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ABSTRACT

Machine unlearning (MU), which seeks to erase the influence of specific unwanted
data from already-trained models, is becoming increasingly vital in model editing,
particularly to comply with evolving data regulations like the “right to be forgotten”.
Conventional approaches are predominantly model-based, typically requiring re-
training or fine-tuning the model’s weights to meet unlearning requirements. In this
work, we approach the MU problem from an input perturbation-based perspective,
where the model weights remain intact throughout the unlearning process. We
demonstrate the existence of a proactive input-based unlearning strategy, referred
to forget vector, which can be generated as an input-agnostic data perturbation and
remains as effective as model-based approximate unlearning approaches. We also
explore forget vector arithmetic, whereby multiple class-specific forget vectors
can be combined through simple operations (e.g., linear combinations) to generate
new forget vectors for unseen unlearning tasks, such as forgetting arbitrary subsets
across classes. Extensive experiments validate the effectiveness and adaptability of
the forget vector, showcasing its competitive performance relative to state-of-the-art
model-based methods while achieving superior parameter efficiency.

1 INTRODUCTION

To prevent unauthorized use of personal or sensitive data after training and comply with legislation
such as the “right to be forgotten” (Hoofnagle et al., 2019), machine unlearning (MU) has garnered
increasing attention as a solution to various challenges in vision tasks (Golatkar et al., 2020; Warnecke
et al., 2021; Fan et al., 2023; Poppi et al., 2023). In essence, it initiates a reverse learning process
to erase the impact of unwanted data (e.g., specific data points, classes, or knowledge) from an
already-trained model, while still preserving its utility for information not targeted by an unlearning
request. Based on the guarantees provided for data removal from already-trained models, existing
MU methods can be broadly categorized into two approaches: exact unlearning (Guo et al., 2019;
Thudi et al., 2022b; Dong et al., 2024) and approximate unlearning (Izzo et al., 2021; Graves et al.,
2021; Thudi et al., 2022a; Becker & Liebig, 2022; Chen et al., 2023b; Tarun et al., 2023; Cha et al.,
2024). The former guarantees the complete and verifiable removal of targeted data, typically achieved
by retraining the model from scratch with the data to be forgotten excluded from the training set,
a process we refer to as Retrain. However, due to the high computational overhead, research has
increasingly focused on approximate unlearning methods, which seek to achieve efficient unlearning
without requiring full retraining.

Approximate unlearning strikes a balance between computational efficiency and effective data
removal, making it practical for many real-world applications. Most existing approximate unlearning
techniques are model-based, updating the model’s weights within a limited number of training
iterations to eliminate the influence of specific unwanted data, thus avoiding a full retraining process.
Representative methods in this category include fine-tuning approaches (Warnecke et al., 2021;
Perifanis et al., 2024), gradient ascent techniques (Thudi et al., 2022a; Chen et al., 2024), and
influence function-based methods (Golatkar et al., 2020; 2021).

Although the model-based unlearning methods have made significant strides, they often overlook
the data-based dimension and its potential impact on MU. For instance, it remains unclear whether
current MU approaches generalize effectively to “shifted” forget data. Additionally, the possibility
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of a data-based MU design that operates without updating model parameters has yet to be explored.
Therefore, we ask:

(Q) Can we explore data influence in MU and harness data-based operations to fulfill MU?

Dog

Bi r d

Retain

Or iginal  Model

Pr ior  MU (SCRUB)For get

Pr ior  wor k : Unlear n @ Model

For get  Vector  (Our  Pr oposal ): 
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For get  
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Input
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Figure 1: A schematic illustration comparing our proposed data-
based MU method (termed the “forget vector”), which achieves
unlearning objectives (i.e., forgetting “dog” and remembering
“bird” in this example) by operating directly on input data without
altering model parameters, against traditional model update-based
unlearning methods. � indicates that the forget data is success-
fully unlearned, while � means that the retain data is correctly
recognized, or the forget data is not successfully unlearned. The
“original model” refers to the model without unlearning applied,
and “SCRUB” (Kurmanji et al., 2024b) is an existing representa-
tive unlearning method that updates model weights.

To address (Q), we study MU from
a fresh data-based viewpoint: forget
vector, a universal input data perturba-
tion designed to promote unlearning ef-
fectively; See the schematic overview
in Fig. 1. Before developing the for-
get vector, we explore the rationale
for how data perturbations complement
current model-based MU approaches,
as evidenced by these methods’ gen-
eralization to common data shifts, in-
cluding Gaussian noise and adversarial
perturbations (Goodfellow et al., 2014;
Hendrycks & Dietterich, 2019). To de-
sign the forget vector, we draw inspira-
tion from recent input prompting tech-
niques for vision models, known as vi-
sual prompting (Bahng et al., 2022b;
Chen et al., 2023a; Oh et al., 2023) or
model reprogramming (Elsayed et al.,
2018; Zhang et al., 2022; Chen, 2024),
used in transfer learning and model adaptation. These prompting methods learn input perturbations
to enable a fixed model to perform well on new tasks, effectively guiding the model to execute tasks
it wasn’t originally trained for. From this perspective, our research on the forget vector also explores
whether it is possible to append a trainable “prompt” to the input to guide an already-trained neural
network in unlearning specific data. The proposed forget vector allows the unlearner to modify user
inputs targeted for deletion, offering a flexible and efficient approach to unlearning while potentially
achieving significant parameter efficiency. We summarize our contributions below.

• We investigate the impact of forget data shifts on image classifiers post-unlearning, revealing that
unlearning demonstrates resilience against these shifts (to some extent) while generalization remains
more vulnerable.

• Building on the complementary role of data shifts in MU, we propose a proactive, input-agnostic
data perturbation strategy termed the forget vector, optimized specifically to facilitate unlearning.

• We demonstrate the effectiveness of forget vector arithmetic by using precomputed class-wise
forget vectors to generate new vectors that effectively eliminate the influence of specific data subsets
in image classification models, e.g., in the scenario of random data forgetting.

• We conduct extensive experiments on MU for image classification, providing both quantitative and
qualitative analyses to demonstrate the competitiveness of the forget vector compared to model-based
MU methods.

2 RELATED WORK

MU in Vision. Machine unlearning (MU) in vision has gained significant attention due to the
increasing need for privacy preservation, copyright protection, and ethical data removal in machine
learning models. Recent studies (Gupta et al., 2021; Pan et al., 2022; Di et al., 2022; Zhang et al.,
2024c; Liu et al., 2024a) in this area have primarily focused on two main applications: image
classification and image generation.

In image classification, MU methods have explored various ways to erase certain classes or images
from models (Golatkar et al., 2020; 2021; Thudi et al., 2022a; Chen et al., 2024; Liu et al., 2024a;
Pochinkov & Schoots, 2024). Specifically, fine-tuning-based methods update the model incrementally
on a modified dataset without the unwanted data points (Warnecke et al., 2021; Perifanis et al., 2024).
Gradient ascent-based approaches attempt to reverse the impact of unwanted data by applying gradient
ascent to model parameters (Thudi et al., 2022a; Chen et al., 2024). Influence-based unlearning
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methods estimate and negate the effect of specific data points on model predictions and parameters to
achieve unlearning (Golatkar et al., 2020; 2021). Another line explores the relationship between MU
and model pruning, suggesting that model sparsity can help to bridge the gap between approximate
and exact unlearning, reducing the need for complex parameter updates (Liu et al., 2024a).

For image generation, MU techniques (Fan et al., 2023; Zhang et al., 2024c) have been proposed to
prevent models from generating unwanted or harmful content while retaining high-quality outputs.
For example, weight saliency methods (Fan et al., 2023) guide MU by identifying and selectively
altering model parameters to eliminate specific content generation. Beyond vision, MU has been
applied to other domains, with notable efforts in natural language processing (Wang et al., 2023a;
Shi et al., 2024; Wang et al., 2024; Liu et al., 2024b), graph-based data (Li et al., 2024; Dong et al.,
2024), and time-series data (Du et al., 2019). However, most existing MU methods are model-based,
requiring updates to model parameters and consequently incurring high computational costs.

Input-based Model Adaptation. This approach aims to modify or repurpose pre-trained models
for new tasks or specific objectives without the need for full retraining. It is particularly beneficial for
reducing computational costs and leveraging existing knowledge within models. Key techniques in
model adaptation include: Visual prompting (Jia et al., 2022; Wang et al., 2023b; Liu et al., 2023;
Hossain et al., 2024; Zhang et al., 2024a) maintains the pre-trained model’s parameters fixed and
adapts the input to enable the model to perform different tasks. For example, introducing trainable
parameters in the input space while keeping the model backbone frozen can achieve comparable
results with reduced computational overhead. Model reprogramming (Elsayed et al., 2018; Tsai
et al., 2020; Yang et al., 2021; Melnyk et al., 2023) involves keeping a pre-trained model unchanged
while modifying its inputs to adapt the model for new tasks. For example, adversarial perturbations
can be applied to inputs at test time, allowing the model to perform a specific task dictated by the
perturbations, even if that task was not originally intended for the model. Feature-based domain
adaptation (Tahmoresnezhad & Hashemi, 2017; Wang et al., 2018) applies transformations or mapping
techniques to the input data, aligning the feature distributions between the source and target domains
while keeping the model unchanged.

3 PRELIMINARIES ON MU AND PROBLEM STATEMENT

Formulation of MU. In this work, we focus on the problem of MU for image classification. Let
D = {xi, yi}Ni=1 represent a training set with N examples, where xi denotes the ith image data, and
yi denotes its corresponding class label. Following the classic MU setting (Golatkar et al., 2020;
Fan et al., 2023; Kurmanji et al., 2024a;b), we introduce a forget set Df ⊆ D, which specifies the
training samples targeted for unlearning. Accordingly, the complement of Df is the retain set, i.e.,
Dr = D \ Df . The goal of MU is to efficiently and effectively eliminate the influence of Df on an
already-trained model θo, so that the performance of the post-unlearning model closely approximates
that of a model retrained from scratch on Dr (i.e., excluding the impact of Df from scratch). Therefore,
such a retraining method (referred to as Retrain) is typically considered as the gold standard of MU
(Thudi et al., 2022a; Jia et al., 2023). However, since Retrain is computationally intensive, most
popular MU approaches instead address an unlearning optimization problem using the forget and
retain sets to update the model parameters θ, starting from the originally pre-trained model θo. This
yields the following optimization problem for MU:

minimize
θ

ℓMU(θ;Df ,Dr), (1)

with the initialization θ = θo. In (1), ℓMU represents an appropriate unlearning loss function that
may depend on Df and/or Dr, as will be detailed when introducing specific unlearning methods. In
the context of MU for image classification (Golatkar et al., 2020; Fan et al., 2023), the specification
of the forget set Df leads to two unlearning scenarios: class-wise forgetting, where Df consists of a
subset focused on a specific image class targeted for unlearning, and random data forgetting, where
Df is a randomly selected subset of images across all classes.

Model-based MU Methods and Evaluation. The formulation in (1) represents the predominant
MU solution in the literature, focusing on modifying model weights and/or architectural components
to achieve the unlearning objective. In what follows, we introduce several representative MU
approaches that serve as approximations to Retrain. (a) Fine-tuning (FT) (Warnecke et al., 2021):
This approach treats the MU problem as a continual learning task, defining the unlearning objective
ℓMU as a training objective that fine-tunes θo over Dr to induce catastrophic forgetting of Df . (b)
Random labeling (RL) (Golatkar et al., 2020): This approach specifies the unlearning objective ℓMU
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by assigning random labels or features to the data in Df , thereby enforcing model forgetting. (c)
Gradient ascent (GA) (Thudi et al., 2022a): This approach employs the negative of the FT loss to
reverse the training impact associated with the data in Df . (d) Localization-informed unlearning
(Jia et al., 2023; Fan et al., 2023): This method identifies a subset of model weights critical to the
unlearning task (e.g., through model sparsity (Jia et al., 2023) or gradient saliency (Fan et al., 2023))
and incorporates this weight localization as a prior to solve the unlearning problem in (1).
Given an unlearned model (denoted as θu) after solving (1), unlearning performance is evaluated in
two main areas: unlearning effectiveness, which measures whether the target data/information has
been successfully removed, and utility retention, which assesses whether unlearning has preserved
the model’s classification ability on unaffected data. Following the evaluation pipeline in Jia et al.
(2023), unlearning effectiveness is quantified by two metrics: unlearning accuracy (UA), defined as
1−the model’s accuracy on Df (higher UA indicates better unlearning), and membership inference
attack performance on Df , termed MIA-Efficacy, where higher prediction accuracy on non-training
samples indicates better unlearning (see Appendix A). Utility retention is measured by retain accuracy
(RA), reflecting the model’s accuracy on Dr, and testing accuracy (TA), which is the accuracy on the
original test set. Notably, TA is assessed on the entire original test set, except in the case of class-wise
forgetting, where test samples from the forgotten class are excluded from evaluation.

Data-based MU Design: The Forget Vector Problem. While previous MU methods can be
unified within the framework of (1) by varying the unlearning loss ℓMU and weight localization priors,
recent advancements in input data-based model adaptation, such as visual prompting (Bahng et al.,
2022a; Chen et al., 2023a) and model reprogramming (Chen, 2024; Elsayed et al., 2018), suggest an
alternative approach to MU. This strategy inspires us to design data-based prompting (implemented
through universal input perturbations) to achieve unlearning without modifying the model itself. We
refer to this input perturbation vector, designed specifically for MU, as the forget vector. To be
more specific, let δ represent the data-agnostic input perturbations to be designed. The problem of
constructing a forget vector for MU can be formulated as

minimize
δ

ℓMU(δ;θo,Df ,Dr), (2)

where δ is the perturbation variable, applied linearly to the forget and retain samples as x′ := x+ δ
for x in Df and Dr, similar to visual prompting (Bahng et al., 2022a) and adversarial examples
(Goodfellow et al., 2014). In practice, since the model remains unchanged, the unlearner can compute
the forget vector based on the forget request (forget set) and append it to model inputs to process
user-initiated unlearning requests. In this work, we do not consider counter-unlearning adversaries
that intentionally negate the effect of the forget vector. We will detail the unlearning objective
function required for designing the forget vector in our later method sections.

Based on (2), we are motivated to explore two research questions: (Q1) How do “perturbations”
applied to forget data affect unlearning performance? (Q2) How can we effectively design the forget
vector δ to solve problem (2)? These two questions are interconnected: the answer to (Q1) offers a
sensitivity analysis of MU to data shifts within the forget set, guiding how the specific shift induced
by the forget vector can be optimized for effective unlearning in (Q2). Therefore, the following
Secs. 4-5 address (Q1) and (Q2) in sequence. For (Q1), the next section analyzes performance through
an evaluation lens on a given unlearned model, using data perturbations applied via standard data
augmentation operations or adversarial perturbations.

4 GENERALIZATION OF MU TO FORGET DATA SHIFTS

Before designing the forget vector as formulated in (2), we examine the sensitivity of existing model-
based unlearning approaches to external perturbations applied to forget data. Such a perturbation-
based or out-of-distribution (OOD) generalization analysis of MU has not been explored in the
literature. Our rationale is that if conventional MU approaches demonstrate robustness to these
external forget data perturbations post unlearning, then enhancing MU with a forget vector could
become a seamless process, as a proactive design of such a vector would likely yield effective results.

Post-unlearning Forget Data Perturbations. Given an unlearned model (θu) after solving (1),
we examine two types of shifts in forget data: standard data corruptions used in the evaluation
of OOD generalization (Hendrycks & Dietterich, 2019; Hendrycks et al., 2021) and worst-case
perturbations generated by adversarial attacks (Goodfellow et al., 2014; Madry et al., 2017). (a)
Data Corruptions. Following the OOD generalization evaluation approach in image classification
(Hendrycks & Dietterich, 2019), we consider four data corruptions : noise, blur, weather, and digital.
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Figure 2: The performance of class-wise forgetting on (ResNet-18, CIFAR-10) using the unlearning method
Retrain vs. the (pre-unlearning) original model performance (Origin), evaluated on both benign evaluation sets
(Benign) and perturbed sets, which include (1) Gaussian noise (GN) with a standard deviation of 0.08 (termed
GN1), (2) GN with a standard deviation of 0.2 (termed GN2), (3) Elastic transformation (ET) with parameters
(488, 170.8, 24.4) regarding intensity, smoothing, and offset (termed ET1), (4) ET with parameters (488, 19.52,
48.8) (termed ET2), and (5) adversarial perturbations from a 7-step PGD attack with strength ϵ = 8/255. The
unlearning performance metrics are reported as (a) TA (testing accuracy), (b) RA (retain accuracy), (c) UA
(unlearning accuracy), and (d) MIA-Efficacy, as defined in Sec. 3. The average performance is reported over 10
independent trials, where each trial focuses on forgetting one specific class from CIFAR-10. Shaded regions
indicate the performance variance.
Each type of corruption includes five levels of severity, with higher levels denoting increased noise
intensity. Among these, we select zero-mean Gaussian noise (GN) and Elastic transformations (ET)
as the primary corruption types to evaluate MU robustness against shifts in forget data. Our rationale
is that Gaussian noise yields small pixel-wise perturbations (similar to adversarial perturbations
introduced later) and Elastic transformations stretch or contract small image regions. (b) Adversarial
perturbations. An adversarial image is a benign image altered with carefully crafted, pixel-wise
perturbations designed to mislead a classifier. In this work, we use the ϵ-constrained ℓ∞ norm-based
K-step projected gradient descent (PGD) attack (Goodfellow et al., 2014; Madry et al., 2017) to
generate adversarial examples via iterative projected gradient updates. The parameter ϵ > 0 defines
the radius of the ℓ∞ norm of the perturbations, controlling their strength. And K represents the
number of PGD steps.

Generalization of MU to Forget Data Perturbations. Next, we apply the above data shift
operations to the MU evaluation sets, namely, the forget, retain, and testing sets, and assess the
unlearning performance of an unlearned model. Fig. 2 displays the performance of the gold standard
unlearning method, Retrain, against Gaussian noise at test time with standard deviations of 0.08
and 0.2 (Hendrycks & Dietterich, 2019), and two types of Elastic transformations with parameters
(488, 170.8, 24.4) and (488, 19.52, 48.8) regarding intensity, smoothing and offset for moderate and
high-intensity distortions (Hendrycks & Dietterich, 2019), as well as a 7-step PGD attack with
perturbation strength ϵ = 8/255 (Goodfellow et al., 2014). To ensure the feasibility of Retrain, we
conduct the image classification task using ResNet-18 on the CIFAR-10 dataset.

As shown in Fig. 2-(a) and (b), model utility, measured by RA (retain accuracy) and TA (testing
accuracy), decreases when external perturbations are applied to the evaluation sets compared to
its original performance without perturbations. This is expected due to the generalization loss
when evaluated on new, shifted data. More interestingly, Fig. 2-(c) and (d) show that unlearning
effectiveness of Retrain, measured by UA (unlearning accuracy) and MIA-Efficacy, remains stable
despite the presence of these perturbations on the forget set. This is because perturbations degrade
prediction performance across evaluation sets, including the forget set. This is further evidenced by
the increase in UA and MIA-Efficacy for the original model (without unlearning) when exposed to
data perturbations. Above indicates that a reduction in performance on the forget set could translate
into enhanced unlearning effectiveness on that set. In Appendix B, we provide additional evaluations
of other approximate MU methods, including FT, RL, and GA, showing consistent performance.

The results above demonstrate that unlearning effectiveness is inherently preserved under external
perturbations at no additional cost. However, balancing this with utility retention in the presence of
perturbations remains challenging and desirable. Therefore, we need to carefully address the forget
vector problem (2) to develop an input-based MU solution that enhances unlearning effectiveness
without compromising model utility.

5 OPTIMIZATION FOR FORGET VECTORS

Unlearning Objective Design of Forget Vectors. Our design aims for the forget vector variable
(δ), when applied to the forget set (Df ), to drive the given model’s predictions (θo) away from the
correct labels. Conversely, when applied to the retain set (Dr), the forget vector should minimally
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affect correct predictions. The first forget objective aligns with adversarial attack design, aiming to
mislead the model’s predictions in the presence of the perturbation δ. The second retain objective
acts as a utility regularization, suppressing the unlearning effect of the perturbation when applied to
data samples not targeted for unlearning (retain samples).

To implement the forget objective (denoted by ℓf ), we draw inspiration from the C&W untargeted
attack loss (Carlini & Wagner, 2017). This is given by a margin loss, designed to remain actively
minimizing when the top prediction matches the correct label, ensuring that optimization continues
until predictions are shifted to an incorrect label, thereby achieving unlearning. This can be cast as

ℓf(δ;θo,Df) = E(x,y)∈Df
max{fθo,y(x+ δ)− max

k: k ̸=y
fθo,k(x+ δ),−τ}, (3)

where (x, y) ∈ Df denotes a forget sample with y being the prediction label of x, x+δ is the perturbed
sample, fθo,k(x) denotes the prediction logit (before softmax) of the model θo for class k under the
input x, and τ ≥ 0 is a margin threshold that controls the unlearning strength. The rationale behind (3)
is that minimizing it ensures convergence to the negative margin fy(x+ δ)−maxk ̸=y fk(x+ δ) →
−τ ≤ 0. Thus, the forget vector δ enforces unlearning on θ for x by making the incorrect prediction
(k ̸= y) have a higher confidence than the original correct prediction y. On the other hand, once the
margin becomes negative (indicating that the prediction label has been flipped), the forget objective
ℓf automatically terminates, allowing a balance with the retain objective, which will be introduced
later. In our experiments, we find that the forget objective is robust to variations in the nonnegative
margin parameter τ (see Appendix C). A larger τ value imposes a stricter unlearning requirement by
increasing the logit distance from the correct label. For example, we set τ = 1 in our experiments.

Next, we regularize the forget objective (3) with the retain objective, defined as the cross-entropy loss
(ℓCE) over the retain set Dr, along with the ℓ2 norm of δ to ensure minimal perturbation required to
achieve both the forget and retain objectives. This yields the full unlearning objective in (2):

ℓMU(δ;θo,Df ,Dr) = ℓf(δ;θo,Df) + λ1ℓCE(δ;θo,Dr) + λ2∥δ∥22, (4)

where λ1 > 0 and λ2 > 0 are the regularization parameters, and ℓCE(δ;θo,Dr) denotes the CE loss
of the model θo over the perturbed retain set {(x+ δ, y)}(x,y)∈Dr

. Integrating (4) into (3), we can
then apply stochastic gradient descent (SGD) (Amari, 1993) to optimize the forget vector variable δ.

Compositional Unlearning via Forget Vector Arithmetic. A forget vector defines an unlearning
direction in the input space to guide the unlearning process. We explore whether a new unlearning
direction can be efficiently constructed by interpolating from existing precomputed forget vectors,
such as class-wise forget vectors obtained by solving (4) with Df defined as each class’s training set.
This approach is analogous to the concept of task vectors in weight space for model editing (Ilharco
et al., 2022). However, to the best of our knowledge, input-based task vector arithmetic has not yet
been explored in the literature. If forget vectors can be modified and combined using arithmetic
operations, such as negation and addition, we can dynamically adjust a model’s unlearning behavior
without re-solving the optimization problem (4) or any other model-based unlearning problem in
(1). We refer to this new unlearning paradigm as compositional unlearning, where precomputed
class-wise forget vectors can be efficiently combined to generate a new forget vector for each deletion
request in the context of random data forgetting.

Let δk denote the forget vector used for unlearning data points of class k. Given the set of forget
vectors {δk}Kk=1 for all K classes, we obtain these vectors by solving (4) with Df defined as each
class’s training set, respectively. The forget vector for compositional unlearning is given by

δ(w) :=

K∑
k=1

(wkδk), (5)

where w = [w1, . . . wK ]K are the linear combination coefficients to be optimized, which determine
the forget vector arithmetic. To determine w, we can minimize (4) with the optimization restricted to
the coefficients w. Instead of penalizing the ℓ2 norm of the forget vector, we penalize the ℓ2 norm of
w to prevent excessive pixel perturbation. This modifies (4) to the problem minw ℓf(δ(w);θo,Df)+
λ1ℓCE(δ(w);θo,Dr) + λ2∥w∥22. As will be shown later, random data forgetting can be achieved
through class-wise forget vector arithmetic (5) by applying the compositional scheme defined by w.

To illustrate the effectiveness of forget vector arithmetic, Fig. 3 shows preliminary results of combining
two class-wise forget vectors (δ1 and δ2) using a simple scheme δ(w) = w1δ1+w2δ2 on (CIFAR-10,
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ResNet-18), when forgetting a randomly selected 10% of training points from class “automobile”
and class “bird” refering to w1 and w2. Rather than optimizing w, we adjust w1 and w2 from
−0.2 to 0.2 to observe how the performance gap relative to Retrain varies. This evaluation includes
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(a) UA Gap (b) RA Gap (c) Avg. Gap

Figure 3: The performance gap relative to Retrain for class-wise forget
vector arithmetic (based on classes “automobile” and “bird”) across different
combination coefficients w1 and w2, when unlearning a randomly selected
10% of training points from these two classes of CIFAR-10. Each cell
displays the gap (%) relative to Retrain at a specific weight combination,
where a lower value indicates a closer performance to Retrain given a metric.
A green star (★) denotes the selected weight combination scheme (w1 and
w2) that achieves the smallest performance gap relative to Retrain, averaged
over both UA Gap and RA Gap.

the UA (unlearning accuracy)
gap on the selected forget
data, the RA (retain accu-
racy) gap on the remaining
data, and the average gap
across these two metrics. As
expected, Fig. 3-(a) and (b)
shows a trade-off among these
two metrics, where weight
configurations that achieve a
low UA gap may result in a
higher RA gap, and vice versa.
Additionally, Fig. 3-(c) shows
that moderate weight values
of w1 and w2 (−0.1 ≤ w1 ≤
0.1 and −0.1 ≤ w2 ≤ 0.1 )
tend to yield a more balanced average performance, maintaining relatively low gaps across two
metrics. A favored weighting scheme can be identified at w1 = −0.1 and w2 = 0.1 as marked by
the green star (★), validating the feasibility of arbitrary random data forgetting using our proposed
compositional unlearning via the forget vector arithmetic approach.

6 EXPERIMENTS

6.1 EXPERIMENT SETUPS

Datasets and Models. We focus on MU for image classification, using two datasets: CIFAR-
10 (Krizhevsky et al., 2009) and ImageNet-10, a 10-class subset of the original ImageNet (Deng et al.,
2009), for ease of implementation of Retrain (exact unlearning) over ImageNet images as (Tao et al.,
2021). For these tasks, we use three image classifiers: ResNet-18 (He et al., 2016) for CIFAR-10,
VGG-16 (Simonyan & Zisserman, 2014) and ViT-Base (Dosovitskiy et al., 2020) for ImageNet.

Unlearning Baselines and Evaluations. In the context of MU for image classification, we consider
two scenarios: class-wise forgetting and random data forgetting. In class-wise forgetting, training
data from an image class are designated for unlearning, while in random data forgetting, a subset of
all-class training points is randomly selected as the forget set, with a specified forget ratio of 10%.
We consider 8 MU baseline methods, including ① FT (Warnecke et al., 2021), ② RL (Golatkar et al.,
2020), ③ GA (Thudi et al., 2022a), ④ NegGrad+ (Kurmanji et al., 2024a), ⑤ SalUn (Fan et al., 2023),
⑥ SCRUB (Kurmanji et al., 2024b), ⑦ Class-F (Kodge et al., 2024), and ⑧ SSD (Foster et al., 2024),
where Class-F is only designed for class-wise forgetting.

As described in Sec. 3, unlearning effectiveness is measured using UA (unlearning accuracy) and
MIA-Efficacy, while model utility post-unlearning is assessed by RA (retain accuracy) and TA (testing
accuracy); For all metrics, being closer to Retrain indicates better performance. It is also worth noting
that all existing model-based MU baseline methods ①-⑧ are evaluated on non-perturbed evaluation
sets. However, when using our proposed data-based forget vector solution, we need to apply the
forget vector to the evaluation sets (including the forget set, retain set, and testing set) in order to
assess unlearning effectiveness and utility retention. This evaluation remains fair, as it aligns with the
same objective of forgetting targeted data. The key distinction is that the forget vector operates at the
input level, whereas model-based MU baselines achieve unlearning by modifying model weights. To
quantify the performance gap with Retrain, we compare each unlearning baseline and our proposal
against this exact unlearning method across all metrics. We report an averaged assessment, termed
Averaging (Avg.) Gap. Unless specified otherwise, all the main experiments (whether class-wise or
random data forgetting) are conducted over 10 random trials, with mean performance reported.

Implementation Details of Our Proposal. To solve the forget vector problem (2) with the proposed
unlearning objective in (4), we set the retain loss regularization parameter λ1 as follows: 3 for CIFAR-
10, 5 for ImageNet-10 with VGG-16, and 7 for ImageNet-10 with ViT-Base in class-wise forgetting.
For random data forgetting, we set λ1 to 1. The ℓ2-norm regularization parameter is set to λ2 = 1.
These hyperparameters are determined through a grid search over the range [0, 10]. To optimize
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Table 1: Performance overview of various MU methods for image classification under two unlearning scenarios
on CIFAR-10 using ResNet-18 and ImageNet-10 using ViT-Base. Since Class-F (Kodge et al., 2024) is
specifically designed for class-wise forgetting, its results do not apply to random data forgetting scenarios (n/a).
Other results are reported in the format a±b, where a is the mean and b denotes standard deviation b over 10
independent trials. The performance gap against Retrain is indicated in (•), where a lower value is better. ↑
(or ↓) indicates that a higher (or lower) value is better. The best performance for each metric is highlighted in
green , while the second-best performance is highlighted in red .

MU Method UA↑ MIA-Efficacy↑ RA↑ TA↑ Avg.Gap↓ UA↑ MIA-Efficacy↑ RA↑ TA↑ Avg.Gap↓
Class-wise Forgetting, CIFAR-10, ResNet-18 Random Data Forgetting, CIFAR-10, ResNet-18

Retrain 100.00±0.00(0.00) 100.00±0.00(0.00) 99.91±0.03(0.00) 94.92±0.15(0.00) 0.00 5.50±0.16(0.00) 11.57±0.47(0.00) 99.88±0.05(0.00) 94.24±0.19(0.00) 0.00

FT 5.27±0.73(94.73) 51.49±5.07(48.51) 100.0±0.0(0.09) 95.03±0.07(0.11) 35.86 0.03±0.03(5.47) 0.75±0.09(10.82) 99.98±0.02(0.10) 94.45±0.14(0.21) 4.15
RL 18.87±7.34(81.13) 98.94±0.79(1.06) 99.98±0.0(0.07) 94.51±0.12(0.41) 20.67 0.52±0.24(4.98) 3.13±0.55(8.44) 99.85±0.07(0.03) 93.88±0.20(0.36) 3.45
GA 71.45±0.35(28.55) 81.7±0.22(18.30) 98.62±0.04(1.29) 92.34±0.02(2.58) 12.68 1.56±3.08(3.94) 2.88±3.44(8.69) 98.67±2.74(1.21) 92.84±2.59(1.40) 3.81

NegGrad+ 91.78±14.66(8.22) 95.81±7.28(4.19) 98.35±1.22(1.56) 92.62±1.34(2.30) 4.07 0.97±1.08(4.53) 2.74±2.16(8.83) 99.42±0.87(0.46) 93.38±1.13(0.86) 3.67
SalUn 96.35±2.14(3.65) 98.64±0.03(1.36) 98.75±0.18(1.16) 92.34±1.54(2.58) 2.19 1.73±0.25(3.77) 6.25±1.21(5.32) 99.24±0.09(0.64) 91.03±0.14(3.21) 3.23

SCRUB 93.45±2.33(6.55) 96.38±1.72(3.62) 99.95±0.0(0.04) 94.56±0.07(0.36) 2.64 0.61±0.31(4.89) 3.69±0.54(7.88) 99.76±0.18(0.12) 93.91±0.19(0.33) 3.31
Class-F 90.18±1.20(9.82) 86.15±2.67(13.85) 91.25±0.05(8.66) 85.45±0.19(9.47) 10.45 n/a n/a n/a n/a n/a

SSD 96.05±0.45(3.95) 98.00±0.00(2.00) 97.77±0.20(2.14) 92.23±0.58(2.69) 2.70 5.54±0.00(0.04) 7.80±0.00(3.77) 94.86±0.00(5.02) 88.28±0.00(5.96) 3.70
Ours 97.88±0.27(2.12) 99.60±0.15(0.40) 97.25±0.24(2.66) 90.90±0.32(4.02) 2.30 2.61±0.49(2.89) 8.26±1.17(3.00) 97.33±0.47(2.55) 90.97±0.38(3.27) 2.92

Class-wise Forgetting, ImageNet-10, ViT-Base Random Data Forgetting, ImageNet-10, ViT-Base

Retrain 100±0.00(0.00) 100.00±0.00(0.00) 99.97±0.03(0.00) 99.85±0.01(0.00) 0.00 1.41±0.06(0.00) 93.57±0.00(0.00) 99.07±0.01(0.00) 99.27±0.01(0.00) 0.00

FT 42.79±7.51(57.21) 40.78±10.68(59.22) 99.96±0.01(0.01) 99.61±0.10(0.24) 29.17 1.38±0.16(0.03) 96.40±0.31(2.83) 99.60±0.09(0.53) 99.10±0.30(0.17) 0.89
RL 88.15±1.62(11.85) 96.50±1.50(3.50) 99.93±0.02(0.04) 99.89±0.11(0.04) 3.84 2.62±0.80(1.21) 93.75±0.52(0.18) 98.38±0.18(0.69) 95.05±0.26(4.20) 1.57
GA 28.05±7.05(71.95) 58.73±5.83(41.27) 99.97±0.01(0.00) 99.70±0.10(0.15) 28.34 0.82±0.16(0.59) 96.77±1.10(3.20) 99.60±0.09(0.53) 99.53±0.09(0.26) 1.15

NegGrad+ 10.90±2.87(89.10) 79.30±4.58(20.70) 99.98±0.00(0.01) 99.78±0.00(0.07) 27.46 1.97±0.72(0.56) 95.48±1.67(1.91) 98.09±0.94(0.98) 98.08±0.75(1.19) 1.16
SalUn 93.27±1.50(6.73) 94.00±1.00(6.00) 98.22±0.75(1.75) 98.00±0.00(1.85) 4.08 0.67±0.19(0.74) 95.80±0.0(2.23) 99.65±0.07(0.58) 98.27±0.09(0.00) 1.14

SCRUB 99.10±0.20(0.90) 95.67±1.77(4.33) 98.90±0.10(1.07) 99.33±0.31(0.52) 1.71 0.85±0.24(0.56) 95.90±0.95(2.33) 99.58±0.23(0.51) 99.20±0.14(0.07) 0.87
Class-F 28.62±7.85(71.38) 55.10±2.30(44.90) 77.50±1.62(22.47) 75.22±0.56(24.63) 40.85 n/a n/a n/a n/a n/a

SSD 90.35±1.65(9.65) 60.15±1.85(39.85) 98.43±0.55(1.54) 98.33±0.56(1.52) 13.14 1.12±0.04(0.29) 94.15±0.35(0.58) 98.97±0.00(0.10) 99.40±0.00(0.13) 0.28
Ours 95.92±0.27(4.08) 99.40±0.14(0.60) 99.13±0.04(0.84) 99.26±0.28(0.59) 1.53 1.08±0.39(0.33) 91.40±1.30(2.17) 98.97±0.35(0.10) 99.10±0.50(0.17) 0.69

(2), we use stochastic gradient descent (SGD) (Amari, 1993) with a momentum factor of 0.9 and an
exponential learning rate scheduler, decaying at a rate of 0.9 per iteration. Additionally, the batch
size is set to 256, with a maximum of 40 optimization iterations for both two datasets. To solve the
compositional unlearning problem (5), we use a similar setup, setting both λ1 and λ2 to 1.

6.2 EXPERIMENT RESULTS

Overview Performance of Forget Vector. In Tab. 1, we compare the performance of our forget
vector approach with other model-based MU methods across the metrics: UA, RA, TA, MIA-Efficacy,
and Avg. Gap vs. Retrain. We highlight three key observations below. First, in terms of unlearning
effectiveness (UA and MIA-Efficacy), the data perturbation-based forget vector demonstrates highly
competitive performance compared to model update-based MU baselines, mostly ranking among
the top two methods with the smallest performance gap relative to Retrain (as evidenced by Avg.
Gap). The advantage of the forget vector is particularly evident in MIA-Efficacy, where it usually
achieves the closest results to Retrain. Second, in terms of model utility post-unlearning (RA and
TA), the forget vector generally leads to a larger performance drop than other methods. This is not
surprising, as the forget vector is achieved through data perturbations. However, considering the
gain in unlearning effectiveness, the Avg. Gap with Retrain shows that the forget vector remains
competitive, ranking among the top two unlearning methods. Third, unlearning methods (including
Retrain) do not exhibit the same level of distinctiveness in random data forgetting as it does in
class-wise forgetting. This is because in random data forgetting, the retain data could have sufficiently
represented the distribution of the forget data, making it more challenging for MIA to distinguish
forgotten samples from retained ones. Besides, the corresponding results of various MU methods on
ImageNet-10 using VGG-16 can be found in Appendix D.

Transferability of Forget Vector to Unseen Forget Data. Conventionally, unlearning effectiveness
is typically measured on the original forget set (Df ). However, with the data perturbation-based

Table 2: UA (%) of forget vector when transferred
to unseen forget sets curated under 3 scenarios on
(CIFAR-10, ResNet-18). The results are presented in
the same format as Table 1.

MU Method
D′

f (Class-wise)
from testing set

D′
f (Random Data)

perturbed by GN1
D′

f (Random Data)
perturbed by ET1

Retrain 100.00±0.00(0.00) 64.73±3.36(0.00) 81.43±0.28(0.00)

FT 21.44±1.11(78.56) 56.75±1.40(7.98) 81.79±0.18(0.36)
RL 27.90±5.70(72.10) 61.84±2.45(2.89) 81.15±0.20(0.28)
GA 73.95±0.60(26.05) 55.20±2.59(9.53) 82.17±0.76(1.28)

NegGrad+ 93.86±10.93(6.14) 57.81±1.76(6.92) 81.73±0.65(0.30)
SalUn 97.55±1.37(2.45) 73.15±4.25(8.42) 80.27±3.56(1.16)

SCRUB 93.65±2.65(6.35) 61.95±0.86(1.85) 81.18±0.62(0.25)
Class-F 89.14±5.13(10.66) n/a n/a

SSD 98.70±0.03(1.30) 80.34±0.01(15.91) 84.70±0.02(3.27)
Ours 98.26±0.35(1.74) 78.32±1.03(13.59) 85.03±0.91(3.60)

forget vector, it is also interesting to investigate its
unlearning transferability when applied to a new,
previously unseen forget set (denoted as Df

′) that
share similarities with Df and are equally appro-
priate for unlearning. In the context of class-wise
forgetting, we consider D′

f using the testing data
from the class targeted for unlearning, where un-
learning performance should align closely with
Retrain since the test-time data to forget share the
same distribution with the training set. In the con-
text of data forgetting, we obtain D′

f by applying
the data corruption operation GN1 and ET1 used
in Fig. 2 to perturb Df (last two columns of Tab. 2), where Retrain is no longer the gold standard as
training data distribution excludes these shifts, allowing higher UA for better unlearning. As observed
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in Tab. 2, the unlearning performance of the forget vector remains effective when evaluated on D′
f .

Among the model update-based unlearning baselines, current SOTA methods such as SCRUB, SalUn
and SSD also demonstrate generalization to D′

f , compared to simpler MU methods like FT, RL, and
GA, which show lower transferability.
Compositional Unlearning by Class-wise Forget Vectors. Next, we demonstrate the effectiveness
of compositional unlearning via forget vector arithmetic (termed CU-FV). Given pre-computed
class-wise forget vectors, we apply their linear combination as defined in (5) to achieve ran-
dom data forgetting. Tab. 3 compares the performance of CU-FV with Retrain (the exact un-
learning method) and the direct forget vector approach (FV) applied to the targeted forget set.

Table 3: Compositional unlearning on CIFAR-10 and ImageNet-
10 for random data forgetting, where FV represents the original
setting of forget vector that is directly learned based on a tar-
geted forget set, and CU-FV denotes compositional unlearning
achieved via pre-learned class-wise forget vector arithmetic. The
results are presented in the same format as Table 1.

Module MU Method UA↑ MIA-Efficacy↑ RA↑ TA↑ Avg.Gap↓

CIFAR-10
ResNet-18

Retrain 5.50±0.16(0.00) 11.57±0.47(0.00) 94.24±0.19(0.00) 99.88±0.05(0.00) 0.00
FV 2.61±0.49(2.89) 8.26±1.17(3.00) 90.97±0.38(3.27) 97.33±0.47(2.55) 2.92

CU-FV 5.36±0.60(0.14) 9.76±0.91(1.81) 88.60±0.59(5.64) 94.93±0.64(4.95) 3.16

ImageNet-10
VGG-16

Retrain 4.05±0.45(0.00) 6.60±1.07(0.00) 96.33±0.38(0.00) 99.48±0.07(0.00) 0.00
FV 2.27±0.50(1.78) 6.13±1.40(0.47) 95.82±0.48(0.51) 98.29±0.32(1.19) 0.99

CU-FV 2.27±1.18(1.78) 4.95±1.86(1.65) 91.41±1.25(4.92) 97.93±1.09(1.55) 2.47

ImageNet-10
ViT-Base

Retrain 1.41±0.06(0.00) 99.07±0.01(0.00) 93.57±0.00(0.00) 99.27±0.01(0.00) 0.00
FV 1.08±0.39(0.33) 98.97±0.35(0.10) 91.40±1.30(2.17) 99.10±0.50(0.17) 0.69

CU-FV 1.62±0.05(0.21) 98.55±0.14(0.52) 92.09±0.25(1.48) 98.50±0.01(0.77) 0.75

Interestingly, we observe that CU-FV
achieves the overall performance com-
parable to FV, as indicated by similar
Avg. Gap values. Unlike FV, CU-FV op-
timizes only the class-wise coefficients
in (5), resulting in a much smaller opti-
mization space than FV. However, from
UA and MIA-Efficacy metrics, we find
that unlearning effectiveness is easier to
maintain since unlearning typically tar-
gets a smaller subset of data points. In
contrast, model utility (RA and TA) may
decline more with CU-FV than with FV.

Forget Image Original Model RetrainSCRUB Forget Vector

Figure 4: Gradient-based saliency map visualized via Grad-
CAM for different MU methods against forget images.
The highlighted areas (marked in red) indicate regions most
influential to model prediction, and the red cross mark (é)
indicates that corresponding methods effectively unlearn
the input forget images, while the check (Ë) signifies the
opposite.

Assessing Forget Vector via An Input
Saliency Lens. In Fig. 4, we explore the im-
pact of the forget vector on unlearning and
utility retention through input saliency map,
using Grad-CAM (Gradient-weighted Class
Activation Mapping) (Bengio et al., 2013). Us-
ing Grad-CAM, we visualize the salient pixels
(i.e., regions most influential to model predic-
tion) for forget images under different unlearn-
ing scenarios: (1) the original model (without
unlearning), (2) Retrain, (3) SCRUB-based
unlearning, and (4) forget vector-based un-
learning. In the first three scenarios, we obtain
the input saliency maps on raw forget images
without the addition of the forget vector, while
in the last scenario, the input saliency is applied to images perturbed by the forget vector. As seen
in Fig. 4 the forget vector and Retrain effectively unlearn the target input images, evident from the
significant shifts in saliency regions compared to those in the original model. In contrast, the MU
baseline SCRUB shows minimal saliency shifts, failing to adequately forget the target data in the last
row. More visualization results on both forget and retain images can be found in Appendix G.

Ablation Studies. In Appendix E, we provide additional ablation studies on the sensitivity of the
unlearning-retaining regularization parameter λ1 in (4). Moreover, we perform the efficiency analysis
of forget vector calculation and compositional unlearning in Appendix F.

7 CONCLUSIONS

In this paper, we introduce a novel, data-based approach to machine unlearning (MU) in image
classification, termed the forget vector. Unlike traditional model-based MU methods that require
retraining or fine-tuning model weights, our approach shows that input-agnostic data perturbations
can effectively achieve unlearning objectives. Our method demonstrates competitive performance
relative to model-based approximate unlearning techniques. Furthermore, we showcase the potential
of compositional unlearning: new forget vectors for unseen tasks, such as unlearning arbitrary subsets
across classes, can be generated through simple arithmetic operations, like linear combinations of
class-specific forget vectors. Extensive experiments confirm the effectiveness and adaptability of
our optimized forget vector. We refer readers to Appendix H-I for broader impacts, limitations, and
details of LLM usage.
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APPENDIX

A DETAILS OF MIA IMPLEMENTATION

To evaluate the effectiveness of the unlearning process, MIA is implemented following (Jia et al.,
2023) using a prediction confidence-based attack method (Song & Mittal, 2021), which comprises a
training phase and a testing phase in its computation. Specifically, a balanced dataset is first formed
by sampling data points from retain set Dr and test set Dt, ensuring the distinction from the forget
set Df . Then, a MIA predictor is trained utilizing such balanced dataset. Thereafter, MIA-Efficacy
can be calculated by applying the trained MIA predictor to the unlearned model θu on the forget
set Df . Essentially, the goal is to determine how many samples in Df can be accurately identified
as non-training data with respect to θu by the MIA model. Formally, MIA-Efficacy is defined as
follows,

MIA-Efficacy = Ntn/|Df |, (6)

where Ntn represents the total number of true negative samples in the forget set Df predicted by the
trained MIA model, i.e., the number of forgetting samples classified as non-training examples.

B GENERALIZATION OF MU TO FORGET DATA SHIFTS
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Figure A1: The performance of class-wise forgetting on (ResNet-18, CIFAR-10) using the unlearning method FT,
RL and GA, evaluated on both benign evaluation sets (Benign) and perturbed sets, which include (1) Gaussian
noise (GN) with a standard deviation of 0.08 (termed GN1), (2) GN with a standard deviation of 0.2 (termed
GN2), (3) Elastic transformation (ET) with parameters (488, 170.8, 24.4) regarding intensity, smoothing, and
offset (termed ET1), (4) ET with parameters (488, 19.52, 48.8) (termed ET2), and (5) adversarial perturbations
from a 7-step PGD attack with strength ϵ = 8/255. The unlearning performance metrics are reported as (a) TA
(testing accuracy), (b) RA (retain accuracy), (c) UA (unlearning accuracy), and (d) MIA-Efficacy, as defined in
Sec.3 of main paper. The average performance is reported over 10 independent trials, where each trial focuses
on forgetting one specific class from CIFAR-10. Shaded regions indicate the performance variance.

In Fig. A1, we provide additional evaluations of other approximate unlearning methods, including FT,
RL, and GA against Gaussian noise at test time with standard deviations of 0.08 and 0.2 (Hendrycks
& Dietterich, 2019), and two types of Elastic transformations with parameters (488, 170.8, 24.4)
and (488, 19.52, 48.8) regarding intensity, smoothing and offset for moderate and high-intensity
distortions (Hendrycks & Dietterich, 2019), as well as a 7-step PGD attack with perturbation strength
ϵ = 8/255 (Goodfellow et al., 2014). The experiments are conducted on the CIFAR-10 dataset using
ResNet-18 for the image classification task. As can be seen, the experimental results presented in
Fig. A1 are consistent with the findings in Sec.4 of the main paper, further reinforcing the validity
of our conclusions. Specifically, as shown in Fig. A1-(a) and (b), model utility, measured by RA
(retain accuracy) and TA (testing accuracy), decreases when external perturbations are applied to the
evaluation sets compared to its original performance without perturbations. Meanwhile, Fig. A1-(c)
and (d) show that unlearning effectiveness measured by UA (unlearning accuracy) and MIA-Efficacy,
remains stable despite the presence of these perturbations on the forget set.

C PARAMETER SENSITIVITY ANALYSIS: PREDICTION MARGIN τ IN FORGET
VECTOR LOSS

In Fig. A2, we provide the sensitivity analysis of τ on two datasets regarding two forgetting scenarios:
class-wise forgetting and random data forgetting, where we varied τ from 0.0 to 2.2 with a step of

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 27 5
8 0
8 5
9 0
9 5

1 0 0

Per
for

ma
nce

τ

 R A
 U A
 T A
 M I A - E f f i c a c y
 A v g .

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2
0

2 0
4 0
6 0
8 0

1 0 0

Per
for

ma
nce

τ

 R A
 U A
 T A
 M I A - E f f i c a c y
 A v g .

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 27 5
8 0
8 5
9 0
9 5

1 0 0

Per
for

ma
nce

τ

 R A
 U A
 T A
 M I A - E f f i c a c y
 A v g .

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2
0

2 0
4 0
6 0
8 0

1 0 0

Per
for

ma
nce

τ

 R A
 U A
 T A
 M I A - E f f i c a c y
 A v g .
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Class-wise Forgetting

(b) CIFAR-10
Random Data Forgetting

(b) ImageNet-10
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Figure A2: Sensitivity analysis of the nonnegative margin parameter τ for image classification under two
unlearning scenarios on CIFAR-10 and ImageNet-10 using ResNet-18 and VGG-16, respectively. The unlearning
performance metrics are reported as (a) TA (testing accuracy, blue curve), (b) RA (retain accuracy, orange curve),
(c) UA (unlearning accuracy, red curve), and (d) MIA-Efficacy (green curve), (e) the average (Avg.) performance
across TA, RA, UA, and MIA-Efficacy (purple curve). For class-wise forgetting scenario, the performance is
averaged over 10 independent trials, with each trial focusing on forgetting one specific class from the dataset.
Similarly, for random-data forgetting scenario, the performance is reported across 10 independent trials, where
each trial targets the forgetting of a random subset of the dataset. The shaded regions represent the variance in
performance across trials.

0.2. As can be seen, the forget objective is robust to variations in the nonnegative margin parameter
τ . When τ is set to 1, the performance across four metrics achieves an optimal tradeoff. Therefore,
we choose τ = 1 for our experiments.

D PERFORMANCE ON IMAGENET-10 USING VGG-16

Table A1: Performance overview of various MU methods for image classification under two unlearning scenarios
on ImageNet-10 using VGG-16. Since Class-F (Kodge et al., 2024) is specifically designed for class-wise
forgetting, its results do not apply to random data forgetting scenarios (n/a). Other results are reported in the
format a±b, where a is the mean and b denotes standard deviation b over 10 independent trials. The performance
gap against Retrain is indicated in (•), where a lower value is better. ↑ (or ↓) indicates that a higher (or lower)
value is better. The best performance for each metric is highlighted in green , while the second-best performance
is highlighted in red .

MU Method UA↑ MIA-Efficacy↑ RA↑ TA↑ Avg.Gap↓ UA↑ MIA-Efficacy↑ RA↑ TA↑ Avg.Gap↓
Class-wise Forgetting, ImageNet-10, VGG-16 Random Data Forgetting, ImageNet-10, VGG-16

Retrain 100.00±0.00(0.00) 100.00±0.00(0.00) 99.66±0.16(0.00) 97.11±0.82(0.00) 0.00 4.05±0.45(0.00) 6.60±1.07(0.00) 99.48±0.07(0.00) 96.33±0.38(0.00) 0.00

FT 39.66±4.73(60.34) 55.76±7.26(44.24) 99.78±0.03(0.13) 97.27±0.35(2.35) 26.77 1.35±0.32(2.70) 4.67±1.61(1.93) 99.36±0.28(0.12) 96.54±0.59(0.21) 1.24
RL 76.58±11.64(23.42) 46.04±33.71(53.96) 99.28±0.20(0.63) 96.91±0.55(1.99) 20.00 2.96±0.42(1.09) 12.85±4.25(6.25) 99.19±0.16(0.29) 95.50±0.90(0.83) 2.12
GA 46.61±6.11(53.39) 49.15±9.36(50.85) 99.35±0.11(0.56) 95.60±0.22(0.68) 26.37 0.18±0.04(3.87) 2.97±1.51(3.63) 99.86±0.01(0.38) 97.47±0.09(1.14) 2.23

NegGrad+ 49.56±34.87(50.44) 64.27±27.33(35.73) 99.08±1.18(0.58) 96.47±1.25(0.64) 21.84 0.60±0.44(3.45) 3.90±2.22(2.70) 99.68±0.28(0.20) 97.12±0.45(0.79) 1.79
SalUn 95.13±1.79(4.87) 97.24±0.17(2.76) 96.33±0.25(3.33) 96.18±1.10(0.93) 2.97 1.15±0.40(2.90) 3.56±1.12(3.04) 98.97±1.56(0.51) 95.42±2.10(0.91) 1.84

SCRUB 99.12±0.14(0.88) 98.01±0.51(1.99) 99.75±0.03(0.09) 97.24±0.16(0.13) 0.77 0.18±0.08(3.87) 2.80±1.33(3.80) 99.88±0.03(0.40) 97.36±0.15(1.03) 2.28
Class-F 71.19±3.50(28.81) 63.57±4.07(36.43) 61.55±4.25(38.11) 59.40±4.59(37.71) 35.27 n/a n/a n/a n/a n/a

SSD 91.50±0.96(8.50) 91.30±8.70(8.70) 99.48±0.18(0.18) 97.00±0.11(0.11) 4.38 0.88±0.04(3.17) 5.35±0.45(1.25) 99.36±0.15(0.12) 96.40±0.40(0.07) 1.15
Ours 87.23±6.55(12.77) 91.41±5.90(8.59) 94.77±1.16(5.14) 94.04±1.29(0.88) 6.85 2.27±0.50(1.78) 6.13±1.40(0.47) 98.29±0.32(1.19) 95.82±0.48(0.51) 0.99

In Tab. A1, we provide additional performance overview of different MU methods under two un-
learning scenarios on ImageNet-10 using VGG-16. Considering the gain in unlearning effectiveness,
the Avg. Gap with Retrain shows that the forget vector remains competitive, except for class-wise
forgetting on (ImageNet-10, VGG-16). In this case, SCRUB achieves the best performance, as it
leverages model distillation (Pérez-Cruz, 2008), a technique well-suited for class-wise forgetting.

E COMPONENT ANALYSIS: λ1 AND λ2

To verify the impact of each key component in the optimization problem (4) of the main paper, we
analyze the nonnegative trade-off parameters λ1 and λ2 in Fig. A3. As can be seen in Fig. A3-(a) and
(c), setting the retain loss regularization parameter λ1 to 3 for CIFAR-10 using ResNet-18 and 5 for
ImageNet-10 using VGG-16 in class-wise forgetting, along with the ℓ2-norm regularization parameter
λ2 = 1, enables our proposed method to achieve the highest average performance. Meanwhile, for
the random data forgetting scenario, setting both λ1 and λ2 to 1 yields the best average performance
for CIFAR-10 using ResNet-18 and ImageNet-10 using VGG-16.
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Figure A3: Sensitivity analysis of the nonnegative hyper-parameters λ1 (ranging from 1 to 5 with an interval of
1) and λ2 (ranging from 0 to 4 with an interval of 1) for image classification under two unlearning scenarios
on CIFAR-10 and ImageNet-10 using ResNet-18 and VGG-16, respectively. The unlearning performance is
reported using the average (avg.) performance across UA, RA, TA, and MIA-Efficacy, with a green star (★)
marking the chosen parameter scheme (λ1 and λ2) in our experiments. The color bar on the right represents a
gradient scale from light to dark red, indicating the range of values (0 to 100%) in the heatmap. The integer
within each cell represents the performance (%) given a combination of λ1 and λ2.

Table A2: The efficiency profile of different MU methods across two metrics for image classification under
two unlearning scenarios on CIFAR-10 (RestNet-18) and ImageNet-10 (VGG-16 and ViT-Base). Results are
reported in terms of run-time efficiency (RTE) measured in minutes for the overall training phase and parameter
efficiency denoted by parameter number (Param.#) in Million (M), where a smaller value is favored for each
metric.

MU Method
Class-wise Forgetting Random Data Forgetting

CIFAR-10, ResNet-18 ImageNet-10, VGG-16 ImageNet-10, ViT-Base CIFAR-10, ResNet-18 ImageNet-10, VGG-16 ImageNet-10, ViT-Base
RTE Param. # RTE Param. # RTE Param. # RTE Param. # RTE Param. # RTE Param. #

Retrain 81.30 11.17 118.89 15.31 301.98 85.81 103.71 11.17 116.10 15.31 290.60 85.81

FT 4.56 11.17 2.99 15.31 15.40 85.81 2.28 11.17 2.95 15.31 14.47 85.81
RL 5.61 11.17 3.58 15.31 33.00 85.81 4.75 11.17 3.59 15.31 32.84 85.81
GA 1.16 11.17 0.30 15.31 2.10 85.81 1.15 11.17 0.31 15.31 3.10 85.81

NegGrad+ 4.72 11.17 3.21 15.31 16.70 85.81 4.22 11.17 3.17 15.31 16.40 85.81
SalUn 2.81 5.59 2.56 7.66 18.73 42.91 3.01 5.59 2.85 7.66 18.19 42.91

SCRUB 1.23 11.17 1.62 15.31 33.45 85.81 1.53 11.17 1.55 15.31 22.27 85.81
Class-F 1.21 11.17 2.10 15.31 2.86 85.81 n/a n/a n/a n/a n/a n/a

SSD 1.20 11.17 2.10 15.31 2.21 85.81 1.15 11.17 2.00 15.31 2.22 85.81
Ours 2.37 0.03 6.15 0.15 4.80 0.15 6.15 0.03 6.50 0.15 8.58 0.15

F EFFICIENCY ANALYSIS

To demonstrate the efficiency profile of various MU methods under different metrics, we compare
the runtime costs of forget vector calculation with those of other model-based unlearning methods,
and the total number of updated parameters in the training phase. Specifically, following Fan et al.
(2023), we use run-time efficiency (RTE) as an evaluation metric, which measures the computation
time of applying an MU method in minutes. To ensure a fair comparison, we report the runtime of
each approximate MU method within 10 epochs since the number of iterations varies across different
MU methods. Additionally, inspired by Zhang et al. (2024b), we compare the number of trainable
parameter number (Param.#). Notably, all evaluations are performed in the same computational
environment with an NVIDIA A6000 GPU, ensuring fair and reliable comparisons by maintaining
a consistent batch size across all MU methods. The corresponding results can be found in Tab. A2,
and we can draw the following observation: 1) By comparing the training time of model-based
methods with our proposed approach using RTE within the same iterations, we observe that the
forget vector method achieves competitive RTE compared to some efficient approximate model-based
unlearning baselines and remains faster than retraining. Besides, it is worth noting that the forget
vector method optimizes fewer parameters, owing to its input-level design and perturbation space
is significantly lower-dimensional. This trade-off underscores the efficiency of our forget vector in
handling parameter scaling. For instance, when comparing forgetting cases on ImageNet-10 using
VGG-16 and ViT-Base models, we find that as the parameter count increases from “15.31M” in VGG-
16 to “85.81M” in ViT-Base, the optimization time for most baseline methods increases significantly.
In contrast, our method maintains a consistent efficiency level or even achieves a shorter runtime,
highlighting a key advantage of our forget vector approach. 2) From a memory-efficient perspective
in real-world application, existing model-based MU methods often necessitate a series of operations
(e.g., fine-tuning) on the already-trained model for each forgetting request. This necessitates storing a
separate model version for every request, leading to substantial storage overhead. In contrast, our
approach optimizes an input-level universal perturbation, where only the “forget vector” associated
with the data to be forgotten is stored with original model remains intact. Since each forget vector has
the same dimensionality as the input image (e.g., 0.03M for CIFAR-10 and 0.15M for ImageNet) and
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is significantly smaller than the full model, our approach offers a considerable advantage in storage
efficiency for practical applications.

G ADDITIONAL VISUALIZATION THROUGH AN INPUT SALIENCY LENS

In Figs. A4 and A5, we provide additional visualization results through input saliency map for
different methods against forget images and retain images, respectively, using Grad-CAM (Gradient-
weighted Class Activation Mapping) (Bengio et al., 2013). Consistent with the main paper, we
highlight the salient pixels (i.e., regions most influential to model predictions) under four scenarios:
(1) the original model (without unlearning), (2) Retrain, (3) SCRUB-based unlearning, and (4) forget
vector-based unlearning. For the first three scenarios, saliency maps are generated on raw forget/retain
images, whereas for the last scenario, they are applied to images perturbed by the forget vector.

Forget Image Original Model RetrainSCRUB Ours Forget Image Original Model RetrainSCRUB Ours

Figure A4: Gradient-based saliency map visualized via Grad-CAM for different MU methods against forget
images. The highlighted areas (marked in red) indicate regions most influential to model prediction, and the red
cross mark (é) indicates that corresponding methods effectively unlearn the input forget images.

H BROADER IMPACTS AND LIMITATIONS

Broader impacts. Our study on the forget vector introduces a novel, data-driven machine unlearning
approach that offers significant potential across various domains. ① Privacy Preservation and
Regulatory Compliance: With increasing global regulations like GDPR mandating the right to be
forgotten, our method enables effective unlearning of specific data points without requiring full model
retraining, which is especially valuable for industries handling sensitive data, such as healthcare,
finance, and personalized recommendation systems. By enabling compliant data removal with
minimal computational overhead, our approach strengthens data privacy practices while maintaining
model integrity. ② Adaptability Across Tasks: The compositional nature of forget vectors allows for
the unlearning of previously unseen tasks by combining class-specific forget vectors. This adaptability
extends the method’s applicability, where our method is able to respond more quickly when faced
with new random unlearning tasks. ③ Efficiency in Unlearning and Model Storage: Unlike model-
based MU approaches that require significant computational resources and model storage for each
unlearning request, our method provides an energy-efficient alternative with less trainable parameters
and low storage of optimized forget vector. This efficiency is particularly beneficial for organizations
deploying large-scale AI models, where frequent updates or compliance-driven data deletions could
otherwise be prohibitively expensive, contributing to the sustainability of AI development.
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Retain Image Original Model RetrainSCRUB Ours Retain Image Original Model RetrainSCRUB Ours

Figure A5: Gradient-based saliency map visualization using Grad-CAM for different MU methods against
retain images.

Limitations. While our forget vector approach presents compelling advantages, it also comes with
certain limitations that need to be addressed for broader adoption: ① Vulnerability to Adversarial
Attacks: Since our method relies on input perturbations rather than direct model modifications,
it may be vulnerable to white-box adversarial attacks where an attacker has access to the model
and understands the forget vector mechanism. These adversaries could potentially reconstruct
forgotten data or design countermeasures to bypass unlearning. Future work should focus on
strengthening robustness against such attacks through adversarially hardened perturbation strategies.
② Computational Cost of Compositional Unlearning: The generation of new forget vectors through
compositional operations requires access to pre-trained class-wise forget vectors. In scenarios where
these vectors are unavailable, applying our method at scale could introduce overhead. ③ Lack of
Theoretical Guarantees: While empirical results demonstrate the effectiveness of our method, formal
theoretical guarantees on its unlearning performance and robustness remain an open challenge. Future
work should focus on establishing rigorous mathematical foundations for the forget vector framework.
④ Generalization to Other Domains: Our current study focuses on image classification, and its
applicability to other domains, such as natural language processing or image generation, remains
to be explored. Investigating the feasibility of forget vectors in diverse machine learning tasks is an
important direction for future research.

I LLM USAGE

In preparing this manuscript, large language models (LLMs) were employed exclusively for language-
related refinement, such as grammatical correction, stylistic polishing, and improvement of readability.
The LLMs did not contribute to the conceptualization, methodological design, experimental imple-
mentation, data analysis, or interpretation of results.
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