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ABSTRACT

Dimensionality reduction is widely used to visualize and analyze high-dimensional
data, but most methods assume centralized access to all pairwise similarities, which
is infeasible in privacy-sensitive, decentralized settings. We introduce SENSE, a
geometry-aware framework for privacy-preserving decentralized representation
learning. SENSE reconstructs global structure from sparse, locally observed dis-
tances via structured matrix completion, requiring no raw data sharing or iterative
communication. It supports both Euclidean and hyperbolic geometries, adapts to
flat and hierarchical structures, and operates under four deployment regimes reflect-
ing real-world data availability. By design, SENSE safeguards raw features while
producing faithful embeddings. Our theoretical analysis establishes formal privacy
guarantees, and experiments on diverse benchmark datasets show that SENSE
matches centralized baselines while remaining efficient and privacy-preserving.
Our code is publicly available here.

1 INTRODUCTION

Dimensionality reduction (DR) projects high-dimensional data into lower-dimensional spaces where
patterns are easier to interpret (Jolliffe & Cadima, 2016). A prominent family is neighbor embedding
(NE) methods, which preserve local similarity relationships (Sorzano et al., 2014). Notable examples
include t-SNE (van der Maaten & Hinton, 2008) and UMAP (Mclnnes et al., 2020), widely used in
visualization (Cavallo & Demiralp, 2018), anomaly detection (Sadr et al., 2019), and exploratory
analysis (Ding et al., 2002). Contrastive Neighbor Embedding (CNE) (Damrich et al., 2023) ex-
tends these ideas by casting neighborhood preservation into a contrastive learning framework that
emphasizes the role of negatives. In contrast, PHATE (Moon et al., 2019) departs from NE altogether,
leveraging diffusion geometry to capture both local and global structures. Together, these methods
illustrate the diversity and impact of modern DR. However, most similarity-based DR approaches
assume centralized access to all pairwise similarities, a condition rarely met in practice. In domains
from healthcare and finance to IoT and social media, data are distributed across clients under strict
privacy and communication constraints (Dwork et al., 2014; McMahan et al., 2017; Qiao et al., 2023),
leaving inter-client similarities inaccessible. This fragmented view of the data yields embeddings that
misrepresent relationships and fail to preserve the underlying structure (Li et al., 2024).

Related Work. Several approaches have addressed these challenges but are constrained by
scalability, privacy, or deployment practicality. SMAP (Xia et al., 2020) offers strong privacy via
Secure Multi-party Computation (SMC), but its cryptographic overhead makes large-scale use
infeasible and prevents support for methods like UMAP. FedNE (Li et al., 2024) allows federated NE
but lacks intrinsic privacy, relies on heavy server-client interaction, and is vulnerable to inversion
attacks. Fed-tSNE and Fed-UMAP (Qiao et al., 2024) generate synthetic anchors via MMD
alignment but assume multi-sample clients, fail in single-sample regimes, and remain susceptible
to adversarial corruption. These limitations call for frameworks that are communication-efficient,
privacy-preserving, and yield faithful embeddings. To this end, we propose SENSE, a geometry-
aware framework for decentralized representation learning. It supports both Euclidean and hyperbolic
spaces, the latter crucial for capturing hierarchical structures in domains such as social and biological
networks (Malik et al., 2025). At its core, SENSE reconstructs global structure from sparse local
distances, avoiding raw data sharing, iterative communication, or centralized storage. The completed
distance matrix is then used with classical NE methods, CNE, PHATE, or hyperbolic CoSNE (Guo
et al., 2022), enabling scalable and privacy-preserving embeddings in decentralized environments.

The discussion so far has emphasized privacy as a key barrier to decentralized representation learning,
but this naturally raises a deeper question: what do we actually mean by privacy? The term is
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Figure 1: Observed entries in the global distance matrix D under four SENSE configurations: (1) Pointwise-
Full, (2) Pointwise-Partial, (3) Multisite-Full, and (4) Multisite-Partial. Configurations differ by visibility of
Anchor—NonAnchor (A-NA) and NA-NA blocks, determined by client data locality and anchor access. In
Pointwise, each client contributes a single NA (e.g., 1, 2, ..., 9), whereas Multisite allows intra-client NA-NA
observations (e.g., Al, A2, ..., C2). Full modes grant all NAs access to the global anchor set (e.g., A-E),
yielding complete A—NA blocks, while Partial modes restrict clients to disjoint anchor subsets, producing sparse
structured observations.

inherently contextual. Across domains such as healthcare, finance, and social platforms, data often
encode highly sensitive attributes such as medical records, geolocation traces, genomic records,
financial transactions, and social interactions (Dwork et al., 2014; Rieke et al., 2020; Byrd &
Polychroniadou, 2020; Lim et al., 2020). Over the years, privacy has been formalized in diverse ways,
from cryptographic guarantees to statistical indistinguishability and database anonymity, reflecting
that there is no single universal notion, only definitions shaped by the threat model and application
context (Yao, 1982; Goldreich, 1998; Dwork et al., 2006; Abadi et al., 2016; Sweeney, 2002; Kairouz
et al., 2021). So, what does privacy mean in our setting?

In SENSE, clients may typically hold sensitive datasets, such as patient health records, demographic
attributes, or financial profiles, making the raw feature vectors {x;} the sensitive objects. Disclosing
such data would be a severe violation. Instead, SENSE relies on distances to some anchor points as
safe coordination signals, reconstructing inter-client similarity (i.e., who is close to whom) without
exposing raw features, thereby producing faithful low-dimensional embeddings under strict privacy
and communication constraints.

Anchors therefore play a central role in our framework, and their use is both practical and robust.
Curated by a trusted server, they can be synthetic, anonymized, or drawn from public data, decoupled
from private client records. This avoids leakage risks from client-generated anchors, especially in
small or skewed regimes (Qiao et al., 2024) while providing stability, auditability, and adversarial
robustness. Such strategies are already common in healthcare (Johnson et al., 2016; Bycroft et al.,
2018), genomics (Regev et al., 2017; Litviiiukova et al., 2020), finance (Awosika et al., 2024a),
mobile/NLP applications (Hard et al., 2019; Li et al., 2019), and wireless sensor networks (Di Franco
et al., 2017), illustrating their practical viability. Motivated by this, we treat anchors as core archi-
tectural components. SENSE leverages them, together with tools from distance matrix completion,
network localization, and low-rank recovery, to provide formal privacy guarantees for reconstructing
global structure from partial observations. It introduces the following key innovations:

* Privacy and communication efficiency: Distance estimation is decoupled from raw data, avoiding
reliance on external mechanisms such as Homomorphic Encryption or Differential Privacy. Also, it
requires only a single client—server interaction with no iterative training.

* Geometric and deployment flexibility: Supports both Euclidean and hyperbolic spaces and adapts
to four observation regimes. As shown in Figure 1, these regimes dictate which entries of the
distance matrix are observable. SENSE estimates/infers the missing inter-client similarity from
this incomplete information while preserving privacy across all scenarios. In the Pointwise setting,
each client contributes only a single non-anchor (NA), typical of edge/mobile devices, whereas in
the Multisite setting, clients hold multiple NAs, such as patients in hospitals or customers in banks.

* Provable reliability: Provides formal privacy guarantees, complemented by empirical validation
across diverse datasets and geometries.

Practical Impact. These properties make SENSE broadly applicable to privacy-sensitive,
structurally diverse domains. Hospitals can jointly visualize patient data without violating
HIPAA/GDPR (Sheller et al., 2019), banks can detect fraud patterns without exposing transac-
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tions (Awosika et al., 2024b), and even mobile/IoT devices with a single sample can contribute to
global embeddings (Pape & Rannenberg, 2019; Baran, 1964). Genomic labs can embed single-cell
transcriptomes into a shared hyperbolic space that preserves both cellular hierarchy and privacy (Agni-
hotry et al., 2022; Tasissa & Lai, 2019). Crucially, SENSE also supports dynamic participation: new
clients or samples can be incorporated by estimating partial distances to existing entities, avoiding full
re-computation while maintaining global coherence. Thus, SENSE is not only privacy-preserving
and geometry-aware but also inherently scalable to dynamic federated ecosystems.

2 BACKGROUND AND PROBLEM FORMULATION.

Neighbor Embedding (NE). Methods like t-SNE (van der Maaten & Hinton, 2008) and UMAP
(Damrich & Hamprecht, 2021) embed high-dimensional data X = {z;}7, C R into a low-
dimensional space Y = {y;}";, C R% by preserving pairwise structure. These methods are
distance-driven. They transform distances into similarities via kernels to preserve relational structure
(see Appendix A.1, A.2). Let ij?‘ = ||z; — ;|| and fo = ||ly; — y;|| denote distances in the high-
and low-dimensional spaces respectively. These are mapped to similarities via kernel functions:
Sd“ =f (Ddh), S’JZ’Z = g(DdZ) where f and g are typically Gaussian, Laplacian, or Cauchy
kernels. The general NE objectlve minimizes the divergence between the two similarity matrices:

ZD (S, s, (1)

where D is a divergence measure such as KL divergence or binary cross-entropy.

Contrastive Neighbor Embedding. CNE (Damrich et al., 2023) extends NE into the contrastive
learning framework by training an encoder fj to map x; to y; = fy(x;) such that the neighborhood
structure from a k-NN graph is preserved (Li et al., 2024). CNE uses a distance-aware contrastive
loss (see Def A.3 in Appendix), framed as a binary similarity matching problem. Let S ¢
{0,1}™*™ denote ground-truth neighborhood indicators and S% denote kernel-based similarities in
the embedding space. The loss is a weighted binary cross-entropy:

d d d d
L(Y)z—z[sihlogsz+b(1—s h)logu_si;)}. @)
3
where b > 0 balances the repulsion term; for more details on Eq. 2 see A.3.
Key Challenges in Decentralized Settings. (C1) CNE, like NE, relies on a full similarity matrix, which
is unavailable in privacy-sensitive, decentralized settings. (C2) Conventional distributed learning
captures only intra-client structure, omitting crucial inter-client neighbor information. (C3) Clients
lack access to global data, leading to incorrect kNN graphs and biased negative sampling, as true
neighbors may reside on other clients.

CO-SNE (for Hyperbolic Data). Hierarchical structures in social, biological, and knowledge
graphs grow exponentially, making Euclidean embeddings unsuitable due to distortion of tree-like
geometry. Hyperbolic space, with constant negative curvature, naturally models such growth and
supports hierarchy-aware learning (Malik et al., 2025; Ganea et al., 2018) (see Appendix A.3.1).
Standard methods like t-SNE assume Euclidean geometry and distort global structure when applied
to hyperbolic data, collapsing depth and relative positioning. CO-SNE (Guo et al., 2022) extends
t-SNE to hyperbolic geometry by using distance-aware kernels: Sfjh = f(dgn(zs,25)), Sflj‘ =
9(dp2(yi,y;)), where f is a hyperbolic normal kernel and ¢ a heavy-tailed Cauchy kernel. A
depth-regularization term aligns norms across spaces. The objective is:

LOY) =M -D(S™,SM) + X2 > (p(x:) — plui))?, 3
where p(z) = ||z|| and D is typically KL divergence. For more details see Def A.4.
2.1 PROBLEM FORMULATION

We consider a decentralized system with M clients {Cy,...,Cas} coordinated by a central server
owned by a private company, hospital, bank, or government agency. Each client C,,, holds a private

dataset D,,, {xm}fv"{ C R, which remains local and disjoint, i.e., D,, N D,,, = 0 for m # m'.
Let N = E 1 N be the total number of data points, indexed globally by i € [N]. We consider two
real-world conﬁguratlons A) SENSE-Pointwise, where each client holds a single sample x™ € R%,
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and B) SENSE-Multisite, where each client holds a local dataset X™ = [x]",... x| € RNm X,
Let D € RV denote the full squared distance matrix. In Euclidean space, D;; = |x; — x;|%; in
hyperbolic space, it reflects squared distances in the Poincaré ball B% or Lorentz model H% (see
Appendix A.3). Due to privacy constraints, only a subset of entries is observable. Let 2 C [N] x [N]
be the set of observed indices, and define the projection operator Pg, : RVXN — RNXN ag:
Dy, if(4,7) € Q,
[Pa(D)):; = {O, otherwise. @

Goal 1 Our goal is to reconstruct the full distance matrix from partial observations Do = Pq (D) via
structured matrix completion. Rather than estimating distances directly, we infer latent embeddings

X € RY*n whose induced distances agree with the observed entries. Formally, we solve:

X* = arg m}%n HPQ (D()A()) — DQHi , 5)

and define the reconstructed distance matrix as D = D(X*), which serves as an approximation of
the true but unknown D. Here D( ) denotes the induced pairwise distance matrix under the chosen

geometry (Euclidean or hyperbolic). From D, we then derive a global low-dimensional embedding
Y = {yY}f\Ll C R% with dy, < dy,, which preserves the neighborhood structure.

We use D to find the similarities, defined in Eq. 6 and optimized via divergence D(S% , S4) (Eq. 1).
st e (24, st =y vilP) ©
»L] =€ p 20_2 9 1] - g yl y] 9
For contrastive learning, we build binary similarities using k-nearest neighbors:
g _ J 1, if € kNN(i; D), 1
0, otherwise, 1+ |lyi —y;I1?°
and minimize the contrastive loss (Eq. 2). For hierarchical data, we apply CO-SNE, treating D as

squared hyperbolic distances in the Poincaré model to compute similarities (Eq. 16 in Appendix).
The embedding Y C B is optimized using the CO-SNE loss (Eq. 3).

St = oy y;) = @)

3 PROPOSED FRAMEWORK: SENSE

As described in Section 2.1, we consider two decentralized settings: SENSE-Pointwise and SENSE-
Multisite. In both, each client holds private non-anchor (NA) data and accesses a shared anchor set

A ={ai,...,ax} with feature matrix X4 = [p1,...,px] € RE*%. Anchors, broadcast by the
server, may be global or client-specific (see Appendix A.8). Let X = {x1,...,zn} be the set of all
private NA points (raw features), where N = Z 1 N, Each client computes squared distances
between its NAs and accessible anchors:

= [l =l 2" — pxl]

and transmits these to the server, masking unshared local anchors. In Pointwise, each client contributes
one NA-anchor vector, in Multisite, intra-client NA-NA distances may also be known. The global

incomplete squared distance matrix D € RU+HN)X(K+N) jg partitioned as:
E F

where FE is anchor—anchor, F' is anchor-NA, and G is NA-NA. The observed subset is indexed by
Q2 C [K+N]?, based on anchor visibility and client configuration. We consider four configurations:
Pointwise-Full, Pointwise-Partial, Multisite-Full, and Multisite-Partial which differ in the extent
of observed entries in F' (anchor-NA) and G (NA-NA). These define distinct visibility patterns in
2, summarized in Appendix Table 6 and illustrated in Figure 1, and determine which distances are
available for structured matrix completlon To reconstruct the unobserved blocks of D (notably G)
and obtain the reconstructed matrix D (or G) we use geometry-specific solvers: anchored-MDS in
Euclidean space (Sec. 3.1) and LHYDRA (Keller-Ressel & Nargang, 2022) in hyperbolic space. The
complete pipeline is outlined in Algorithm 1 (Appendix).

Remark 1 In practice, F' may be only partially or fully visible due to bandwidth, privacy, or data
limitations. SENSE is designed to operate under such conditions.
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3.1 SENSE VIA ANCHORED-MDS

Classical MDS embeds N points by minimizing stress over a fully observed distance matrix D €
RN*N_ The embedding X € RY X4 minimizes: ¢(X) = >icj (i — ]l = §ij)2 , Where §;; is
the input Euclidean distance between points ¢ and j. SMACOF solves this using a majorization-
based surrogate (De Leeuw, 2005) (details in Appendix A.5), 7(X,Z) = C + tr(XTVX) —
2tr(X " B(Z)Z), with the iterative update:

X (k) — VTB(X(’“*U)X(}“*D. 9)
In SENSE, we do not observe the full matrix D (in Eq. 8), instead, we only access the observed
entries Dg = Pq (D), which contain distances on a subset of pairs. Let the embedding be X =
[Xa Xn A]T, where X 4 and Xy 4 are anchor and NA embeddings, respectively. Stress is minimized

over observed entries only: o(X) = ||Po(D(X) — D) H% , Where Pgq, projects onto observed indices
Q, and D(X) computes pairwise distances. The SMACOF updates are restricted to €2, with:

64

{i: () e}, i=j ~Tei—a, T (1,7) € i#j
Vij =49 -1 (i’j)€Q7i7éja BZJ(X): _k Zk QB“W 1=
0, otherwise #4 (k)€ .
0, otherwise

We partition V' and B as defined in Eq. 10, where Vg4, Baa € REXE Vun, Bany € REXN and
VN, Bny € RVXV:

~ |Vaa Van _ |Baa Ban
V= [VLV VNN} » B= {BZN BNN} 10
The update rule for NA embeddings becomes:
X{h = Vi (BuwX{(3" + BlyPa(Xa) = VinPa(Xa)) (an

This projection-aware update ensures X 4 uses only observed/available distances. The projection
operator Pq, acts as a binary mask over observed entries. While V and B are derived from €2, we apply
Pq to X 4 in Eq. 11 to retain only anchors with observed anchor-NA distances. This avoids leakage
from inaccessible anchors and ensures privacy-compliant updates (pseudocode in Appendix A.7).
Furthermore, to preserve privacy, the number of shared anchors K must be limited. Theorems 3.1,
3.2 (Euclidean) and Lemma 1 (hyperbolic) characterize how K relates to embedding dimension dj,
across SENSE configurations, establishing privacy conditions for faithful reconstruction.

Theorem 3.1 Let X = {x;,...,xy} C R be the set of NA data points, and let A =
{ay,...,ax} C R be the set of K anchor points. Suppose we observe the pairwise Euclidean
distances {||x; — a;|| }ic[n],je| k) between each NA and all anchors. If the number of anchors satisfies
K < dp, then the original NA features {x;}_| cannot be exactly reconstructed from these distances,
guaranteeing the privacy of the individual client data.

Proof. Deferred in Appendix, check A.1.

While Theorem 3.1 ensures privacy, the reconstructed embeddings (Eq. 11) must also remain useful.
We capture this through reconstruction fidelity, defined as preserving neighborhood structure rather
than exact features. In SENSE, such fidelity is guaranteed by well-established results from MDS
distance-based recovery (Drineas et al., 2006; Zhang et al., 2019; Lichtenberg & Tasissa, 2024a).
These solvers are known to produce embeddings consistent up to Euclidean isometries (translation,
rotation, and scaling) (Mardia & Riley, 2021; Khan et al., 2009). These invariances ensure that
geometric relationships are preserved for downstream tasks, while exact feature values remain
unrecoverable, achieving precisely the balance required in privacy-sensitive settings.

SENSE supports multiple configurations, which critically influence embedding fidelity and privacy.
Theorem 3.2 formalizes privacy guarantees when only partial anchor—-NA distances (block F') are
available, covering both pointwise and multisite regimes. 1) SENSE-Pointwise: Each client j € [N]
holds a single private point ; € R?" and accesses a subset of anchors indexed by Z; C [K]. The
corresponding anchor set is A; = {a;}icz,, comprising: (i) global anchors A = {a1,...,an},
shared across all clients, and (ii) local anchors A(Lj), unique to client j. The total of anchors observed
is r; = |Ij| = Mg + MY, 2) SENSE-Multisite: Bach client m € [M] holds a local dataset

M . .
x(m) — {Zm1, -, Tmon, } C R, where N = > 1 "m. Each point x,, ; observes distances
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to (i) a shared global anchor set A, and (ii) a local anchor set A(Lm) exclusive to client m. Let
Imi=12gVU I](;m) be index set of accessible anchors, with r,,, ; = |Z,,, ;| denoting number observed.

Theorem 3.2 Let X = {xy,...,xn} C R be the set of all non-anchor (NA) points across
all clients, where each x; computes squared distances only to a subset of accessible anchors
A; = {a;}jez,, with |I;| = r. If r; < dp, for all i € [N], then exact recovery of each x; is
impossible. The inverse map from anchor distances to features is non-unique, preserving privacy
under both pointwise and multisite configurations.

Proof. Deferred in Appendix, check A.2.

Lemma 1 Let {x1,...,vx,n} C H% be K anchors and N NA points in hyperbolic space with
curvature — k. Suppose only blocks E and F' of distance matrix D are observed. If K < dj, the NA
coordinates cannot be exactly recovered up to isometry in H% , ensuring the privacy of the client data
in SENSE. This follows from the contrapositive of the L-HYDRA theorem (Keller-Ressel & Nargang,
2022), which guarantees exact recovery only when K > dj, and anchors span a full subspace.

In SENSE, we deliberately restrict anchors to K < dj, rather than K < dj,. Fewer anchors enlarge
the feasible solution space, introducing geometric ambiguity (Wei et al., 2015; Liberti et al., 2014)
that strengthens privacy while still preserving neighborhood structure (Fig. 3). This design holds in
both Euclidean and hyperbolic spaces, making it a general, geometry-agnostic choice. A detailed
theoretical discussion and supporting examples are provided in Appendix A.10.

4 EXPERIMENTS

In this section, we first outline the experimental setup, followed by an evaluation of SENSE across
diverse datasets and deployment settings.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate SENSE on 14 public datasets widely used in DR and representation learn-
ing (Fu et al., 2024). These include three benchmarks: MNIST (Deng, 2012), Fashion-MNIST (Xiao
etal., 2017), and CIFAR-10 (Giuste & Vizcarra, 2020); seven MedMNIST datasets (Yang et al., 2023):
DermaMNIST, PneumoniaMNIST, RetinaMNIST, BreastMNIST, BloodMNIST, OrganCMNIST,
OrganSMNIST; and the German Credit dataset (Hofmann, 1994). For hyperbolic, we use three graph
datasets: Airport (Malik et al., 2025), Amazon (Yang & Leskovec, 2012), and DBLP (Kataria et al.,
2024). Detailed dataset stats and system specifications are in Appendix Table 7 and A.13.

Baselines. We compare SENSE against centralized (Van) baselines: t-SNE (van der Maaten &
Hinton, 2008), UMAP (Mclnnes et al., 2020), PHATE (Moon et al., 2019), and CNE (Damrich et al.,
2023) (with s € {0,0.5,1}). These assume full raw data access at a central server and serve as upper
bounds for evaluating SENSE’s privacy-preserving performance.

Implementation Details. SENSE has two stages: matrix completion and global embedding. In
the first stage, data is partitioned across M clients. In Pointwise, each client holds one NA point,
sampled randomly. In Multisite, clients hold multiple NA points under IID or non-IID splits (bal-
anced/unbalanced). A subset of 10% of the total data points is designated as anchors. In Full settings,
all anchors are global, and in Partial, anchors are split into global and client-specific local sets. The
total of anchors (global + local) is fixed at d, — 1, where dj, is the original feature dimension. In
the embedding stage, we use the completed distance matrix to generate privacy-preserving embed-
dings using multiple neighbor embedding methods. For Euclidean geometry, we use the official
implementations of t-SNE (van der Maaten & Hinton, 2008), UMAP (Mclnnes et al., 2020), and
PHATE (via its standard Python library). For CNE, we adopt the implementation from (Damrich
et al., 2023), where the parameter s controls the attraction-repulsion tradeoff: s = 0 mimics t-SNE,
s = 1 aligns with UMAP, and intermediate values interpolate between them. CNE operates within
a contrastive learning framework using negative sampling. For hyperbolic embeddings, we use the
CO-SNE implementation from (Guo et al., 2022).

Remark 2 The 10% anchor sharing in the multisite setting is used only for empirical evaluation.
These anchors are not private; they act as public or semi-public landmarks, akin to those in GPS
(Shang & Ruml, 2004) or radar systems (lannucci et al., 2020). This is standard in localization
literature (Di Franco et al., 2017; Khan et al., 2009), where landmarks aid positioning but are not
privacy-sensitive (Koledoye et al., 2017). Our privacy definition protects only the high-dimensional
features of NA points. Anchors are fixed, visible, and either synthetic, public, or explicitly consented.
Not part of any client’s private data. For details on anchor generation, see Appendix A.S.
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Table 1: Full vs. Partial comparison in MULTISITE under non-IID (unbalanced) splits. Evaluation spans
centralized and privacy-preserving SENSE variants across different embedding quality metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE
— Multisite-Partial Setting —

Trust.  0.9890 0.9898 0.9553 0.9552 0.8741 0.8763 0.9517 0.9521 0.9524 0.9538 0.9455 0.9476
Cont. 0.9575 0.9639 09774 09771 09811 0.9804 0.9806 0.9797 0.9799 0.9787 0.9799 0.9787
Stead.  0.7719 0.7861 0.7639 0.7635 0.6628 0.6746 0.7840 0.7790 0.7752 0.7768 0.7634 0.7658
Cohes. 0.8189 0.8458 0.8865 0.8853 0.8668 0.8877 0.9229 0.9112 0.9107 0.9196 0.9158 0.9087

Trust. 09902 0.9914 09140 0.9148 0.9579 0.9557 0.9765 0.9752 0.9784 0.9769 0.9765 0.9731
Cont. 0.9608 0.9590 0.9812 0.9818 0.9910 0.9906 0.9915 0.9913 0.9905 0.9903 0.9900 0.9901
Stead.  0.8415 0.8643 0.7570 0.7622 0.7836 0.7891 0.8632 0.8638 0.8643 0.8660 0.8493 0.8513
Cohes.  0.6496  0.6559 0.6748 0.7069 0.7051 0.7115 0.7680 0.7669 0.7637 0.7508 0.7792  0.7666

— Multisite-Full Setting —

Trust. 0.9890 09852 0.9553 0.9570 0.8741 0.8780 0.9517 0.9516 0.9524 0.9542 0.9455 0.9452
Cont. 0.9575 09518 09774 09754 09811 0.9797 0.9806 0.9772 0.9799 0.9763 0.9799 0.9761

MNIST

fashionMNIST

MNIST Stead. 07719 07953 07639 07726 0.6628 0.6688 07840 0.7808 0.7752 0.7828 0.7634 0.7690
Cohes. 0.8189 0.8328 0.8865 08665 08668 08818 09229 09047 09107 08926 09158 0.9106
Trust. 09902 09895 09140 09076 09579 09555 09765 09752 09784 09769 09765 09725
fachionVNisT  Cont 09608 09731 09812 09797 09910 09902 09915 09906 09905 09895 09900 0.9891
Stead. 08415 08604 07570 07530 07836 0.7981 08632 08608 08643 08649 08493 0.8538
Cohes. 0.6496 0.6936 0.6748 07019 07051 07039 07680 07503 07637 07591 07792 0.7695
— Pointwise-Full Setting —
Trust. 09661 09679 09484 09467 08457 08469 09218 09166 09164 09138 09137 09151
Cont. 09418 09410 09376 09396 09546 09538 09434 09422 09428 09417 09409 0.9403
MNIST Stead.  0.8083 08113 07878 07763 0.6953 06958 08024 0.8003 08041 07996 0.8025 0.7914
Cohes. 07904 07998 07855 07819 07912 07843 07988 07982 0.8034 07894 0.7931 0.7919
Trust. 09647 09681 09441 09434 08407 08375 09283 09264 09255 09245 09256 09196
Cont. 09430 09454 09386 09373 09542 09528 09464 09460 09456 09440 09451 0.9429
fachionvNis  Stead 08118 08103 07797 07779 06923 06931 08087 08049 08085 08003 08082 08150

Cohes. 0.7570 0.7882 0.7685 0.7670 0.7564 0.7599 0.7876 0.7786 0.7843 0.7788 0.7838 0.7710

Data Partitioning. To simulate realistic distributed settings, we evaluate SENSE under both IID
and non-IID distributions using Dirichlet-based partitioning. For each class ¢, client-wise proportions
are drawn from ¢. ~ Dir(«), where lower « yields greater heterogeneity and class imbalance (Wang
et al., 2020; Zhao et al., 2018). We set o = 0.5 in all experiments. Three partitioning schemes are
used: /ID (uniform class mix), non-IID balanced (varying class distributions, equal client sizes), and
non-1ID unbalanced (both class and size vary).

Evaluation Metrics. We assess SENSE using both reconstruction and embedding quality metrics.
For fidelity, we compute Relative Distance Error (DE) and F-score (FS) between the reconstructed

: : a . _ 1G—Guelr — 2tp
distance matrix (NA-NA) G and ground truth Gye: DE = W, and FS = SipTpFin’ where tp,

fp, and fn are true, false positive, and false negative neighbors respectively (Egilmez et al., 2017). To
evaluate 2D embeddings, we compute Trustworthiness and Continuity (Venna & Kaski, 2005), which
measure neighborhood agreement between original and embedded spaces. We also report Steadiness
and Cohesiveness (Jeon et al., 2021) to assess global structural reliability: steadiness detects false
groupings and cohesiveness quantifies how well true input clusters are preserved.

4.2 RESULT ANALYSIS.

We comprehensively evaluate SENSE across: 1) Standard image datasets (MNIST, FashionMNIST,
CIFAR-10): These are evaluated under Pointwise-Full, Multisite-Full, and Multisite-Partial with
non-IID unbalanced splits. As shown in Table 1 and in Appendix 10, SENSE closely matches
centralized baselines across Cont., Trust., Stead., and Cohes. Notably, the Partial configuration
performs comparably to Full, indicating that accurate reconstruction of the global distance matrix
is possible even with partial anchor—NA observations. Table 9 further confirms high F-score and
low distance error, validating strong neighborhood preservation under strict privacy constraints.
2) MedMNIST datasets: These are evaluated across unbalanced  Taple 2: FS and DE for hyperbolic
non-1ID, balanced non-IID, and IID splits. SENSE consistently  datasets in POINTWISE setting.

matches centralized performance (Tables 3,12,11), even under
high heterogeneity. Table 8 in Appendix, further shows low DE _Dataset FS DE

and high FS, confirming strong structural and similarity preserva- ~ AIRPORT  0.9992  0.000067
tion. 3) Hyperbolic datasets (Airport, Amazon, DBLP): For these =~ AMAZON  0.9945  0.00052
datasets, the results in Table 2 highlight SENSE’s geometry-aware =~ DBLP 0.9929  0.00073

design, achieving high FS and very low DE in non-Euclidean
spaces. This confirms its adaptability across geometric regimes. Overall, SENSE effectively ensures:

* Neighbor preservation: High continuity and trustworthiness show SENSE keeps similar points
close in the embedding, preserving semantics across clients.
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Table 3: Performance of centralized (Van.) and SENSE variants under non-IID unbalanced splits.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE  VAN. SENSE

Trust.  0.9723 0.9712 0.7699 0.7673 0.8570 0.8590 0.9027 0.9008 0.8976 0.8952 0.8832 0.8806
Cont. 0.9418 0.9383 0.9140 09154 09624 0.9608 0.9594 0.9591 0.9590 0.9583 0.9606 0.9599
Stead.  0.7868 0.7932 0.6258 0.6168 0.7247 0.7204 0.7552  0.7591  0.7496 0.7461 0.7283 0.7341

PreumoniaMNIST b oC 6091 06591 06318 0.6250 0.6953 06957 06983 07085 07052 07142 07015 0.7065
Trust. 09633 09609 08674 08632 08493 08513 08841 08816 08814 08795 08737 08715

Cont. 09256 00375 09411 09401 09435 009428 09555 09552 0.9558 09556 09555 0.9552

BloodVINIST Stead. 07498 07480 0.6880 0.6874 06781 06851 07172 07323 07186 07216 07100 0.7132
Cohes. 07242 07178 07253 07253 07456 07448 07462 07440 07384 07540 07533 0.7379

Trust. 09379 09378 07817 0.7998 08921 08884 09133 09117 09124 09113 09108 0.9108

Cont. 09508 00481 08140 08247 09616 09563 09519 09515 09516 09513 09510 0.9509

BreastMNIST Stead. 08417 0.8329 0.5605 05550 08037 08149 08438 08480 08491 08495 0.8490 0.8398
Cohes.  0.6091 06137 04095 04112 05668 05570 0.5777 05695 05807 05689 0.5675 0.5585

Trust. 09757 09770 0.7496 0.7466 08737 08728 09130 09121 09119 09116 09020 0.9021

Cont. 09461 09572 09127 09122 09736 09730 09709 09713 09706 09707 09716 0.9715

DermaMNIST Stead. 07977 07979 05945 05936 07308 07319 07739 07689 07682 07686 07578 0.7553
Cohes. 07147 07111 05586 05459 07127 07108 07268 07321 07385 07502 07438 0.7383

Trust. 09797 09736 08793 08636 09161 09050 09486 09357 09475 09348 09451 0.9336

Cont. 00496 09669 09273 0.9244 09738 09734 09720 09714 09707 09701 09678 0.9680

RetinaVINIST Stead. 08442 08498 06307 05923 07559 07636 0.8267 08176 08196 08138 08158 0.8040
Cohes. 06734 07281 0.5832 05828 06957 0.6991 07100 07137 07089 06982 06883 0.6990

Trust. 09621 09387 0.8887 0.8867 08850 08871 09134 09041 09159 09056 09019 0.8907

Cont. 09207 09170 09268 0.9247 09691 09699 09733 09693 09729 09685 09737 0.9696

OmanCyNisT  Stead 07011 07855 07527 07718 07935 08093 08666 08755 08733 08722 08597 0.8607
g Cohes. 04685 05037 03322 03373 05431 05444 04653 05096 05681 05233 05745 0.5375
Trust. 09552 09357 08741 08625 08792 08821 09114 09028 09126 09040 08993 0.8912

Cont. 09214 09169 09246 09213 09684 09700 09738 09682 09731 09675 09736 0.9683

OrganSMNIST  Stead 06765 07311 07222 07485 07509 07995 08609 08659 08664 08708 0856l 03582

Cohes.  0.4951 0.4814 03603 0.3211 0.5198 0.5343 0.4704 0.44009 0.5192 0.4833 0.5155 0.5033

Trust. 09745 09543 09514 0.9294 0.8555 0.8394 0.9337 09124 0.9380 0.9072 0.9336 0.9092
Cont. 0.9583 0.9424 0.9604 0.9410 0.9481 0.9255 0.9571 0.9438 0.9576 0.9438 0.9571 0.9440
Stead.  0.8576 0.8248 0.8313 0.7933 0.7483 0.7061 0.8398 0.7921 0.8479 0.7855 0.8436 0.7906
Cohes. 0.6774 0.6755 0.6638 0.6568 0.6893 0.6745 0.6446 0.6551  0.6575 0.6481 0.6513 0.6676

german-credit

 Similarity recovery: Despite no raw data access, SENSE accurately approximates pairwise dis-
tances evidenced by low DE and high FS.

* Cluster structure: Comparable steadiness and cohesiveness confirm that SENSE maintains cluster
alignment without fragmentation.

Visualization. Figure 2 shows global embeddings learned by SENSE on MNIST in the MULTISITE
setting with 25,000 NA samples across 10 clients in an unbalanced non-IID split. Using only 783
anchors (dp, — 1), SENSE constructs high-quality embeddings without accessing or sharing raw
features. Embeddings from t-SNE, UMAP, PHATE, and CNE cleanly separate semantic groups,
preserving local neighborhoods and global cluster topology. By estimating inter-client similarities,
SENSE enables meaningful inter-client positive/negative contrastive pairs. This highlights its ability
to learn structure-preserving, privacy-compliant embeddings in decentralized, heterogeneous settings.
Additional visualizations are in the Appendix A.14.

4.3 ABLATION STUDY.

To validate Theorems 3.1, 3.2, and Lemma 1, we perform an ablation study by varying anchor
count from d;, — € to dp, + €. We evaluate SENSE using five normalized metrics, plotted in
Figure 3: (i) Cosine Similarity (Nguyen & Bai, 2010) between ground-truth X, and reconstructed

latent embeddings )?NA; (i1) Distance Error and (iii) F-score (Sec. 4.1); (iv) Pearson Correlation
(p) (Sedgwick, 2012) over NA-NA distances; and (v) Frobenius Norm Error (Xyop) (Kannan, 1989),
capturing reconstruction loss (full definitions in Appendix A.15). Key observations from the study:

* Effective with few anchors: Even with anchor count well below dj, (e.g., d, — 100), SENSE
achieves high F-score, low distance error, and strong cosine similarity, showing robust neighborhood
preservation in resource-constrained settings.

* Privacy-compliant reconstruction: As anchors approach dj, cosine and Pearson scores improve.
Beyond dj, + 1, near-zero Frobenius error indicates possible exact recovery highlighting the need
to limit anchor count to preserve privacy.

e Structural consistency: Pearson correlation rises with anchor count, saturating near 1.0 at d, + 1,
with corresponding drops in Frobenius error confirming theoretical bounds for exact recovery.

* Metric alignment with theoretical thresholds: Across datasets, all metrics converge near dj, with
diminishing gains beyond matching theoretical thresholds.

These results validate that SENSE achieves high-fidelity, privacy-compliant reconstruction with
minimal anchors, making it scalable and effective in decentralized settings with limited observability.



Under review as a conference paper at ICLR 2026

CNE Spectrum Projection for MNIST
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Figure 2: Global embeddings of MNIST under the MULTISITE setting. Top: CNE spectrum with SENSE.
Bottom: t-SNE, PHATE, and UMAP embeddings generated via SENSE without any raw feature sharing. All
embeddings preserve global structure while ensuring privacy.
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Figure 3: Impact of anchor count on normalized metric scores under non-IID unbalanced distributions. The red
vertical line denotes the theoretical privacy threshold at dj, — 1 (783 for MNIST, 19 for German Credit), beyond
which exact recovery may be possible. For Retina and Pneumonia, this threshold lies outside the x-axis range,
resulting in monotonic performance gains. Trends confirm trade-offs between reconstruction fidelity and privacy
risk as anchor count increases.

4.4 DISCUSSION.

Due to space constraints, we provide the extended discussion of SENSE and additional empirical
results in Appendix A.16. It addresses four key aspects: (i) how SENSE adapts to dynamic evolving
distributed environments via out-of-sample embedding; (ii) scalability and runtime on large-scale
datasets such as Tiny ImageNet (Le & Yang, 2015) and SVHN (Netzer et al., 2011) (Table 13), with
a detailed breakdown of pipeline stages and complexity analysis in Table 14; (iii) a curated privacy
example showing that embeddings preserve structural relationships while preventing recovery of
sensitive attributes (Table 15); and (iv) why SENSE avoids noise-based privacy (Table 16 and 17),
since injected noise quickly degrades embedding quality, whereas geometric underdetermination
preserves both fidelity and privacy.

5 CONCLUSION

We proposed SENSE, a geometry-aware framework for decentralized representation learning that
reconstructs global geometry from sparse anchor-based distances, enabling projections without raw
data exchange. By combining structured matrix completion with classical DR methods, SENSE
supports both Euclidean and hyperbolic spaces and adapts to multiple deployment settings. Exper-
iments show that SENSE is effective even with few anchors, achieving strong neighborhood and
cluster preservation while matching centralized baselines under strict privacy and communication con-
straints. These results highlight SENSE as a scalable, privacy-preserving solution for collaborative
representation learning in heterogeneous, non-IID environments.
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A APPENDIX

A.1 NEIGHBOR EMBEDDING (NE).

Definition A.1 7-SNE models p;; as symmetrized conditional probabilities using Gaussian kernels:
pji < exp(—|lz; — x;]12/207), with p;; = % Low-dimensional similarities are computed
using a heavy-tailed Student-t kernel: q;; o (1 + |ly; — y;||*)~*. The loss minimizes the KL

divergence:
Dii
Lisve =Y pijlog L.
i#j 4ij

Definition A.2 UMAP defines pj|; = exp(—(||z; —x;|| — pi)/7:) using adaptive exponential kernels,
where p; is the local connectivity threshold. Symmetrized p;; is computed via fuzzy set union. In the
embedding space, q;; = (1 + ally; — y;||?)~° with fixed parameters (a,b). The loss is a weighted
binary cross-entropy:

Lymap = Z [pij log Bij 4 (1 —pi;)log 1 Pij |,
Py qij — qij

A.2 CONTRASTIVE NEIGHBOR EMBEDDING (CNE).

Definition A.3 Given a kNN graph, high-dimensional similarities are binary: S;ijh =1lifz; €
kNN(z;), and 0 otherwise. In the embedding space, similarities are defined using a Cauchy kernel:
Sfl]? =o(yi,y;) = m The CNE objective combines attractive and repulsive forces:

L(0) = —E(i j)~p, log d(fo(xi), fo(x;)) — bE(; 5y log(1 — ¢(fo(xi), fo(x;))),

where p; samples positive pairs and b > 0 balances the repulsion term.

A.3 HYPERBOLIC MODELS AND DISTANCE CALCULATION.

There are several equivalent models of hyperbolic geometry exist, including the Poincaré ball model,
lorentz model (or hyperboloid model) and the upper half-space model. The mathematical framework
of the d-dimensional hyperboloid model of hyperbolic geometry is deined as follows:

For z,y € R%1, the Lorentz product is an indefinite inner product given by,
roy:=z1y1 — (T2y2 + + Tat1Yd+1)- (12)

The real vector space R4+! equipped with this inner product is called Lorentz space, denoted by R4,
It contains the positive Lorentz space as a subset:

R}F’d = {x e RV . T, > O}.
Within Ri’d, the single-sheet hyperboloid H?" is given by
H* = {xeRl’d txox =1, x1>0}. (13)

The hyperboloid model in dimension d with curvature —x (for x > 0) consists of H% endowed with
the hyperbolic distance:

1
di(z,y) = ﬁarcosh(a: oy), z,y € H*. (14)

The distance df} is a valid metric on H?, it is positive definite and satisfies the triangle inequality.
Moreover, equipped with the metric tensor:

1
ds* = —(dx o dx),
K
the hyperboloid H¢" becomes a Riemannian manifold of constant sectional curvature —, and df
corresponds exactly to its geodesic distance. In particular, the curvature x does not alter the definition

of the manifold H itself, but only scales the distance metric. Just as Euclidean space is the canonical
model for zero curvature, hyperbolic space is the canonical geometry for constant negative curvature.
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A.3.1 POINCARE BALL MODEL.
The Poincaré ball model is the most widely used formulation of hyperbolic space in machine
learning (Nickel & Kiela, 2017; Ganea et al., 2018). It defines the n-dimensional hyperbolic space as

2
B" = {z € R" : ||z|| < 1} with Riemannian metric g, = (ﬁ) I,,. The hyperbolic distance
between two points u, v € B” is:

2f|u — v]|?

dgn (u,v) = arcosh (1 + . (15)
(1= Jul)(X = flvf?)

This distance increases exponentially near the boundary, enabling natural hierarchical embeddings

where central points correspond to root nodes and peripheral points to leaves.

A.4 CO-SNE

Definition A.4 CO-SNE defines the similarities via hyperbolic normal kernels in the high-
dimensional Poincaré ball B": p;|; = exp (—d[ﬁgn (24, xj)2/202-2) [Zs, with pij = (pj|; + pijj)/2m.
In the embedding space B?, similarities use a hyperbolic Cauchy kernel: qij = 72/ (dgz (v, yj)2 +
v2)/Z. The loss combines KL divergence with a norm-based regularizer:

Leosve =My pijlog z— +22 >l l? = llwill®)>. (16)
J

- 7
2]

K3

A.5 CLASSICAL MDS

Utilizing the measurements of distances among pairs of objects, MDS (multidimensional scaling)
finds a representation of each object in d - dimensional space such that the distances are preserved in
the estimated configuration as closely as possible. To validate the goodness-of-fit measure, MDS
optimizes the loss function (known as ”Stress”’(¢)) given by:

O’(X) = H}}H Z wij (52J — dij(X))Q, (17)
i<j<N

, where the observation mask is W where w;; = 1 if the distance d;; is known and w;; = 0 otherwise,
with the block structure:

W= (1)_1ny ;NXM (18)
MxN L1mMxm

where 0 and 1 denote matrices of zeros and ones, respectively and X represents the computed
configuration, d;;(X) = ||&; — ;| is the Euclidean distance between nodes ¢ and j, J;; is the
measured distance computed privately. Placing the weights of unknown inter-user distance to zero,
the weight matrix W can be partitioned into block matrices as shown in 18, where 11 57 is a matrix
of ones with shape NV x M. De Leeuw (De Leeuw, 2005) applied an iterative method called SMACOF
(Scaling by Majorizing a Convex Function) to estimate the configuration X. As the objective is a
non-convex function, SMACOF minimizes the stress using the simple quadratic function 7(X, Z)
which bounds o (X) (the complicated function) from above and meets the surface at the so-called
supporting point Z as defined below:

T
o(X) <T(X,2) = > wijdy; + Y wigd;(X) =2 wi;d;° (s = 25) (21~ %) (19)

i<j i<j i<j i — =]
Equation 19 can be written in matrix form as:
T(X,Z)=C+tr (X"VX) —2tr (X"B(2)Z2). (20)

The iterative solution which guarantees monotone convergence of stress (De Leeuw, 1988) is given
by equation 21, where Z = X*~1:

x® = min7(X, Z) = ViB(x k-1 x (=1 (21)

This algorithm offers flexibility to embed features in any dimension other than d, which enables the
handling of high-dimensional data and also meets privacy constraints. As V' is not of full rank, hence
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the Moore-Penrose pseudoinverse VT is used. The elements of the matrix B(X) and V are defined
in equation 22.

w;;0;; . L
fd;:(X) 0,
i (X)" 1 i(X) # Z#J
bij: O, lfd”(X)ZO, Z;é']
N
—S by, ifi=j
=it (22)
— Wiy, lfl#]
Vi = N
N - X vy, ifi=j
=1, g

A.6 SENSE: PSEUDOCODE
Algorithm 1 SENSE Framework

Require: Anchors X4 € R¥*%  client datasets {D,,, = {z}"} N1} M
geometry Gpigh € {R%, H%}, Goy € {RY, HY}

Ensure: Global embeddings {Y™ € G }M_,

1: Server broadcasts X 4 to all clients

2: for each client C,,, do

3 Compute distances di" = Dg,,, (z]", X 4) for all 27" € D,,

4 Send {d"} ¥ to server

5: end for

6

7

8

9

target dim dy, high/low

ml’

: Server bu11ds observed matrix Dg, using F, F, (optlonally G)
: Complete D via structured matrix completion; extract G

. Compute similarities S% from G using kernel f (see Eqns 6, 7)
: Learn embedding Y in Gy using NE, contrastive, or CO-SNE objective

A.7 SENSE VIA ANCHORED-MDS: PSEUDOCODE
Algorithm 2 SENSE via Anchored-MDS

Require: Anchor embeddings X4 € RE*dn  observed entries Pa(D), target dim dj,, tolerance e,
max iterations 1’
Ensure: Reconstructed embeddings Xy 4 € RV *dn

1: Initialize XJ(\% randomly, set k < 1
2: while £ < T do

T
3: Form X (¢-1) — {XA XJ(\];;D}

Compute Pq (D (X k-1))
Construct T and compute V, B(X (*~1)) respecting

: If stress improvement < ¢, break; else k < k + 1
: end while

4
5:
6: Update X](v,)ax using Eq. 11
7.
8 k

9: return X](\,I)4

A.8 ANCHOR GENERATION

In the proposed method, distribution of the anchor data is critical. These anchors are not private;
they act as public or semi-public landmarks, akin to those in GPS (Shang & Ruml, 2004) or radar
systems (Iannucci et al., 2020). This is standard in localization literature (Di Franco et al., 2017;
Khan et al., 2009), where landmarks aid positioning but are not privacy-sensitive (Koledoye et al.,
2017). Our privacy definition protects only the high-dimensional features of NA points. Anchors are
fixed, visible, and either synthetic, public, or explicitly consented. Not part of any client’s private
data. We do not rely on anchor secrecy but instead limit their quantity to preserve ambiguity.

The anchor is a common information shared between all the clients. The anchor data is generated
randomly or by open data for securing privacy. The proper scheduling of the anchors has a significant
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impact on the overall performance and accuracy of the framework. There are several factors to
consider when developing the anchor scheduling strategy, including:

1) Number of anchors : The number of anchors used in the framework has a direct impact on
the algorithmic performance. Too few anchors may not preserve the structural information while
ensuring privacy, while too many anchors may violate privacy.

Choice of K: We sample anchors such that the total (global + local) anchors satisfy K = dj, — 1,
where d}, is the input dimension. This is not arbitrary; it is theoretically optimal under our privacy
guarantee. By Theorem 3.1, if K < dp, privacy is ensured. Thus, K = d; — 1 is the largest
safe choice that preserves privacy while still yielding strong approximations. There is an inherent
privacy-utility-compute trade-off:

1. Higher K: better fidelity, higher runtime, weaker privacy.
2. Lower K: stronger privacy, lower compute cost, possible fidelity drop.

We empirically validate this trade-off on a synthetic dataset where we took K anchors and N NA
points in a pointwise setting with d;, dimension.

For low-dimensional data (d;, = 100, N = 500):

e K=99 = FS=0.79, time = 16s
e K =90 = FS =0.78, time = 13s

For high-dimensional data (d;, = 700, N = 500):

e K =699 = FS = 0.82, time = 660s
* K =350 = FS =0.78, time = 312s

Thus, for high-dimensional settings where d;, > N, using fewer anchors (e.g., K < dj — 1) yields
substantial computational gains while preserving utility. This is particularly useful in large-scale
deployments such as hospital networks, financial networks, social media platforms and IOT networks.

2) Anchor Geometry: Beyond count, anchor geometry also impacts fidelity. We show that affinely
independent anchors improve reconstruction quality. On the DIGITS dataset (N = 1797, d}, = 64)
(Alpaydin & Kaynak, 1998), we fixed K = 63 and varied the anchor matrix rank r. The non-anchor
set consisted of 1000 points, split across 10 clients (multisite-full). Table 4 validates that higher affine
rank of anchors improves neighborhood fidelity, consistent with our theory.

Table 4: Effect of anchor matrix rank r on FS and DE in the DIGITS dataset (KX = 63). Higher rank improves
fidelity.

T FS DE

10 0524  0.0829
20 0.6242  0.0604
30  0.716  0.0479
40 0.7955 0.0361
50 0.8315 0.0311
60 0.858  0.0259
63 0.861 0.0263

3) Selection criteria : The criteria used to select anchors can also impact the performance of the
system. Selecting anchors from the same probability distribution as of the underlying user data
may be more effective than selecting them at random. For example, the data distribution of patient
similarity networks or social networks will depend on factors including a number of patients/users
or similarity of patients/connection between users. We also empirically study how anchor selection
affects downstream performance. Random anchor sampling performs worse than anchors sampled
from the underlying data distribution. Table 5 confirms that in-distribution anchors preserve structure
better. Setup: 10 clients, 1000 non-anchor points, multisite-full setting.

4) Practical Anchor Sources. In practical deployments, anchors are selected based on domain
knowledge and are not sampled arbitrarily from private data. Eg, Healthcare: Publicly released
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Table 5: Effect of anchor selection on fidelity (FS) and distance error (DE). In-distribution anchors outperform
random anchors across datasets.

Data Anchor-Type K FS DE
Digits In-Distri 60 0.900 0.027
Rand 60 0.345 0.382
MNIST In-Distri 783  0.967 0.006
Rand 783  0.170  0.602
BloodMNIST In-Distri 2351  0.961 0.005
Rand 2351 0.176  0.892

reference scans or patient-consented samples (Johnson et al., 2016). Finance: Standard transaction
patterns or aggregated customer profiles (Awosika et al., 2024b). Genomics: Population-level
reference genomes (e.g., 1000 Genomes, UK Biobank) (Bycroft et al., 2018; Regev et al., 2017).
Synthetic Anchors: Via MMD minimization (Qiao et al., 2024), though limited in coverage and
potentially adversarial. Trusted server-curated anchors are auditable, robust, and independent of
client records, reducing leakage risks like membership inference (Shokri et al., 2017). This design
is further supported by theory on low-rank recovery via anchor distances (Lichtenberg & Tasissa,
2024b), matrix completion in non-orthogonal bases (Tasissa & Lai, 2019), and Gram matrix-based
localization (Mishra et al., 2011).

Table 6: Observed index sets {2 used for SENSE under each client configuration. Here, .A¢ denotes global

anchors, A(Lj) are local anchors accessible only to client j, and X' (m) are NA indices at client m. Binary masks
W and W indicate anchor-to-NA and intra-client NA-NA visibility. Observed distances are used to construct
V', B(X), and select relevant rows of X 4 for embedding computation.

SENSE Setting Observed Index Set 2

Pointwise-Full Each client holds one NA. All anchor-to-NA distances are known; no NA-NA or
local anchor information.
Q={@G,j4) 1€ Ag, j € [K+1, K+ NJ]}U{(4,%) : i € Ag, J €
[K+1,K+ NJ}

Pointwise-Partial Each client holds one NA. Global anchors Ag are shared across all clients. Local
anchors Ag) are only accessible to client j.

Q= Uj'vzl ((AGU-A(Lj)) X {K+j}U{K+j} x (AGLJA(Lj)))

Multisite-Full Each client holds multiple NAs. All anchor-to-NA distances are known. Intra-
client NA-NA distances are observed.
Q={(,j5) : 1€ Ag,j € [K+1,K+ N} U{(4,i) : i € Ag,j €
[K + 1, K + NJJUlUM_, (20 x x0m)

Multisite-Partial Each client holds multiple NAs. Anchor-to-NA distances are partially known
via Wr (global + local anchors). Intra-client NA-NA distances are observed via
Wa.
Q= {(i,j + K): Wrli,j] =1} U{( + K1) : Wr[i,j] = 1} U{(z,]) :
Wali,j] = 1}

A.9 THEORETICAL PROOFS.

Unlike some EDG (Tasissa & Lai, 2019) methods that assume uniform random sampling of pairwise
distances, SENSE uses a structured sampling scheme where anchor-to-NA distances are measured
by design. This enables deterministic recovery guarantees based on geometric conditions (e.g.,
connectivity to affinely independent anchors), avoiding reliance on probabilistic bounds from random
sampling.

Proof A.1 Consider a network in dy,-dimensional Euclidean space R%, comprising anchors A =
{Ay, Ay, ..., Ax} and non-anchor nodes P = { Py, P, ..., Py}, with feature vectors x; € R,
Anchors locations are known, while non-anchors need estimation. Previous work (Khan et al., 2009)
shows that in R, a minimum of (d + 1) anchors with known locations is required to locate N non-
anchor nodes. The utilization of anchors for distributed sensor localization constitutes a thoroughly
investigated domain, underpinned by the following assumptions:
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* (A1) Non-anchor nodes lie inside the convex hull of the anchors, i.e., C(P) C C(A).

* (A2) Each non-anchor node P; has at least one set of neighbor nodes N; C (A U P) with
|N;| = dp, + 1 such that i lies inside C(N;).

* (A3) In the set {i U N;}, every non-anchor node i can obtain the inter-node distances among all
nodes.

However, to accurately recover features in R, at least d, anchors are necessary, even if non-anchors
are placed in any location. Thus, having fewer than dj, anchors, i.e., K < dy, guarantees that exact
feature embeddings cannot be obtained, ensuring privacy.

Proof A.2 Each NA point x; € R computes squared distances to a subset of anchors indexed by
Z;, with r; = |Z;|. This yields r; quadratic constraints of the form:

@) — ai* = d%n’j’ Vi € Z;.
To analyze identifiability, fix a reference anchor ay, € Zg from the global anchor set, and consider
the difference of equations relative to this reference:

lz; — ai||2 — |l — ak||2 = dian - diQij'
Expanding and simplifying yields the linear system:

2ar —ai) ' @; = llaw]? - laill® + di;; — diyy, Vi€ T\ {k}.

Letting A; € R =X denote the coefficient matrix and b; the RHS vector, we write:
AjiL'j = bj.

This is a system of r; — 1 linear equations in dj, unknowns. If r; < dp +1, then rank(A;) <r;—1 <
dp, and the solution set {x; € R : A;x; = b;} forms an affine subspace of dimension at least
dn — 7 + 1. Hence, infinitely many solutions exist that satisfy the same anchor distances, preventing
exact recovery of ;.

To ensure privacy across all clients (both pointwise and multisite), we enforce:
IZj| = Ko + K <dy, Vjel[N),

where K g ) is the number of local anchors accessible to x;. In the multisite case, local anchors
are restricted to the corresponding client, and global anchors are common across all clients. This
structure ensures that even with partial anchor visibility, each client’s feature vector cannot be
uniquely recovered from its observed distances.

Remark 3 Each anchor distance imposes a quadratic constraint on the unknown x; € R, If the
number of constraints r; is less than the ambient dimension d, the system is underdetermined and
has infinitely many solutions. Thus, SENSE preserves privacy by bounding the number of anchor
distances accessible to each client.

Proof A.3 From Theorem 3.1 (Exact Recovery) in (Keller-Ressel & Nargang, 2022), the L-HYDRA
algorithm guarantees recovery up to isometry only if K > dj, and the K anchors are in general
position (not lying on a single hyperbolic hyperplane). If K < dj, then the system of equations
defined by I/ and F is underdetermined: the landmarks do not span H", and multiple embeddings of
the NA points are consistent with the observed distances. Hence, SENSE ensures privacy by choosing
K < dj, preventing unique reconstruction of private client embeddings.

A.10 WHY K < dj AND NOT K < d?

While both k < d and k = d can contribute to privacy, our choice of k£ < d is a deliberate design
decision driven by the well-known mirror ambiguity problem (details in NOTE2) inherent in certain
geometric transformations when k = d.

Why Choosing K < d Anchors is Better for Privacy than K = d: In distance-based reconstruction
problems such as the Distance Geometry Problem (DGP) (Liberti et al., 2014), network localization
(Lichtenberg & Tasissa, 2024b), or hyperbolic embedding recovery (Keller-Ressel & Nargang, 2022),
the number and configuration of anchor points (i.e., known reference points with distance access to

21



Under review as a conference paper at ICLR 2026

an unknown point) directly affect how precisely an adversary can reconstruct the hidden point. From
a privacy perspective, we aim to make the reconstruction problem ambiguous, so that the true point
remains hidden among many plausible candidates. We argue that choosing K = D — 1 (or fewer)
anchors is preferable to choosing K = D, especially when protecting sensitive features such as
location or identity (in case of hospital patients or other critical attributes). This relates to ambiguity,
recoverability, and robustness under both Euclidean and hyperbolic regimes.

Case 1: K = D, Affinely Independent Anchors — Small, Structured Ambiguity: When an
adversary knows distances from an unknown point z € R” to D affinely independent anchors,
the solution set for = becomes tightly constrained: The point lies on a 1D manifold, typically a
circle (in 2D/3D). This is the intersection of D hyperspheres in R, reducing degrees of freedom
to 1 (rotation around the affine hull of the anchors). Example: In 2D: 2 non-collinear anchors =
two symmetric positions across the anchor line. In 3D: 3 non-coplanar anchors = solution lies
on a circle (Liberti et al., 2014) and also in (Liberti et al., 2014; Biswas & Ye, 2004; Fang, 1986).
This is called structured ambiguity: the solution isn’t unique, but the adversary can narrow it down
to a small, reversible set, which weakens privacy. BUT: K = D Affinely Dependent Anchors —
Degeneracy Risk: If the D anchors are affinely dependent (e.g., lie on a hyperplane), the problem
becomes ill-posed. The linear system degenerates, and the solution set can inflate from a curve to a
surface or even higher. Example: In 2D: 2 collinear anchors = infinite feasible points on a circle. In
3D: 3 coplanar anchors = solution lies on a cylinder surface (2D ambiguity) (Liberti et al., 2014).
Thus, while ambiguity helps privacy, this case is fragile and depends on affine dependence, which is
difficult to control/detect in high dimensions.

Case 2: K = D — 1, Affinely Independent Anchors — Robust, Structured Ambiguity: When
the number of anchors is reduced to K = D — 1 and they are affinely independent: The intersection
of D — 1 hyperspheres in R” leaves the unknown point on a 1D manifold (if K = D — 1) or a 2D
manifold (if K = D — 2). This increases ambiguity while preserving structure and analyzability.
Example: In 3D: 2 non-collinear anchors = solution lies on a sphere surface (2D ambiguity). In 4D:
3 anchors = solution lies on a 2D manifold in R* (Liberti et al., 2014). This ambiguity is independent
of affine structure: even with poorly placed anchors, ambiguity remains large enough to preserve
privacy.

Case 3: Moreover, L-HYDRA Shows, K > d Enables Exact Recovery — Privacy Violation: In
hyperbolic space, the L-HYDRA framework (Keller-Ressel & Nargang, 2022) (Theorem 3.1) shows
that if [ > d well-placed landmarks are known, exact recovery up to isometry is possible. While
useful for learning, this completely breaks privacy at K = d. Thus, in the SENSE framework, we
limit the number of anchor constraints to prevent identifiability, ensure privacy, and make it more
generic and applicable across all cases.

Why K = D — 1 is the safe design choice for privacy? We prefer using K = D — 1 anchors because:

1. More Ambiguity = More Privacy: Reducing constraints expands the feasible set (e.g., from a 1D
curve to a 2D surface). This makes inference harder for an adversary.

2. Independent of Affine Structure: Unlike K = D, where affine dependence can create degeneracy,
K = D — 1is robust regardless of anchor configuration.

3. No Added Utility Beyond Isometry: Recovering up to isometry is sufficient for many applica-
tions (e.g., visualization, clustering). Adding more anchors increases identifiability risk without
improving downstream performance anymore.

Thus, choosing K < d affinely independent anchors is a principled design choice for privacy-
preserving recovery. It: maximizes geometric ambiguity without losing structure, avoids degeneracy
from affine dependence, and preserves robustness in both Euclidean and hyperbolic settings. In
contrast, using ' = D leads to tight constraints, small ambiguity, and easy inference, enabling
potential attacks. Our design choice in SENSE and related frameworks deliberately limits anchor
access to protect against such risks.

Notel: In decentralized or federated settings, adversaries aiming to reconstruct private data using
techniques such as model inversion, membership inference, attribute inference, gradient leakage, or
reconstruction attacks, gain a significant advantage when the solution space is small and structured
(Fredrikson et al., 2015; Shokri et al., 2017; Fredrikson et al., 2014; Zhu et al., 2019; Geiping et al.,
2020; Nasr et al., 2019). A constrained set of possible solutions (e.g., a one-dimensional curve or a
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mirrored pair of points) reduces uncertainty, making it easier to link gradients or model updates back
to the original data. Conversely, a larger and more ambiguous solution space (e.g., a high-dimensional
manifold) introduces uncertainty and increases the difficulty of pinpointing a unique inverse mapping.
In such cases, adversarial inference becomes more challenging, as multiple plausible candidates
exist. Therefore, introducing geometric ambiguity—for instance, by designing the solution space
such that K < d—can serve as an effective defense mechanism in privacy-sensitive scenarios. Also,
non-uniqueness alone is not sufficient: we must consider how large, diverse, and unstructured the
solution set is to ensure meaningful privacy.

Note2: The mirror ambiguity problem arises in localization when distances to a limited set of
anchors admit multiple, equally valid solutions that are reflections of each other (Wei et al., 2015;
Bose et al., 2017; Hou, 2022; Gerok et al., 2009; Betti et al., 1993; Teunissen, 2017; Saxe, 1979).
This occurs especially when the number of anchors & equals the dimensionality d. For instance, in
2D with two anchors, the target point lies at the intersection of two circles, yielding two symmetric
solutions across the anchor line; in 3D with three anchors, the solution lies on a mirrored circle. In
wireless networks, this is referred to as flip ambiguity, where measurement noise exacerbates the
uncertainty (Wei et al., 2015). Detecting such ambiguity is equivalent to finding a plane intersecting all
error spheres of the anchors. The root cause is geometric: distance measurements lack directionality,
and k& = d anchors do not sufficiently constrain the solution, leading to mirror symmetry. Practical
implications include localization errors and navigation failures in robotics and sensor networks. In
graph-theoretic terms (Saxe, 1979), the problem corresponds to embedding a weighted graph (nodes
as points, edges as distances) into k-space. When anchors equal the embedding dimension, the
embedding is ambiguous up to reflections, producing multiple valid placements across a plane or
hyperplane defined by the anchors.

A.11 METRIC USED.

* Cosine Similarity (CosSim): Measures angular similarity between the original NA feature matrix
X{a € RYVXdn and the reconstructed version Xna € RY*4 from SENSE-anchored MDS. Cosine
similarity is computed as:

COSSim(X' XNA) = i Z <(XI/\TA)( )7 XIE])>
TRCBEA

N 4
i=1
High values (close to 1) indicate strong alignment between original and reconstructed embeddings.
* Distance Error (DE): and F-score (FS): defined in Section 4.1.
* Pearson Correlation (p): Quantifies linear correlation between the original and reconstructed
NA-NA distance matrices: R
p = Pearson(G,;,G;j), Vi<j

where G and G denote the ground-truth and reconstructed distance matrices respectively. Values
close to 1 indicate that the relative distance structure is preserved.
* Frobenius Norm Error (Xj,,): Measures reconstruction error in the embedding space:

[ Xna — X{ullF
[ XXall 7

A value of 0 implies perfect reconstruction; higher values suggest increasing deviation.

X frob =

23



Under review as a conference paper at ICLR 2026

A.12 DATASET STATISTICS.

Table 7: Dataset statistics and learning setups grouped by embedding geometry. For hyperbolic, the stats are for
Pointwise setting.

Space Dataset #Classes #Datapoints #Clients (M) Dimension
MNIST 10 25000 10 784
Fashion-MNIST 10 25000 10 784
CIFAR-10 10 25000 5/10 1024
DermaMNIST 7 10015 10 784
PneumoniaMNIST 2 5856 10 784
Euclidean RetinaMNIST 5 1600 10 784
BreastMNIST 2 780 10 784
BloodMNIST 8 17092 10 784
OrganCMNIST 11 23583 10 784
OrganSMNIST 11 25211 10 784
German-Credit 2 1000 10 20
Airport 4 3185 3185 11
Hyperbolic Amazon - 5000 5000 128
DBLP - 5000 5000 128

A.13 SYSTEM SPECIFICATIONS
All experiments are conducted on a server equipped with two NVIDIA RTX A6000 GPUs (48 GB
memory each) and an Intel Xeon Platinum 8360Y CPU with 1 TB RAM.

A.14 VISUALIZATION RESULTS

CNE Spectrum Projection for CIFAR-10
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Figure 4: Pointwise setting: CIFAR-10 (1000 non-anchor points, 783 anchors)
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CNE Spectrum Projection for FashionMNIST
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Figure 5: Pointwise setting: FashionMNIST (1000 non-anchor points, 783 anchors)
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Figure 6: Pointwise setting: MNIST (1000 non-anchor points, 783 anchors)
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A.15 RESULTS.
Table 8: FS and DE across IID, and non-IID balanced and unbalanced splits.

Data 11D Bal Unbal
FS DE FS DE FS DE

PNEU. 0.92 0.0052 0.87 0.0066 0.91 0.0055
BLoop 0.90 0.0052 0.89 0.0051 0.90 0.0052
BREAST 0.95 0.0092 0.92 0.0113 0.91 0.0124
DErRMA  0.96 0.0029 0.93 0.0031 0.96 0.0029
RETINA  0.96 0.0221 0.94 0.0272 0.96 0.0214
ORGANC 0.80 0.0092 0.79 0.0089 0.79 0.0092
ORGANS 0.81 0.0089 0.80 0.0085 0.81 0.0093
GERMAN 0.75 0.0565 0.73 0.0621 0.72 0.0629

Table 9: FS and DE under POINTWISE, IID, and NON-IID settings, comparing MULTISITE-FULL and
MULTISITE-PARTIAL.

Dataset Pointwise IID-Full IID-Partial Non-IID-Full Non-IID-Partial
FS DE FS DE FS DE FS DE FS DE
MNIST 0.9557 0.0057 0.8034 0.0097 0.9266 0.0438 0.7864 0.0101  0.9275 0.0434
FashionMNIST ~ 0.9560 0.0058 0.7586  0.0070  0.8726  0.0153  0.7534  0.0070  0.8754  0.0156
CIFAR-10 0.9562  0.0057 09303 0.0049 0.9277 0.0044 0.9308 0.0049 09380 0.0044

Table 10: Multisite setting comparison Non-iid unbalanced: Full vs Partial: Evaluation of different methods
(Vanilla and SENSE variants) across different metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE
— Multisite-Partial Setting —

Trust.  0.9259 0.9274 0.7447 0.7476 0.8175 0.8174 0.8334 0.8336 0.8322 0.8321 0.8232 0.8244
Cont. 0.9107 0.9391 0.8756 0.8804 0.9369 0.9381 0.9554 0.9552 0.9552 0.9549 0.9565 0.9561
Stead.  0.8099 0.8165 0.6904 0.6938 0.7363 0.7349 0.7609 0.7654 0.7619 0.7580 0.7415 0.7487
Cohes. 0.4707 0.4806 0.3725 0.3752 0.4927 0.4857 0.4708 0.4630 04716 0.4778 0.4766 0.4793

— Multisite-Full Setting —

Trust.  0.9259 0.9270 0.7447 0.7482 0.8175 0.8168 0.8334 0.8336 0.8322 0.8329 0.8232 0.8247
CIFAR-10 Cont. 09107 0.9364 0.8756 0.8808 0.9369 0.9366 0.9554 0.9553 0.9552 0.9550 0.9565 0.9561
Stead.  0.8099 0.8229 0.6904 0.6875 0.7363 0.7357 0.7609 0.7624 0.7619 0.7580 0.7415 0.7464

Cohes.  0.4707 0.4673 0.3725 0.3674 0.4927 0.4831 04708 04662 04716 04690 0.4766 0.4811
— Pointwise-Full Setting —

Trust.  0.9683 0.9659 0.9435 0.9419 0.8488 0.8531 0.9112 0.9123 0.9082 0.9079 0.9021 0.9035
Cont. 0.9465 0.9448 0.9379 0.9333 0.9533 0.9527 0.9446 0.9442 0.9458 0.9437 0.9445 0.9442
Stead.  0.8061 0.8081 0.7793 0.7825 0.7111 0.7165 0.7992 0.7878 0.7887 0.8005 0.7808 0.7920

CIFAR-IO0  ohes. 07482 07672 07415 07336 07431 07365 07485 07451 07513 07473 07435 07350

CIFAR-10

A.16 DISCUSSION.
SENSE in Evolving Distributed Environments. In dynamic settings, new data points arrive
continuously e.g., a hospital admitting a patient, a bank processing a transaction, or a platform
onboarding a user. Recomputing the full embedding for each arrival is inefficient and may disrupt
global structure. Existing decentralized NE methods (Li et al., 2024; Qiao et al., 2024; Saha
et al., 2017; Saha et al.) assume static datasets and lack support for incremental updates, making
them unsuitable for streaming environments. SENSE, by contrast, is modular and compatible with
out-of-sample embedding methods (Herath et al., 2021; Bengio et al., 2003; Oster et al., 2021).
Once the global embedding is constructed via anchor-based completion and NE optimization, it
defines a geometry-aware coordinate space that supports new points without full recomputation.
Let Xya = [x1,...,XN] € RN *dn pe the reconstructed NA embeddings. When a new point y
arrives, we select K existing points as pseudo-anchors A = {ay,...,ax} C Xy a4, with coordinates
X4 =[p1,..-,Pk]" € REX4 Given dissimilarities {&;,,} X, to these anchors, we compute the
embedding y by solving:
K
5(3) =D (Ipi =32 = d1y)° - (23)

i=1
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Table 11: IID setting: Evaluation of different dimensionality reduction methods (Vanilla and SENSE variants)
across various metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

Trust. 09718 0.9700 0.7687 0.7700 0.8573 0.8590 0.9016 0.9026 0.8973 0.8967 0.8837 0.8795
Cont. 0.9395 09442 09145 09143 09616 09598 09592 0.9587 0.9591 0.9582 0.9606 0.9598
Stead.  0.7840 0.7844 0.6203 0.6272 0.7158 0.7228 0.7554 0.7516 0.7439 0.7424 0.7369  0.7263
Cohes.  0.7031  0.6963 0.6081 0.6272 0.6902 0.6898 0.7013 0.7112 0.6981 0.6970 0.7006 0.7050

Trust. 09628 09611 0.8643 0.8633 0.8515 0.8527 0.8847 0.8820 0.8793 0.8820 0.8729 0.8736
Cont. 0.9312 0.9280 0.9416 0.9391 09444 09440 009555 0.9558 0.9556 0.9558 0.9553 0.9556
Stead.  0.7515 0.7436  0.6899 0.6764 0.6967 0.6871 0.7259 0.7211 0.7228 0.7211 0.7164 0.7133

PneumoniaMNIST

BloodMNIST Cohes. 07085 07106 07233 07261 07416 07469 07435 07339 07329 07339 07453 07462
Trust. 09382 09370 07599 07589 0.8835 0.8774 0.8938 08924 0.8939 0.8920 0.8934 0.8924
Cont. 09452 09412 08147 08174 09533 09526 00450 00446 09450 09445 09450 09444
BreastMNIST Stead. 08522 0.8514 05800 0.5697 08056 0.8099 0.8400 0.8400 0.8287 0.8308 0.8317 0.8353
‘ Cohes. 0.6028 0.5987 04226 04226 05639 05611 05566 0.5605 05637 05670 0.5532 0.5606
Trust. 09758 09762 07513 07480 08726 08726 09129 09118 09125 09126 09017 09023
Cont. 09592 09583 09134 09120 09736 09720 09709 09712 09707 09706 09716 0.9714
DermaMNIST Stead. 07995 07976 05930 05945 07332 07291 07726 07739 07694 07638 07580 0.7577
Cohes. 07294 07107 05590 0.5618 07001 07184 07339 07334 07390 07373 07308 0.7297
Trust. 09797 09758 0.8777 08643 09144 09038 09480 09335 09469 09331 0.9450 09313
Cont. 09669 09567 09280 09232 09738 09730 09718 09711 09704 09700 09678 09678
RetinaMNIST Stead.  0.8483 0.8479 06120 0.5941 07618 07434 08183 08140 08117 08050 0.8105 0.8086
i Cohes. 07051 0.6963 05835 05515 06980 0.6995 07123 07074 07046 07112 06831 0.7135
Trust. 09608 09482 0.8879 0.8815 0.8845 0.8858 09149 09028 09160 09039 09024 0.8890
Cont. 09238 09413 09231 09242 09696 09682 09731 09683 09730 09679 0.9738 0.9688
OreanCMNisT  Stead 06948 08027 07575 07678 07994 08058 08690 08677 08788 08673 08624 08593
g Cohes. 04762 04849 03335 03145 05695 05153 04751 04760 05268 0.5001 0.5545 0.5166
Trust.  0.9565 09421 0.8707 0.8588 0.8766 0.8890 09130 09026 09128 09034 08991 08911
Cont. 09219 09366 09248 09211 09679 09717 09741 09684 09732 09672 0.9737 0.9679
Stead.  0.6793 07753 07305 07513 07786 07965 08609 0.8691 08649 0.8745 08517 0.8601

OrganSMNIST

Cohes.  0.4856 0.4702 0.3327 0.3316 0.5575 0.5094 0.4838 0.4525 0.5312 0.4839 0.5564 0.4783

Trust. 09771 09553 0.9505 0.9330 0.8559 0.8551 0.9380 0.9224 0.9359 0.9140 0.9325 0.9192
Cont. 0.9590 0.9434 09587 0.9449 09482 09294 009573 0.9448 0.9573 0.9429 0.9564 0.9432
Stead.  0.8603 0.8251 0.8342 0.7907 0.7500 0.7228 0.8414 0.7954 0.8416 0.7883 0.8401 0.7944
Cohes.  0.6810 0.6895 0.6542 0.6413 0.6712 0.6640 0.6465 0.6651 0.6577 0.6675 0.6624 0.6550

german-credit

Table 12: Non-IID (balanced) setting: Evaluation of different methods (Vanilla and SENSE variants) across
different metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

Trust. 09566 09483 0.8806 0.8658 0.8909 0.8937 0.9430 0.9393 0.9372 0.9343 0.9226 0.9168
Cont. 0.9228 0.9278 0.9031 09114 09776 0.9732 09683 0.9678 0.9690 0.9686 0.9704 0.9695
Stead.  0.6952 0.7165 0.6007 0.6211 0.7146 0.7244 0.7778 0.7737 0.7694 0.7692 0.7622 0.7579

PreumoniaMNIST o 06377 06815 06205 0.6070 0.6650 0.6771 07259 07162 07240 07145 07172 0.7336
Trust.  0.9304 09292 0.8902 0.8796 0.8640 08633 09003 0.8972 08959 08944 08862 0.8856

Cont. 09020 09029 09385 09300 09510 09492 09618 09611 09620 09614 09622 09614

BloodMNIST Stead. 07060 07017 06815 06927 06812 06927 07531 07505 07466 07442 07536 0.7395
Cohes.  0.6781 0.6761 07210 07096 07620 07540 07441 07603 07472 07335 07561 07603

Trust.  0.9643 09657 08476 08562 09188 09241 00403 09422 09385 09418 09383 09415

Cont. 09632 09658 08567 0.8408 09587 09671 09604 09594 09598 09590 09599 0.9591

BreastMNIST Stead.  0.8331 08370 05159 05081 07585 07913 08712 08742 08684 08616 08691 08675
Cohes. 0.6174 06018 03677 03741 05187 05165 05254 05667 05265 05413 05200 0.5485

Trust. 09545 09467 0.8253 0.8048 08963 08961 09335 09351 09292 09327 09147 09167

Cont.  0.9403 09284 08977 08895 09825 09815 00742 09734 09743 09733 09761 09756

DermaMNIST Stead. 07304 07148 05608 05428 07327 07295 07901 07909 07834 07841 07751 0.7743
Cohes.  0.6493 0.6484 05159 05152 06867 06726 06993 06976 06976 07128 06902 07012

Trust. 09749 09743 0.8933 0.8829 09228 09227 09522 09523 09492 09519 09497 0.9495

Cont. 09627 09616 09289 09152 09752 09729 09720 09713 09712 09700 09670 0.9675

RetinaMNIST Stead.  0.8447 08380 06155 06174 0753 07559 08224 08172 08134 08189 08123 0.8046
Cohes. 07140 07283 05785 05648 07189 06836 07292 07005 07092 06938 07039 0.6849

Trust.  0.9489 09271 0.8975 0.8888 09005 0.8984 09235 09132 09232 09126 09140 0.8994

Cont. 09210 09082 09232 09185 09737 09719 09756 09715 09750 09710 09760 09717

OrancyNisT  Stead. 06365 07142 07462 07290 08038 07909 08611 08724 08660 08745 08621 08640
g Cohes. 04862 04913 03249 03191 05088 05154 05338 04980 05266 04974 04908 0.5282
Trust.  0.9383 09093 0.8954 08861 09054 09071 09269 09190 09291 09194 09172 09092

Cont. 09164 08881 09168 09255 09774 09758 0979 09746 09786 09741 09788 09741

OrgansMNIST  Sead 03896 06154 06315 06953 0.7784 07963 08591 0868 08560 08634 08411 08523

Cohes.  0.5109 0.5108 0.3441 0.3665 0.5642 0.5278 0.5079 0.4878 0.5461 0.5021 0.5487 0.5001

Trust. 09752 09575 09511 0.9301 0.8552 0.8508 0.9403 0.9211 0.9380 0.9172 0.9350 0.9176
Cont. 0.9581 09418 0.9606 0.9427 0.9481 0.9240 0.9576 0.9470 0.9575 0.9463 0.9571 0.9460
Stead.  0.8567 0.8267 0.8350 0.7850 0.7398 0.7023 0.8484 0.8063 0.8475 0.8016 0.8405 0.8020
Cohes.  0.6795  0.6837 0.6488 0.6509 0.6870 0.6828 0.6620 0.6834 0.6557 0.6676 0.6564 0.6653

german-credit

27



Under review as a conference paper at ICLR 2026

Here, ¢;,, is the dissimilarity in the original space, and ||p; — ¥y /|| is the distance in the embedding
space. Only y is optimized, anchors remain fixed. Since K < dp, exact recovery is impossible
(Theorems 3.1, 3.2), ensuring privacy. This lightweight optimization requires no raw data and
supports real-time integration, making SENSE well-suited for scalable, privacy-constrained systems.

Scalability and Computational Complexity. In addition to the 14 standard DR datasets (Sec. 4.1),
we evaluate SENSE on two large-scale benchmarks: Tiny ImageNet (Le & Yang, 2015) (~90k NAs,
with 512D features extracted using an ImageNet-pretrained ResNet-34 (He et al., 2016)) and Street
View House Numbers (Netzer et al., 2011) (SVHN, ~80k NAs, d;, = 512). These experiments
are conducted for Multisite setting, where we distributed the NA samples to 10 clients in non-IID
unbalanced scenarios. Results in Table 13 demonstrate that SENSE maintains strong performance
even at this scale, with runtimes of only ~12-14 seconds per iteration.

Table 13: SENSE performance compared to DR baselines on Tiny ImageNet and SVHN. Runtime is averaged
per iteration.

Data Metric t-SNE UMAP PHATE CNE(0) CNE(0.5) CNE(1) Runtime
VAN SENSE VAN SENSE VAN SENSE VAN SENSE VAN  SENSE VAN SENSE

Trust 09245 0.9341 0.7748 0.7330 0.7480 0.7392 0.7682 0.7402  0.7960  0.7637 0.7717  0.7467 13.72s
Cont 0.9107 0.9064 0.9334 0.9140 09359 0.9029 0.9396 0.9268  0.9350  0.9244 0.9411 0.9294
Stead  0.8099 0.8229 0.5703 0.5755 0.5550 0.6248 0.5848 0.6205  0.5986  0.6298 0.5807 0.6135
Cohes 0.7680 0.7548 0.8305 0.6685 0.8340 0.7439 0.8344 0.7223  0.8296  0.7160 0.8403  0.7322

Trust 09822 0.9801 0.8973 0.8914 0.8825 0.8819 0.8910 0.8900  0.9033  0.9068 0.8939 0.8964  13.50s
Cont 0.9619 0.9630 0.9749 0.9701 09759 0.9665 0.9778 0.9745  0.9787  0.9648 0.9787 0.9646
Stead  0.7234 0.7200 0.6545 0.6664 0.6426  0.6739 0.6540 0.6968  0.6705  0.7027 0.6556 0.7134
Cohes 0.8362 0.8349 0.8430 0.7160 0.8544 0.7834 0.8503 0.7935  0.8493  0.6960 0.8576 0.7535

TinyImageNet

SVHN

We also provide detailed runtime and complexity analysis. With N NA points and K anchors,
Anchored-MDS in Sec 2 has complexity O(K?2dy, + K Ndy,), efficient as K < N and K < dj,
(for privacy). We use the fastest variants of different global low-dimensional embedding methods in
our framework, as this is the second stage in the pipeline. Notation: here k denotes the number of
neighbors considered per point (in the attractive force calculation), dj, is the embedding dimension,
n are the number of data points (samples) and m are the number of negative (repulsive) samples
per positive interaction. 1) Fast NE methods: Van-t-SNE takes O(n2d},) (van der Maaten & Hinton,
2008), Barnes-Hut t-SNE (BH-t-SNE) and FIt-SNE (FFT-based interpolation) takes O(kn log n - 29#)
and O(kn - 29n) respectively. 2) The contrastive neighbor embedding: These methods only sample
nm repulsive interactions per epoch (instead of all pairs) with complaexity O(kmnd},), which scales
linearly with embedding dimension dj. This also includes NC-t-SNE/UMAP with contrastive loss
runs in O(kmdp,) with m < n repulsive samples per epoch (Damrich et al., 2023).

We also provide empirical results on the different stages of the pipeline. Table 14 reports empirical
results for individual stages of the SENSE pipeline.

Table 14: Runtime for SENSE pipeline stages: stagel = incomplete matrix, stage2 = matrix completion.

Data NA K Stagel(s) Stage2(s) Total(s) FS DE
BloodMNIST 1k 100 0.33 2.22 2.55 0.86 0.02
1k 0.34 8.11 8.45 0.94 0.01

S5k 100 0.46 39.33 39.79 0.81 0.00

2k 50 0.59 54.83 55.42 0.92 0.01

Curated Privacy Example. To illustrate the privacy guarantees of SENSE, we constructed a
curated dataset containing sensitive attributes (e.g., age) and categorical features (e.g., gender,
occupation). The setup involves five clients (C1-C}5), each with five attributes (d = 5), and four
reference anchors (K = 4 < d). Embeddings are computed exclusively from client-anchor distances,
without direct access to raw features. As shown in Table 15, the resulting embeddings preserve
structural relationships while preventing recovery of private attributes, thereby empirically validating
the privacy-preserving nature of SENSE.

Why SENSE Avoids Noise-Based Privacy. Noise injection is a common privacy mechanism,
but SENSE is built on a different principle. The goal is not to obscure the distance map, but to

28



Under review as a conference paper at ICLR 2026

Table 15: Original private attributes vs. SENSE embeddings. Sensitive details are not exposed by the embeddings.

Original Data T T2 T3 T4 Ts5
Ch 1500 25 3 1 10
Cy 2000 35 2 0 15
Cs 1745 28 2 0 18
Cy 1620 32 1 1 13
Cs 1200 45 3 1 12
SENSE Emb xr1 T2 T3 T4 5
Ch 80.630 26.896 13.795 96.939 -39.321
Cy -189.837 -28.557 -61.648 -272.603 141.184
Cs -58.064 2.598 -26.164  -79.338 49.985
Cy -5.492 -2.856 6.935 12.915 -12.891
Cs 210.016 14.741 75.140  328.458 -172.165

preserve inter-client similarity while ensuring that high-dimensional raw features remain private.
In this setting, noise-based privacy is problematic for two reasons. First, robustness to injected
noise is inherently unreliable in decentralized DR, where incomplete similarity information amplifies
perturbations. Second, our experiments show that even mild noise sharply degrades embedding
quality, making noise-based approaches unstable and costly. We evaluated two scenarios: (i) noise
added to client—anchor distance vectors, and (ii) Gaussian perturbations applied directly to raw
features.

Empirical Evaluation 1: Noise Added to Anchor-NA Distance Vectors. We injected noise into the
F block of Eq. 8, corresponding to client—anchor distances, under the Pointwise setting (each client
has a single NA). A random fraction of clients was selected, and noise was added to their anchor
distance vectors. Results on Iris and Seeds (Table 16) show a clear trade-off: as the fraction of noisy
clients increases, F-score (FS) drops sharply while Distance Error (DE) rises, confirming the fragility
of noise-based privacy in SENSE.

Table 16: Effect of noise injection into F' matrix: FS decreases and DE increases as noise fraction increases.

Data  Metric 0% 5% 10% 20% 50%

FS 0.8659 0.8403 0.8104 0.7000 0.6167
DE 0.0425 0.0735 0.0929 0.1528 0.1828

FS 09745 09390 0.9038 0.7902 0.6589
DE 0.0102 0.1251 0.1760 0.2471  0.3702

Iris

Seeds

Empirical Evaluation 2: Noise to Raw Features. We also injected Gaussian noise directly into
raw features (e.g., pixel-level perturbations on MNIST) using the Multisite setting of SENSE with
K = dp, 10 clients, and 100 NAs. In the noise-based variant (NS), element-wise zero-mean Gaussian
noise with varying standard deviations (scaled to the data range) was applied. As shown in Table 17,
even mild perturbations lead to sharp drops in FS and significant increases in DE, confirming that
noise-based privacy comes at a substantial cost to utility compared with SENSE without noise.
In real-world domains such as healthcare or finance, where precision is critical, this trade-off is
unacceptable.

Table 17: Performance of SENSE versus noise-based variants (NS) with Gaussian perturbation of raw features.

Method DE FS

SENSE  0.006023 0.974955
NS1 0.074474  0.946197
NS2 0.268156  0.887382
NS3 0.535183 0.801178
NS4 0.843552  0.691761
NS5 1.175783  0.573909
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Across both evaluations, noise-based privacy consistently degraded utility without providing stronger
guarantees. These findings highlight why SENSE achieves privacy not through artificial corruption,
but through geometric underdetermination: the structure needed for downstream tasks is preserved,
while raw features remain unrecoverable. In domains such as healthcare and finance, where precision
is critical, this distinction makes noise-based privacy an impractical choice.
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