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Abstract

Time-series foundation models (TSFMs) have recently emerged as a universal1

paradigm for learning across diverse temporal domains. Despite their empirical2

success, the internal mechanisms by which these models represent fundamental3

time-series concepts remain poorly understood. In this work, we undertake a4

systematic investigation of concept interpretability in TSFMs. Specifically, we5

examine: (i) which layers encode which concepts, (ii) whether concept parame-6

ters are linearly recoverable, (iii) how representations evolve in terms of concept7

disentanglement and abstraction across model depth, and (iv) how models process8

compositions of concepts, which serve as controlled settings for studying interac-9

tion and interference. We systematically probe these questions using layer-wise10

analyses, linear recoverability tests, and representation similarity measures, pro-11

viding a structured account of TSFM semantics. The resulting insights show that12

early layers mainly capture local, time-domain patterns (e.g., AR(1), level shifts,13

trends), while deeper layers encode dispersion and change-time signals, with spec-14

tral and warping factors remaining the hardest to recover linearly. In compositional15

settings, however, probe performance degrades, revealing interference between16

concepts. This highlights that while atomic concepts are reliably localized, compo-17

sition remains a challenge pointing to the need for composition-aware training and18

evaluation protocols to better align TSFMs with the structure of real-world time19

series.20

1 Introduction21

Foundation models have recently been extended to time series, where large-scale pretraining over22

heterogeneous temporal data yields strong zero/few-shot performance in forecasting and classification23

across healthcare, finance, climate, and energy [Das et al., 2023, Ansari et al., 2024, Goswami et al.,24

2024, Woo et al., 2024, Garza et al., 2023]. Yet, unlike language and vision, our understanding of25

what these models encode internally remains limited. Interpretability in NLP and CV has shown that26

probing methods—linear and structural probes as well as representational similarity—can localize27

information across layers and provide insight into model organization [Alain and Bengio, 2016,28

Hewitt and Manning, 2019, Kornblith et al., 2019]. For TSFMs, early studies such as [Wiliński et al.,29

2024] reveal block-like layer similarity and the success of latent interventions, underscoring the value30

of probing. Complementary instance-level explanations in time series, e.g., saliency, attribution, and31

shapelets, offer rationales for individual predictions but do not illuminate model-wide semantics32

[Ismail et al., 2020, Grabocka et al., 2014].33

This gap makes it crucial to investigate how TSFMs represent fundamental time-series phenomena.34

We address this by studying concept interpretability in TSFMs across seven canonical concepts that35

span stochastic, structural, and spectral behavior: AR1, Level Shift, Random Walk, Spectral, Time36
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Warped, Trend, and Variance Shift. Our analysis is guided by four central questions: RQ1—where37

concepts localize across layers; RQ2—whether concept parameters are linearly recoverable from38

intermediate embeddings; RQ3—how disentanglement and abstraction evolve with depth; and39

RQ4—how compositions of concepts interact.40

Methodologically, we adapt established tools—linear probes, structural probes, and CKA—while41

explicitly tailoring them to measure concept presence and parameter recoverability [Alain and Bengio,42

2016, Hewitt and Manning, 2019, Kornblith et al., 2019]. Although these diagnostics are widely used43

in other domains, their systematic application to a controlled, diverse suite of time-series concepts44

provides fresh evidence about the inductive biases and limitations of representative TSFMs [Das45

et al., 2023, Ansari et al., 2024, Goswami et al., 2024, Woo et al., 2024, Garza et al., 2023, Wiliński46

et al., 2024].47

Contributions. (i) A concept-centric probing benchmark for TSFMs spanning seven canonical48

concepts; (ii) diagnostic tasks targeting concept localization, parameter recoverability, and composi-49

tional interaction; (iii) empirical findings that uncover inductive biases and failure modes, informing50

architectural choices, training curricula, and evaluation practice.51

2 Methods52

Layer-wise Concept Probing. RQ1 and RQ2 ask which layers encode which concepts and whether53

their parameters are linearly recoverable. To answer this, we apply linear probes across layers,54

following a methodology widely used in language models to reveal whether syntax or semantics55

emerges at specific depths. For time series, this allows us to pinpoint where autoregressive structure,56

spectral frequency, or trend parameters become accessible. Given a synthetic dataset X ∈ RS×V57

with generative parameters θ, a TSFM with L layers produces hidden states H(l) = f (l)(X) ∈ RS×d,58

pooled into z(l) = Pool(H(l)) ∈ Rd. A linear probe then predicts parameters via θ̂(l) = W(l)z(l) +59

b(l). Performance is measured by mean squared error, L(l) = 1
N

∑N
i=1 ∥θi − θ̂

(l)
i ∥2, quantifying60

parameter recoverability across depth.61

Concept Representation. RQ3 concerns how representations evolve across depth—whether they62

become more abstract or more disentangled. In computer vision, representational similarity analyses63

reveal shifts from low-level edges to object-level semantics. We adopt a similar lens for TSFMs,64

examining whether different time-series concepts occupy distinct or overlapping regions in embedding65

space, and how this structure changes across layers. To examine representational similarity across66

concepts and layers, we compute centered kernel alignment (CKA) between embedding sets H(l1) and67

H(l2): CKA(H(l1),H(l2)) =
∥H(l1)⊤H(l2)∥2

F

∥H(l1)⊤H(l1)∥F ∥H(l2)⊤H(l2)∥F
. Additionally, we visualize embeddings68

via PCA, UMAP, and t-SNE [Jolliffe, 2002, McInnes et al., 2018, van der Maaten and Hinton, 2008]69

applied to pooled vectors z(l), allowing inspection of cluster structure and concept separation.70

Concept Composition. RQ4 asks how TSFMs handle compositions and whether concept-specific71

information transfers to mixtures. We adopt a two-step probe-transfer protocol: (i) train layer-wise72

linear probes on atomic data for each concept Cj to predict its parameters θj (backbone frozen);73

(ii) evaluate these frozen probes for C1 and C2 on composite series to assess whether the original74

parameters remain linearly recoverable. We report per-layer MSE on composites.75

We study two families of compositions: structured (segment-wise interleaving with continuity76

preservation) and functional (additive mixing, optionally with per-series normalization and mixing77

coefficients α). Full construction details, masks, and sampling ranges are provided in Appendix D.78

3 Results and Discussions79

RQ1 & RQ2: Which layers encode which concepts, and are parameters linearly recoverable?80

UMAP–probe alignment. We analyze UMAP embeddings of latents corresponding to each concept81

across layers. Compact, well-ordered UMAP structures correlate with lower linear probe MSEs82

for the associated concept parameter, suggesting that when a model internally learns a concept,83

its latent representations become localized. Moreover, when the probed parameter aligns with a84

smooth gradient along the UMAP manifold, probe errors are further reduced—indicating that the85

model has not only captured the concept but also learned to parameterize it with respect to that86
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Chronos: probe MSE vs. layer MOMENT: probe MSE vs. layer

Figure 1: Layer-wise concept probing summary. Top: linear-probe MSE across layers for Chronos
(left) and MOMENT (right); each curve corresponds to one concept (legend shared). Bottom: UMAP
of pooled embeddings at early, mid, and late layers, time-warp concept. Best viewed in color.

control variable. Such alignment could be particularly useful for applications that steer activations87

conditionally. In practice, we observe lower probe MSEs for structural and time-domain concepts88

such as AR(1) coefficient, trend slope, and level shifts. By contrast, spectral and time-warping89

concepts yield fragmented or tangled UMAP structures and higher probe errors, consistent with90

non-linear entanglement that resists linear recovery (see Fig.1 and AppendixG).91

Model comparison and depth. Under identical setups, CHRONOS exhibits more linearly recoverable92

and better organized (UMAP) representations than MOMENT across all evaluated concepts. Most93

tasks peak early—typically around the second transformer layer—after which performance plateaus.94

In contrast, dispersion and change-point phenomena (e.g., variance shift) improve monotonically95

with depth and are localized in later layers (Fig. 1).96

(a) Time Warped Concept (b) Variance Shift Concept

Figure 2: Context Length ablations on MOMENT

RQ3: How do representations evolve with depth? From the UMAP snapshots (see Figures in the97

Appendix G, for e.g. Figure 12 and Figure 13) we can see increasing cluster separation from early to98

late layers, which indicates that Early layers reflect locally volatile structure; mid layers show partial99

disentanglement; late layers consolidate concept-level separation while compressing intra-concept100

variance. This also aligns with the decreasing MSE after layer 1, indicating a shift from generic to101

concept-aligned features.102

We further assess each layer’s reliance on temporal context by cropping inputs to multiple fractions103

(25-100%), extracting pooled embeddings, and evaluating the pre-trained per-layer linear probes104

against the concept targets. From Figure 48a and Figure 48b we can see how MSE changes with avail-105

able history; deeper layers improve as context grows (encoding longer-range dynamics) compared to106

relatively less improvement in early layers (capturing short, local structure).107
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RQ4: How are concept compositions represented? While TSFMs can localize and represent108

atomic time-series concepts, real-world data often consists of compositions of multiple such concepts.109

To study the behavior of TSFMs under composite concepts, we consider the following experiments:110

(a) Vector Arithmetic — Inspired by word embedding compositionality, we test whether TSFM111

embeddings exhibit similar additive properties. Specifically, we evaluate whether the element-112

wise sum of atomic concept embeddings (emb1 + emb2) approximates the embedding of their113

composite concept (emb3) using cosine similarity and relative distance metrics across model layers.114

(b) Temporal Alignment Analysis — Since time-series have inherent temporal structure, we test115

compositional stability across different sequence lengths (32, 64, 128, 256 timesteps). This evaluates116

whether compositional relationships hold consistently across temporal horizons or are sensitive to117

sequence length.118

Figure 3: Vector arithmetic experiments with
CHRONOS. Atomic embeddings combine nearly lin-
early (emb1+emb2 ≈ emb3), except for temporally
disparate concept pairs.

Figure 3 reveals strong compositional prop-119

erties in TSFMs, with cosine similarities ap-120

proaching 1.0 across most layers, indicating121

that atomic concept embeddings combine nearly122

linearly (emb1 + emb2 ≈ emb3). Perfor-123

mance degradation in initial and final layers sug-124

gests that early representations lack full compo-125

sitional structure, while deeper layers specialize126

in task-specific features that deviate from addi-127

tive composition. The anomalous behavior of128

spectral+level_shift, which shows substantially129

higher relative distances, indicates non-linear in-130

teractions between concepts with fundamentally131

different temporal characteristics—frequency-132

domain properties versus abrupt discontinuities. Overall, TSFMs learn compositional representations133

similar to word embeddings for most concept pairs, with notable exceptions requiring more sophisti-134

cated composition mechanisms for temporally disparate concepts.135

The temporal alignment analysis results (see Figure 4) demonstrate robust compositional stability136

across sequence lengths, with consistently high similarities throughout most layers and temporal137

horizons. Reduced similarity at shorter sequences (32–128) in the initial and final layers suggests138

that compositional understanding requires sufficient temporal context to emerge and stabilize. The139

uniformly high performance at longer sequences confirms that TSFMs’ compositional properties are140

temporally robust once adequate context is provided. Please refer to Appendix H for add. results.141

Figure 4: Chronos – Temporal alignment experiments. We show stability of compositional relation-
ships across multiple atomic-concept pairs.

4 Conclusion and Future Work142

We presented a probe-based analysis of time-series foundation models across seven canonical concepts.143

Early layers expose local, time domain structure (AR(1), level shift, trend), deeper layers localize144

dispersion and change-time signals, and spectral/warping factors are the least linearly accessible.145

On compositions, TSFMs exhibit strong linear compositional properties across most layers and146

concept pairs. Future works could extend to multivariate, irregular, and real datasets; adopt controlled-147

capacity non-linear or causal probes; design objectives and architectures that better linearize phase148

and time-warping, and work on non-linear conditional steering.149
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A Related Works204

Time-series foundation models. Recent TSFMs demonstrate strong zero/few-shot performance205

via large-scale pretraining and task-agnostic architectures. Representative families include TimesFM206

(decoder-only with patched attention), Chronos (tokenized values with T5-style training), MOMENT207

(open models and the Time Series Pile), Moirai (masked-encoder universal forecaster), and TimeGPT208

(closed-source API). These works establish the empirical promise of TSFMs but do not characterize209

concept-level internal semantics. [Das et al., 2023, Ansari et al., 2024, Goswami et al., 2024, Woo210

et al., 2024, Garza et al., 2023]211

Probing and representational similarity. Linear probes and related diagnostic tools are widely212

used to localize information across layers in deep networks, originating with linear classifier probes213

and extended by structural probes in NLP to test linear recoverability of syntax. Centered Kernel214

Alignment (CKA) is commonly used to compare layer representations within and across models215

due to its invariances and robustness relative to earlier CCA-style measures. Our study adapts these216

established tools to TSFMs and focuses them on time-series concepts and parameters. [Alain and217

Bengio, 2016, Hewitt and Manning, 2019, Kornblith et al., 2019]218

Interpreting TSFMs and time-series models. Closest to our work, Wiliński et al. analyze internal219

redundancy and concept steering in TSFMs, reporting block-like layer similarity and latent-space220

interventions; we complement this by centering concept parameters, layer-wise recoverability, and221

controlled compositions. Broader interpretability for time series has emphasized saliency/attribution222

and shapelet-based explanations; these provide instance-level rationales, whereas our focus is on223

representation-level concept encoding across depth. [Wiliński et al., 2024, Ismail et al., 2020,224

Grabocka et al., 2014]225

B Experimental Setup226

Datasets. We evaluate seven synthetic concepts: AR(1), Level Shift, Random Walk, Spectral (sum of227

sinusoids), Time-Warped Sinusoid, Deterministic Trend, and Variance Shift. Generation procedures,228

parameter ranges, and normalization rules follow Appendix D (Dataset Generation and Description).229

We additionally construct compositional datasets by pairing two base concepts.230

Models. We use publicly released checkpoints of two time-series foundation models: Chronos and231

MOMENT since both are T-5 like models transformer architecture. Model weights are frozen and no232

finetuning is performed.233

Evaluation and reporting. We use an 80/20 train/validation split for each concept and composition.234

Metric is mean squared error (MSE) for parameter recovery.235

C Dimensionality Reduction Techniques236

Principal Component Analysis (PCA). Given pooled representations {z(l)i }Ni=1, we compute the237

empirical covariance matrix238

Σ(l) =
1

N

N∑
i=1

(
z
(l)
i − z̄(l)

)(
z
(l)
i − z̄(l)

)⊤
.

Eigen-decomposition yields orthogonal axes capturing the largest variance directions:239

Σ(l)uk = λkuk, λ1 ≥ λ2 ≥ . . . .

These principal axes reveal which parameters dominate the representation space and whether layers240

compress or expand information.241

t-SNE. To assess local neighborhoods, we apply t-distributed Stochastic Neighbor Embedding242

(t-SNE), which constructs pairwise similarities in high- and low-dimensional spaces. For two points243

zi, zj , their similarity in the original space is244

pij =
exp(−∥zi − zj∥2/2σ2

i )∑
k ̸=i exp(−∥zi − zk∥2/2σ2

i )
,
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while in 2D space the similarity is245

qij =

(
1 + ∥yi − yj∥2

)−1∑
k ̸=l (1 + ∥yk − yl∥2)−1 .

t-SNE minimizes the Kullback–Leibler divergence:246

KL(P∥Q) =
∑
i̸=j

pij log
pij
qij

.

This highlights fine-grained clusters and separability of parameter values.247

UMAP. Uniform Manifold Approximation and Projection seeks a balance between local and global248

structure. It constructs a weighted k-nearest-neighbor graph and optimizes a low-dimensional em-249

bedding {yi} by minimizing the cross-entropy between high- and low-dimensional fuzzy simplicial250

sets:251

LUMAP =
∑
(i,j)

wij log σ(∥yi − yj∥) + (1− wij) log(1− σ(∥yi − yj∥)),

where σ is a differentiable approximation of a step function. UMAP can reveal concept families and252

hierarchical relationships (e.g., stationary vs. nonstationary).253

These projections provide intuition about the embedding geometry—global variance (PCA), local254

clusters (t-SNE), and local-global trade-offs (UMAP)—which the linear probes then quantify.255
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D Synthetic Datasets256

This section summarizes the synthetic time–series concepts used in our experiments, their generating257

equations, and key parameters. Unless noted, εt denotes i.i.d. Gaussian noise.258

D.1 AR(1) (Stationary)259

xt = ϕxt−1 + εt, |ϕ| < 1, (1)

εt ∼ N (0, σ2), x0 drawn from the stationary distribution. (2)

Parameters: autoregressive coefficient ϕ (sampled from an interval), innovation std σ. Default260

normalization: per-series z-score.261

D.2 Level Shift262

xt = ηt +∆1{t ≥ τ}, ηt ∼ N (0, noise_std2). (3)

Parameters: signed shift magnitude ∆, changepoint τ , noise std. Default normalization: none (scale263

encodes the signal).264

D.3 Random Walk (With Drift)265

xt = xt−1 + µ+ εt, (4)

εt ∼ N (0, σ2). (5)

Parameters: drift µ, innovation std. Default normalization: none.266

D.4 Spectral (Sum of Sinusoids)267

xt =

k∑
j=1

aj sin
(
2πfjt+ ϕj

)
+ εt, 0 < fj < 0.5. (6)

Parameters: number of components k ∈ {1, . . . , kmax}; amplitudes aj ; frequencies fj sampled from268

[freq_low, freq_high]; phases ϕj ∼ Uniform(0, 2π); noise std. Default normalization: per-series269

z-score.270

D.5 Time-Warped Sinusoid271

Generate a base sinusoid bt = sin(2πft+ ϕ), draw positive steps from a Gamma distribution, form272

a monotone cumulative warp u rescaled to [0, T − 1], then reinterpolate back to the regular grid:273

xt = interp(t, u, b) + εt. (7)

Parameters: base frequency f , phase ϕ, warp strength, noise std. Default normalization: per-series274

z-score.275

D.6 Deterministic Trend276

xt = β t+ εt, εt ∼ N (0, noise_std2). (8)

Parameters: slope β, noise std. Default normalization: per-series z-score.277

D.7 Variance Shift278

xt ∼
{
N (0, σ2

1), t < τ,

N (0, σ2
2), t ≥ τ.

(9)

Parameters: changepoint τ , standard deviations σ1, σ2. Default normalization: none.279

9



Notes on Normalization Concepts where magnitude/level is the signal (e.g., level or variance shift,280

random walk) use no normalization by default; others use per-series z-scoring. See the code reference281

(concepts_dataset.py) for full details and sampling ranges.282

D.8 Time-series Concepts283

(a) AR1 (b) Level Shift (c) Random Walk

(d) Spectral (e) Time warped (f) Trend

(g) Variance Shift

Figure 5: Visualization of the synthetic time-series samples generated
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D.9 Time series composition284

Let T 1 = {T (i)
1 }i = 1N and T 2 = {T (i)

2 }i = 1N be two sets of time series generated from concepts285

C1 and C2 respectively, where each T
(i)
j ∈ RT .286

Structured Composition. Temporal interleaving with continuity constraints, preserving local concept287

characteristics in different time segments.288

For each sample i, we generate breakpoints ai, bi where:

ai ∼ U(⌊αlow · T ⌋, ⌊αhigh · T ⌋)

bi ∼ U(⌊βlow · T ⌋, ⌊βhigh · T ⌋)
with constraints 0 ≤ ai < bi ≤ T and default ranges αlow = 0.2, αhigh = 0.4, βlow = 0.6, βhigh = 0.8.
The structured compositional series X(i)

struct is defined as:

X
(i)
struct[t] =


T

(i)
1 [t] if t < ai

T
(i)
2 [t] + δ

(i)
1 if ai ≤ t < bi

T
(i)
1 [t] + δ

(i)
2 if t ≥ bi

where the continuity offsets are:

δ
(i)
1 = T

(i)
1 [ai]− T

(i)
2 [ai]

δ
(i)
2 = T

(i)
2 [bi]− T

(i)
1 [bi] + δ

(i)
1

The corresponding mask M (i) ∈ {0, 1}T indicates the source concept:

M (i)[t] =

{
0 if t < ai or t > bi (from C1)
1 if ai ≤ t ≤ bi (from C2)

Functional Composition. Elementwise addition creating global interaction between concepts289

throughout the entire time series Both approaches generate datasets containing the composed series290

X , original component series T1, T2, and metadata preserving the generative parameters from both291

source concepts.292

For functional composition, we first optionally normalize each time series:

T̃ j(i) =


T

(i)
j −µ

(i)
j

σ
(i)
j

if normalize= True

T
(i)
j otherwise

where µ
(i)
j = 1

T

∑T
t=1 T

(i)
j [t] and σ

(i)
j =

√
1
T

∑T
t=1(T

(i)
j [t]− µ

(i)
j )2. The functional compositional

series is then:
X

(i)
func = T̃1(i) + T̃

(i)
2
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E Layer Representation Similarity293

(a) AR1 (b) Level Shift

(c) Time warped (d) Trend

Figure 6: CKA Similarity among layers of Chronos TSFM
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(a) AR1 (b) Level Shift

(c) Time warped (d) Trend

Figure 7: CKA Similarity among layers of MOMENT TSFM

F Linear Probe Loss294
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(a) AR1 (b) Level Shift

(c) Time warped (d) Trend

Figure 8: Layer-wise Loss in Chronos TSFM

G Layerwise Respresentation Visualization295

This section summarizes layerwise embeddings visualized via PCA, t-SNE, and UMAP for each296

concept and model. We show triplets of layers per method.297

G.1 AR(1) (Stationary)298

Moment (parameter: ϕ).299
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(a) AR1 (b) Level Shift

(c) Time warped (d) Trend

Figure 9: Layer-wise Loss in MOMENT TSFM

Figure 10: AR(1) — Moment — UMAP (Layers 00/06/12)

Chronos (parameter: ϕ).300
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Figure 11: AR(1) — Chronos — UMAP (Layers 00/03/06)

Figure 12: Level Shift — Moment — Shift — PCA (Layers 00/06/12)

G.2 Level Shift301

Moment (parameters: shift, τ ).302
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Figure 13: Level Shift — Moment — Shift — t-SNE (Layers 00/06/12)

Figure 14: Level Shift — Moment — Shift — UMAP (Layers 00/06/12)

Chronos (parameters: shift, τ ).303
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Figure 15: Level Shift — Moment — τ — PCA (Layers 00/06/12)

Figure 16: Level Shift — Moment — τ — t-SNE (Layers 00/06/12)

G.3 Random Walk304

Chronos (parameter: drift).305
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Figure 17: Level Shift — Moment — τ — UMAP (Layers 00/06/12)

Figure 18: Level Shift — Chronos — Shift — PCA (Layers 00/03/06)

Moment (parameter: drift).306
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Figure 19: Level Shift — Chronos — Shift — t-SNE (Layers 00/03/06)

Figure 20: Level Shift — Chronos — Shift — UMAP (Layers 00/03/06)

G.4 Spectral (Sum of Sinusoids)307

Chronos ( frequency).308
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Figure 21: Level Shift — Chronos — τ — PCA (Layers 00/03/06)

Figure 22: Level Shift — Chronos — τ — t-SNE (Layers 00/03/06)

Moment ( frequency).309
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Figure 23: Level Shift — Chronos — τ — UMAP (Layers 00/03/06)

Figure 24: Random Walk — Chronos — UMAP (Layers 00/03/06)

G.5 Time-Warped Sinusoid310

Moment (freq).311
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Figure 25: Random Walk — Moment — UMAP (Layers 00/06/12)

Figure 26: Spectral — Chronos — Frequency — PCA (Layers 00/03/06)

Chronos (freq).312
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Figure 27: Spectral — Chronos — Frequency — t-SNE (Layers 00/03/06)

Figure 28: Spectral — Chronos — Frequency — UMAP (Layers 00/03/06)

G.6 Deterministic Trend313

Moment (slope).314

24



Figure 29: Spectral — Moment — Frequency — PCA (Layers 00/06/12)

Figure 30: Spectral — Moment — Frequency — t-SNE (Layers 00/06/12)

Chronos (slope).315
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Figure 31: Spectral — Moment — Frequency — UMAP (Layers 00/06/12)

Figure 32: Time-Warped — Moment — Freqs — PCA (Layers 00/06/12)

G.7 Variance Shift316

Chronos (τ ).317

26



Figure 33: Time-Warped — Moment — Freqs — t-SNE (Layers 00/06/12)

Figure 34: Time-Warped — Moment — Freqs — UMAP (Layers 00/06/12)

Moment (τ ).318

H Compositionality results319
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Figure 35: Time-Warped — Chronos — Freqs — PCA (Layers 00/03/06)

Figure 36: Time-Warped — Chronos — Freqs — t-SNE (Layers 00/03/06)

Figure 37: Time-Warped — Chronos — Freqs — UMAP (Layers 00/03/06)

Figure 38: Trend — Moment — UMAP (Layers 00/06/12)

Figure 39: Trend — Chronos — UMAP (Layers 00/03/06)
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Figure 40: Variance Shift — Chronos — PCA (Layers 00/03/06)

Figure 41: Variance Shift — Chronos — t-SNE (Layers 00/03/06)

Figure 42: Variance Shift — Chronos — UMAP (Layers 00/03/06)

Figure 43: Variance Shift — Moment — PCA (Layers 00/06/12)

Figure 44: Variance Shift — Moment — t-SNE (Layers 00/06/12)
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Figure 45: Variance Shift — Moment — UMAP (Layers 00/06/12)

(a) MOMENT - Temporal alignment experiments (b) MOMENT - Interpolation analysis
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(a) Chronos - Temporal alignment experiments (b) Chronos - Interpolation analysis

(a) Vector Arithmetic Experiments with Chronos (b) Vector Arithmetic Experiments with MOMENT

Figure 48: Vector Arithmetic Experiments
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