
Evaluating Adversarial Defense in the Era of Large
Language Models

Joachim Studnia⋄∗, Simiao Zuo†, Xiaodong Liu†, Qiang Lou†, Jian Jiao†, Denis Charles†
⋄Stanford University †Microsoft

jstudnia@stanford.edu
{simiaozuo,xiaodl,qilou,Jian.Jiao,cdx}@microsoft.com

Abstract

Large language models (LLMs) have demonstrated superior performance in many
natural language processing tasks. Existing works have shown that LLMs are
not robust to adversarial attacks, questioning the applicability of these models in
scenarios with safety concerns. However, one key aspect that has been overlooked
is evaluating and developing defense mechanisms against adversarial attacks. In
this work, we systematically study how LLMs react to different adversarial defense
strategies. We also propose defenses tailored for LLMs that can significantly
improve their robustness: First, we develop prompting methods to alert the LLM
about potential adversarial contents; Second, we use neural models such as the
LLM itself for typo correction; Third, we propose an effective fine-tuning scheme to
improve robustness against corrupted inputs. Extensive experiments are conducted
to evaluate the adversarial defense approaches. We show that by using the proposed
defenses, robustness of LLMs can increase by up to 20%.

1 Introduction

LLMs are double-edged swords. Despite the successful applications, these models are not robust.
Figure 1 demonstrates behavior of ChatGPT under input typos. In the example, ChatGPT is asked
whether the word “pretty” is of positive sentiment. Without any typos, the LLM correctly answers
the question. However, when there is a typo in the input, i.e., “prettye” instead of “pretty”, ChatGPT
draws an opposite conclusion. The lack of robustness issue exists beyond typos in input data. For
example, prompts are also subject to attack: we can inject backdoor triggers (Xu et al., 2022) or
adversarial demonstrations (Wang et al., 2023b) into prompts to trick LLMs in drawing wrong
conclusions. These findings raise a serious safety concern: can LLMs be reliably used?

We consider plausible scenarios in real-world applications: input typos. In practice, user inputs are
often noisy and contain typos, which is undesirable for applications such as dense retrieval and search.
For example, Zhuang and Zuccon (2021, 2022) show that retrieval recall can decrease by more than
20% when dealing with input typos. The study of robustness plays a crucial role in mitigating such a
performance drop. In this work, we simulate input typos via character-level adversarial attacks (see
Figure 1 as an example), and we term the attacks adversarial typos. The adversarial typos represent
the worst case input typos, since they are intentionally created to fool the LLMs. We remark that there
are other types of adversarial inputs, such as distracting samples (Wang et al., 2021) and automatically
computed adversarial samples (Goodfellow et al., 2015). However, most of these adversarial attacks
are not human interpretable and implausible in actual applications.

In this work, we focus on evaluating and developing defense mechanisms against adversarial typos,
which is a key aspect overlooked by existing works on benchmarking robustness of LLMs (Chen
et al., 2023; Wang et al., 2023a). In practice, somehow surprisingly, we observe that many existing

∗Work was done during an internship at Microsoft.

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.

Figure 1: Behavior of ChatGPT under user input typos.

adversarial defense methods do not work well for LLMs (e.g., the rule-based defenses in Table 3 in
the experiments). Therefore, adversarial defenses that are tailored for LLMs are needed.

Adversarial defense methods fall into two categories: black-box defenses and white-box defenses.
The former describes the scenario where we do not have access to the model weights (e.g, GPT-4);
while in the latter case, we have full access to the model (e.g., Llama).

For black-box defenses, we treat defense models as pre-processors: given a potentially corrupted
input, we first run the pre-processor, and then feed the processed results to the LLM. We evaluate and
develop several categories of methods: 1) Rule-based defense methods employ clustering algorithms
to learn mapping rules, which are used to convert potential typos (Jones et al., 2020). For example, if
the word “hallo” is in the cluster centered around the word “hello”, then all the “hallo” in the inputs
will be converted to “hello”. 2) Prefix defense is a simple strategy where we modify prompts to alert
LLMs about potentially adversarial contents. 3) Neural network defense methods are models trained
to denoise typos. For example, Pruthi et al. (2019) train a sequence-to-sequence model to spell-check
inputs. 4) Self defense methods are similar to the neural network defense, except that the same LLM
is used for both typo correction and inference.

We also evaluate white-box defense approaches. With the development of LLMs, more models are
becoming fully available (e.g., Llama). This paves the way for designing stronger defense techniques
by utilizing the model weights. Specifically, we fine-tune LLMs on both clean data and corrupted
(adversarial) data. The intuition is that once exposed to adversarial typos, models should yield better
robustness against them.

We evaluate effectiveness of defense approaches on two families of LLMs: decoder-only models
such as Llama, and encoder-decoder models such as Flan (Chung et al., 2022). There has long been
debates about the suitable structures of Transformer-based models (Vaswani et al., 2017), even before
the era of LLMs. For example, the discussion about BERT vs. GPT vs. T5 continued until the
advancement of ChatGPT. In this work, we systematically investigate how different LLMs behave
when facing adversarial typos and defense mechanisms.

In summary, in this work we consider input typos, a practical but under-explored scenario that hinders
performance of LLMs. We systematically study how LLMs react to different defense approaches
against adversarial typos. We summarize our contributions and findings as follows:

⋄ We can adopt the LLM itself or train another smaller model to denoise the typos. This
black-box defense approach improves robustness of all LLMs.

⋄ We can modify the prompt to alert the LLM in paying attention to potential adversarial
contents. Such a black-box defense strategy improves robustness when the LLM is adept in
following human instructions, e.g., Llama2-Chat.

⋄ For white-box defenses, we can fine-tune the LLM on both clean and corrupted data. This
simple strategy is extremely effective in improving model robustness.

2 Setups, Attacks, and Defenses

2.1 Datasets, Models, and Inference

Datasets. We adopt six datasets from the GLUE benchmark (Wang et al., 2019): RTE, MRPC, SST-2,
QNLI, QQP and MNLI. Details are deferred to Appendix B. For each input sample, we first construct
corresponding adversarial samples to simulate input typos. Then, we evaluate LLMs’ performance
on both the clean data and the corrupted data.

2

Models. We adopt two families of LLMs covering both decoder-only and encoder-decoder architec-
tures: Llama2-Chat (Touvron et al., 2023b) and Flan-T5 (Chung et al., 2022).

Inference. To evaluate black-box defense methods, we inference LLMs in a zero-shot setting. We
list the prompts we adopted to inference Flan-T5 and Llama2-Chat in Appendix D. In the prompts,
we instruct the models to choose from a set of possible answers. For example, we instruct the model
to choose from [positive, negative] for sentiment classification tasks such as SST-2.

2.2 Adversarial Typos

We focus on input typos, which is a practical scenario that hinders model performance in real-world
applications. In more details, we simulate worst case input typos using character-level adversarial
attacks. Because our goal is to simulate plausible inputs in actual applications, the corrupted samples
should be human interpretable. To facilitate this, for each input sentence, we modify at most 4 words;
where in each word, we modify at most one character. The character-level modification can be
insertion, deletion and substitution.

Algorithm 1: Simulate input typos via character-level adversarial attack.
Input: Input sample (x, y), where x is the input with L words x = (x1, · · · , xL) and y is the

label; Maximum number of words to change N change; Maximum number of tries N try.
for t = 1, · · · , N change do

Randomly select a word xn from the sentence x that has not been changed yet;
for i = 1, · · · , N try do

Change xn to xi
n by randomly perturbing one character in xn;

Replace word xn in sentence x by xi
n, call the corrupted sentence xi;

Record p(y|xi), the probability of the ground-truth label y;

Update the sentence x← xi, where i is selected that yields the lowest probability p(y|xi);
Output: The corrupted sentence.

Algorithm 1 summarizes the attack algorithm we employed. Note that we access the probability
of the ground-truth label as a metric to select attacks. For example, in SST-2, the labels are either
positive or negative. Then for a sentence x, we retrieve two logits (or logprobs) corresponding to the
LLM generating positive and negative, respectively; after which the logits are normalized to obtain
p(positive|x) and p(negative|x). The above procedure is straightforward for open-source LLMs;
and for closed-source LLMs such as GPT-4, publicly available APIs are also provided to access the
logprob of the most likely tokens.

Table 1 demonstrates an example of constructing input typos. Initially, the LLM outputs the correct
answer with very high confidence. However, after three minor modifications to the text, the LLM
makes a wrong prediction with high confidence.

Table 1: An example of constructing a corrupted sample for Flan-T5-3B. Action is the action taken in
the previous step; Confidence is the probability of the ground-truth label (see Algorithm 1).

Input Action Prediction Label Confidence
that’s pure pr hype — negative negative 1.0
that’s pure pr hype deletion negative negative 1.0
that’cs pure pr hype insertion negative negative 0.7
that’cs pure pr hype deletion positive negative 0.3

2.3 Black-Box Defenses

In the black-box scenario, defense methods are usually pre-processors. That is, given a potentially
corrupted input, we first run the pre-processor to denoise the input, and the result is subsequently fed
to the LLM. We consider several categories of black-box defense methods:

⋄ Rule-based defense. These methods do not use neural networks for denoising purposes. Instead,
they learn mapping rules to convert typos. In this work, we use the most representative rule-based

3

Figure 2: An example of using Llama for typo correction.
Figure 3: An illustration of a
rule-based word cluster.

defense: Robust Encoding (Jones et al., 2020). The underlying idea is to systematically assign each
word a class representative, and subsequently replace each word in the input by its corresponding
representative. An example of a word cluster is shown in Figure 3. Note that in the example, “hello”
is the center of the cluster, such that all the other words in the cluster (e.g., “hallo”) will be converted
to “hello” when running the defense algorithm. Clusters are built based on word frequencies and
edit-distance (the number of edits), and exist in two distinct variants.

• Rule-CC: Clusters are derived from a connected component clustering on the vocabulary
graph, where edges are drawn between edit-distance one words.

• Rule-Agg: Clusters are built in an agglomerative manner to balance stability (inclusion of
most typos in clusters) and fidelity (consistency within clusters).

It is worth pointing out that there are fewer clusters than words, implying that two real words might
be associated to the same representative. Therefore, rule-based defenses may change the meaning of
the input (see Table 4 in the experiments as an example).

⋄ Prefix defense. We modify the prompts in Appendix D by prepending a warning: In the following
question, please pay close attention to typos before answering. Even though typos will not be directly
corrected using this simple strategy, the additional instruction can alert the LLM about potential
adversarial contents.

⋄ Neural network (NN) defense. In this approach, a BART-base (Lewis et al., 2020) model is trained
for denoising purposes. BART-base is a sequence-to-sequence Transformer model that contains about
140M parameters, making it much lighter than LLMs. The defense model is trained to recover the
initial text (e.g., pretty) from the corrupted text (e.g., prettye).

⋄ Self defense. LLMs are extremely powerful and can fulfill most tasks if properly prompted. We
investigate whether we can use LLMs themselves to defend against adversarial typos. Figure 2
illustrates that Llama can successfully identify and correct typos. Therefore, in this approach, we
inference a LLM twice for a potentially corrupted input. In the first round, we ask the LLM to correct
typos, and then we inference the LLM again using the typo-corrected sentence.

2.4 White-Box Defenses

The white-box scenario brings more possibility since we have full control of the model. Existing
works (Liu et al., 2020; Cheng et al., 2021) rely on the concept of adversarial regularization to
improve model robustness. Specifically, adversarial samples in the continuous embedding space
are constructed to augment the training data. However, construction of the adversarial samples is
extremely slow since multiple forward/backward passes are needed. Such a computational burden is
even more severe in the era of LLMs.

We adopt a much simpler yet effective strategy for white-box defense: we fine-tune the LLM on both
clean data and corrupted data. The intuition is that once exposed to data with typos, the LLM should
recognize the typos’ patterns and become robust to them.

3 Experiments

In all the experiments, for a clean input sentence, we use Algorithm 1 to build a corrupted version of
the sentence. We note that the corrupted sentences are model-specific, i.e., the same input sentence
will be attacked differently for each model. For black-box defense methods, we first denoise the

4

corrupted sentence by running defense model, and then we feed the denoised output to the LLM for
prediction. For white-box defenses, we directly inference the LLM since it is fine-tuned to be robust
to adversarial typos. We show additional experiments in Appendix C.

3.1 Robustness of LLMs

Table 2: Experimental results of Flan-T5 and Llama2-Chat. In the results, corrupted means models
are evaluated on corrupted data, and clean means models are evaluated on clean data without typos.

Flan-T5-3B Flan-T5-11B Llama2-Chat-7B Llama2-Chat-13B
clean corrupted clean corrupted clean corrupted clean corrupted

RTE 93.1 81.2 89.5 81.5 77.5 65.6 76.8 66.3
MRPC 82.3 71.9 82.6 73.6 65.0 62.2 69.7 38.4
SST-2 94.8 81.9 96.1 86.2 94.1 77.2 94.8 78.4
QNLI 94.7 86.7 94.5 87.9 76.6 57.5 73.6 54.8
QQP 90.9 73.4 88.7 75.8 58.6 34.9 71.4 55.6
MNLI 91.8 72.9 90.3 75.4 51.1 31.0 50.5 38.9

Average 91.3 78.0 90.3 80.1 70.5 54.7 72.8 55.4

Table 2 shows experimental results on two versions of Flan-T5 and two versions of Llama2-Chat.
We report evaluation results on both the clean data without typos and the corrupted data with typos.
From the results, we observe the following regarding model robustness:

⋄ LLMs are not robust to adversarial typos. For example, average performance of Flan-T5-11B
decreases by 10.2%, and that of Llama2-Chat-13B decreases by 17.4%. The results show
that the attack algorithm in Algorithm 1 can successfully identify cases where even small
changes to the inputs can drastically change the outputs.

⋄ Flan-T5 models are more robust than Llama2-Chat models. For example, average perfor-
mance of Flan-T5-3B drops by 13.3%, and average performance of Llama2-Chat-7B drops
by 15.8% when evaluating on the corrupted data.

We also observe that larger model sizes do not necessarily translate to better performance on all the
tasks. For example, on the SST-2 dataset without typos, performance of Llama2-Chat-7B is only
0.7% lower than Llama2-Chat-13B (94.1 vs. 94.8), although the former is about two times smaller.
Also, we see that performance of Flan-T5-3B is 91.3% averaged across the six tasks, which is even
1.0% higher than the performance of Flan-T5-11B (90.3%). Such a phenomenon is also observed in
existing works (Chung et al., 2022).

3.2 Black-Box Defense Results

Table 3: Effectiveness of different black-box defense methods on different models. We report the
average performance of the six tasks.

No Defense Defense Methods
Clean Corrupted Rule-CC Rule-Agg Prefix NN Self

Flan-T5-3B 91.3 78.0 59.3 65.2 77.4 82.3 79.9
Flan-T5-11B 90.3 80.1 64.4 69.6 78.6 83.3 84.1
Llama2-Chat-7B 70.5 54.7 57.3 58.9 56.8 66.9 66.5
Llama2-Chat-13B 72.8 55.4 51.1 54.9 57.7 67.3 69.0

Table 3 demonstrates effectiveness of different black-box defense methods, where we report the
average performance of Flan-T5 and Llama2-Chat on the six tasks in Table 2. More details are
deferred to Appendix E. We have the following observations:

First, rule-based methods do not work well for defending against adversarial typos. Recall that in
rule-based defenses, each word belongs to a specific cluster and the word is converted to its cluster
representation. However, because there are much fewer clusters than words, rule-based defense
methods can change the meaning of a sentence. We show an example in Table 4 to better understand
the rule-based approaches. In the example, “wading pool” in the corrupted sentence (note that these
two words are not changed by the adversarial attack) is mapped to “working personal” or “working

5

Table 4: An example of applying defense methods to a corrupted sentence. Here, ✓ means the model
(Llama2-Chat-7B) makes a correct prediction, and ✗ means otherwise.

Type Sentence Correct?
Clean has all the depth of a wading pool ✓
Corrupted has all tye depth of a wading pool ✗

Rule-CC his all the death of a working personal ✗
Rule-Agg his all the death of a working paul ✗
NN Has all the depth of a wading pool ✓
Self It has all the depth of a wading pool ✓

paul” by rule-based defenses. Such a mapping renders the entire sentence nonsense, and we observe
that indeed the LLM makes wrong predictions on the sentence’s sentiment. The large model capacities
of LLMs enable them to infer the correct words to some extent even without any defense mechanisms.
Therefore, after applying rule-based typo correction, when the contextual information loss outweighs
the gain brought by typo correction, performance of LLMs drop.

Second, NN-defense and self-defense works well for both Flan-T5 and Llama2-Chat. For example,
in Table 3, we see that applying NN-defense brings 3.2% accuracy gain for FlanT5-11B (from 80.1 to
83.3); while applying self-defense brings 4.0% accuracy gain (from 80.1 to 84.1). The performance
gain is brought by the fact that both of these defense approaches can successfully correct the typos
while maintaining the semantic meaning of the original sentence (see Table 4 for an example).

Third, prefix-defense is effective for LLaMa2-Chat. Recall that in prefix-defense, we prepend an
instruction “In the following question, please pay close attention to typos before answering” to the
prompt. The intuition is that even though typos can not be directly corrected like the other defense
methods, the additional instruction can alert the LLM about potential adversarial contents. From the
results in Table 3, we see that for Llama2-Chat, model robustness increases by about 2%.

3.3 White-Box Defense Results

Existing white-box defense methods leverage adversarial regularization (Cheng et al., 2021; Liu et al.,
2020). Specifically, these methods construct continuous adversarial samples in the embedding space
to augment the training data. However, such a process is extremely slow since multiple forward and
backward passes are needed to construct an adversarial sample. Instead, we propose a simple strategy
for white-box defense: we fine-tune LLMs on both clean training data and corrupted training data
derived from Algorithm 1.

However, fine-tuning models with billions of parameters can be computationally prohibitive. There-
fore, we use an off-the-shelf parameter efficient fine-tuning method: LoRA (Hu et al., 2022). For a
weight matrix W ∈ Rd×k, full fine-tuning computes its gradient with respect to the loss, and updates
this weight matrix accordingly. In LoRA, the update of the weight matrix is W ←W +BA, where
B ∈ Rd×r and A ∈ Rr×k are low-rank such that r ≪ min(d, k). We note that the weight matrix W
is frozen during fine-tuning, and we only update the two low-rank matrices A and B.

In the experiments, we freeze all the weights in the LLM, and we add the LoRA components (i.e.,
A and B) to the query and value matrices in all the attention layers. This is the same strategy as
Hu et al. (2022) and has shown to the empirically effective. As a result, for both Flan-T5-3B and
Llama2-Chat-7B, we only fine-tune about 5M parameters. We defer training details to Appendix G.

Table 5 demonstrates experimental results of Flan-T5-3B; and Table 6 demonstrates experimental
results of Llama2-Chat-7B. We consider two fine-tuning schemes: 1) we only fine-tune LLMs on
the clean training data; and 2) we fine-tune LLMs on both the clean training data and the corrupted
training data that contain typos. From the results, we see that

⋄ Fine-tuning on task-specific clean data improves both model performance and robustness.
For example, after fine-tuning, performance of Flan-T5-3B increases by 1.3% on the clean
test data and 7.8% on the corrupted test data. As another example, performance of Llama2-
Chat-7B increases by 20.3% on the clean data, and robustness increases by 32.0%.

6

Table 5: Performance of Flan-T5-3B after fine-tuning. We consider two fine-tuning settings: tuning
on clean training data only; and tuning on clean and corrupted training data. We evaluate model
performance on both the clean development set and the corrupted development set.

Setting Test data RTE MRPC SST-2 QNLI QQP MNLI Average

Zero-shot clean 93.1 82.3 94.8 94.7 90.9 91.8 91.3
corrupted 81.2 71.9 81.9 86.7 73.4 72.9 78.0

Fine-tune clean 92.7 90.7 94.4 94.8 90.9 91.9 92.6
Clean corrupted 86.5 88.0 88.7 90.9 81.0 79.9 85.8

Fine-tune clean 93.1 90.7 96.6 94.8 91.1 91.9 93.0
Clean + Corr. corrupted 88.0 88.8 94.0 92.6 88.6 85.0 89.5

Table 6: Performance of Llama2-Chat-7B after fine-tuning. We consider two fine-tuning settings:
tuning on clean training data only; and tuning on clean and corrupted training data. We evaluate
model performance on both the clean development set and the corrupted development set.

Setting Test data RTE MRPC SST-2 QNLI QQP MNLI Average

Zero-shot clean 77.5 65.0 94.1 76.6 58.6 51.1 70.5
corrupted 65.6 62.2 77.2 57.5 34.9 31.0 54.7

Fine-tune clean 89.5 87.9 96.2 92.6 90.9 87.8 90.8
Clean corrupted 85.5 86.5 89.2 89.1 86.3 83.3 86.7

Fine-tune clean 89.5 88.4 96.4 92.6 90.8 87.8 90.9
Clean + Corr. corrupted 87.7 87.3 93.8 90.5 89.1 85.8 89.0

⋄ Fine-tuning on task-specific clean and corrupted data can further improve model robustness.
From Table 5, we see that performance of Flan-T5-3B is 89.5% on the corrupted test data,
which is more than 20% higher than that in the zero-shot setting.

4 Conclusion and Discussion
LLMs have demonstrated superior performance in various natural language processing tasks. How-
ever, they are not robust to adversarial attacks. In this work, we consider input typos, which is a
practical yet under-explored scenario that hinders performance of LLMs. We systematically study the
effectiveness of adversarial defense approaches against input typos. Through extensive experiments,
we find that many existing rule-based defense methods that work well on conventional language mod-
els are not effective for LLMs. Therefore, we design adversarial defenses tailored for LLMs. First,
we develop prompting methods (prefix-defense) to alert the LLM about potential adversarial contents.
Second, we find that we can denoise the inputs by adopting either the LLM itself (self-defense) or
using a separate small language model (NN-defense). Finally, in the white-box setting, we find that
fine-tune LLMs on both clean and corrupted data can be extremely beneficial for model robustness.

In this work, we develop several methods that improve model robustness. Among them, NN-defense
is particularly favorable. This is because fine-tuning the LLM may not always be feasible, rendering
white-box defenses impractical. Among the black-box defense methods, NN-defense and self-defense
are equally effective. However, NN-defense is much faster as only a small language model is used to
denoise the input typos, making it more attractive. We note that the proposed prefix-defense is faster
than NN-defense and can also improve robustness to some extent. We leave further investigation
along this direction as future works.

7

References

ALZANTOT, M., SHARMA, Y., ELGOHARY, A., HO, B.-J., SRIVASTAVA, M. and CHANG, K.-W.
(2018). Generating natural language adversarial examples. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing. Association for Computational Linguistics,
Brussels, Belgium.

BAR-HAIM, R., DAGAN, I., DOLAN, B., FERRO, L. and GIAMPICCOLO, D. (2006). The sec-
ond PASCAL recognising textual entailment challenge. In Proceedings of the Second PASCAL
Challenges Workshop on Recognising Textual Entailment.

BELINKOV, Y. and BISK, Y. (2018). Synthetic and natural noise both break neural machine translation.
In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

BENTIVOGLI, L., DAGAN, I., DANG, H. T., GIAMPICCOLO, D. and MAGNINI, B. (2009). The fifth
pascal recognizing textual entailment challenge. In In Proc Text Analysis Conference (TAC’09.

BROWN, T. B., MANN, B., RYDER, N., SUBBIAH, M., KAPLAN, J., DHARIWAL, P., NEELAKAN-
TAN, A., SHYAM, P., SASTRY, G., ASKELL, A., AGARWAL, S., HERBERT-VOSS, A., KRUEGER,
G., HENIGHAN, T., CHILD, R., RAMESH, A., ZIEGLER, D. M., WU, J., WINTER, C., HESSE,
C., CHEN, M., SIGLER, E., LITWIN, M., GRAY, S., CHESS, B., CLARK, J., BERNER, C., MC-
CANDLISH, S., RADFORD, A., SUTSKEVER, I. and AMODEI, D. (2020). Language models are
few-shot learners. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual
(H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and H. Lin, eds.).

CHEN, X., YE, J., ZU, C., XU, N., ZHENG, R., PENG, M., ZHOU, J., GUI, T., ZHANG, Q. and
HUANG, X. (2023). How robust is gpt-3.5 to predecessors? a comprehensive study on language
understanding tasks. ArXiv preprint, abs/2303.00293.

CHENG, H., LIU, X., PEREIRA, L., YU, Y. and GAO, J. (2021). Posterior differential regularization
with f-divergence for improving model robustness. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, Online.

CHOWDHERY, A., NARANG, S., DEVLIN, J., BOSMA, M., MISHRA, G., ROBERTS, A., BARHAM,
P., CHUNG, H. W., SUTTON, C., GEHRMANN, S. ET AL. (2022). Palm: Scaling language
modeling with pathways. ArXiv preprint, abs/2204.02311.

CHUNG, H. W., HOU, L., LONGPRE, S., ZOPH, B., TAY, Y., FEDUS, W., LI, E., WANG, X.,
DEHGHANI, M., BRAHMA, S. ET AL. (2022). Scaling instruction-finetuned language models.
ArXiv preprint, abs/2210.11416.

DAGAN, I., GLICKMAN, O. and MAGNINI, B. (2006). The pascal recognising textual entailment
challenge. In Proceedings of the First International Conference on Machine Learning Chal-
lenges: Evaluating Predictive Uncertainty Visual Object Classification, and Recognizing Textual
Entailment. MLCW’05, Springer-Verlag, Berlin, Heidelberg.

DEVLIN, J., CHANG, M.-W., LEE, K. and TOUTANOVA, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics,
Minneapolis, Minnesota.

DOLAN, W. B. and BROCKETT, C. (2005). Automatically constructing a corpus of sentential
paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005).

EGER, S., ŞAHIN, G. G., RÜCKLÉ, A., LEE, J.-U., SCHULZ, C., MESGAR, M., SWARNKAR, K.,
SIMPSON, E. and GUREVYCH, I. (2019). Text processing like humans do: Visually attacking and
shielding NLP systems. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota.

8

GAO, J., LANCHANTIN, J., SOFFA, M. L. and QI, Y. (2018). Black-box generation of adversarial
text sequences to evade deep learning classifiers. In 2018 IEEE Security and Privacy Workshops
(SPW). IEEE.

GIAMPICCOLO, D., MAGNINI, B., DAGAN, I. and DOLAN, B. (2007). The third PASCAL
recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing. Association for Computational Linguistics, Prague.

GONG, H., LI, Y., BHAT, S. and VISWANATH, P. (2019). Context-sensitive malicious spelling error
correction. In The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019 (L. Liu, R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley, R. Baeza-Yates and L. Zia,
eds.). ACM.

GOODFELLOW, I. J., SHLENS, J. and SZEGEDY, C. (2015). Explaining and harnessing adversarial
examples. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.).

HE, P., GAO, J. and CHEN, W. (2021a). Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding sharing. ArXiv preprint, abs/2111.09543.

HE, P., LIU, X., GAO, J. and CHEN, W. (2021b). Deberta: decoding-enhanced bert with disentangled
attention. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

HU, E. J., SHEN, Y., WALLIS, P., ALLEN-ZHU, Z., LI, Y., WANG, S., WANG, L. and CHEN, W.
(2022). Lora: Low-rank adaptation of large language models. In The Tenth International Confer-
ence on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.

IYYER, M., WIETING, J., GIMPEL, K. and ZETTLEMOYER, L. (2018). Adversarial example genera-
tion with syntactically controlled paraphrase networks. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans,
Louisiana.

JONES, E., JIA, R., RAGHUNATHAN, A. and LIANG, P. (2020). Robust encodings: A framework
for combating adversarial typos. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Online.

LEWIS, M., LIU, Y., GOYAL, N., GHAZVININEJAD, M., MOHAMED, A., LEVY, O., STOYANOV, V.
and ZETTLEMOYER, L. (2020). BART: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational Linguistics, Online.

LIU, X., CHENG, H., HE, P., CHEN, W., WANG, Y., POON, H. and GAO, J. (2020). Adversarial
training for large neural language models. ArXiv preprint, abs/2004.08994.

LIU, Y., OTT, M., GOYAL, N., DU, J., JOSHI, M., CHEN, D., LEVY, O., LEWIS, M., ZETTLE-
MOYER, L. and STOYANOV, V. (2019). Roberta: A robustly optimized bert pretraining approach.
ArXiv preprint, abs/1907.11692.

LOSHCHILOV, I. and HUTTER, F. (2019). Decoupled weight decay regularization. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

OPENAI (2023). Gpt-4 technical report. arXiv.

OUYANG, L., WU, J., JIANG, X., ALMEIDA, D., WAINWRIGHT, C., MISHKIN, P., ZHANG,
C., AGARWAL, S., SLAMA, K., RAY, A. ET AL. (2022). Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35
27730–27744.

PAPERNOT, N., MCDANIEL, P., SWAMI, A. and HARANG, R. (2016). Crafting adversarial input
sequences for recurrent neural networks. In MILCOM 2016-2016 IEEE Military Communications
Conference. IEEE.

9

PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY, J., CHANAN, G., KILLEEN, T.,
LIN, Z., GIMELSHEIN, N., ANTIGA, L., DESMAISON, A., KÖPF, A., YANG, E., DEVITO, Z.,
RAISON, M., TEJANI, A., CHILAMKURTHY, S., STEINER, B., FANG, L., BAI, J. and CHINTALA,
S. (2019). Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada (H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox and R. Garnett, eds.).

PRUTHI, D., DHINGRA, B. and LIPTON, Z. C. (2019). Combating adversarial misspellings with
robust word recognition. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Florence, Italy.

RADFORD, A., NARASIMHAN, K., SALIMANS, T., SUTSKEVER, I. ET AL. (2018). Improving
language understanding by generative pre-training.

RADFORD, A., WU, J., CHILD, R., LUAN, D., AMODEI, D., SUTSKEVER, I. ET AL. (2019).
Language models are unsupervised multitask learners. OpenAI blog, 1 9.

RAFFEL, C., SHAZEER, N., ROBERTS, A., LEE, K., NARANG, S., MATENA, M., ZHOU, Y., LI,
W. and LIU, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21 140:1–140:67.

RAJPURKAR, P., ZHANG, J., LOPYREV, K. and LIANG, P. (2016). SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, Austin, Texas.

SCAO, T. L., FAN, A., AKIKI, C., PAVLICK, E., ILIĆ, S., HESSLOW, D., CASTAGNÉ, R., LUC-
CIONI, A. S., YVON, F., GALLÉ, M. ET AL. (2022). Bloom: A 176b-parameter open-access
multilingual language model. ArXiv preprint, abs/2211.05100.

SI, C., GAN, Z., YANG, Z., WANG, S., WANG, J., BOYD-GRABER, J. and WANG, L. (2022).
Prompting gpt-3 to be reliable. ArXiv preprint, abs/2210.09150.

SOCHER, R., PERELYGIN, A., WU, J., CHUANG, J., MANNING, C. D., NG, A. and POTTS, C.
(2013). Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Seattle, Washington, USA.

TOUVRON, H., LAVRIL, T., IZACARD, G., MARTINET, X., LACHAUX, M.-A., LACROIX, T.,
ROZIÈRE, B., GOYAL, N., HAMBRO, E., AZHAR, F. ET AL. (2023a). Llama: Open and efficient
foundation language models. ArXiv preprint, abs/2302.13971.

TOUVRON, H., MARTIN, L., STONE, K., ALBERT, P., ALMAHAIRI, A., BABAEI, Y., BASHLYKOV,
N., BATRA, S., BHARGAVA, P., BHOSALE, S. ET AL. (2023b). Llama 2: Open foundation and
fine-tuned chat models. ArXiv preprint, abs/2307.09288.

VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N., KAISER,
L. and POLOSUKHIN, I. (2017). Attention is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA (I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan and R. Garnett, eds.).

WANG, A., SINGH, A., MICHAEL, J., HILL, F., LEVY, O. and BOWMAN, S. R. (2019). GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In 7th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

WANG, B., XU, C., WANG, S., GAN, Z., CHENG, Y., GAO, J., AWADALLAH, A. H. and LI, B.
(2021). Adversarial glue: A multi-task benchmark for robustness evaluation of language models.
ArXiv preprint, abs/2111.02840.

WANG, J., HU, X., HOU, W., CHEN, H., ZHENG, R., WANG, Y., YANG, L., HUANG, H., YE, W.,
GENG, X. ET AL. (2023a). On the robustness of chatgpt: An adversarial and out-of-distribution
perspective. ArXiv preprint, abs/2302.12095.

10

WANG, J., LIU, Z., PARK, K. H., CHEN, M. and XIAO, C. (2023b). Adversarial demonstration
attacks on large language models. ArXiv preprint, abs/2305.14950.

WILLIAMS, A., NANGIA, N. and BOWMAN, S. (2018). A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans,
Louisiana.

WOLF, T., DEBUT, L., SANH, V., CHAUMOND, J., DELANGUE, C., MOI, A., CISTAC, P., RAULT,
T., LOUF, R., FUNTOWICZ, M. ET AL. (2019). Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv preprint, abs/1910.03771.

WU, H. and SHI, X. (2022). Adversarial soft prompt tuning for cross-domain sentiment analysis. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, Dublin, Ireland.

XU, L., CHEN, Y., CUI, G., GAO, H. and LIU, Z. (2022). Exploring the universal vulnerability of
prompt-based learning paradigm. In Findings of the Association for Computational Linguistics:
NAACL 2022. Association for Computational Linguistics, Seattle, United States.

ZHANG, S., ROLLER, S., GOYAL, N., ARTETXE, M., CHEN, M., CHEN, S., DEWAN, C., DIAB,
M., LI, X., LIN, X. V. ET AL. (2022). Opt: Open pre-trained transformer language models. ArXiv
preprint, abs/2205.01068.

ZHAO, Z., DUA, D. and SINGH, S. (2018). Generating natural adversarial examples. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

ZHU, K., WANG, J., ZHOU, J., WANG, Z., CHEN, H., WANG, Y., YANG, L., YE, W., GONG, N. Z.,
ZHANG, Y. ET AL. (2023). Promptbench: Towards evaluating the robustness of large language
models on adversarial prompts. ArXiv preprint, abs/2306.04528.

ZHUANG, S. and ZUCCON, G. (2021). Dealing with typos for BERT-based passage retrieval and rank-
ing. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Online and Punta Cana, Dominican Republic.

ZHUANG, S. and ZUCCON, G. (2022). Characterbert and self-teaching for improving the robustness
of dense retrievers on queries with typos. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval.

ZUO, S., LIANG, C., JIANG, H., HE, P., LIU, X., GAO, J., CHEN, W. and ZHAO, T. (2021a).
ARCH: Efficient adversarial regularized training with caching. In Findings of the Association for
Computational Linguistics: EMNLP 2021. Association for Computational Linguistics, Punta Cana,
Dominican Republic.

ZUO, S., LIANG, C., JIANG, H., LIU, X., HE, P., GAO, J., CHEN, W. and ZHAO, T. (2021b).
Adversarial regularization as stackelberg game: An unrolled optimization approach. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Online and Punta Cana, Dominican Republic.

11

A Background

A.1 Large Language Models

Large language models have become the de facto standard solution for many natural language
processing tasks. These models are a step forward from smaller language models such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019), DeBERTa (He et al., 2021b,a) and T5 (Raffel
et al., 2020). LLMs have extremely large number of parameters compared with their predecessors.
For example, DeBERTa-xxl, the largest publicly available encoder-only model in its series, contains
about 1.3B parameters, whereas LLMs rarely have less than 10B parameters.

The debate about the best architecture of Transformer-based models (Vaswani et al., 2017) continues
in the era of LLMs. One commonly used structure is the decoder-only Transformer. The most famous
example is the GPT series: starting from GPT (Radford et al., 2018), GPT-2 Radford et al. (2019),
GPT-3 (Brown et al., 2020) and InstructGPT (Ouyang et al., 2022), the series has now progressed to
the evolutionary GPT-4 (OpenAI, 2023). Other examples include Llama (Touvron et al., 2023a,b),
PaLM (Chowdhery et al., 2022), OPT (Zhang et al., 2022) and BLOOM (Scao et al., 2022). Another
widely applied structure is the encoder-decoder Transformer, evolving from T5 (Raffel et al., 2020)
and BART (Lewis et al., 2020) to the Flan family (Chung et al., 2022) including Flan-T5 and Flan-ul2.
Many existing works on benchmarking robustness of LLMs focus on the decoder-only GPT family
(Wang et al., 2023a; Chen et al., 2023). We bridge this gap by evaluating both decoder-only and
encoder-decoder models.

A.2 Adversarial Attacks

In this work, we focus on models’ robustness to input typos, which is a practical scenario that hinders
model performance in real-world applications such as dense retrieval and search (Zhuang and Zuccon,
2021, 2022). Specifically, we use character-level adversarial attacks to simulate the worse case input
typos. That is, the modifications to the input (i.e., the typos) are intentionally designed so that the
LLM draws wrong conclusions. Existing works have designed other character level (Belinkov and
Bisk, 2018; Gao et al., 2018; Eger et al., 2019), word level (Papernot et al., 2016; Zhao et al., 2018;
Alzantot et al., 2018) and sentence level (Iyyer et al., 2018) attacks to mislead the models.

We note that in parallel to typos in the input data, LLMs are also not robust to adversarially constructed
prompts (Xu et al., 2022; Wu and Shi, 2022; Si et al., 2022; Zhu et al., 2023) and demonstrations
(Wang et al., 2023b).

A.3 Adversarial Defenses

Adversarial defenses fall into two categories: black-box defenses and white-box defenses. In the
black-box scenario, we do not have access to model weights (e.g., GPT-4), but we can only observe
the outputs of the model. In the white-box scenario, we have full access to the model (e.g., Llama),
namely gradient-based defense methods are feasible in this case.

In black-box defenses, defense models are usually treated as pre-processors (Gong et al., 2019; Jones
et al., 2020). That is, we first run the defense model to denoise the potentially corrupted input, and
then the denoised result is passed to the downstream model for inference.

The white-box defense scheme brings more possibility when designing algorithms since we have full
control of the model. However, many existing works define adversarial samples in the continuous
embedding space instead of the discrete input space, such that the attacks are not human interpretable
(Liu et al., 2020; Cheng et al., 2021; Zuo et al., 2021a,b). Instead, we focus on inputs typos that are
plausible in real-world applications.

B Datasets, Models, and Inference

Datasets. We adopt six datasets from the GLUE benchmark (Wang et al., 2019). For each input
sample, we first construct corresponding adversarial samples to simulate input typos. Then, we
evaluate LLMs’ performance on both the clean data and the corrupted data.

⋄ RTE (Dagan et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009)
is a fusion of several annual textual entailment challenges on news articles and headlines. The

12

Table 7: An example of applying NN-defense to corrupted sentences. Here, weak attack refers to the
result of applying the attack method in Algorithm 1.

Type Sentence
Clean as vulgar as it is banal

Weak Attack ab vulgar as bt ss banal c
NN-defense A vulgar as it is banal c
Strong Attack ab vulgar as pit bis banal c
NN-defense A vulgar as pit bis banal c 18

corresponding task is to determine, given a pair of sentences, whether the meaning of the second one
can be inferred from the first one.

⋄ MRPC (Dolan and Brockett, 2005) is a set of sentence pairs extracted from news articles. The
underlying task is to determine whether two sentences are semantically equivalent.

⋄ SST-2 (Socher et al., 2013) is a corpus of sentences extracted from online movie reviews, and we
need to classify each review as positive or negative.

⋄ QNLI (Rajpurkar et al., 2016) is a binary question entailment task. Based on a question-sentence
pair, the goal is to determine whether the sentence provides a suitable answer to the question.

⋄ QQP (Wang et al., 2019) is a collection of question pairs collected from Quora. The associated task
is to determine whether two given questions are paraphrases of each other.

⋄MNLI (Williams et al., 2018) is a crowd-sourced collection of sentence pairs with textual entailment
annotations. Given a premise and a hypothesise, the language task is to determine whether the
premise entails, contradicts or is neutral with respect to the hypothesis.

Models. We adopt two families of Transformer-based (Vaswani et al., 2017) LLMs covering both
decoder-only and encoder-decoder architectures.

⋄ Llama2-Chat (Touvron et al., 2023b) is a decoder-only model. It is the “chat” version of Llama2
that is trained to follow human instructions (i.e., prompts). We consider two mode sizes: 7B and
13B. Different from the previous version (Touvron et al., 2023a) and many closed-source models, the
training of Llama2-Chat emphasizes on model safety.

⋄ Flan-T5 (Chung et al., 2022) is an encoder-decoder model. We adopt two sizes of Flan-T5: 3B and
11B. We note that Flan-T5 is multi-task instruction fine-tuned on a large number of datasets similar
to the natural language understanding tasks we consider.

Inference. To evaluate black-box defense methods, we inference LLMs in a zero-shot setting. We
list the prompts we adopted to inference Flan-T5 and Llama2-Chat in Appendix D. In the prompts,
we instruct the models to choose from a set of possible answers. For example, we instruct the model
to choose from [positive, negative] for sentiment classification tasks such as SST-2.

C Extension: Attacking Adversarial Defenses

Table 3 demonstrates that black-box defenses can indeed improve model robustness. A natural
question to ask is: how robust are the defenses against stronger attacks?

Recall that in Algorithm 1, for an input pair (x, y), where x is the input and y is its label, we
find an attack x′ that empirically minimizes p(y|x′). To construct strong attacks, we expose the
defense method to the attacker. That is, in the strong attack algorithm, we empirically minimize
p(y|defense(x′)), where defense(·) is the defense method, e.g., a neural typo corrector. In this way,
we can build a tailored attack algorithm for each defense approach. Table 7 demonstrates an example
of applying strong attacks. We see that with the attack method in Algorithm 1 (i.e., weak attack),
the NN-defense model can resolve most of the typos. However, when we expose the defense model
to the attacker, the resulting attacks are much stronger (i.e., strong attack). We see that with strong
attacks, the NN-defense model can no longer recover the original semantic meaning.

13

Table 8: Effectiveness of different black-box defense methods on different models under the strong
attack scheme. We report the average performance of the six tasks.

Rule-CC Rule-Agg Prefix-defense NN-defense Self-defense
Flan-T5-3B 47.3 52.0 72.4 77.1 80.1
Flan-T5-11B 50.3 55.7 71.2 77.0 82.0
Llama2-Chat-7B 42.8 45.4 44.7 61.2 61.3
Llama2-Chat-13B 42.7 44.0 51.3 61.2 64.7

Table 8 summarizes model performance under strong attacks. Model performance on individual
tasks are deferred to Appendix F. We see that the attacks are indeed stronger compared with the
weak attacks (see results in Table 3). We also note that even with the strong attacks, performance
of NN-defense and self-defense are still satisfactory. For example, performance of the self-defense
method on Flan-T5-3B when dealing with the strong attacks is on par with the performance when
dealing with the weak attacks.

D Prompts

Below, we show the prompts we used to inference Flan-T5 and Llama2-Chat models.

Table 9: Prompts used to inference Flan-T5.
Task Prompt

RTE Read the following paragraph and determine if the hypothesis is true: [input1].
Hypothesis: [input2]. OPTIONS: yes, no

MRPC First sentence: [input1]; Second sentence: [input2].
Would you say that these sentences have the same meaning?

SST-2 Review: [input1]. Is this review sentence negative or positive? OPTIONS: positive, negative

QNLI Premise: [input1]; Hypothesis: [input2] Does the premise entail the hypothesis?

QQP First question: [input1]; Second question: [input2].
Would you say that these questions have the same meaning?

MNLI Does the sentence [input1] answer the question [input2]?

14

Table 10: Prompts used to inference Llama2-Chat-7B.
Task Prompt

RTE [input1]. Based on the paragraph above can we conclude that [input2]?
Answer with yes or no only. Answer:

MRPC Do these sentences mean the same thing? [input1], [input2].
Answer with yes or no only. Answer:

SST-2 Is the following review positive or negative? Answer in a single word. Review: [input1]. Answer:

QNLI Does the sentence answer the question? Answer with yes or no only.
Question: [input1]. Sentence: [input2]. Answer:

QQP First sentence: [input1]. Second sentence: [input2].
Would you say that these sentences have close meanings? Answer with yes or no only. Answer:

MNLI Premise: [input1]. Hypothesis: [input2]. Is the hypothesis entailed by the premise?
Answer in a single word with yes, no or neutral. Answer:

Table 11: Prompts used to inference Llama2-Chat-13B.
Task Prompt

RTE [input1]. Based on the paragraph above can we conclude that [input2]?
Answer with yes or no only. Answer:

MRPC Here are two sentences [input1], [input2].
Do they have the same meaning? Answer with yes or no only. Answer:

SST-2 Is the following review positive or negative? Answer in a single word. Review: [input1]. Answer:

QNLI Does the sentence answer the question? Answer with yes or no only.
Question: [input1]. Sentence: [input2]. Answer:

QQP First sentence: [input1]. Second sentence: [input2].
Would you say that these sentences have close meanings? Answer with yes or no only. Answer:

MNLI Premise: [input1]. Hypothesis: [input2]. Is the hypothesis entailed by the premise?
Answer in a single word with yes, no or irrelevant. Answer:

E Details of Black-Box Defense Results

In Table 3, we demonstrate effectiveness of black-box defenses on different models by showing the
average score of six tasks. Below, we show detailed breakdown of model performance when applying
each defense method on each task.

Table 12: Effectiveness of black-box defense methods on Flan-T5-3B.
No Defense Defense Methods

Clean Corrupted Rule-CC Rule-Agg Prefix NN Self
RTE 93.1 81.2 59.4 65.9 81.9 80.1 82.2
MRPC 82.3 71.9 41.5 47.8 65.0 68.4 74.0
SST-2 94.8 81.9 70.0 77.2 83.9 91.4 86.8
QNLI 94.7 86.7 66.0 71.3 87.6 88.6 87.3
QQP 90.9 73.4 66.8 70.6 73.8 81.9 74.5
MNLI 91.8 72.9 52.0 58.2 72.0 83.2 74.8

Average 91.3 78.0 59.3 65.2 77.4 82.3 79.9

15

Table 13: Effectiveness of black-box defense methods on Flan-T5-11B.
No Defense Defense Methods

Clean Corrupted Rule-CC Rule-Agg Prefix NN Self
RTE 89.5 81.5 63.8 66.7 79.7 82.2 84.1
MRPC 82.6 73.6 54.6 63.4 66.5 71.6 77.5
SST-2 96.1 86.2 74.3 79.8 88.4 93.3 90.8
QNLI 94.5 87.9 70.1 75.9 89.6 88.0 89.4
QQP 88.7 75.8 69.9 71.9 71.7 81.9 81.3
MNLI 90.3 75.4 53.5 60.1 75.4 82.7 81.5

Average 90.3 80.1 64.4 69.6 78.6 83.3 84.1

Table 14: Effectiveness of black-box defense methods on Llama2-Chat-7B.
No Defense Defense Methods

Clean Corrupted Rule-CC Rule-Agg Prefix NN Self
RTE 77.5 65.6 60.1 61.2 66.3 73.9 72.5
MRPC 65.0 62.2 59.8 59.7 65.7 65.5 65.7
SST-2 94.1 77.2 67.3 71.2 80.3 89.8 88.1
QNLI 76.6 57.5 56.9 59.9 54.7 64.4 69.2
QQP 58.6 34.9 61.0 60.1 45.4 59.2 56.2
MNLI 51.1 31.0 38.4 41.2 28.4 48.6 47.4

Average 70.5 54.7 57.3 58.9 56.8 66.9 66.5

Table 15: Effectiveness of black-box defense methods on Llama2-Chat-13B.
No Defense Defense Methods

Clean Corrupted Rule-CC Rule-Agg Prefix NN Self
RTE 76.8 66.3 51.1 55.1 58.7 71.0 69.9
MRPC 69.7 38.4 38.7 45.5 65.9 62.9 66.6
SST-2 94.8 78.4 61.4 68.7 74.2 88.5 90.7
QNLI 73.6 54.8 51.8 53.3 52.2 63.6 69.1
QQP 71.4 55.6 63.9 64.2 60.6 70.3 70.2
MNLI 50.5 38.9 39.9 42.6 34.3 47.5 47.5

Average 72.8 55.4 51.1 54.9 57.7 67.3 69.0

16

F Details of Defense Against Strong Attacks

In Table 8, we demonstrate effectiveness of black-box defenses against strong attacks. Specifically,
for each model, we show the average score of six tasks. Below, we show detailed breakdown of
model performance when applying each defense method on each task.

Table 16: Effectiveness of black-box defenses against strong attacks on Flan-T5-3B.
No Defense Defense Methods

Clean Corrupted Rule-CC Rule-Agg Self Prefix NN
RTE 93.1 81.2 46.7 50.4 81.5 76.8 79.0
MRPC 82.3 71.9 35.7 38.6 74.8 58.2 62.5
SST-2 94.8 81.9 55.3 61.7 85.0 81.3 85.1
QNLI 94.7 86.7 54.5 60.4 88.2 86.6 84.4
QQP 90.9 73.4 58.6 59.8 75.7 66.8 77.1
MNLI 91.8 72.9 33.1 41.1 75.1 64.6 74.2

Average 91.3 78.0 47.3 52.0 80.1 72.4 77.1

Table 17: Effectiveness of black-box defenses against strong attacks on Flan-T5-11B.
No Defense Defense Methods

Clean Corrupted Rule-CC Rule-Agg Self Prefix NN
RTE 89.5 81.5 54.0 56.5 82.2 72.1 76.1
MRPC 82.6 73.6 40.3 47.7 70.0 54.2 63.5
SST-2 96.1 86.2 55.6 64.9 90.6 82.8 86.6
QNLI 94.5 87.9 55.9 63.5 89.7 86.5 84.9
QQP 88.7 75.8 57.7 58.5 81.5 63.1 75.8
MNLI 90.3 75.4 38.4 43.0 78.2 68.7 75.3

Average 90.3 80.1 50.3 55.7 82.0 71.2 77.0

Table 18: Effectiveness of black-box defenses against strong attacks on Llama2-Chat-7B.
No Defense Defense Methods

Clean Corrupted Rule-CC Rule-Agg Self Prefix NN
RTE 77.5 65.6 40.9 46.4 64.5 53.3 68.8
MRPC 65.0 62.2 48.7 51.2 65.1 65.7 64.4
SST-2 94.1 77.2 49.4 57.1 85.2 67.0 84.8
QNLI 76.6 57.5 45.7 47.4 63.0 43.4 61.0
QQP 58.6 34.9 49.3 45.4 47.9 22.8 46.4
MNLI 51.1 31.0 22.8 25.1 42.3 16.1 41.7

Average 70.5 54.7 42.8 45.4 61.3 44.7 61.2

G More Details about White-Box Defense

We implement white-box defenses using PyTorch (Paszke et al., 2019) and the HuggingFace code-
base (Wolf et al., 2019). In all the experiments, we use a batch size of 64 and we use AdamW
(Loshchilov and Hutter, 2019) as the optimizer. The other hyper-parameters are shown in Table 20
and Table 21.

17

Table 19: Effectiveness of black-box defenses against strong attacks on Llama2-Chat-13B.
No Defense Defense Methods

Clean Corrupted Rule-CC Rule-Agg Self Prefix NN
RTE 76.8 66.3 44.2 48.2 63.8 53.6 68.8
MRPC 69.7 38.4 33.7 32.3 62.2 65.1 52.5
SST-2 94.8 78.4 47.9 53.0 89.2 62.1 81.5
QNLI 73.6 54.8 49.1 48.0 62.2 46.7 57.3
QQP 71.4 55.6 56.0 53.7 67.2 46.5 63.4
MNLI 50.5 38.9 25.3 28.5 43.3 33.6 43.5

Average 72.8 55.4 42.7 44.0 64.7 51.3 61.2

Table 20: Hyer-parameters for fine-tuning Flan-T5-3B. Here, LR is the learning rate, and LoRA-alpha
is an initialization parameter in Hu et al. (2022). We consider two settings: clean means we only train
on clean training data, and c+c means we train on clean and corrupted training data.

LR Epoch Warmup LoRA-rank LoRA-alpha
clean c+c clean c+c clean c+c clean c+c clean c+c

RTE 4e-4 3e-4 30 30 0.1 0.2 32 8 64 16
MRPC 1e-4 3e-4 20 10 0.1 0.1 8 8 16 16
SST-2 5e-4 5e-4 10 10 0 0.1 8 8 16 16
QNLI 1e-3 1e-3 10 10 0.1 0.2 8 8 16 16
QQP 1e-3 7e-4 20 10 0.1 0.1 8 8 16 16
MNLI 7e-4 3e-4 10 10 0.1 0.1 8 8 16 16

Table 21: Hyer-parameters for fine-tuning Llama2-Chat-7B. Here, LR is the learning rate, and LoRA-
alpha is an initialization parameter in Hu et al. (2022). We consider two settings: clean means we
only train on clean training data, and c+c means we train on clean and corrupted training data.

LR Epoch Warmup LoRA-rank LoRA-alpha
clean c+c clean c+c clean c+c clean c+c clean c+c

RTE 2e-4 2e-4 30 30 0.1 0.1 32 32 64 64
MRPC 7e-4 7e-4 20 20 0.1 0.1 8 8 16 16
SST-2 5e-4 5e-4 10 10 0.1 0.1 8 8 16 16
QNLI 7e-4 2e-4 10 10 0.1 0.1 8 8 16 16
QQP 1e-3 7e-4 10 10 0.1 0.1 8 8 16 16
MNLI 5e-4 5e-4 10 10 0.1 0.1 8 8 16 16

18

	Introduction
	Setups, Attacks, and Defenses
	Datasets, Models, and Inference
	Adversarial Typos
	Black-Box Defenses
	White-Box Defenses

	Experiments
	Robustness of LLMs
	Black-Box Defense Results
	White-Box Defense Results

	Conclusion and Discussion
	Background
	Large Language Models
	Adversarial Attacks
	Adversarial Defenses

	Datasets, Models, and Inference
	Extension: Attacking Adversarial Defenses
	Prompts
	Details of Black-Box Defense Results
	Details of Defense Against Strong Attacks
	More Details about White-Box Defense

