339 0.7453 0.7462

BreastMNIST

Trust. 0.9382 0.9370 0.7599 0.7589 0.8835 0.8774 0.8938 0.8924 0.8939 0.8920 0.8934 0.8924
Cont. 0.9452 0.9412 0.8147 0.8174 0.9533 0.9526 0.9450 0.9446 0.9450 0.9445 0.9450 0.9444
Stead. 0.8522 0.8514 0.5800 0.5697 0.8056 0.8099 0.8400 0.8400 0.8287 0.8308 0.8317 0.8353
Cohes. 0.6028 0.5987 0.4226 0.4226 0.5639 0.5611 0.5566 0.5605 0.5637 0.5670 0.5532 0.5606

DermaMNIST

Trust. 0.9758 0.9762 0.7513 0.7480 0.8726 0.8726 0.9129 0.9118 0.9125 0.9126 0.9017 0.9023
Cont. 0.9592 0.9583 0.9134 0.9129 0.9736 0.9729 0.9709 0.9712 0.9707 0.9706 0.9716 0.9714
Stead. 0.7995 0.7976 0.5930 0.5945 0.7332 0.7291 0.7726 0.7739 0.7694 0.7638 0.7580 0.7577
Cohes. 0.7294 0.7107 0.5590 0.5618 0.7001 0.7184 0.7339 0.7334 0.7390 0.7373 0.7308 0.7297

RetinaMNIST

Trust. 0.9797 0.9758 0.8777 0.8643 0.9144 0.9038 0.9480 0.9335 0.9469 0.9331 0.9450 0.9313
Cont. 0.9669 0.9567 0.9280 0.9232 0.9738 0.9730 0.9718 0.9711 0.9704 0.9700 0.9678 0.9678
Stead. 0.8483 0.8479 0.6120 0.5941 0.7618 0.7434 0.8183 0.8140 0.8117 0.8050 0.8105 0.8086
Cohes. 0.7051 0.6963 0.5835 0.5515 0.6980 0.6995 0.7123 0.7074 0.7046 0.7112 0.6831 0.7135

OrganCMNIST

Trust. 0.9608 0.9482 0.8879 0.8815 0.8845 0.8858 0.9149 0.9028 0.9160 0.9039 0.9024 0.8890
Cont. 0.9238 0.9413 0.9231 0.9242 0.9696 0.9682 0.9731 0.9683 0.9730 0.9679 0.9738 0.9688
Stead. 0.6948 0.8027 0.7575 0.7678 0.7994 0.8058 0.8690 0.8677 0.8788 0.8673 0.8624 0.8593
Cohes. 0.4762 0.4849 0.3335 0.3145 0.5695 0.5153 0.4751 0.4760 0.5268 0.5001 0.5545 0.5166

OrganSMNIST

Trust. 0.9565 0.9421 0.8707 0.8588 0.8766 0.8890 0.9130 0.9026 0.9128 0.9034 0.8991 0.8911
Cont. 0.9219 0.9366 0.9248 0.9211 0.9679 0.9717 0.9741 0.9684 0.9732 0.9672 0.9737 0.9679
Stead. 0.6793 0.7753 0.7305 0.7513 0.7786 0.7965 0.8609 0.8691 0.8649 0.8745 0.8517 0.8601
Cohes. 0.4856 0.4702 0.3327 0.3316 0.5575 0.5094 0.4838 0.4525 0.5312 0.4889 0.5564 0.4783

german-credit

Trust. 0.9771 0.9553 0.9505 0.9330 0.8559 0.8551 0.9380 0.9224 0.9359 0.9140 0.9325 0.9192
Cont. 0.9590 0.9434 0.9587 0.9449 0.9482 0.9294 0.9573 0.9448 0.9573 0.9429 0.9564 0.9432
Stead. 0.8603 0.8251 0.8342 0.7907 0.7500 0.7228 0.8414 0.7954 0.8416 0.7883 0.8401 0.7944
Cohes. 0.6810 0.6895 0.6542 0.6413 0.6712 0.6640 0.6465 0.6651 0.6577 0.6675 0.6624 0.6550

Table 12: Non-IID (balanced) setting: Evaluation of different methods (Vanilla and SENSE variants) across
different metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

PneumoniaMNIST

Trust. 0.9566 0.9483 0.8806 0.8658 0.8909 0.8937 0.9430 0.9393 0.9372 0.9343 0.9226 0.9168
Cont. 0.9228 0.9278 0.9031 0.9114 0.9776 0.9732 0.9683 0.9678 0.9690 0.9686 0.9704 0.9695
Stead. 0.6952 0.7165 0.6007 0.6211 0.7146 0.7244 0.7778 0.7737 0.7694 0.7692 0.7622 0.7579
Cohes. 0.6377 0.6815 0.6205 0.6070 0.6650 0.6771 0.7259 0.7162 0.7240 0.7145 0.7172 0.7336

BloodMNIST

Trust. 0.9304 0.9292 0.8902 0.8796 0.8640 0.8633 0.9003 0.8972 0.8959 0.8944 0.8862 0.8856
Cont. 0.9020 0.9029 0.9385 0.9390 0.9510 0.9492 0.9618 0.9611 0.9620 0.9614 0.9622 0.9614
Stead. 0.7060 0.7017 0.6815 0.6927 0.6812 0.6927 0.7531 0.7505 0.7466 0.7442 0.7536 0.7395
Cohes. 0.6781 0.6761 0.7210 0.7096 0.7620 0.7540 0.7441 0.7603 0.7472 0.7335 0.7561 0.7603

BreastMNIST

Trust. 0.9643 0.9657 0.8476 0.8562 0.9188 0.9241 0.9403 0.9422 0.9385 0.9418 0.9383 0.9415
Cont. 0.9632 0.9658 0.8567 0.8408 0.9587 0.9671 0.9604 0.9594 0.9598 0.9590 0.9599 0.9591
Stead. 0.8331 0.8370 0.5159 0.5081 0.7585 0.7913 0.8712 0.8742 0.8684 0.8616 0.8691 0.8675
Cohes. 0.6174 0.6018 0.3677 0.3741 0.5187 0.5165 0.5254 0.5667 0.5265 0.5413 0.5200 0.5485

DermaMNIST

Trust. 0.9545 0.9467 0.8253 0.8048 0.8963 0.8961 0.9335 0.9351 0.9292 0.9327 0.9147 0.9167
Cont. 0.9403 0.9284 0.8977 0.8895 0.9825 0.9815 0.9742 0.9734 0.9743 0.9733 0.9761 0.9756
Stead. 0.7304 0.7148 0.5608 0.5428 0.7327 0.7295 0.7901 0.7909 0.7834 0.7841 0.7751 0.7743
Cohes. 0.6493 0.6484 0.5159 0.5152 0.6867 0.6726 0.6993 0.6976 0.6976 0.7128 0.6902 0.7012

RetinaMNIST

Trust. 0.9749 0.9743 0.8933 0.8829 0.9228 0.9227 0.9522 0.9523 0.9492 0.9519 0.9497 0.9495
Cont. 0.9627 0.9616 0.9289 0.9152 0.9752 0.9729 0.9720 0.9713 0.9712 0.9700 0.9670 0.9675
Stead. 0.8447 0.8380 0.6155 0.6174 0.7534 0.7559 0.8224 0.8172 0.8134 0.8189 0.8123 0.8046
Cohes. 0.7140 0.7283 0.5785 0.5648 0.7189 0.6836 0.7292 0.7005 0.7092 0.6938 0.7039 0.6849

OrganCMNIST

Trust. 0.9489 0.9271 0.8975 0.8888 0.9005 0.8984 0.9235 0.9132 0.9232 0.9126 0.9140 0.8994
Cont. 0.9210 0.9082 0.9232 0.9185 0.9737 0.9719 0.9756 0.9715 0.9750 0.9710 0.9760 0.9717
Stead. 0.6365 0.7142 0.7462 0.7290 0.8038 0.7909 0.8611 0.8724 0.8660 0.8745 0.8621 0.8640
Cohes. 0.4862 0.4913 0.3249 0.3191 0.5088 0.5154 0.5338 0.4980 0.5266 0.4974 0.4908 0.5282

OrganSMNIST

Trust. 0.9383 0.9093 0.8954 0.8861 0.9054 0.9071 0.9269 0.9190 0.9291 0.9194 0.9172 0.9092
Cont. 0.9164 0.8881 0.9168 0.9255 0.9774 0.9758 0.9796 0.9746 0.9786 0.9741 0.9788 0.9741
Stead. 0.5896 0.6154 0.6315 0.6953 0.7784 0.7963 0.8591 0.8684 0.8560 0.8634 0.8411 0.8523
Cohes. 0.5109 0.5108 0.3441 0.3665 0.5642 0.5278 0.5079 0.4878 0.5461 0.5021 0.5487 0.5001

german-credit

Trust. 0.9752 0.9575 0.9511 0.9301 0.8552 0.8508 0.9403 0.9211 0.9380 0.9172 0.9350 0.9176
Cont. 0.9581 0.9418 0.9606 0.9427 0.9481 0.9240 0.9576 0.9470 0.9575 0.9463 0.9571 0.9460
Stead. 0.8567 0.8267 0.8350 0.7850 0.7398 0.7023 0.8484 0.8063 0.8475 0.8016 0.8405 0.8020
Cohes. 0.6795 0.6837 0.6488 0.6509 0.6870 0.6828 0.6620 0.6834 0.6557 0.6676 0.6564 0.6653
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Here, δliy is the dissimilarity in the original space, and ∥pi − ŷ∥2 is the distance in the embedding
space. Only ŷ is optimized, anchors remain fixed. Since K < dh, exact recovery is impossible
(Theorems 3.1, 3.2), ensuring privacy. This lightweight optimization requires no raw data and
supports real-time integration, making SENSE well-suited for scalable, privacy-constrained systems.

Scalability and Computational Complexity. In addition to the 14 standard DR datasets (Sec. 4.1),
we evaluate SENSE on two large-scale benchmarks: Tiny ImageNet (Le & Yang, 2015) (∼90k NAs,
with 512D features extracted using an ImageNet-pretrained ResNet-34 (He et al., 2016)) and Street
View House Numbers (Netzer et al., 2011) (SVHN, ∼80k NAs, dh = 512). These experiments
are conducted for Multisite setting, where we distributed the NA samples to 10 clients in non-IID
unbalanced scenarios. Results in Table 13 demonstrate that SENSE maintains strong performance
even at this scale, with runtimes of only ∼12–14 seconds per iteration.

Table 13: SENSE performance compared to DR baselines on Tiny ImageNet and SVHN. Runtime is averaged
per iteration.

Data Metric t-SNE UMAP PHATE CNE(0) CNE(0.5) CNE(1) Runtime
VAN SENSE VAN SENSE VAN SENSE VAN SENSE VAN SENSE VAN SENSE

TinyImageNet

Trust 0.9245 0.9341 0.7748 0.7330 0.7480 0.7392 0.7682 0.7402 0.7960 0.7637 0.7717 0.7467 13.72s
Cont 0.9107 0.9064 0.9334 0.9140 0.9359 0.9029 0.9396 0.9268 0.9350 0.9244 0.9411 0.9294
Stead 0.8099 0.8229 0.5703 0.5755 0.5550 0.6248 0.5848 0.6205 0.5986 0.6298 0.5807 0.6135
Cohes 0.7680 0.7548 0.8305 0.6685 0.8340 0.7439 0.8344 0.7223 0.8296 0.7160 0.8403 0.7322

SVHN

Trust 0.9822 0.9801 0.8973 0.8914 0.8825 0.8819 0.8910 0.8900 0.9033 0.9068 0.8939 0.8964 13.50s
Cont 0.9619 0.9630 0.9749 0.9701 0.9759 0.9665 0.9778 0.9745 0.9787 0.9648 0.9787 0.9646
Stead 0.7234 0.7200 0.6545 0.6664 0.6426 0.6739 0.6540 0.6968 0.6705 0.7027 0.6556 0.7134
Cohes 0.8362 0.8349 0.8430 0.7160 0.8544 0.7834 0.8503 0.7935 0.8493 0.6960 0.8576 0.7535

We also provide detailed runtime and complexity analysis. With N NA points and K anchors,
Anchored-MDS in Sec 2 has complexity O(K2dh + KNdh), efficient as K ≪ N and K < dh
(for privacy). We use the fastest variants of different global low-dimensional embedding methods in
our framework, as this is the second stage in the pipeline. Notation: here k denotes the number of
neighbors considered per point (in the attractive force calculation), dh is the embedding dimension,
n are the number of data points (samples) and m are the number of negative (repulsive) samples
per positive interaction. 1) Fast NE methods: Van-t-SNE takes O(n2dh) (van der Maaten & Hinton,
2008), Barnes-Hut t-SNE (BH-t-SNE) and FIt-SNE (FFT-based interpolation) takesO(kn logn ·2dh)
and O(kn · 2dh) respectively. 2) The contrastive neighbor embedding: These methods only sample
nm repulsive interactions per epoch (instead of all pairs) with complaexity O(kmndh), which scales
linearly with embedding dimension dh. This also includes NC-t-SNE/UMAP with contrastive loss
runs in O(kmdh) with m≪ n repulsive samples per epoch (Damrich et al., 2023).

We also provide empirical results on the different stages of the pipeline. Table 14 reports empirical
results for individual stages of the SENSE pipeline.

Table 14: Runtime for SENSE pipeline stages: stage1 = incomplete matrix, stage2 = matrix completion.

Data NA K Stage1(s) Stage2(s) Total(s) FS DE

BloodMNIST 1k 100 0.33 2.22 2.55 0.86 0.02
1k 0.34 8.11 8.45 0.94 0.01

5k 100 0.46 39.33 39.79 0.81 0.00
2k 50 0.59 54.83 55.42 0.92 0.01

Curated Privacy Example. To illustrate the privacy guarantees of SENSE, we constructed a
curated dataset containing sensitive attributes (e.g., age) and categorical features (e.g., gender,
occupation). The setup involves five clients (C1–C5), each with five attributes (d = 5), and four
reference anchors (K = 4 < d). Embeddings are computed exclusively from client–anchor distances,
without direct access to raw features. As shown in Table 15, the resulting embeddings preserve
structural relationships while preventing recovery of private attributes, thereby empirically validating
the privacy-preserving nature of SENSE.

Why SENSE Avoids Noise-Based Privacy. Noise injection is a common privacy mechanism,
but SENSE is built on a different principle. The goal is not to obscure the distance map, but to
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Table 15: Original private attributes vs. SENSE embeddings. Sensitive details are not exposed by the embeddings.

Original Data x1 x2 x3 x4 x5

C1 1500 25 3 1 10
C2 2000 35 2 0 15
C3 1745 28 2 0 18
C4 1620 32 1 1 13
C5 1200 45 3 1 12

SENSE Emb x1 x2 x3 x4 x5

C1 80.630 26.896 13.795 96.939 -39.321
C2 -189.837 -28.557 -61.648 -272.603 141.184
C3 -58.064 2.598 -26.164 -79.338 49.985
C4 -5.492 -2.856 6.935 12.915 -12.891
C5 210.016 14.741 75.140 328.458 -172.165

preserve inter-client similarity while ensuring that high-dimensional raw features remain private.
In this setting, noise-based privacy is problematic for two reasons. First, robustness to injected
noise is inherently unreliable in decentralized DR, where incomplete similarity information amplifies
perturbations. Second, our experiments show that even mild noise sharply degrades embedding
quality, making noise-based approaches unstable and costly. We evaluated two scenarios: (i) noise
added to client–anchor distance vectors, and (ii) Gaussian perturbations applied directly to raw
features.

Empirical Evaluation 1: Noise Added to Anchor-NA Distance Vectors. We injected noise into the
F block of Eq. 8, corresponding to client–anchor distances, under the Pointwise setting (each client
has a single NA). A random fraction of clients was selected, and noise was added to their anchor
distance vectors. Results on Iris and Seeds (Table 16) show a clear trade-off: as the fraction of noisy
clients increases, F-score (FS) drops sharply while Distance Error (DE) rises, confirming the fragility
of noise-based privacy in SENSE.

Table 16: Effect of noise injection into F matrix: FS decreases and DE increases as noise fraction increases.

Data Metric 0% 5% 10% 20% 50%

Iris FS 0.8659 0.8403 0.8104 0.7000 0.6167
DE 0.0425 0.0735 0.0929 0.1528 0.1828

Seeds FS 0.9745 0.9390 0.9038 0.7902 0.6589
DE 0.0102 0.1251 0.1760 0.2471 0.3702

Empirical Evaluation 2: Noise to Raw Features. We also injected Gaussian noise directly into
raw features (e.g., pixel-level perturbations on MNIST) using the Multisite setting of SENSE with
K = dh, 10 clients, and 100 NAs. In the noise-based variant (NS), element-wise zero-mean Gaussian
noise with varying standard deviations (scaled to the data range) was applied. As shown in Table 17,
even mild perturbations lead to sharp drops in FS and significant increases in DE, confirming that
noise-based privacy comes at a substantial cost to utility compared with SENSE without noise.
In real-world domains such as healthcare or finance, where precision is critical, this trade-off is
unacceptable.

Table 17: Performance of SENSE versus noise-based variants (NS) with Gaussian perturbation of raw features.

Method DE FS

SENSE 0.006023 0.974955
NS1 0.074474 0.946197
NS2 0.268156 0.887382
NS3 0.535183 0.801178
NS4 0.843552 0.691761
NS5 1.175783 0.573909
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Across both evaluations, noise-based privacy consistently degraded utility without providing stronger
guarantees. These findings highlight why SENSE achieves privacy not through artificial corruption,
but through geometric underdetermination: the structure needed for downstream tasks is preserved,
while raw features remain unrecoverable. In domains such as healthcare and finance, where precision
is critical, this distinction makes noise-based privacy an impractical choice.
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