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ABSTRACT

Iterated (a.k.a growing) batch reinforcement learning (RL) is a growing subfield
fueled by the demand from systems engineers for intelligent control solutions that
they can apply within their technical and organizational constraints. Model-based
RL (MBRL) suits this scenario well for its sample efficiency and modularity. Re-
cent MBRL techniques combine efficient neural system models with classical
planning (like model predictive control; MPC). In this paper we add two com-
ponents to this classical setup. The first is a Dyna-style policy learned on the
system model using model-free techniques. We call it the guide since it guides the
planner. The second component is the explorer, a strategy to expand the limited
knowledge of the guide during planning. Through a rigorous ablation study we
show that combination of these two ingredients is crucial for optimal performance
and better data efficiency. We apply this approach with an off-policy guide and a
heating explorer to improve the state of the art of benchmark systems addressing
both discrete and continuous action spaces.

1 INTRODUCTION

John is a telecommunication engineer. His day job is to operate a mobile antenna. He has about
forty knobs to turn, in principle every five minutes, based on about a hundred external and internal
system observables. His goal is to keep some performance indicators within operational limits while
optimizing some others. In the evenings John dreams about using reinforcement learning (RL) to
help him with his job. He knows that he cannot put an untrusted model-free agent on the antenna
control (failures are very costly), but he manages to convince his boss to run live tests a couple of
days every month.

John’s case is arguably on the R&D table of a lot of engineering companies today. AI adoption
is slow, partly because these companies have little experience with AI, but partly also because the
algorithms we develop fail to address the constraints and operational requirements of these systems.
What are the common attributes of these systems?

• They are physical, not getting faster with time, producing tiny data compared to what
model-free RL (MFRL) algorithms require for training.

• System access is limited to a small number of relatively short live tests, each producing
logs that can be used to evaluate the current policy and can be fed into the training of the
next.

• They are relatively small-dimensional, and system observables were designed to support
human control decisions, so there is no need to filter them or to learn representations (with
the exception when the engineer uses complex images, e.g., a driver).

• Rewards are non-sparse, performance indicators come continually. Delays are possible but
usually not long.

The RL setup that fits this scenario is neither pure offline (batch RL; Levine et al. (2020)), since
interacting with the system is possible during multiple live tests, nor pure online, since the policy
can only be deployed a limited number of times on the system (Fig 1). After each deployment
on the real system, the policy is updated offline with access to all the data collected during the
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Figure 1: Iterated (a.k.a growing) batch RL. The policy is updated offline between scheduled live
tests where the latest learned policy can be deployed on the real system to collect data and further
improve itself at the next offline update.

previous deployments, each update benefiting from a larger and more diverse data set. This setup
also assumes that the policy cannot be updated online while it is being deployed on the system. We
refer to it as iterated batch RL (also called growing batch (Lange et al., 2012) or semi-batch (Singh
et al., 1995; Matsushima et al., 2021) in the literature). Furthermore, we are interested in model-
based RL (Deisenroth & Rasmussen, 2011; Chua et al., 2018; Moerland et al., 2021). With limited
access to the real system, a model of the system transitions can be used to simulate trajectories,
either at decision-time to search for the best action (decision-time planning, e.g., model predictive
control (MPC)) or when learning the policy (background planning, e.g., Dyna-style algorithms that
learn model-free agents with the model), which makes model-based RL sample efficient (Chua et al.,
2018; Wang et al., 2019). Additionally, model-based RL works well on small-dimensional systems
with dense rewards, and the system model (data-driven simulator, digital twin) itself is an object of
interest because it can ease the adoption of data-driven algorithms by systems engineers.

Given a robust system model, simple model predictive control (MPC) agents using random shooting
(RS; Richards (2005); Rao (2010)) or the cross entropy method (CEM; de Boer et al. (2004)) have
been shown to perform remarkably well on many benchmark systems (Nagabandi et al., 2018; Chua
et al., 2018; Wang et al., 2019; Hafner et al., 2019; Kégl et al., 2021) and real-life domains such as
robotics (Yang et al., 2020). However these methods can be time consuming to run at decision-time
on the real system, especially when using large models and with the search budgets required for
complex action spaces. On the other hand, implementing successfully the seemingly elegant Dyna-
style approach (Sutton, 1991; Kurutach et al., 2018; Clavera et al., 2018; Luo et al., 2019), when we
learn fast reactive model-free agents on the system model and apply them on the real system, remains
challenging especially on systems that require planning with long horizon. Our main findings are
that i) the Dyna-style approach can still be an excellent choice when combined with decision-time
planning or, looking at it from the opposite direction, ii) the required decision-time planner can be
made resource efficient by guiding it with the Dyna-style policy and optionally bootstrapping with
its associated value function: this allows an efficient exploration of the action search space (given the
limited resource budget) where fewer and shorted rollouts are needed to find the best action to play.
We also innovate on the experimental framework (metrics, statistically rigorous measurements), so
we can profit from the modularity of the Dyna-style approach by tuning ingredients (model, the
MFRL guide policy, exploration, planning, bootstrapping; explained in Section 3.2) independently.
This modular approach makes engineering easier (as opposed to monolithic approaches like Alp-
haZero (Silver et al., 2017)), which is an important aspect if we want to give the methodology to
non-expert systems engineers.

1.1 SUMMARY OF CONTRIBUTIONS

• A conceptual framework with interchangeable algorithmic bricks for iterative batch re-
inforcement learning, suitable to bring intelligent control into slow, physical, low-
dimensional engineering systems and the organizational constraints surrounding them.

• A case study that indicates that the combination of a Dyna-style approach and resource-
limited planning can mutually improve each other.

• An ablation study that helped us find the combination of a neural model, a bootstrapping
off-policy algorithm guide, and a heating explorer, which brings significant improvement
over vanilla agents (MPC, pure Dyna without planning) on both discrete and continuous
actions systems.
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2 RELATED WORK

The MBRL subfield has seen a proliferation of powerful methods, but most of them miss the spe-
cific requirements (solving problems irrelevant in this scenario like representation learning or sparse
rewards) and missing others (limited and costly system access; time constraints for action search;
data taking and experimentation through campaigns, live tests; safety) (Hamrick, 2019).

The Dyna framework developed by Sutton (1991) consists in training an agent from both real ex-
perience and from simulations from a system model learned from the real data. Its efficient use of
system access makes it a natural candidate for iterated batch RL. The well-known limitation of this
approach is the agent overfitting the imperfect system model (Grill et al., 2020). A first solution is to
use short rollouts on the model to reduce error accumulation as done in Model-Based Policy Opti-
mization (MBPO; Janner et al. (2019)). Another solution is to rely on ensembling techniques for the
model as done in ME-TRPO (Kurutach et al., 2018) and MP-MPO (Clavera et al., 2018). Instead
of learning the model and then the policy from the model, Stochastic Lower Bound Optimization
(SLBO; Luo et al. (2019)) alternates between model and policy updates. In our ITERATEDMBRL
schema (Fig 2), this strategy would couple the LEARN and ACTOR steps, which we do not study in
this paper. Finally, Yu et al. (2020) and Kidambi et al. (2020) use a Dyna-style approach in the
context of pure batch RL where no further data collection and therefore no further model updates
are assumed.

The idea of using a guide and a value function when planning is not novel (Silver et al., 2017;
Schrittwieser et al., 2020; Wang & Ba, 2020; Argenson & Dulac-Arnold, 2021; Sikchi et al., 2021).
We were greatly inspired by these elements in our objective of building smarter agents as they can
make the search more efficient and lead to a better performance. POPLIN-A (Wang & Ba, 2020)
relies on behavior cloning (using only real experience, unlike our Dyna-style approach that mainly
uses the model), but their decision-time planner is similar to our approach. During the planning,
they add a Gaussian noise to the actions recommended by a deterministic policy network and update
the noise distribution using a CEM strategy. In a similar way our GUIDE&EXPLORE strategy also
adds a carefully controlled amount of noise to the recommended actions. Our results highlight the
importance of a well-calibrated exploration. Additionally, our planner does not require to specify
the amount of noise beforehand. Argenson & Dulac-Arnold (2021); Lowrey et al. (2019); Sikchi
et al. (2021) found that bootstrapping with a value estimate improves the performance of simple
guided MPC strategies (see also Bhardwaj et al. (2021)). The popular AlphaZero (Silver et al.,
2017) and MuZero (Schrittwieser et al., 2020) algorithms also rely on a guide and a value function
for their Monte Carlo Tree Search (MCTS). The principal issue of MuZero (Schrittwieser et al.,
2020) in our micro-data iterated batch RL context is that it does not control the number of system
access steps: it needs to simulate a lot from the real environment to establish the targets for the value
function. In these two algorithms the guide is updated from the results obtained during the search
that it guided, a procedure known as dual policy Iteration (Anthony et al., 2017; Sun et al., 2018).
Furthermore, most of the computation to grow the search tree is done sequentially which results
in a slower planner compared to the natural parallelized implementation of our agent. We prefer
experimenting with Dyna-style approaches first to leverage popular MFRL algorithms and defer the
study of dual policy iteration to future work.

Our results show that decision-time planning is an important ingredient, a claim already made by
Hamrick et al. (2021) and Springenberg et al. (2020) among others. Hamrick et al. (2021) use
MuZero to run their ablation study while we prefer using an explicit model for practical reasons
explained in the introduction. Springenberg et al. (2020) study where additional computation is best
spent between policy update and decision-time planning. In our case we are however less concerned
by computational resources required to update the policy, as it is done offline, but rather by the time
spent at decision-time while interacting with the real system.

3 THE FRAMEWORK FOR RESOURCE-LIMITED ITERATIVE BATCH RL

3.1 THE FORMAL SETUP

Let TT =
(
(s1,a1), . . . , (sT ,aT )

)
be a system trace consisting of T steps of observable-action

pairs (st,at): given an observable st of the system state at time t, an action at was taken, leading
to a new system state observed as st+1. The observable vector st = (s1t , . . . , s

ds
t ) contains ds

numerical or categorical variables, measured on the system at time t. The action vector at contains

3



Under review as a conference paper at ICLR 2023

da numerical or categorical action variables, typically set by a control function at = π(st) of
the current observable st (or by a stochastic policy at ∼ π(st); we will also use the notation
π : st ; at). The performance of the policy is measured by the reward rt which is a function of
st and at. Given a trace TT and a reward rt obtained at each step t, we define the mean reward
as R(TT ) = 1

T

∑T
t=1 rt.

1 The transition p : (st, at) ; st+1 can be deterministic (a function)
or probabilistic (generative). The transition may either be the real system p = preal or a system
model p = p̂. When the model p̂ is probabilistic, besides the point prediction E

{
p̂
(
st+1|(st, at)

)}
,

it also provides information on the uncertainty of the prediction and/or to model the randomness
of the system (Deisenroth & Rasmussen, 2011; Chua et al., 2018). Finally, in the description of
the algorithms we index a trace T =

(
(s1,a1), . . . , (sT ,aT )

)
as follows: for t ∈ {1, . . . , T},

Ts[t] = st and Ta[t] = at.

3.2 A NOTE ON TERMINOLOGY

By model we will consistently refer to the learned transition or system model p̂ (never to any policy).
Rollout is the procedure of obtaining a trace T from an initial state s1 by alternating a model or real
system p and a policy π (Fig 2). We decided to rename what Silver et al. (2017) calls the prior
policy to guide since prior clashes with Bayesian terminology (as, e.g., Grill et al. (2020); Hamrick
et al. (2021) also note), and guide expresses well that the role of this policy is to guide the search
at decision time. Sometimes the guide is also called the reactive policy (Sun et al., 2018) since
it is typically an explicit function or conditional distribution ξ : s ; a that can be executed or
drawn from rapidly. We will call the (often implicit) policy π : s ; a resulting from the guided
plan/search the actor (sometimes also called the non-reactive policy since it takes time to simulate
from the model, before each action). Planning generally refers to the use of a model p̂ to generate
imaginary plans and in that sense, planning is part of training the guide. However, in the rest of the
paper we will use the term planning to refer to the guided search procedure that results in acting on
the real system (this is sometimes called decision-time planning). We will explicitly use the term
background planning to refer to the planning used at training time as it is done in Sutton & Barto
(2018) and Hamrick et al. (2021).

3.3 EXPERIMENTAL SETUP: THE ITERATED BATCH MBRL
2For rigorously studying and comparing algorithms and algorithmic ingredients, we need to fix not
only the simulation environment but also the experimental setup. We parameterize the iterated batch
RL loop (the pseudocode in Fig 2 is the formal definition) by four parameters:

• the number of episodes N ,

• the number of system access steps T per episode,

• the planning horizon L, and

• the number of generated rollouts n at each planning step.

N and T are usually set by hard organizational constraints (number N and length T of live tests) that
are part of the experimental setup. Our main goal is to measure the performance of our algorithms at
a given (and challengingly small) number of system access steps N ×T for a given planning budget
(n and L) determined by the (physical) time between two steps and the available computational
resources.

In benchmark studies, we argue that fixing N , T , n, and L is important for making the problem well
defined (taking some of the usual algorithmic choices out of the input of the optimizer), affording
meaningful comparison across papers and steady progress of algorithms. As in all benchmark de-
signs, the goal is to make the problem challenging but not unsolvable. That said, we are aware that
these choices may change the task and the research priorities implicitly but significantly (for exam-
ple, a longer horizon L will be more challenging for the model but may make the planning easier
although more expensive), so it would make sense to carefully design several settings (quadruples
N − T − n− L) on the same environment.

1We use the mean reward (as opposed to the total reward, a.k.a return), since it is invariant to episode length
and its unit is more meaningful to systems engineers.

2First a practical note: the pseudocode in Fig 2 and the subroutines in Figs 3-5 contain our formal definition.
They are ordered top-down, but can also be read in reverse order according to the reader’s preference.
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ROLLOUT(π, p, s1, T ):
1 T ← {}
2 for t← 1 to T : ▷ for T steps
3 at ;π(st) ▷ draw action from policy
4 T ← T ∪ (st, at) ▷ update trace
5 st+1 ;p(st, at) ▷ draw next state
6 return T

ITERATEDMBRL(preal,S0, π(0), N, T, L, n):
1 s1 ;S0 ▷ draw initial state
2 T (1) ← ROLLOUT

(
π(0), preal, s1, T

)
▷ random trace

3 for τ ← 1 to N : ▷ for N episodes
4 p̂(τ) ← LEARN

(
∪ττ ′=1 T (τ ′)

)
▷ learn system model

5 π(τ)←ACTOR
(
π(0), π(τ−1), p̂(τ),∪ττ ′=1T (τ), L, n

)
6 s1 ;S0 ▷ draw initial state
7 T (τ+1) ← ROLLOUT

(
π(τ), preal, s1, T

)
▷ new trace

8 return ∪Nτ=1T (τ)

Figure 2: The iterated batch MBRL loop. preal : (st, at) ; st+1 is the real system (so Line 7 is
what dominates the cost) and p : (st, at) ; st+1 is the transition in ROLLOUT that can be either the
real system preal or the system model p̂. S0 is the distribution of the initial state of the real system.
π(0) : st ; at is an initial (typically random) policy and in ROLLOUT π : st ; at is any policy.
N is the number of episodes; T is the length of the episodes; L is the planning horizon and n is the
number of planning trajectories used by the actor policies π(τ). τ = 1, . . . , N is the episode index
whereas t = 1, . . . , T is the system (or model) access step index. LEARN is a supervised learning
(probabilistic or deterministic time-series forecasting) algorithm applied to the collected traces and
ACTOR is a wrapper of the various techniques that we experiment with in this paper (Fig 4). An
ACTOR typically updates π(τ−1) using the model p̂(τ) in a background-planning loop, but it can also
access the initial policy π(0) and the trace ∪ττ ′=1T (τ ′) collected on preal up to episode τ .

HEATINGEXPLORE
(
π(0), ξ, n

)
[s]:

1 for i← 1 to n:

2 ρi(a|s) ∼


ξ(a|s)1/Ti∑
a′ ξ(a′|s)1/Ti

if a is discrete

N
(
E {ξ(.|s)}, Ti

)
if a is continuous.

3 return [ρi]
n
i=1

Figure 3: Heating exploration strategy. HEATINGEXPLORE heats the guide action distribution
ξ(a|s) to n different temperatures. The temperatures [Ti]

n
i=1 are hyperparameters.

Our main operational cost is system access step so we are looking for any-time algorithms that
achieve the best possible performance at any episode τ for a given decision-time planning budget
(n and L). Hence, in the MBRL iteration (Fig 2), we use the same traces T (τ), rolled out in each
iteration (Line 7), to i) update the model p̂ and the actor policy (Line 4 and 5) and ii) to measure the
performance of the techniques (Section 3.5).

3.4 MODEL-BASED ACTOR POLICIES: GUIDE AND EXPLORE

Our main contribution is a Dyna-style GUIDE&EXPLORE strategy (Fig 4). This strategy consists in
learning a guide policy ξ for the decision-time planner (TRAJOPT in Fig 5) using a model-free RL
technique on the model p̂ and on the traces collected on the real system T . It is known that the guide
ξ, executed as an actor π = ξ on the real system, does not usually give the best performance (we also
confirm it in Section 4), partly because ξ overfits the model (Fig 5 in Kurutach et al. (2018); Grill
et al. (2020)), partly because the goal of π is not only to exploit the traces T = ∪Nτ=1T (τ) collected
so far and the model p̂ = LEARN(T ), but also to collect data to self-improve p̂ and ξ/π in the
next episode τ . This second reason is particular in our iterated batch setup: contrary to pure batch
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RSACTOR
(
π(0), πprev, p, T , L, n

)
:

1 return TRAJOPT
(
[π(0)]ni=1, p, L, n

)
▷ planning

GUIDE&EXPLOREACTOR
(
π(0), πprev, p, T , L, n

)
:

1 ξ ← MFRL
(
πprev, p, T

)
▷ model free guide policy

2 [ρi]
n
i=1 ← HEATINGEXPLORE

(
π(0), ξ, n

)
▷ explorer policies

3 return TRAJOPT
(
[ρi]

n
i=1, p, L, n

)
▷ planning

Figure 4: Model-based ACTORs (policies executed on the real system). RSACTOR is a classical
random shooting planner that uses the random policy π(0) for all rollouts. GUIDE&EXPLOREACTOR

first learns a Dyna-style guide policy ξ on the transition p (more precisely, updates the previous guide
contained in πprev). It can also use the traces T collected on the real system. It then “decorates” the
guide by (possibly n different) exploration strategies, and runs these reactive guide&explore policies
[ρi]

n
i=1 in the TRAJOPT planner in Fig 5.

TOTALREWARD
(
T
)
:

1 return T × R(T ) ▷ total reward (a.k.a return)

BOOTSTRAP
(
V, α

)
(T ):

1 return T × R
(
T
)
+ αV

(
Ts[L]

)
▷total reward + value of last state

TRAJOPT
(
[ρi]

n
i=1, p, L, n

)
[s]:

1 for i← 1 to n:
2 T (i) ← ROLLOUT(ρi, p, s, L) ▷ ith roll-out trace
3 V (i) ← VALUE

(
T (i)

)
▷ total reward of T (i)

4 i∗ ← argmaxi V
(i) ▷ index of the best trace

5 return a∗
1 = T (i∗)

a [1] ▷ first action of the best trace

Figure 5: VALUE estimates on rollout traces and TRAJOPT: trajectory optimization using ran-
dom shooting with a set of policies. TOTALREWARD and BOOSTRAP are two ways to evaluate the
value of a rollout trace. The latter adds the value of the last state to the total reward, according
to a value estimate V : s → R+, weighted by a hyperparameter α. They are called in Line 3 of
TRAJOPT which is a random shooting planner that accepts n different shooting policies [ρi]ni=1 for
the n rollouts used in the search. As usual, it returns the first action a∗

1 = T (i∗)
a [1] of the best

trace T (i∗) =
(
(s∗1,a

∗
1), . . . , (s

∗
T ,a

∗
T )

)
. Its parameters are the shooting policies [ρi]

n
i=1, the tran-

sition p, and the number n and length L of rollouts, but to properly define it, we also need the
state s which we plan from, so we use a double argument list ()[]. We recall here that for a trace
T =

(
(s1,a1), . . . , (sT ,aT )

)
and for t ∈ {1, . . . , T}, Ts[t] = st and Ta[t] = at.

RL, exploration here is crucial. When the guide ξ is probabilistic, we explore implicitly because
of the sampling step (Line 3 in ROLLOUT, Fig 1), and partly also because of the draw from the
imperfect and possibly stochastic model (Line 5). Nevertheless, we found that it helps if we control
exploration explicitly. To show this, we experiment with a HEATINGEXPLORE strategy which consists
in modulating the temperature of the guide distribution ξ(a|s) (Fig 4). The novelty of our approach
is that, instead of constant randomness in the exploration, we use a set of temperatures [Ti]

n
i=1 to

further diversify the search and let the planner explore promising regions far from the distribution of
trajectories where the guide may have falsely converged. Finally, similarly to Lowrey et al. (2019);
Argenson & Dulac-Arnold (2021), we found that bootstrapping the planning with the learned value
function at the end of each rollout trace (BOOTSTRAP in Fig 5) can be helpful for optimizing the
performance with a short horizon.

3.5 METRICS

We use two rigorously defined and measured metrics (Kégl et al., 2021) to assess the performance
of the different algorithmic combinations. MAR measures the asymptotic performance after the
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learning has converged, and MRCP measures the convergence pace. Both can be averaged over
seeds, and MAR is also an average over episodes, so we can detect statistically significant differences
even when they are tiny, leading to a proper support for experimental development.

MEAN ASYMPTOTIC REWARD (MAR). Our measure of asymptotic performance, the mean
asymptotic reward, is the mean reward MR(τ) = R

(
T (τ)
T

)
in the second half of the episodes (after

convergence; we set N in such a way that the algorithms converge after less than N/2 episodes)
MAR = 2

N

∑N
τ=N/2 MR(τ).

MEAN REWARD CONVERGENCE PACE (MRCP(r̄)). To assess the speed of convergence, we
define the mean reward convergence pace MRCP(r̄) as the number of steps needed to achieve mean
reward r̄, smoothed over a window of size 5: MRCP(r̄) = T ×argminτ

(
1
5

∑τ+2
τ ′=τ−2 MR(τ) > r̄

)
.

The unit of MRCP(r̄) is system access steps, not episodes, first to make it invariant to episode length,
and second because in micro-data RL the unit of cost is a system access step. For Acrobot, we use
r̄ = 1.8 in our experiments, which is roughly 70% of the best achievable mean reward.

4 EXPERIMENTS

4.1 ACROBOT

Acrobot is an underactuated double pendulum with four observables st = [θ1, θ2, θ̇1, θ̇2] which are
usually augmented to six by taking sine and cosine of the angles (Brockman et al., 2016); θ1 is the
angle to the vertical axis of the upper link; θ2 is the angle of the lower link relative to the upper link,
both being clipped to [−π, π]; θ̇1 and θ̇2 are the corresponding angular momenta. For the starting
position s1 of each episode, all four state variables are sampled uniformly from an approximately
hanging and stationary position sj1 ∈ [−0.1, 0.1]. The action is a discrete torque on the lower link
a ∈ {−1, 0, 1}. The reward is the height of the tip of the lower link over the hanging position
r(s) = 2− cos θ1 − cos(θ1 + θ2) ∈ [0, 4].3

Acrobot is a small but relatively difficult and fascinating system, so it is an ideal benchmark for
continuous-reward engineering systems. Similarly to Kégl et al. (2021), we set the number of
episodes to N = 100, the number of steps per episode to T = 200, the number of planning
rollouts to n = 100, and the horizon to L = 10. With these settings, we can identify four dis-
tinctively different regimes (see the attached videos): i) the random uniform policy π(0) achieves
MAR ≈ 0.1 − 0.2 (Acrobot keeps approximately hanging), ii) reasonable models with random
shooting or pure Dyna-style controllers achieve MAR ≈ 1.4−1.6 (Acrobot gains energy but moves
its limb quite uncontrollably), iii) random shooting n = 100, L = 10 with good models such as
PETS (Chua et al., 2018; Wang et al., 2019) or DARMDN (Kégl et al., 2021) keep the limb up and
manage to have its tip above horizon on average MAR ≈ 2.0 − 2.1 (previous state of the art), and
iv) in our experiments we could achieve a quasi perfect policy (Acrobot moves up like a gymnast
and stays balanced at the top) MAR ≈ 2.7− 2.8 using random shooting with n = 100K, L = 20 on
the real system, giving us a target and a possibly large margin of improvement.

Acrobot is an ideal benchmark for making our point for the two following reasons. First, it turned out
to be a quite difficult system for pure model-free baselines and associated Dyna-style algorithms (we
achieve a MAR ≈ 2.1 with a DQN, see Table 1, and Wang et al. (2019) report a MAR ≈ 1.6− 1.7
for other Dyna-style algorithms). Second, decision-time planning can achieve a quasi-perfect policy
(MAR ≈ 2.7 − 2.8) but doing so while being data efficient and with a limited planning budget
appears to be challenging.

4.2 CARTPOLE SWING-UP

Cartpole swing-up from the DeepMind Control Suite (Tunyasuvunakool et al., 2020) is an under-
actuated pendulum attached by a frictionless pivot to a cart that moves freely along a horizontal
line. Observations include the cart position, cosine and sine of the pendulum angle, and their time
derivatives st = [x, ẋ, cos θ, sin θ, θ̇]. The cart is initialized at a position x and a velocity close to

3We chose this rather than the sparse variable-episode-length version r(s) =
I {2− cos θ1 − cos(θ1 + θ2) > 3} (Sutton, 1996) since it corresponds better to the continuous aspect
of engineering systems.
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0, and an angle close to θ = π (hanging position). The goal is to swing-up the pendulum and sta-
bilize it upright by applying a continuous horizontal force at ∈ [−1, 1] to the cart at each timestep
t. The reward in [0, 1] is obtained by the multiplication of four reward components: one depending
on the height of the pendulum (in [1/2, 1]), one on the cart position (in [1/2, 1]), one on its velocity
(in [1/2, 1]) and one on the amplitude of the force (in [4/5, 1]). The maximum reward is obtained
when the pendulum is centered (x = 0), upright with no velocity and an applied force of 0. This
task has been widely used by the literature as a standard benchmark system for nonlinear control
and complex action space due to its potential generalization to different domains (Boubaker, 2012;
Nagendra et al., 2017). We set the number of episodes to N = 35, the number of steps per episode
to T = 1000, the number of planning rollouts to n = 500, and the horizon to L = 20. A mean
reward of 0.8 corresponds to a pole that succeeds at standing upright and being stable.

We chose the Cartpole system as vanilla MPC agents (RS or CEM) require a long planning horizon
(at least L = 100) to succeed at swinging up the pendulum and stabilize it upright. It also illustrates
how our approach extends to the continuous action setting which increases the complexity of the
optimization search space and requires sensitive controllers.

4.3 MODELS, GUIDES, AND ACTORS

Following Kégl et al. (2021), we tried different system models (Fig 2/Line 4) from the family of
Deep (Autoregressive) Mixture Density Networks (D(A)RMDN) and selected the ones giving the
best results on the Acrobot and Cartpole swing-up systems.

In principle, any MFRL technique providing a value function (for bootstrapping) and a policy can be
used as a guide ξ when applying ITERATEDMBRL (Fig 4/Line 1). We argue though that an off-policy
algorithm is better suited here since it can leverage all the (off-policy) data coming from interac-
tion with the real system. In particular, those traces are generated using planning and represent
a stronger learning signal for the agent (planning during training vs. at test time; Hamrick et al.
(2021)). Thus, we experimented with Deep Q Networks (DQN; Mnih et al. (2015)) for the discrete
action Acrobot system and Soft Actor-Critic (SAC) (Haarnoja et al., 2018) for the continuous action
Cartpole swing-up task. For SAC on Cartpole, following Janner et al. (2019), short rollouts starting
from real observations are performed on the model to sample transitions which are then placed in an
experience replay buffer, along with the real transitions observed during the rollouts (Fig 2/Line 7).
The SAC is then updated by sampling batches from this buffer. Details on the implementation and
hyperparameters of the DQN and SAC agents are given in Appendix A.

For actors (Fig 2/Line 5, Fig 4), we start from the simple model-free guide (DQN or SAC) which is
trained with data generated by the model and is interacting with the system without planning. We
refer to these agents as MBPO(DQN) and MBPO(SAC). Adding (n, L) to the name of the agent
means that we use the agent to guide a planning of n rollouts with horizon L.

Appendix A contains detailed information on the various algorithmic choices.

4.4 RESULTS

Table 1 and Fig 6 compare the results obtained with GUIDE&EXPLORE, a vanilla RSACTOR agent
using the same budget as the one we consider for GUIDE&EXPLORE, the pure model free guides
trained on the real system and their Dyna-style version (no planning, MBPO). We see that the
GUIDE&EXPLORE algorithm gives the best performance. On Acrobot it is almost matching the costly
RSACTOR(n = 100K, L = 20) that we include as a target even though it would not be officially ac-
cepted in our benchmark as we restrict n to 100 and L to 10. On Cartpole it reaches the performance
reported in Lee et al. (2020) and approaches the one from (Springenberg et al., 2020) which are, to
the best of our knowledge, the state of the art on Cartpole. We note that Springenberg et al. (2020)
reports the median performance whereas we report the mean performance as Lee et al. (2020).

We ran an ablation study on Acrobot showing that all ingredients add to the performance. Although
MBPO(DQN) performs reasonably well and is comparable to RSACTOR(n = 100, L = 10) it fails to
achieve the performance of RSACTOR(n = 100K, L = 20). Fig 6 also shows that adding a heating
explorer to the guide significantly improves the performance of RSACTOR(n = 100, L = 10) and
MBPO(DQN). We found that allowing the planner to choose the right amount of exploration (the
right temperature) is a robust and safe approach (see Appendix B and Fig 8 for more results with a
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Table 1: Agent evaluation results. MAR is the mean asymptotic reward showing the asymptotic
performance of the agent and MRCP(1.8) is the mean reward convergence pace showing the sample-
efficiency (the number of system access steps required to achieve a mean reward of 1.8). The model-
free agents are trained on the real system and the corresponding MAR shows the asymptotic perfor-
mance obtained after convergence. ↓ and ↑ mean lower and higher the better, respectively.

Acrobot MAR ↑ MRCP(1.8) ↓
MBPO(DQN) 2.113±0.02 4140 ±720
RSACTOR(n = 100, L = 10) 2.075±0.01 2620 ±320
DQN(n = 100, L = 10)-GUIDE&EXPLORE 2.404±0.017 1800 ±290

RSACTOR(n = 100K, L = 20) 2.474±0.022 2280 ±580
Model free DQN 2.16 ±0.018 1.58M±0.20M

Cartpole MAR ↑ MRCP(0.5) ↓
MBPO(SAC) 0.566±0.055 17750±7430
RSACTOR(n = 500, L = 20) 0.304±0.01 inf ±inf
SAC(n = 500, L = 20)-GUIDE&EXPLORE 0.732±0.021 10500±5020

Model free SAC 0.781±0.05 72250±11000

(a) Acrobot (b) Cartpole

Figure 6: Learning curves obtained with different agents. Mean reward curves are averaged across
at least four seeds. Areas with lighter colors show the 90% confidence intervals and dashed lines
represent the score of the best converged model-free algorithms. (a) Mean reward is between 0
(hanging) and 4 (standing up). Episode length is T = 200, number of epochs is N = 100 with one
episode per epoch. (b) Mean reward is between 0 and 1. Episode length is T = 1000, number of
epochs is N = 35 with one episode per epoch.

suboptimal DQN guide). The final improvement was attained by adding value bootstrapping to the
heated explorer/planner.

5 CONCLUSION

In this paper we show that an offline Dyna-style approach can be successfully applied on benchmark
systems where previously Dyna-style algorithms were failing. Our empirical results exhibit the im-
portance of guiding the decision-time planning with the correct amount of exploration to achieve
the best performance under a planning budget constraint. More precisely, our decision-time planner
explores a varied range of trajectories around the guide’s prior distribution and bootstraps with a
value function estimate to further improve the performance.
This combination leads to achieving state-of-the-art performance while respecting reasonable re-
source constraints. Future work includes modelling the uncertainties of the value estimates so as to
use them for better exploration.
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REPRODUCIBILITY STATEMENT

In order to ensure reproducibility we will release the code at <URL hidden for review>,
once the paper has been accepted. We also provide details on the hyperparameter optimization of
the agents and models as well as the best ones in the Appendix.
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A IMPLEMENTATION DETAILS

A.1 CODE AND DEPENDENCIES

Our code will be made publicly available after publication to ease the reproducibility of all our
results. We use Pytorch (Paszke et al., 2019) to build and train the neural network system models
and policies. To run the ITERATEDMBRL experiments we use the rl_simulator (https://
github.com/ramp-kits/rl_simulator) python library developed by Kégl et al. (2021)
which relies on Open AI Gym (Brockman et al., 2016) for the Acrobot dynamics and dm_control
(Tunyasuvunakool et al., 2020) for the Cartpole swing-up task. For the DQN and SAC agents we
rely on the StableBaselines3 implementations (Raffin et al., 2019).

A.2 MODELS AND AGENTS

It is known that carefully tuning hyperparameters of deep reinforcement learning algorithms is cru-
cial for success and fair comparisons (Henderson et al., 2018; Zhang et al., 2021). To reduce the
computational cost and consider a reasonable search space the models and the agents were optimized
independently. For the Acrobot system models we use the same hyperparameters as the ones used
in Kégl et al. (2021). Please refer to Appendix D in Kégl et al. (2021) for a complete description
of the hyperparameter search and the selected hyperparameters. We decided to use DMDN(1)det
trained on the first 2000 and last 3000 collected samples as it lead to a similar performance with a
limited training time. For Cartpole we use a DARMDN model with 1 hidden layer and 128 neurons
trained on the full dataset. These models are trained by minimizing the negative log-likelihood.
The ‘det’ suffix means that the model is sampled from deterministically, returning the mean of the
predicted distribution. The reader can also refer to Kégl et al. (2021) for a complete description of
these models.

For the DQN we optimized its hyperparameters with a random search of 1000 trials and a parallel
training on 10 copies of the real system for 10 million steps (Table 2). We then selected the DQN
with the best mean reward (Table 3). When training DQN on the system model, we iteratively
update it with 100 000 steps at each episode using the most recent system model. We do not use
short rollouts as this was not necessary. When bootstrapping with the value function we used a
discount factor of 0.95 as it lead to the best performance.

For the SAC agent we performed a similar hyperparameter optimization with a random search of
1000 trials and a parallel training on 10 copies of the real system for 1 million steps (Table 4). The
best SAC parameters are given in Table 5. When training SAC on the system model, we train it from
scratch at each episode for 250 000 steps and perform short rollouts of length 100.

Table 2: Random search parameters for the model free DQN

Parameter Values

Discount factor [0.9, 0.99, 1]
Polyak update parameter [0.1, 0.5, 1]
Learning rate [0.0001, 0.001]
Final training epsilon value [0.01, 0.1]
Exploration fraction [0.1, 0.5]
Buffer size [10000, 100000]
Update frequency of the network [2, 4, 10]
Batch size [64, 128]
Update frequency of the target network [500, 1000]
Network architecture [MLP(128, 128), MLP(256, 256]
Gradient steps [1, 2, 5, 10]

A.3 EXPLORATION

The multi-temperature HEATINGEXPLORE strategy depends on whether actions are discrete or con-
tinuous:
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Table 3: Best parameters for the model free DQN

Parameter Values

Discount factor 0.99
Polyak update parameter 0.5
Learning rate 0.001
Final training epsilon value 0.01
Exploration fraction 0.1
Buffer size 10000
Update frequency of the network 4
Batch size 128
Update frequency of the target network 1000
Network architecture MLP(256, 256)
Gradient steps 10

Table 4: Random search parameters for the model free SAC

Parameter Values

Discount factor [0.9, 0.95, 0.99, 1]
Polyak update parameter [0.1, 0.5, 1]
Learning rate [0.0001, 0.0005, 0.001]
Buffer size [10000, 100000, 1000000]
Update frequency of the network [4, 10, 20]
Batch size [64, 128]
Update frequency of the target network [100, 1000, 10000]
Network architecture [MLP(64, 64), MLP(128, 128), MLP(256, 256]
Gradient steps [1, 5, 10, 20]

Table 5: Best parameters for the model free SAC

Parameter Values

Discount factor 1.0
Polyak update parameter 0.1
Learning rate 0.0005
Buffer size 1000000
Update frequency of the network 10
Batch size 128
Update frequency of the target network 1000
Network architecture MLP(256, 256)
Gradient steps 20

• For environments with discrete actions, we learn a Q function and first normalize the Q
values by their maximum value, Q̃(s, a) = Q(s, a)/maxa′ Q(s, a′), before applying a
softmax:

ρi(a|st) =
eQ̃(st,a)/Ti∑
a′ eQ̃(st,a′)/Ti

• For continuous actions environments, we learn a Gaussian policy ξ(.|s) ∼ N
(
µ(s), σ(s)

)
and define the explorer policies as:

ρi(.|st) ∼ N
(
µ(s), Ti

)
{Ti, 1 ≤ i ≤ n} is an increasing sequence of temperatures. A large temperature gives a uniform
distribution, whereas a low temperature corresponds to taking argmaxa Q(st, a) or µ(s). Different
shapes of sequences were tried (linear, logarithmic, exponential, polynomial, logistic), and best
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performance was obtained with a logistic schedule (with a linear end). The exact values will be
provided in the code.

For Acrobot and the DQN guide we also played with a multi-ε exploration strategy based on
EPSGREEDYEXPLORE (Fig 7) where we use one ε value for each of the n = 100 rollouts:
{0.001, 0.01, 0.02, . . . , 0.99}. Refer to Appendix B for experiments with a suboptimal DQN guide
using this exploration strategy.

EPSGREEDYEXPLORE
(
π(0), ξ, n

)
[s]:

1 for i← 1 to n:

2 ρi(a|s) =
{
argmaxa ξ(a|s) with probability 1− εi
π(0)(a) with probability εi.

3 return [ρi]
n
i=1

Figure 7: Exploration strategies. EPSGREEDYEXPLORE changes the action to a random action
π(0) ; a with different probabilities. The probabilities [εi]ni=1 are hyperparameters.

B IMPORTANCE OF THE EXPLORATION: STUDY WITH A SUBOPTIMAL DQN
GUIDE ON ACROBOT

We ran an ablation study with a suboptimal DQN guide on Acrobot (achieving an asymptotic perfor-
mance of 1.6 on the real system) and a multi-ε greedy explorer (EPSGREEDYEXPLORE) to claim the
importance of the explorer. EPSGREEDYEXPLORE makes it easy to control and interpret the degree
of exploration through the ε parameter.

We consider the following agents. We start from the simple DQN guide which is interacting with
the system without planning. Adding (n, L) to the name of the agent means that we use the agent
to guide a planning of n rollouts with horizon L. It is important to note here that planning without
exploration using the greedy guide is, in our case, equivalent to no planning since both the model
p̂ and the guides ξ are deterministic. DQN-EPSGREEDYEXPLORE refers to the additional use of the
associated exploration strategy (Fig 7). When a fixed ε is used for the exploration strategy, we add
it as an explicit parameter, e.g., EPSGREEDYEXPLORE(ε). No parameters means that a different ε or
temperature is used for each of the n rollouts. Setting ε to 0 corresponds to no exploration and is
equivalent to using the guide greedily without planning (n = 1 and L = 1) as our model is used
deterministically when sampled from. Setting ε to 1 corresponds to full exploration and is equivalent
to the purely random RSACTOR(n = 100, L = 10).

Table 6 reports the results obtained by DQN alone, DQN with planning and fixed ε values (DQN(n =
100, L = 10)-EPSGREEDYEXPLORE(ε) for ε ∈ {0.0001, 0.01, 0.05, 0.1, 0.2, 0.4, 0.8, 0.99, 0.9999}).
The closer ε is to 0 the closer the performance is to DQN, and the closer ε is to 1 the closer the
performance is to RSACTOR(n = 100, L = 10). With a well-chosen ε between these two extremes,
say ε = 0.4, we obtain a better performance than either extremes. We can thus claim that planning
is required with a correct amount of exploration. Our EPSGREEDYEXPLORE exploration strategy,
used with multiple ε values allows for the automatic and dynamic selection of the good amount
of exploration. It would indeed be possible that using a fixed ε value would not give the best
performance as different values would be required at different epochs or different steps of an episode.
We illustrate this by plotting the selected epsilon vs the episode step for 3 different epochs (Fig 8).
Even though the guide is suboptimal the exploration scheme can make the agent benefit from the
guide where it is good and discard it where it is bad.

C RSACTOR PERFORMANCE ON THE REAL ACROBOT AND CARTPOLE
SYSTEMS

C.1 ACROBOT

We present the results one can obtain on the real system with an RSACTOR and different values of
the planning horizon L and the number of generated rollouts n in Fig 9. For the considered planning
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Table 6: Importance of the explorer. MAR is the Mean Asymptotic Reward showing the asymptotic
performance of the agent and MRCP(1.8) is the Mean Reward Convergence Space showing the
sample-efficiency performance as the number of system access steps required to achieve a reward
of 1.8. ↓ and ↑ mean lower and higher the better, respectively. The ± values are 90% Gaussian
confidence intervals.

Agent MAR ↑ MRCP(1.8) ↓
DQN 1.442±0.014 inf ±inf
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(ε = 0.0001) 1.475±0.062 inf ±inf
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(ε = 0.01) 1.664±0.032 inf ±inf
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(ε = 0.05) 1.932±0.012 3540±520
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(ε = 0.1) 2.009±0.031 2400±–
RSACTOR(n = 100, L = 10) 2.075±0.01 2620±320
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(ε = 0.9999) 2.107±0.042 2000±–
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(ε = 0.99) 2.118±0.046 2400±–
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(ε = 0.2) 2.151±0.034 2400±–
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(ε = 0.8) 2.196±0.037 2000±–
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(ε = 0.4) 2.204±0.01 1910±140
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE 2.203±0.012 1880±100

Figure 8: Moving average evolution of the selected epsilon (from the best trace in Line 4 in
Fig 5) across timesteps and epochs in the Acrobot environment (1 epoch = 200 timesteps). In
early epochs (epoch 0) when the guide is weak, selected epsilons are roughly uniform around the
median, but as the guide is getting better (epoch 50), late timesteps require more exploration than
first ones already learnt well by the guide. Eventually (epoch 100), the guide would further improve
and less exploration is needed.

horizons a larger number of generated rollouts lead to a better performance. We also observed in our
simulations that for the Acrobot to stay balanced, it was necessary (although not always sufficient) to
have a reward larger than 2.6. We see from Fig 9 that this can be achieved with a simple agent such
as RSACTOR but at the price of a very large number of generated rollouts. The goal is therefore to
design a smarter agent that can come as close as possible to this performance with a limited budget.

C.2 CARTPOLE

Fig 10 reports the performance obtained with RSACTOR and a CEM agent for different values of n
and L. For the CEM agent we run 5 iterations with the given n and L so the total budget is 5×n×L.
A mean reward of 0.8 corresponds to a pole that succeeds at standing upright and being stable. We
see that achieving such a performance requires a CEM agent and a planning horizon larger than
L = 100.
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Figure 9: Performance obtained with RSACTOR on the real Acrobot system for different planning
horizons L and number of generated rollouts n. The plot shows the mean rewards obtained for sev-
eral randomly initialized episodes of 200 steps. The error bars give the associated 90% confidence
intervals. Note that since Acrobot has a discrete action space with three actions, the total number
of different rollouts for h = 10 is n = 310 = 59,049. The performance shown for h = 10 and
n = 100,000 thus only requires n = 59,049 rollouts.

Figure 10: Performance obtained with RSACTOR and CEM on the real Cartpole system for different
planning horizons L and number of generated rollouts n. The plot shows the mean rewards obtained
for several randomly initialized episodes of 1000 steps. The error bars give the associated 90%
confidence intervals.
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