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ABSTRACT

Understanding the generalization of machine learning algorithms remains a fun-
damental challenge. While mutual information provides a powerful lens for anal-
ysis, we introduce a more flexible, one-parameter family of information-theoretic
generalization bounds based on the vector-valued Lp-norm correlation measure,
Vα. Our framework unifies and interpolates between several existing information-
theoretic guarantees, including those based on total variation and Rényi informa-
tion. The primary conceptual contribution of our work emerges at α = 2, where
our framework yields a novel and intuitive variance-based bound. This result es-
tablishes the variance of the algorithm’s output distribution, VarS [p(w|S)], as a
direct, data-dependent measure of algorithmic stability. We prove that this mea-
sure directly controls the generalization error, thus providing a new, information-
theoretic perspective on how unstable (high-variance) algorithms fail to general-
ize. Extensive simulations demonstrate that our bounds, particularly for α = 2,
can be significantly tighter than classical mutual information guarantees.

1 INTRODUCTION

Understanding why large, over-parameterized models generalize well despite their capacity to mem-
orize training data remains a central challenge in modern machine learning (Shalev-Shwartz & Ben-
David, 2014). While classical complexity measures often fail to provide tight bounds for deep
networks, information-theoretic approaches offer a powerful alternative by linking generalization
error to the information a learned hypothesis W retains about the training data S. A seminal result
by Xu & Raginsky (2017) formalized this, showing that for σ2-subgaussian losses, the expected
generalization gap is controlled by the mutual information (MI) I(S;W ).

This foundational work has inspired a rich literature aiming to refine and extend MI-based bounds.
To tighten guarantees for deep networks, recent work has focused on “slicing” the mutual informa-
tion to analyze per-layer or per-node dependencies (Nadjahi et al., 2024; Asadi et al., 2018). Others
have developed techniques to achieve faster, O(1/n) rates under specific assumptions (Wang et al.,
2023) or have used supersampling techniques to improve tightness (Bu et al., 2020). A key exten-
sion is the use of Conditional Mutual Information (CMI) (Steinke & Zakynthinou, 2020), which
often yields stronger, high-probability guarantees. Despite these strengths, MI-based bounds exhibit
notable limitations, such as looseness in high dimensions and a lack of adaptability, which motivate
the exploration of alternative measures (Haghifam et al., 2023).

Recognizing these limitations, many have explored other divergences and metrics. Rényi diver-
gences, which are closely related to our work, have been used to derive generalization bounds (Es-
posito et al., 2019) and have found applications in PAC-Bayesian frameworks (Guan et al., 2025).
Aminian et al. (2022) specifically leveraged the convexity of information measures, including Rényi-
type quantities, to tighten expected error bounds. More broadly, families like f -divergences (Liese
& Vajda, 2006) and Integral Probability Metrics (IPMs) (M”uller, 1997; Sriperumbudur et al., 2012)
provide general tools for bounding generalization. In parallel, Wasserstein distances from optimal
transport theory have been successfully used to analyze the stability and generalization of gradient-
based optimizers (Lopez & Jog, 2018; Rodrı́guez-Gálvez et al., 2021; Zhu et al., 2024).

Complementary to these information-theoretic views are approaches rooted in algorithmic stability.
The foundational concept of uniform stability (Bousquet & Elisseeff, 2002) has led to highly refined,
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sharp bounds for stable algorithms like SGD (Bousquet et al., 2020; Feldman & Vondr’ak, 2019).
For stochastic algorithms, a veritable “zoo” of Bayesian stability notions has been cataloged, high-
lighting the diversity of approaches in this space (Moran et al., 2023). This existing work provides
a backdrop for the variance-based perspective that emerges from our framework, a perspective that
connects to other recent studies exploring the role of variance in variational inference (Wei et al.,
2025), deep architectures (Li et al., 2025), and margin distributions (Chuang et al., 2021).

Several recent works have aimed to consolidate these disparate approaches into unifying frame-
works (Raginsky et al., 2023; Haghifam et al., 2021). Most notably, Chu & Raginsky (2023)
presented a highly general unification using the abstract language of Orlicz spaces. While these
frameworks achieve a high degree of mathematical generality, our work offers a complementary
unification. By leveraging the Vα measure, we provide a concrete framework that uses a single,
intuitive parameter, α, to smoothly interpolate between specific, well-understood measures—total
variation, mutual information, and variance.

Contributions. This paper introduces a unified framework for deriving generalization error
bounds using the tunable correlation measure Vα(S;W ). Our primary contributions are:

1. A Unified Information-Theoretic Framework: We derive a one-parameter family of gen-
eralization bounds that, by tuning α, recovers and interpolates between guarantees based
on mutual information (α = 1) and total variation (α → ∞).

2. A New Variance-Based Perspective on Stability: The framework’s key conceptual in-
sight emerges at α = 2, yielding a novel bound that establishes the algorithm’s output
variance, VarS [p(w|S)], as a direct, data-dependent measure of its stability, providing a
new information-theoretic explanation for how unstable (high-variance) algorithms fail to
generalize.

3. A Sufficient Condition for Non-Vacuous Generalization: To demonstrate the utility of
our variance-based bound, we introduce Adaptive Density Stability, a novel pointwise sta-
bility condition, and prove that algorithms satisfying it achieve non-vacuous generalization
rates within our framework.

4. Stronger Empirical Guarantees: We validate our framework on a Bayesian linear re-
gression task, showing that our V2-based bound is empirically tighter than both classical
MI and contemporary Conditional Mutual Information (CMI) bounds (Steinke & Zakyn-
thinou, 2020).

The rest of the paper is organized as follows. Section 2 establishes the foundational preliminar-
ies, including the standard statistical learning setup, a survey of key algorithmic stability notions,
the definition of correlation measure Vα, and a proof of its convexity. Section 3 details our core
theoretical contributions: Subsection 3.1 derives the primary generalization bound in terms of Vα

(Theorem 3.1), while Subsection 3.2 provides bounds on the associated Lp-norm term. Section 4
delves into specific instantiations of α, recovering the mutual-information bound at α = 1, a novel
variance-based bound at α = 2, and the worst-case total-variation bound as α → ∞; these analy-
ses illuminate the inherent trade-offs and flexibility of our framework. Section 5 introduces adaptive
density stability, a new distribution-centric measure that directly ties output variability to generaliza-
tion performance. Section 6 empirically validates our approach through comprehensive simulations,
comparing Vα-based bounds against classical mutual-information baselines across diverse canonical
channels and noisy classification tasks. Finally, Section 7 summarizes key implications and outlines
avenues for future work.

2 PRELIMINARIES

In this section, we establish the foundational concepts from statistical learning theory and introduce
the Vα correlation measure that is central to our framework.

2.1 STATISTICAL LEARNING SETUP

We follow the standard statistical learning framework. Let Z = X × Y be the instance space
and W be the hypothesis space. A learning algorithm is a procedure that maps a training sample
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S = (Z1, . . . , Zn), drawn i.i.d. from an unknown data-generating distribution µ, to a hypothesis
W ∈ W . This mapping is often randomized and is formally described by a conditional probability
distribution PW |S . The joint distribution over hypotheses and samples is thus PW,S = µ⊗n⊗PW |S .

The performance of a hypothesis w ∈ W is measured by its population risk, defined with respect to
a loss function ℓ(w, z):

Lµ(w) := EZ∼µ[ℓ(w,Z)] =

∫
Z
ℓ(w, z)µ(dz). (1)

Since µ is unknown, an algorithm typically minimizes the empirical risk on the training set S:

LS(w) :=
1

n

n∑
i=1

ℓ(w,Zi). (2)

The key challenge is to ensure that a low empirical risk translates to a low population risk. This is
captured by the generalization gap, defined for a learned hypothesis W as gen(W,S) := Lµ(W )−
LS(W ). We are interested in its expected value, the generalization error:

gen
(
µ, PW |S

)
:= EPW,S

[Lµ(W )− LS(W )] . (3)

The expected population risk can then be decomposed as:

E [Lµ(W )] = E [LS(W )] + gen
(
µ, PW |S

)
. (4)

This decomposition reveals the fundamental trade-off in machine learning: an algorithm must
achieve a low empirical risk on the training data while also maintaining a small generalization error.

Algorithmic Stability. The concept of stability formalizes the intuition that algorithms that are
insensitive to small changes in the training data tend to generalize well. Prominent notions in-
clude uniform stability, which bounds the worst-case change in loss from replacing a single data
point (Bousquet & Elisseeff, 2002), and various information-theoretic stability measures that use di-
vergences to quantify the sensitivity of the output distribution PW |S (Dwork et al., 2015; Raginsky
et al., 2016).

Subgaussian Random Variables. Our analysis relies on the notion of subgaussianity, which char-
acterizes random variables with tails at least as light as a Gaussian.
Definition 2.1 (Vershynin (2018)). A random variable X is σ2-subgaussian if for all λ ∈ R, its
moment generating function satisfies E

[
eλ(X−E[X])

]
≤ e

λ2σ2

2 . This implies a tail bound P[|X −
E[X]| > t] ≤ 2e−t2/(2σ2) and a variance bound Var[X] ≤ σ2. A key result, Hoeffding’s Lemma,
states that if a random variable is bounded in [a, b], it is (b−a)2

4 -subgaussian.
Definition 2.2. The Lα-norm of a random variable X is defined as

∥X∥α =
(
E
[
|X|α

]) 1
α . (5)

The Lα-norm is an increasing function of α, and for α > 1, the Lα-norm is convex in X .

In Xu & Raginsky (2017), mutual information of W and S, is related to the generalization error.
Theorem 2.1 (Generalization error and stability (Xu & Raginsky, 2017)). Suppose ℓ(w,Z) is σ2-
subgaussian under Z ∼ µ for all w ∈ W , then the generalization error is bounded as∣∣∣EPW,S

[
gen(µ, PW |S)

]∣∣∣ ≤√2σ2

n
I(W ;S). (6)

2.2 THE Vα CORRELATION MEASURE

Our framework is built upon the vector-valued Lp-norm correlation measure Vα(A;B), introduced
by Mojahedian et al. (2019). For a joint distribution pAB , the measure is defined for α ≥ 1 as:

Vα(A;B) := Eb∼pB

[(
Ea∼pA

∣∣∣∣pB|A(b|a)
pB(b)

− 1

∣∣∣∣α)1/α
]
. (7)
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The measure is non-decreasing in α. It provides a tunable bridge between several well-known
dependence measures. For α = 1, it recovers the total variation distance between the joint and
product distributions: V1(A;B) = ∥pAB − pApB∥1. It is also closely related to the Rényi mutual
information of order α, Iα(A;B), via the inequality (Mojahedian et al., 2019, Prop. 10):

2
1
α′ Iα(A;B) − 1 ≤ Vα(A;B) ≤ 2

1
α′ Iα(A;B) + 1, (8)

where α′ is the Hölder conjugate of α. This property allows Vα to smoothly interpolate from a linear
dependence measure (total variation) to an exponential one (related to Rényi information).

2.3 CONVEXITY OF Vα

A key property of the Vα measure, which is central to its analytical tractability, is its convexity. For
discrete spaces, we can express Vα as a sum over the outcomes of B:

Vα(A;B) =
∑
b∈B

(
Ea∼pA

[
|pB|A(b|a)− pB(b)|α

])1/α
=
∑
b∈B

∥pB|A(b|·)− pB(b)∥α,pA
, (9)

where ∥ · ∥α,pA
denotes the Lα-norm with respect to the measure pA. Since the Lα-norm is convex

for α ≥ 1, and sums of convex functions are convex, Vα(A;B) is a convex function of the condi-
tional distributions pB|A(·|a) and the marginal distribution pB . This property holds analogously for
continuous spaces, where the sum is replaced by an integral. The convexity of Vα enables its use in
optimization-based interpretations and simplifies its analysis.

3 THE Vα-INFORMATION BOUND

Having established the necessary preliminaries, we now present our main theoretical results. We
first introduce a general bound on the expected generalization error in terms of the Vα correlation
measure and then provide a more concrete corollary under the subgaussian loss assumption.

3.1 A GENERAL BOUND ON THE GENERALIZATION ERROR

Our main theorem provides a flexible, one-parameter family of bounds on the generalization error.
The proof, which relies on a standard application of Hölder’s inequality, is provided in Appendix B.
Theorem 3.1. For any learning algorithm and any loss function, the expected generalization error
is bounded for every α ≥ 1 as:

gen
(
µ, PW |S

)
≤ sup

w∈W
∥LS(w)− Lµ(w)∥α′ · Vα(S;W ), (10)

where α′ denotes the Hölder conjugate of α.
Remark (Symmetry of the Bound). The bound can also be expressed in terms of Vα(W ;S) by
swapping the roles of S and W in the derivation (see Appendix C). This allows the bound to be
tightened by taking the minimum of the two forms:

gen
(
µ, PW |S

)
≤ min

{
sup
w∈W

∥LS(w)− Lµ(w)∥α′ · Vα(S;W ),

sup
s∈Zn

∥Ls(W )− Lµ(W )∥α′ · Vα(W ;S)

}
. (11)

Remark (The Trade-off in α). The bound in Theorem 3.1 reveals a fundamental trade-off controlled
by the parameter α. The information term, Vα(S;W ), is a non-decreasing function of α (Mojahe-
dian et al., 2019). In contrast, the loss sensitivity term, ∥LS(w) − Lµ(w)∥α′ , is an Lp-norm of a
random variable, which is non-increasing in α. These opposing trends suggest that the bound can
be tightened by optimizing over α to find the optimal balance for a given problem.

To illustrate this trade-off, consider a simple Z-channel model where the channel input S is a single
sample from a Bernoulli(q) distribution, and the output is the hypothesis W . Let the loss be the
squared error ℓ(w, z) = (w − z)2. In Figure 1, we plot the two components of our bound and their
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product as a function of α. The information term (Vα) grows with α, while the loss sensitivity term
(∥ · ∥α′ ) shrinks. Their product, our bound, achieves a minimum, in this case at α = 2, where it
becomes tightest. For comparison, we also plot the classical mutual information bound, which is
looser across the entire range.
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Figure 1: Illustration of the trade-off in Theorem 3.1. As α increases, the information term
Vα(S;W ) grows while the loss sensitivity term ∥ · ∥α′ shrinks. Their product (our bound) is mini-
mized at an intermediate value, providing a tighter guarantee than the classical mutual information
bound.

3.2 A BOUND FOR SUBGAUSSIAN LOSSES

While Theorem 3.1 is general, we can derive a more concrete and directly comparable bound by
assuming the loss is subgaussian. This allows us to bound the loss sensitivity term, yielding the
following corollary. The proof is provided in Appendix D.

Corollary 3.1. Suppose that the loss ℓ(w,Z) is σ2-subgaussian under Z ∼ µ for all w ∈ W . Then,
for any α ≥ 1, the generalization error satisfies:

gen
(
µ, PW |S

)
≤

(√
2σ2

n
(α′)1/α

′
Γ

(
α′

2

)1/α′)
Vα(S;W ), (12)

where Γ(·) is the Gamma function. For large α′, this can be further simplified to

O
(√

σ2α′

n

)
Vα(S;W ).

4 SPECIAL CASES OF α

The true power of the Vα framework lies in its ability to interpolate between different types of
generalization guarantees by tuning the parameter α. In this section, we analyze the three most
illustrative special cases: α = 1 (mutual information), α = 2 (variance and stability), and α → ∞
(worst-case deviation).

4.1 THE α = 1 CASE: RECOVERING THE TOTAL VARIATION AND MUTUAL INFORMATION
BOUNDS

For α = 1, the Hölder conjugate is α′ = ∞. In this regime, the Lα′ -norm becomes the essential
supremum, and our bound from Theorem 3.1 takes the form:

gen
(
µ, PW |S

)
≤ sup

w∈W

{
ess supS∼µ⊗n |LS(w)− Lµ(w)|

}
· V1(S;W ). (13)

5
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As noted in Section 2, V1(S;W ) is precisely the total variation distance ∥PW,S − PWPS∥1. By
applying Pinsker’s inequality, which states that ∥P −Q∥1 ≤

√
2DKL(P∥Q), we can further bound

the total variation term by the mutual information:

gen
(
µ, PW |S

)
≤ sup

w∈W
{ess supS |LS(w)− Lµ(w)|} ·

√
2I(S;W ). (14)

This recovers a bound that, like the classical result of Xu & Raginsky (2017), depends on the square
root of the mutual information, but is weighted by a worst-case deviation of the empirical risk rather
than a subgaussian constant.

4.2 THE α = 2 CASE: A VARIANCE-BASED PERSPECTIVE ON ALGORITHMIC STABILITY

The case of α = 2 is the most conceptually novel outcome of our framework. Here, the Hölder
conjugate is α′ = 2, and the L2-norm of a zero-mean random variable is its standard deviation. This
specialization yields a direct and intuitive connection between generalization and the variance of the
learning algorithm’s output distribution.

Theorem 4.1. Suppose the loss ℓ(w,Z) is σ2-subgaussian under Z ∼ µ for all w ∈ W . Then the
generalization error is bounded as:

gen
(
µ, PW |S

)
≤
∑
w∈W

√
σ2

n
VarS

[
p(w|S)

]
. (15)

Proof Sketch. For α = 2, Corollary 3.1 simplifies, giving gen ≤
√

σ2

n V2(S;W ). The theorem
follows by applying an identity from Mojahedian et al. (2019), which states that V2(S;W ) =∑

w

√
VarS [p(w|S)]. The full proof is in Appendix E. For continuous hypothesis spaces, the sum

is replaced by an integral, provided it is well-defined.

The bound in Theorem 4.1 reveals a direct link between generalization and algorithmic stability.
Each term VarS [p(w|S)] quantifies the variability of the algorithm’s output distribution across dif-
ferent training samples, serving as a data-dependent measure of its stability. High variance implies
sensitivity to data resampling, a hallmark of overfitting, which loosens the bound. Conversely, low
variance implies robustness, leading to a tighter guarantee.

Relationship to Classical Stability. We emphasize that this variance-based notion of stability is
distinct from classical deterministic measures like uniform stability (Bousquet & Elisseeff, 2002).
While uniform stability offers a worst-case guarantee on the change in loss from altering a single
data point, our measure captures the on-average sensitivity of the entire output distribution over
the data-generating process. Our framework does not recover or generalize these classical bounds.
Instead, its contribution is to propose this variance as a new, direct measure of stability and to prove
its fundamental connection to the generalization error.

Comparison to Uniform Stability Bounds. A natural question is how our variance-based bound
compares to bounds based on uniform stability, such as the sharp results of Feldman & Vondr’ak
(2019) or Bousquet et al. (2020). A direct analytical comparison is difficult, as the bounds de-
pend on fundamentally different quantities. Uniform stability bounds depend on a worst-case, data-
independent parameter γ, providing strong robustness guarantees. Our bound is data-dependent and
average-case; it can be much tighter if an algorithm is stable on average, even if it is not strictly
uniformly stable. The approaches are therefore complementary, with our framework offering an al-
ternative perspective that can be more reflective of typical performance, as shown in our experiments
in Section 6.

4.3 THE α → ∞ CASE: WORST-CASE DEVIATION BOUND

As α → ∞, its conjugate α′ → 1. The L1-norm of the (zero-mean) risk deviation is ES [|LS(w)−
Lµ(w)|]. The information term V∞(S;W ) becomes a measure of the maximum pointwise deviation

6
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of the conditional from the marginal:

V∞(S;W ) =
∑
w∈W

sup
s∈Zn

|p(w|s)− p(w)|. (16)

The resulting bound is thus:

gen
(
µ, pW |S

)
≤ sup

w∈W
{ES [|LS(w)− Lµ(w)|]} · V∞(S;W ). (17)

This bound captures a trade-off between the average absolute deviation of the loss and the worst-case
deviation of the algorithm’s output distribution.

5 ADAPTIVE DENSITY STABILITY: A SUFFICIENT CONDITION FOR
NON-VACUOUS BOUNDS

The variance-based bound in Theorem 4.1 provides a powerful conceptual link between stability
and generalization. However, a key question remains: under what formal conditions on a learning
algorithm is the variance term VarS [p(w|S)] guaranteed to be small enough to yield a non-vacuous,
decaying generalization bound? To address this, we introduce a novel, strong stability condition and
show that it serves as a sufficient guarantee for our framework to produce meaningful generalization
rates.
Definition 5.1 (Adaptive Density Stability). A learning algorithm is said to be (γ, n)-adaptively
density stable if for all datasets S, S′ of size n that differ in a single sample, and for all hypotheses
w ∈ W , the following holds:

|p(w|S)− p(w|S′)| ≤ γnp(w). (18)

The stability parameter γn may depend on the sample size n.

This definition formalizes a notion of distributional stability where the allowed change in the output
density at a point w is relative to the marginal probability p(w). This adaptively places a stronger
stability constraint on the low-probability tails of the output distribution. As shown in Appendix F,
this strong, pointwise condition implies both classical TV stability and Expected Uniform Stability.

Our main result in this section is to show that algorithms satisfying this condition have a controlled
V2 measure, which in turn bounds the generalization error.
Theorem 5.1. If a learning algorithm is (γn, n)-adaptively density stable, then its V2 correlation
measure is bounded by:

V2(S;W ) ≤
√

2γnn. (19)

Consequently, for a σ2-subgaussian loss, the generalization error is bounded by:

gen
(
µ, PW |S

)
≤
√

2σ2γn. (20)

Proof. The proof, which involves an application of the Efron-Stein inequality, is provided in Ap-
pendix G.

On Non-Vacuousness. At first glance, the bound
√
2σ2γn appears independent of n and poten-

tially vacuous. However, the utility of any stability-based framework hinges on the stability param-
eter itself improving as the sample size grows. For our bound to be meaningful, we require the
stability parameter γn to decrease with n.

This requirement is standard in the literature. For many algorithms, particularly those regularized
by noise (e.g., Stochastic Gradient Langevin Dynamics), stability is achieved by setting noise levels
or other parameters relative to the sample size. It is often possible to show that stability parameters
analogous to ours can be made to scale as γn = O(1/n) (e.g., Raginsky et al., 2016). If an algorithm
satisfies our condition with such a rate, our bound becomes non-vacuous and recovers a standard
learning rate:

gen ≤
√

2σ2 · O(1/n) = O
(

1√
n

)
. (21)

7
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Thus, our framework is not inherently vacuous. Its practical utility is conditioned on verifying the
decay rate of γn for a given algorithm, which is the central task in applying any such generalization
bound. While a full analysis for specific complex algorithms is outside the scope of this paper,
Definition 5.1 provides a clear and sufficient condition for our variance-based theory to be predictive.

6 EXPERIMENTS

In this section, we empirically validate our theoretical framework. While our bounds hold for any
α ≥ 1, we focus on the α = 2 case, as the resulting variance-based bound (Theorem 4.1) represents
our most significant conceptual contribution. We present a new experiment on a Bayesian linear
regression task to demonstrate the bound’s performance in a practical machine learning scenario,
comparing it against strong contemporary baselines. Additional simulations on canonical channel
models are provided in Appendix H.

6.1 SETUP: BAYESIAN LINEAR REGRESSION

Learning Task. We consider a one-dimensional Bayesian linear regression task where data is
generated as y = wtruex + ϵ, with x ∼ N (0, 1) and i.i.d. Gaussian noise ϵ ∼ N (0, σ2). To
ensure the loss is σ2

loss-subgaussian, as required by our theory, we use a clipped squared error loss:
ℓ(w, z) = min{(y − wx)2, c}, where c > 0 is a fixed clipping constant.

Learning Algorithm. The algorithm is a standard Bayesian linear regression with a Gaussian prior
on the weight, p(w) = N (0, λ−1), where λ is the prior precision. Due to conjugacy, the posterior
distribution p(w|S) is also a Gaussian, which allows for the analytical computation of all quantities
required for the bounds.

6.2 RESULTS: COMPARISON WITH INFORMATION-THEORETIC BASELINES

We evaluate our proposed V2 bound from Theorem 4.1 against three key quantities: the empirically
estimated true generalization error, the classical mutual information (MI) bound of Xu & Raginsky
(2017), and the stronger, contemporary Conditional Mutual Information (CMI) bound of Steinke
& Zakynthinou (2020). All quantities are estimated via Monte Carlo simulation across multiple
training sets of varying sizes n. Full implementation details are provided in Appendix H.

The results are presented in Figure 2. As expected, the CMI bound is consistently tighter than the
classical MI bound. Our key finding is that the V2 bound is even tighter than the CMI bound across
all sample sizes, providing a sharp and valid upper bound that closely tracks the true generalization
error. This result demonstrates that the variance-based perspective offered by our framework can
yield not only conceptual insights but also state-of-the-art empirical guarantees.

7 CONCLUSION AND FUTURE WORK

In this work, we introduced a flexible, one-parameter family of information-theoretic generaliza-
tion bounds based on the Vα correlation measure. Our framework provides a unified lens through
which to view and interpolate between guarantees based on mutual information, total variation, and
variance. The primary conceptual contribution of our work emerged at the α = 2 specialization,
which yielded a novel and intuitive variance-based bound. This result establishes the variance of
an algorithm’s output distribution, VarS [p(w|S)], as a direct, data-dependent measure of its stabil-
ity, proving that this quantity directly controls the generalization error. Our empirical validation on
a Bayesian linear regression task demonstrated that this new perspective is not only theoretically
insightful but can also yield generalization bounds that are significantly tighter than strong contem-
porary baselines like Conditional Mutual Information.

While our theoretical results are general, a key limitation of our current empirical validation is its
focus on models where the relevant information-theoretic quantities are analytically tractable. This
is a common challenge in the field, as estimating measures like I(S;W ) or Vα(S;W ) for high-
dimensional models such as deep neural networks remains a significant computational hurdle. This
practical consideration motivates several important directions for future research.
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Figure 2: Comparison of generalization bounds in Bayesian linear regression. The plot shows the
true generalization error (estimated empirically) against the MI bound (Xu & Raginsky, 2017), the
CMI bound (Steinke & Zakynthinou, 2020), and our proposed V2 variance-based bound (Theo-
rem 4.1). The V2 bound provides the tightest upper bound on the generalization error across all
sample sizes.

Future work could proceed along the following lines:

• Practical Estimation for Deep Networks: Developing scalable and reliable estimators
for the Vα(S;W ) measure for deep neural networks. This would enable the application of
our bounds to modern, overparameterized architectures and allow for a direct test of their
utility on large-scale datasets.

• Extending the Theoretical Framework: Broadening our analysis to derive high-
probability bounds under weaker assumptions and extending the framework to handle non-
subgaussian or heavy-tailed loss distributions.

• Analysis via Adaptive Density Stability: A key theoretical direction is to formally ana-
lyze which classes of algorithms satisfy strong stability conditions, such as the Adaptive
Density Stability we introduced, in order to provide a priori guarantees that the variance
term in our bound will be small.

• Adaptive Selection of α: Developing principled methods for adaptively selecting the opti-
mal value of α for a given learning problem, which would allow practitioners to obtain the
tightest possible bound from our framework.
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A LLM USAGE

A Large Language Model (LLM) was used as a writing and editing assistant during the preparation
of this manuscript. Its role was limited to improving clarity, flow, and structure, including polishing
sentences, suggesting concise alternatives, providing feedback on section organization, refining the
articulation of key concepts, and assisting with LaTeX formatting. All research ideas, mathematical
derivations, experimental design, and scientific claims are solely the work of the human authors,
who take full responsibility for the final content of the paper.

B PROOF OF THEOREM 3.1

The expected generalization error is defined as:

gen
(
µ, PW |S

)
= EPW,S

[Lµ(W )− LS(W )] . (22)

We can rewrite this expectation by first conditioning on W :

gen
(
µ, PW |S

)
= EW∼PW

[
ES∼PS|W [Lµ(W )− LS(W )]

]
. (23)

The core of the proof relies on the following identity, which connects the conditional expectation
over PS|W to an expectation over the marginal PS :

ES∼PS|W [Lµ(W )− LS(W )] = ES∼PS

[
(Lµ(W )− LS(W ))

(
pS|W (S|W )

pS(S)

)]
. (24)

This holds because for any function f(S), ES∼PS|W [f(S)] =
∫
f(s)pS|W (s|W )ds =∫

f(s)
pS|W (s|W )

pS(s) pS(s)ds.

Furthermore, we note that ES∼PS
[LS(W )] = Lµ(W ), since:

ES∼µ⊗n [LS(W )] = ES∼µ⊗n

[
1

n

n∑
i=1

ℓ(W,Zi)

]
=

1

n

n∑
i=1

EZi∼µ [ℓ(W,Zi)] = Lµ(W ). (25)

This implies that ES∼PS
[Lµ(W ) − LS(W )] = 0. Using this, we can rewrite the identity in equa-

tion 24 as:

ES∼PS|W [Lµ(W )− LS(W )] = ES∼PS

[
(Lµ(W )− LS(W ))

(
pS|W (S|W )

pS(S)
− 1

)]
. (26)

Substituting this back into the expression for the generalization error gives:

gen = EW∼PW

[
ES∼PS

[
(Lµ(W )− LS(W ))

(
pS|W (S|W )

pS(S)
− 1

)]]
(27)

≤ EW∼PW

[
ES∼PS

[
|Lµ(W )− LS(W )| ·

∣∣∣∣pS|W (S|W )

pS(S)
− 1

∣∣∣∣]] (28)

We now apply Hölder’s inequality to the inner expectation over S with conjugate exponents α′ and
α:

gen ≤ EW∼PW

[
∥Lµ(W )− LS(W )∥α′ ·

∥∥∥∥pS|W (S|W )

pS(S)
− 1

∥∥∥∥
α

]
(29)

= EW∼PW

[
∥LS(W )− Lµ(W )∥α′ ·

(
ES∼PS

∣∣∣∣pW |S(W |S)pS(S)
pW (W )pS(S)

− 1

∣∣∣∣α)1/α
]

(30)

where in equation 30 we used Bayes’ rule, pS|W = pW |SpS/pW , in the second term.

We can now pull the supremum of the loss sensitivity term out of the expectation over W :

gen ≤ sup
w∈W

{
∥LS(w)− Lµ(w)∥α′

}
· EW∼PW

[(
ES∼PS

∣∣∣∣pW |S(W |S)
pW (W )

− 1

∣∣∣∣α)1/α
]

(31)

= sup
w∈W

{
∥LS(w)− Lµ(w)∥α′

}
· Vα(S;W ), (32)

where the final step uses the definition of Vα(S;W ) from equation 7. This completes the proof.
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C PROOF OF REMARK 3.1

The proof of the alternative form of the bound begins from equation 28 in the proof of Theorem 3.1.
Instead of conditioning on W first, we can write the total expectation by conditioning on S first:

gen
(
µ, PW |S

)
≤ EW∼PW

[
ES∼PS

[
|Lµ(W )− LS(W )| ·

∣∣∣∣pS|W (S|W )

pS(S)
− 1

∣∣∣∣]] (33)

= ES∼PS

[
EW∼PW

[
|LS(W )− Lµ(W )| ·

∣∣∣∣pS|W (S|W )

pS(S)
− 1

∣∣∣∣]] . (34)

We now apply Hölder’s inequality to the inner expectation over W with conjugate exponents α′ and
α:

gen ≤ ES∼PS

[
∥LS(W )− Lµ(W )∥α′ ·

∥∥∥∥pS|W (S|W )

pS(S)
− 1

∥∥∥∥
α

]
(35)

= ES∼PS

[
∥LS(W )− Lµ(W )∥α′ ·

(
EW∼PW

∣∣∣∣pS|W (S|W )

pS(S)
− 1

∣∣∣∣α)1/α
]

(36)

We can now pull the supremum of the loss sensitivity term out of the expectation over S:

gen ≤ sup
s∈Zn

{
∥Ls(W )− Lµ(W )∥α′

}
· ES∼PS

[(
EW∼PW

∣∣∣∣pS|W (s|W )

pS(s)
− 1

∣∣∣∣α)1/α
]

(37)

= sup
s∈Zn

{
∥Ls(W )− Lµ(W )∥α′

}
· Vα(W ;S). (38)

The final, tightened bound is obtained by taking the minimum of this result and the one derived in
Theorem 3.1.

D PROOF OF COROLLARY 3.1

The proof of Corollary 3.1 relies on combining the general bound from Theorem 3.1 with a standard
result that bounds the Lp-norm of a subgaussian random variable.

We begin by stating the necessary lemma, which bounds the moments of a subgaussian random
variable.

Lemma D.1 (see, e.g., Rivasplata (2012), Proposition 3.2). If a random variable X is σ2-
subgaussian, then for any p ≥ 1, its Lp-norm is bounded as:

∥X∥p = (E |X|p)1/p ≤
√
2σ2p1/pΓ

(p
2

)1/p
, (39)

where Γ(·) is the Gamma function.

Now, consider the loss sensitivity term in Theorem 3.1: supw∈W ∥LS(w) − Lµ(w)∥α′ . The term
inside the norm, LS(w) − Lµ(w), is the difference between an empirical mean of n i.i.d. ran-
dom variables and its expectation. By the assumption of Corollary 3.1, the loss ℓ(w,Z) is σ2-
subgaussian for any fixed w. A standard property of subgaussian variables is that their sum is
also subgaussian, with the variance parameter scaling accordingly. Therefore, the empirical risk
LS(w) =

1
n

∑n
i=1 ℓ(w,Zi) is a σ2

n -subgaussian random variable.

This implies that the zero-mean random variable Xw = LS(w)−Lµ(w) is σ2

n -subgaussian. We can
now apply Lemma D.1 with p = α′ and variance parameter σ2

n to bound its Lα′ -norm:

∥LS(w)− Lµ(w)∥α′ ≤
√

2 · σ
2

n
(α′)1/α

′
Γ

(
α′

2

)1/α′

. (40)

Since this bound holds uniformly for all w ∈ W , it also holds for the supremum over W .
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Finally, substituting this inequality back into the main bound from Theorem 3.1 yields the desired
result:

gen
(
µ, PW |S

)
≤ sup

w∈W
{∥LS(w)− Lµ(w)∥α′} · Vα(S;W ) (41)

≤

(√
2σ2

n
(α′)1/α

′
Γ

(
α′

2

)1/α′)
Vα(S;W ). (42)

This completes the proof.

E PROOF OF THEOREM 4.1

The variance-based bound in Theorem 4.1 is a specialization of our main result, Theorem 3.1, for
the case of α = 2. The proof proceeds in three steps.

Step 1: Specialize the general bound to α = 2. We begin with the general bound from Theo-
rem 3.1:

gen
(
µ, PW |S

)
≤ sup

w∈W
∥LS(w)− Lµ(w)∥α′ · Vα(S;W ). (43)

For α = 2, the Hölder conjugate is α′ = 2. The L2-norm of the zero-mean random variable
LS(w)− Lµ(w) is, by definition, its standard deviation:

∥LS(w)− Lµ(w)∥2 =
(
ES

[
(LS(w)− Lµ(w))

2
])1/2

=
√
VarS [LS(w)]. (44)

Substituting α = 2 and this identity into the general bound gives:

gen
(
µ, PW |S

)
≤ sup

w∈W

{√
VarS [LS(w)]

}
· V2(S;W ). (45)

Step 2: Apply the subgaussian assumption. The theorem assumes that the loss ℓ(w,Z) is σ2-
subgaussian for all w. As noted in the proof of Corollary 3.1, this implies that the empirical risk
LS(w) is a σ2

n -subgaussian random variable. A key property of subgaussian variables (see Defini-
tion 2.1) is that their variance is bounded by their subgaussian parameter. Therefore, we have:

VarS [LS(w)] ≤
σ2

n
for all w ∈ W. (46)

Substituting this uniform bound into equation 45, we get:

gen
(
µ, PW |S

)
≤
√

σ2

n
· V2(S;W ). (47)

Step 3: Express V2(S;W ) in terms of variance. The final step is to use an alternative identity
for the V2 measure provided by Mojahedian et al. (2019, Sec. III). For a discrete hypothesis space
W , this identity is:

V2(S;W ) =
∑
w∈W

√
VarS [p(w|S)]. (48)

Substituting this identity into equation 47 yields the final result for the discrete case:

gen
(
µ, PW |S

)
≤
∑
w∈W

√
σ2

n
VarS [p(w|S)]. (49)

Extension to Continuous Spaces. For a continuous hypothesis space, the sum in the identity for
V2 (equation 48) is replaced by an integral:

V2(S;W ) =

∫
W

√
VarS [p(w|S)] dw, (50)

where p(w|S) is now the probability density function. The final bound in the theorem then takes the
corresponding integral form, provided the integral is well-defined. This completes the proof.
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F DEEPER ANALYSIS OF ADAPTIVE DENSITY STABILITY

In this section, we provide a more detailed analysis of the Adaptive Density Stability condition in-
troduced in Definition 5.1. We demonstrate that despite its novelty, our definition is well-grounded
within the broader literature on algorithmic stability by formally connecting it to several established
concepts. These connections show that our condition is a strong and meaningful notion of distribu-
tional stability.

F.1 CONNECTION TO TOTAL VARIATION (TV) STABILITY

Our stability notion is a strong, pointwise condition that directly implies the standard integrated
notion of Total Variation (TV) stability. An algorithm is considered TV-stable if the TV distance
between its output distributions on any two neighboring datasets S and S′ is bounded. We show that
our condition provides such a bound.

By integrating our stability condition from Definition 5.1 over the hypothesis space W , we can
bound the TV distance:

∥p(w|S)− p(w|S′)∥TV =
1

2

∫
W

|p(w|S)− p(w|S′)| dw (51)

≤ 1

2

∫
W

γnp(w) dw (by Definition 5.1) (52)

=
γn
2

∫
W

p(w) dw =
γn
2
, (53)

since p(w) is a probability density. This proves that an algorithm that is (γn, n)-adaptively density
stable is also γn

2 -TV stable. Our pointwise criterion is therefore strictly stronger than the integrated
TV stability condition.

F.2 CONNECTION TO EXPECTED UNIFORM STABILITY

Furthermore, our distributional stability implies the classical notion of stability for the expected loss.
For a stochastic algorithm, Expected Uniform Stability is a natural extension of the definition from
Bousquet & Elisseeff (2002). Assuming a loss function ℓ(w, z) is bounded by a constant M , an
algorithm is β-stable if:

sup
z∈Z

∣∣∣EW∼pW |S [ℓ(W, z)]− EW ′∼pW |S′ [ℓ(W
′, z)]

∣∣∣ ≤ β. (54)

We show that our stability notion implies this property:∣∣∣EW∼pW |S [ℓ(W, z)]− EW ′∼pW |S′ [ℓ(W
′, z)]

∣∣∣ (55)

=

∣∣∣∣∫
W

ℓ(w, z)(p(w|S)− p(w|S′)) dw

∣∣∣∣ (56)

≤
∫
W

|ℓ(w, z)| · |p(w|S)− p(w|S′)| dw (57)

≤
∫
W

M · (γnp(w)) dw (using Definition 5.1 and |ℓ| ≤ M ) (58)

= Mγn

∫
W

p(w) dw = Mγn. (59)

Thus, an algorithm satisfying our condition with parameter γn also satisfies Expected Uniform Sta-
bility with parameter β = Mγn. This highlights that our condition is more fundamental, as stability
of the entire output distribution naturally implies the stability of an integrated property like its ex-
pected loss.
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F.3 COMPARISON WITH DIFFERENTIAL PRIVACY

It is also instructive to compare our stability notion to Differential Privacy (DP), another powerful
framework for ensuring distributional stability. An algorithm satisfying pure ϵ-DP adheres to:

p(w|S) ≤ eϵp(w|S′) ∀w, S, S′.

This multiplicative, worst-case guarantee is different from our additive, marginal-relative guarantee.
However, both enforce strong constraints on the output distribution. A known property of DP (often
called group privacy) allows it to be extended to a bound relative to the marginal p(w), yielding
p(w|S)
p(w) ≤ enϵ. This has a direct consequence on the term inside our V2 measure, implying an upper

bound on V2 itself: V2(S;W ) ≤ enϵ−1 ≈ nϵ for small ϵ. This suggests a deep connection between
the stability required for privacy and the stability required for generalization in our framework.

F.4 COMPARISON WITH BAYESIAN STABILITY

The framework of Bayesian stability, as surveyed in Moran et al. (2023), typically analyzes stability
by measuring the dissimilarity d(A(S),P) between the posterior A(S) and a reference distribution
P (often a prior), for example using the KL divergence. Our approach offers a complementary
perspective. It is a pairwise, leave-one-out style constraint, akin to Differential Privacy, rather
than a direct comparison to a fixed reference distribution.

The primary distinction is that our notion is a pointwise constraint on the absolute difference of the
densities, whereas a measure like KL-stability is an integrated constraint. This makes our condition
formally stronger in certain respects; it guarantees that for every single hypothesis w, the change in
its probability density is controlled, forbidding large local deviations that an integrated measure
like KL divergence might permit. This pointwise structure is also tailored for direct use with the
variance-based bounds in our paper, as the term |p(w|S)− p(w|S′)| appears naturally in the Efron-
Stein inequality analysis. In essence, our work proposes a stability definition that is not strictly
“Bayesian” in the sense of Moran et al. (2023) but is a strong, distributional, and well-suited tool for
our specific analytical pathway.

G PROOF OF THEOREM 5.1

Proof. The theorem states that if a learning algorithm is (γn, n)-adaptively density stable, its gener-
alization error for a σ2-subgaussian loss is bounded by gen ≤

√
2σ2γn. The proof proceeds by first

establishing a bound on the V2(S;W ) measure under this stability condition, and then substituting
this result into the intermediate bound from equation 47:

gen
(
µ, PW |S

)
≤
√

σ2

n
V2(S;W ). (60)

Our goal is therefore to show that Adaptive Density Stability implies V2(S;W ) ≤
√
2γnn.

gen ≤
√

σ2

n
V2(S;W ), (61)

Assume the definition of V2(S;W ) as follows

V2(S;W ) = EpW

(EpS

[(
pW |S(w|s)
pW (w)

− 1

)2
])1/2

 . (62)

Then, applying the Efron-Stein inequality (see Boucheron et al., 2013, Chapter 3) yields

V2(S;W ) ≤ EpW

(EpS

[
n∑

i=1

Vari

(
p(w|S)
p(w)

)])1/2
 . (63)
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If the stability condition

|p(w|S)− p(w|S′)|
p(w)

≤ γn, (64)

holds for all neighboring datasets S, S′, then

Vari

(
p(w|S)
p(w)

)
≤ γ2

n

4
. (65)

This yields the intermediate bound

V2(S;W ) ≤ γn
√
n

2
. (66)

To make our definition independent of the input distribution, which is unknown in practice, we
further propose an extension using an arbitrary distribution q(w)

|p(w|S)− p(w|S′)| ≤ γnq(w) ∀w, S, S′. (67)

Building on ? (Theorem 33), we use their variational form for V2

V2(S;W ) ≤

√√√√EpS

[∑
w

p2(w|S)− p2(w)

q(w)

]
. (68)

Taking expectation over an independent copy S̃ of S and using Jensen’s inequality, we have

|p(w|S)− p(w)| =
∣∣∣p(w|S)− EpS̃

[
p(w|S̃)

]∣∣∣ ≤ EpS̃

[
|p(w|S)− p(w|S̃)|

]
(69)

≤ γnEpS̃

[
dH(S, S̃)

]
q(w) ≤ γnnq(w). (70)

where dH(S, S̃) denotes the Hamming distance between datasets.

Combining these bounds gives

EpS

[∑
w

p2(w|S)− p2(w)

q(w)

]
≤ EpS

[
2γn

∑
w

(p(w|S) + p(w))

]
(71)

= 2γnn. (72)

Thus we obtain the bound

V2(S;W ) ≤
√

2γnn. (73)

Finally, substituting this into equation 61, we obtain

gen ≤
√

σ2

n

√
2γnn =

√
2σ2γn. (74)

H EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

This appendix provides a comprehensive description of the experimental setups and methodologies
used in the paper, as well as additional simulation results on canonical channel models that provide
further intuition for our theoretical bounds.

H.1 DETAILS FOR THE BAYESIAN LINEAR REGRESSION EXPERIMENT

This section elaborates on the experiment presented in Section 6, which compares our proposed V2

bound against several information-theoretic baselines.
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H.1.1 SIMULATION SETUP

Learning Task. We consider a one-dimensional Bayesian linear regression problem. The data-
generating process follows the linear model y = wtruex+ ϵ, where wtrue is the ground-truth weight,
x ∼ N (0, 1) is the input feature, and ϵ ∼ N (0, σ2) is i.i.d. Gaussian noise. To ensure the loss
function is σ2

loss-subgaussian, we employ a clipped squared error loss:

ℓ(w, z) = min
(
(y − wx)2, c

)
, (75)

where z = (x, y) and c > 0 is a fixed clipping constant. This ensures the loss is bounded in the
interval [0, c]. By Hoeffding’s Lemma, the loss is therefore c2

4 -subgaussian.

Learning Algorithm. The algorithm is Bayesian linear regression. We place a zero-mean Gaus-
sian prior on the weight parameter, p(w) = N (w|0, λ−1), where λ is the prior precision. Given
a training dataset S = {(xi, yi)}ni=1, the algorithm computes the posterior distribution p(w|S),
which, due to conjugacy, is also a Gaussian, N (w|mn, s

2
n). The posterior parameters are given by

the standard Bayesian update rules:

s−2
n = λ+ β

n∑
i=1

x2
i and mn = s2n

(
β

n∑
i=1

xiyi

)
, (76)

where β = 1/σ2 is the likelihood precision.

H.1.2 METHODOLOGY FOR ESTIMATING BOUNDS

All reported values for the empirical generalization error and the theoretical bounds are Monte Carlo
estimates, averaged over M independently generated training sets for each dataset size n.

Empirical Generalization Error. This serves as our ground truth. For each of the M runs, a
model was trained on a dataset Sj to obtain the posterior p(w|Sj). A single weight wj was drawn
from this posterior. The generalization gap was calculated as the difference between the loss on a
large, fixed test set (10,000 samples) and the loss on the training set Sj . The final reported value is
the average of these gaps over all M runs.

The V2 Bound (Theorem 4.1). In the continuous setting, our proposed bound is gen ≤∫ √σ2
loss
n VarS [p(w|S)]dw. To estimate this, the integral was approximated by a sum over a

fine grid of K points, {wk}Kk=1. The core variance term, VarS [p(wk|S)], was estimated for
each grid point by computing the sample variance of the posterior probability density values,
{p(wk|S1), . . . , p(wk|SM )}, across the M simulated training sets.

MI Bound (Xu & Raginsky, 2017). The mutual information bound is |E[gen]| ≤√
2σ2

loss
n I(W ;S). The mutual information was calculated using the identity I(W ;S) =

ES [KL(p(W |S)∥p(W ))]. For each of the M runs, the KL divergence between the Gaussian poste-
rior and the Gaussian prior was computed analytically. The final estimate is the average of these KL
values.

CMI Bound (Steinke & Zakynthinou, 2020). We estimate the conditional mutual information
bound using the supersample construction, where I(W ;U |S̃) = E[log p(W |S) − log p(W |S̃)].
This was approximated using nested Monte Carlo. For each of Msuper outer-loop supersamples, we
averaged over Jinner inner-loop samples of training sets S and hypotheses W . The marginal posterior
p(W |S̃) = EU [p(W |SU )] was itself estimated with a Monte Carlo mixture of Kmarginal posteriors,
computed stably using the log-sum-exp trick.

H.1.3 IMPLEMENTATION DETAILS

The simulation was implemented in Python 3. The specific parameters used in the experiment are
listed in Table 1.
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Table 1: Experimental Parameters for Bayesian Linear Regression
Parameter Description Value
wtrue True data-generating weight 0.8
σ2 Variance of the data noise ϵ 0.42

λ Precision of the Gaussian prior on w 2.0
c Clipping constant for the loss 4.0
σ2

loss Sub-Gaussianity parameter of loss ( c
2

4 ) 4.0
n Training dataset sizes [10, 20, 40, 80, 160, 320]
M Number of Monte Carlo runs per n 1000
K Number of grid points for V2 bound 500
[wmin, wmax] Range of grid for V2 bound [-1.5, 1.5]
Msuper Supersamples for CMI 50
Jinner Inner loops for CMI 20
Kmarginal Samples for CMI marginal 20

H.2 ADDITIONAL RESULTS ON CANONICAL CHANNEL MODELS

To complement the main experiment, we provide additional simulations on three canonical channel
models: the Binary Symmetric Channel (BSC), Binary Erasure Channel (BEC), and Z-Channel.
These settings allow for exact analytical computation of the bounds. For these experiments, the
dataset size is n = 1, the hypothesis space is W = {0, 1}, and the loss is the squared error ℓ(w, z) =
(w − z)2, which is bounded in [0, 1] and is thus 1

4 -subgaussian. The term
√
σ2/n is omitted from

the plots for clearer comparison.
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Figure 3: Comparison for the Binary Symmetric
Channel (BSC). The V2 bound is tighter than the
MI bound across all crossover probabilities p.
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Figure 4: Comparison for the Binary Erasure
Channel (BEC). The V2 bound is tighter than
the MI bound across all erasure probabilities ϵ.
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Figure 5: Comparison for the Z-Channel. The V2 bound is again significantly tighter than the MI
bound across all crossover probabilities p.
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