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Abstract

This paper investigates the potential of Large
Language Models (LLMs) to augment lexical
knowledge bases (KBs) and to address their
common limitations, such as static nature, lim-
ited coverage, and labor-intensive creation and
maintenance. We propose a methodology that
leverages LLMs to accurately reconstruct in-
formation from a source KB and generate new
knowledge. Then, we evaluate this methodol-
ogy using various LLMs and prompting tech-
niques across three separate KBs. The results
suggest that LLMs can accurately provide infor-
mation when given ample contextual cues and
when dealing with high-specificity concepts.
However, they are prone to errors and inconsis-
tencies when asked for rare or generic knowl-
edge. The findings also indicate that LLMs can
contribute to KB management by reducing the
need for manual intervention. This study high-
lights the potential and limitations of LLMs
in lexical semantics and emphasizes the im-
portance of novel approaches to KB creation,
maintenance, and integration.

1 Introduction

Lexical semantics represents a foundational aspect
of Natural Language Processing (NLP), serving as
the intersection where the meanings of words and
their interrelationships converge. This discipline
has always seen unstructured data become struc-
tured through the means of knowledge bases (KBs).
These latter ones, however, face three common lim-
itations: i) they exhibit a static nature, making it
challenging to adapt to domains evolution; ii) they
suffer from limited coverage, hindering their appli-
cability across diverse domains; iii) their creation
and maintenance is typically laborious, involving
human-in-the-loop procedures.

The rise of Large Language Models (LLMs)
within Generative Al highlights the importance of
interpretable knowledge encapsulation, with KBs
being crucial for both enhancing LLM training and

providing a means of error, inconsistency, and bias
checking (Pan et al., 2024). This necessity becomes
particularly pronounced given the expanding influ-
ence of Generative Al and its accompanying chal-
lenges, including issues such as hallucination (Ji
et al., 2023).

This paper unveils an innovative methodology
grounded in LLMs to tackle pivotal concerns
within lexical semantics. In particular, our contri-
bution is three-fold: i) we harness LLMs to recon-
stitute information encapsulated in a source KB to
test their proficiency on this task; ii) subsequently,
LLMs are deployed to create novel knowledge,
proving their aptitude in crafting, and encoding
KBs; iii) through a third-phase assessment of the
newly generated content, we can finally evaluate
the capability to expand upon the original KBs and,
consequently, assess their completeness.

By conducting thorough experiments utilizing di-
verse LLMs and prompting techniques across three
separate KBs, we elucidate the capacity of LLMs
to furnish accurate information, particularly when
supplied with substantial contextual cues and when
dealing with concepts of high specificity. When
confronted with requests for rare or generic knowl-
edge, LLMs are instead prone to errors and incon-
sistencies.

2 Related Work

In the context of this work, it is essential to clarify
that lexical semantic resources, KBs, ontologies
and knowledge graphs represent facets or interpre-
tations of the same underlying subject matter.

2.1 Knowledge Acquisition: KBs and KGs

Construction of KBs involves both manual and au-
tomatic methods, with famous KBs like WordNet
(Fellbaum, 2020) and ConceptNet (Speer et al.,
2017) initially depending on manual input. To re-
duce labor, automated IE techniques have been
developed (Fader et al., 2011; Angeli et al., 2015;



Vo and Bagheri, 2017), extracting information from
texts to update KBs. ML and NLP progress has
also advanced in automatic Knowledge Graph (KG)
construction, utilizing data to enhance traditional
approaches (Chen et al., 2021).

2.2 Large Language Models

Recently, the advent of LLMs has opened new av-
enues for knowledge acquisition and representation.
LLMs, such as GPT-3 (Brown et al., 2020) and
LLama-2 (Touvron et al., 2023), have demonstrated
remarkable capabilities in understanding and gen-
erating natural language text. Researchers have
begun exploring the knowledge encoded within
LLMs, probing their ability to serve as implicit
KBs (Petroni et al., 2019; Razniewski and Weikum,
2021). This approach offers a novel means of ac-
cessing vast amounts of knowledge without explicit
curation, although challenges remain in interpret-
ing and validating the knowledge encoded in these
models (Chang et al., 2023).

Despite the speed of breakthrough advancements
in the field, LLMs still grapple with issues that fall
into two main categories: architectural and data-
related problems. Architectural problems are in-
herent to the model’s structure and necessitate a
change in architecture for resolution. These include
the prompt engineering problem, wherein mod-
els are non-deterministic and require the "perfect"
prompt to elicit the correct response, as highlighted
by Park et al. (2022). Conversely, data-related prob-
lems stem from the training methodologies and
the datasets used, affecting the models’ mathemati-
cal and reasoning capabilities (Imani et al., 2023;
Hendrycks et al., 2021), as well as their common
sense understanding (West et al., 2022).

2.3 KBs/KGs and LLMs

Petersen and Potts (2023) demonstrate LLMs’ ca-
pability to interpret the word “break” and suggest
that these models can advance lexical semantics.
Their analysis reveals LLMs’ proficiency in iden-
tifying both known and novel meanings, as well
as their superiority in semantic analysis. Kandpal
et al. (2023) indicate that the knowledge represen-
tation in LLM training data affects content genera-
tion accuracy, particularly for uncommon concepts,
challenging our understanding of LLMs’ seman-
tic encoding. Cohen et al. (2023) propose a new
approach for examining LLLM knowledge using
graph-based queries, which aligns with our empha-
sis on structured prompts to retrieve and leverage

knowledge from LLMs. In contrast to previous
efforts, our work presents a scalable pipeline for
standardized KB extension, leveraging LLMs and
human-in-the-loop evaluation techniques.

3 A Methodology for KB Extension

Our proposed methodology encompasses different
key modules, answering the following two main
research questions: RQ/!) How well can LLMs
mimic KB concepts and relationships?; and RQ2)
Do LLMs possess the capability to produce novel
information suitable for integration into existing
KBs? However, these inquiries serve as gateways to
further exploration. Particularly in relation to RQ/:
what factors of both LLMs and KBs impact the qual-
ity of generated content? This paper delves into
the following considerations: LLM architecture
(pre-trained, fine-tuned, and storytelling-oriented);
prompting and extraction techniques (zero-shot ver-
sus one-shot); as well as the scale and intricacy of
the KBs. Additionally, in relation to RQ2: how
does the quality of newly generated content com-
pare to that of the original KB? A manual assess-
ment could provide insights into the completeness
of the original resource, enhancing the proposed
framework.
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Figure 1: Architecture of the proposed framework for
KBs extension. i) (KPrompt) encodes the source knowl-
edge into masked prompts, that LLMs use for ii) (AutE-
val) re-generating existing knowledge and iii) (HLoop)
generate new content to be manually-validated.



On this direction, the proposed framework in-
cludes three modules which are designed i) to sys-
tematically assess the proficiency of LLMs in de-
livering concepts aligned with existing KBs, ii) to
probe their ability to generate novel concepts for
potential integration into the KB, and iii) to as-
certain the role of limited manual intervention in
evaluating the completeness and coverage of the
KB. An overview of the architecture is shown in
Figure 1, while each module is presented in the
following sections.

3.1 Knowledge Base-to-Prompt (KPrompt)

The first module involves the development of a
Knowledge Base-to-Prompt strategy (KPrompt),
which serves as the bridge between the lexical
knowledge stored in the KB and the queries posed
to LLMs. This strategy aims to convert the struc-
tured information within the KB into prompts that
effectively capture the nuances and intricacies of
the underlying semantic content. The objective is to
enable LLMs to generate responses that align with
the pre-existing knowledge stored in the KB, thus
addressing the fundamental question of whether
LLMs can proficiently deliver concepts consistent
with the KB. For example, if a resource holds the
information that z is connected with y through a se-
mantic relation r (or, more formally, r(a, b)), then a
generic template prompt for extracting b-candidates
could be the following:

Given the relation r with the specific
meaning < r_description >, which concepts
(like b) might be also connected to a
through r?

Depending on the kind of knowledge encoded
in the target KB, this template may be adapted in
different ways and through prompting strategies
such as zero- and one-shot, which are defined later
on in the experimental sections.

3.2 Automatic Evaluation (AutEval)

The second module focuses on an intrinsic evalu-
ation of the LLM-based extension via knowledge
masking (AutEval), assessing the capacity of LLMs
to obtain both correct and novel knowledge by
first masking existing semantic units in the source
knowledge and then asking LLMs to generate pos-
sible candidates (see Section 3.1 example). By
systematically matching the generated candidates
with the original KBs, we assess the LLM’s capa-
bility to generate correct and existing information,
as in the following example:

Here is a list of candidates to connect
with <a > through <r>: =z, y, 2

By checking the presence of z, y and 2 in the
source KB (i.e. specifically of r(a, x), r(a,y) and
r(a, z)), it will be possible to give some answers
related to the first research question RQ/.

3.3 Human-in-the-loop Strategy (HLoop)

The third module incorporates a human-in-the-
loop strategy (HLoop) to evaluate the novel LLM-
extracted knowledge not covered by the source KB,
aiming to answer the nuanced question of whether
LLMs can effectively extend the KB and, simulta-
neously, serve as a means to verify its completeness.
In particular, human evaluators, through limited
manual intervention, are asked to assess the rele-
vance and accuracy of the novel LLMs-generated
knowledge.

Continuing with the example of Section 3.2, if
r(a,y) and r(a, z) are found not to be included in
the source KB, a focused manual examination of
such new content may be conducted to evaluate
their accuracy.

4 Experimentation

In this section, we detail the experiment settings,
i.e. the implementation of the three modules
(KPrompt, AutEval and HLoop) on three knowl-
edge bases: Semagram (Leone et al., 2020), Mul-
tiAligNet (Grasso et al., 2022), and ConcepNet
(Speer et al., 2017). The selection of these KBs
has been carefully done by considering features
such as scale and complexity of the encoded knowl-
edge. By experimenting on this diversity, we aim
to highlight insights and challenges under a reliable
lens.

All the code for our experiments is openly avail-
able at https://anonymous.4open.science/r/LLM-
Semagram-2C44/.

4.1 Prompting Strategy

KBs encapsulate complex real-world information
by codifying semantic relationships, presenting a
challenge for LLMs, which are typically tailored
to process natural language. No standard prompt-
ing method yet exists for repurposing KB data to
align with LLMs’ textual processing. Our KPrompt
methodology transfigures KB data into structured
prompts for LLMs, however we do not propose
KPrompt as a definitive standard but rather as an
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innovative step towards bridging the gap between
KB-based data and language model processing.

Within the plethora of prompt engineering
methodologies present in literature, we selected
those that do not require an interactive dialogue
with a LLM and are considered state of the art:
Zero-Shot prompt (Kojima et al., 2022), and Few
Shot prompt (Min et al., 2022; Touvron et al., 2023).
In our prompts, we instruct LLMs to return 10 con-
cepts in order to align them with the automatic
evaluation in Section 5.1.

The output generated by a LLM typically con-
sists of plain text that enumerates various concepts.
To isolate these concepts (or entities), we employ
regular expressions, which serve as a necessary
step due to the model’s potential to “hallucinate”
- that is to append extraneous descriptions to the
actual list of concepts. To address this, we crafted
the following regular expression “\b\w-+\b". We
also experimented with a simpler one, \w+, but it
yielded sub-optimal results across different KBs.

4.2 Knowledge Bases

In this section, we overview the KBs chosen for
experimentation.

4.2.1 Semagram

The Semagram KB, introduced by Leone et al.
(2020), boasts a versatile structure that captures the
semantics of a given concept through a slot-filler
representation. The current version encompasses
over 300 concepts and 26 slots (i.e., semantic re-
lationships). Each concept is also interconnected
with other resources, e.g. BabelNet (Navigli and
Ponzetto, 2010). Following (Ventrice and Siragusa,
2023), we observed that these descriptions adhered
to straightforward ontology relations; for example,
the material slot could be translated as "can be
made of". Consequently, we opted to craft simple
sentences, each posing a criterion to the LLM. Each
criterion was then coupled with all its associated
fillers. Subsequently, we devised a concise prompt:

Provide a list of 10 words that satisfy
the condition.
Desired output:
words
Condition: can be made of wood

Here, condition encompasses the textual interpre-
tation of the corresponding slot. This prompt struc-
ture serves as a streamlined and effective means to
elicit targeted responses from the LLM based on
the semantics encoded in Semagram.

comma-separated list of

4.2.2 MultiAligNet

The MultiAligNet KB, introduced by Grasso et al.
(2022), constitutes a recently-developed lexical-
semantic resource constructed using plain textual
information gathered from several corpora in mul-
tiple languages. It encompasses knowledge across
1,047 noun concepts called heads and it results in
21,514 interconnected concepts. It is also linked
to WordNet (Fellbaum, 2020) and BabelNet (Nav-
igli and Ponzetto, 2010) synsets. In a simplified
depiction, its internal framework resembles a KG
comprising three primary node types — noun, verb
and adjective nodes, alongside two distinct relation-
ship types — paradigmatic and syntagmatic. Our
experiment centered on the latter category, formu-
lating prompts such as the following:

Provide a 1list of 10 English nouns
related to the concept “shape, form,

configuration” in the form of a
comma-separated list of lowercase lemmas.
Examples: solubility, mean, packing,

weight, load, color, size, style, art

4.2.3 ConceptNet

ConceptNet, introduced by Speer et al. (2017),
serves as a multilingual KB that captures the con-
nections and common-sense relationships among
words. The inclusion of words and relationships
stems from diverse sources, ranging from crowd-
sourced inputs to expert-generated content. The
dataset boasts more than 21M edges and over 8M
nodes, with the English vocabulary alone compris-
ing around 1,5M nodes. ConceptNet is character-
ized by two fundamental types of relations: sym-
metric relations and asymmetric relations. In par-
ticular, we focused on UsedFor (symmetric) and
RelatedTo (asymmetric).

We then designed a straightforward prompt that
receives a concept as input and instructs the LLM to
identify 10 concepts that possess either a “related
to” or “used for” relation with the given concept.
An example of prompt (“used for”) is as follow:

Given the concept ’car’, 1list 10
concepts for which ’car’ is used for, in
the form of a comma-separated list.

)

4.3 LLMs Selection

Among all the different types of openly available
LLMs, one way to select the optimal model is
through Open LLM Leaderboard, a widely recog-
nised LLM competition list. At the time of the
selection of the model, the LLama-2 architecture
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(Touvron et al., 2023) and the models fine-tuned
from its associated weights were the highest ranked.
The models are filtered by: pre-trained, fine-tuned
on domain-specific datasets and chat models. The
second and third categories are both derived from a
fine-tuning on the first one. Another sub-distinction
that we argue being ever so important in the current
LLM panorama are storytelling fine-tuned mod-
els (Xie et al., 2023). One goal of this paper is
also to discover if these models can enhance the
capabilities to carry out the task under study.

For our purpose, we used three principles for
LLM:s selection: i) State-of-the-art for their respec-
tive categories at the time of selection. These were
selected via an average score over different bench-
marks for language capabilities of LLMs: ARC
(Chollet, 2019), HellaSwag (Zellers et al., 2019),
MMLU (Hendrycks et al., 2020), Truthful QA (Lin
et al., 2022), and WinoGrande (Sakaguchi et al.,
2021). ii) With more than 30B parameters. This
is justified by empirical evidence suggesting that
larger language models tend to outperform smaller
ones across various language tasks. iii) Pertaining
to the three categories illustrated in Section 4.3.

For the aforementioned reasons, our choices fell
on: i) Yi-34B: a model trained from scratch with
the LLama-2 architecture; ii) Tulu-2-70B: a model
that combines instruction and RLHF tuned chat
models on a mix of publicly available, synthetic
and human-created datasets; iii) Aetheria-L2-70B:
a model specifically tailored for storytelling, that
combines Euryale v1.3 base with the DPO training
of the Tulu v2 model, and the GOAT Storytelling
model. The LimaRP v3 QLora was then added
(RoyalLab, 2023).

Each model was tasked to process the full set of
prompts for each KB, with the sampling parameters
configured to a top-p (nucleus) sampling value of
0.95, temperature of 0.4, PagedAttention enabled
(Kwon et al., 2023), and a maximum token limit of
100. We used AWQ 4-bit quantization (Lin et al.,
2023) to reduce memory utilization without losing
language capability (Yao et al., 2023).

5 Evaluation

Within our framework, we assess two key aspects:
i) the proficiency of the LLMs in accurately extract-
ing verified knowledge from the KB (AutEval), and
ii) the extent to which novel knowledge is extracted
that was not originally encoded in the KB (HLoop),
through manual annotation.

5.1 The AutEval process

We adopted standard evaluation metrics to assess
the performance of LLMs. Formally, let p represent
a prompt from the set P, C, = {c1,¢c2,...,¢cn}
denote the list of concepts returned by the LLM,
Cr = {c1,...,c} the set of the first k& concepts
of Cp, and K, = {k1, ko, ...,k } denote the list
of concepts existing in the KB and related to the
prompt. The metrics are defined as follows: Pre-
cision@K: proportion of the returned items in the
top-k (Cy) that are actually relevant; Recall@K:
proportion of relevant items found in the top-k rec-
ommendations (/;); and F-Measure @K: the har-
monic mean between Precision and Recall. We also
provide an asymptotic Recall value based on trun-
cating the concept list to 10 items in the prompt.

5.1.1 Semagram

Table 1 presents the performance scores for both
zero-shot and one-shot prompts across the three
LLMs. The scores in the table reveal that Tulu
outperforms the other models. Additionally, the
performance disparity between zero-shot and one-
shot prompts is marginal (0.41 percentage points
for F1@10).

Prompt | P@10]| R@10 | F1@10 ]
Aetheria | 8.73 [ 44.00 | 14.57
Zero-shot Tulu 9.59 | 46.36 | 15.89
Yi | 582 |2530 | 946
Aetheria [ 7.52 [ 36.21 | 1245
One-shot | Tulu | 942 |43.36 |1548
Yi |59 |28.11 |9.75

Table 1: Results on Semagram for Precision, Recall and
F1-Measure at 10.

Figure 2 illustrates the Precision and Recall
scores for varying values of k: 1, 2, 5, and 10. A
notable trend is that at lower values of k, one-shot
prompts outperform the zero-shot in both metrics.
This trend reverses when k& > 5.

5.1.2 MultiAligNet

We constructed distinct prompts for each syntac-
tic category—noun, verb, and adjective—to eval-
uate potential performance discrepancies across
these types. Their outcomes are detailed in Table
2. Our findings suggest that model efficacy varies
significantly with syntactic category; specifically,
Aetheria and Tulu demonstrate superior Precision
and Recall for noun nodes, outstripping verb and
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Figure 2: Precision and Recall on Semagram as k in-
creases (best performing model). The asymptotic Recall
value (at 10) is 0.98.

adjective nodes. Conversely, for verb and adjec-
tive nodes, Aetheria and Yi lead in zero-shot and
one-shot settings. Overall, the zero-shot prompting
strategy on Aetheria demonstrates the most efficacy,
except for adjective nodes.

y Prompt | P@10]| R@10 | F1@10 ]|
Zero-shot | Aetheria | 41.89 | 6.54 11.30
(Nouns) Tulu 39.47 | 6.00 10.40

Yi 12.21 | 1.78 3.11

Zero-shot | Aetheria | 21.45 | 5.88 9.23
(Adjs) Tulu 16.16 | 4.36 6.87
Yi 474 | 1.24 1.97

Zero-shot | Aetheria | 31.5 | 3.98 7.07
(Verbs) Tulu 30.20 | 3.50 6.27
Yi 8.58 | 1.02 1.83

One-shot | Aectheria | 36.83 | 5.52 9.59
(Nouns) Tulu 37.55 | 5.66 9.84
Yi 26.23 | 4.25 7.33

One-shot | Aectheria | 20.54 | 4.94 7.97
(Adjs) Tulu 22.32 | 5.77 9.18
Yi 25.61 | 7.84 12.00

One-shot | Aetheria | 27.29 | 3.20 5.73
(Verbs) Tulu 26.86 | 3.29 5.86
Yi 275 | 3.72 6.55

Table 2: Results on MultiAligNet for Precision, Recall
and F-Measure at 10.

Figure 3 presents the performance metrics across
varying values of k. The observed trends align with
those reported in Section 5.1.1, albeit with notable
distinctions. For verb and adjective nodes, there is
a minor but consistent enhancement in Precision.
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Figure 3: Precision and Recall on MultiAligNet as k
increases (best performing models). The asymptotic
Recall value (at 10) for nouns is 0.17, for adjectives
is 0.32, for verbs is 0.14.

5.1.3 ConceptNet

As discussed in Section 4.2.3, we focused on Relat-
edTo and UsedFor relationships. Table 3 presents
the results, where Tulu, employing a one-shot
prompt strategy, achieves the highest scores. The
performance gap between zero-shot and one-shot
is about 1.03 percentage points. Differently, Yi
demonstrated a notably poorer performance. Fi-
nally, the one-shot strategy aided the models in
comprehending the task, thereby enhancing their
ability to retrieve more accurate concepts.

In Figure 4, Tulu consistently shows the high-
est Precision and Recall values for the RelatedTo
relationship across different values of k. The Re-
call scores remain comparable up to k = 2, with a
slight improvement for the one-shot prompt beyond
this point. Differently, the UsedFor relationship ex-
hibits lower performance overall, with a peak on
Precision at k = 2.

5.2 The HLoop process

Our comprehensive automatic evaluation indicated
a consistent pattern of moderate to low Precision
and Recall scores across both fine-tuned (Aetheria,
Tulu) and non-fine-tuned (Yi) models. Such results
pointed out the necessity for an additional layer
of scrutiny. Therefore, we structured a manual
evaluation to understand whether the unsatisfactory
scores stemmed from model errors or the genera-
tion of novel data absent from the KBs.

To this end, we selected a sample of 300 prompt
outputs, from the best performing models, refer-
ring respectively to each of the three employed



] Prompt \ P@IO\ R@l()\ Fl@lO‘
Zero-shot | Aectheria | 19.62 | 10.68 | 13.83
(RelTo) Tulu 20.25 | 10.38 | 13.72
Yi 9.37 | 4.60 6.17
Zero-shot | Aetheria | 6.79 | 3.29 443
(UsedFor) Tulu 8.7 3.98 5.46
Yi 1.92 | 0.8 1.13
One-shot | Aetheria | 20.8 | 11.43 | 14.75
(RelTo) Tulu 22.18 | 11.96 | 15.54
Yi 8.16 | 4.07 5.43
One-shot | Aetheria | 7.06 | 3.43 4.62
(UsedFor) Tulu 8.46 | 4.09 5.51
Yi 420 | 1.80 2.50

Table 3: Results on ConceptNet for Precision, Recall
and F-Measure at 10.
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——
° ~@- 0s (Rello) 0
0.20 - 1s (Rell)) ————0
—&— 0s (UsedFor)
0.15 ~@- 1s (UsedFor)
olee——
@1 @2 @5 @10
R for CONCEPTNET
—@— 0s (RelTo)
0.10 1 ~B- 1s (RelTo)
—&— 0s (UsedFor)
—@- 1s (UsedFor)
0.05 A
0.00 -

@1 @2 @5 @10

Figure 4: Precision and Recall on ConceptNet as & in-
creases (best performing model). The asymptotic Recall
value (at 10) for RelatedT o is 0.67, for UsedFor is
0.56.

KBs. We then asked three annotators to examine
the 900 prompt outputs and to determine if a gener-
ated concept is related to the target one within the
predefined relationship. The potential verdicts for
each entry were categorized as correct, incorrect,
or misspelled, with the latter specifically denoting
any grammatical inaccuracies introduced by the
models.

We used Fleiss (1971)’s kappa (F-«) and Ran-
dolph (2005)’s multirated kappa (R-x) to evaluate
the Inter Annotator Agreement (IAA). Both met-
rics provide a lower and upper bound on the IAA.
For Semagram, we obtained an F-x of 0.43 — mod-
erate agreement — and an R-x of 0.60 — substan-
tial agreement. MultiAligNet has an F-x of 0.51 —
moderate agreement — and an R-x of 0.64 — sub-

stantial agreement. Finally, ConceptNet obtained
the lowest agreement scores, having an F-x of 0.33
— fair agreement — and an R-x of 0.5 — moderate
agreement.

Figure 5 shows the results of the annotation.
Both Semagram and MultiAligNet have almost the
same amount of correct and incorrect concepts,
with a small difference on the misspelled (8 vs 6).
Having such a small pool of misspelled concepts
demonstrates that our prompting methodology does
not elicit word hallucinations. ConceptNet, instead,
has a large amount of incorrect concepts (179 in-
correct vs 115 correct). These results, discussed in
Section 5.3, show that LLMs “prefer’” more fine-
grained and specific relationships, whereas they
hallucinate on more generic and abstract relation-
ships.

correct [l incorrect il misspelled

o

Semagram MultiAligNet Conceptiet

Figure 5: The ratio of correct, incorrect, and misspelled
concepts on the three KBs.

5.3 Discussion

Throughout the evaluation phases, we noticed fur-
ther interesting patterns that serve as additional
contributions of the paper.

5.3.1 KB Size and Recall Relationship

From the observations gathered across varying
sizes of KBs, we noticed an increase of Recall
rates over the KB sizes. This phenomenon can be
attributed to bigger data coverage within the KB
(i.e., the greater the volume of entries within a KB,
the higher the probability that it encompasses infor-
mation pertinent to a broader spectrum of queries
(Kandpal et al., 2023)).

5.3.2 Fine-tuned Models are Better

Another confirmed hypothesis regards the relation-
ship between LLMs fine-tuning and performance in



generating new and correct data for the KBs. Both
Tulu and Aetheria performed 2 and 2.1 times better
than the standard pre-trained Yi, given their Recall
scores on the three KBs. Finally, the storytelling
model, Aetheria, performed slightly better.

5.3.3 LLMs Cannot Improvise

LLMs could only recall up to 40% of the infor-
mation within the tested resources, often falling
short of this benchmark, verging on null accuracy.
This underscores a noteworthy constraint in their
capabilities. Even with guidance (i.e. using a one-
shot prompt), their low recall capability does pose
three possible hypothesis: i) LLMs cannot infer se-
mantic relationships; ii) the given prompts are not
accurate enough to give an explanation of the task
to the model, and so contextual information may
be missing. LLMs can struggle with understand-
ing and maintaining context, especially if the KB
is complex and the semantic relationships are too
general; iii) LLMs might misunderstand the mean-
ing of terms within the KB and thus fail to recall
relevant information that depends on a different
interpretation of these terms.

All of the above can be in fact true knowing
that i) LLMs do not "understand”" semantics be-
cause they have no formal grounding or theory of
mind (Pavlick, 2023; Ullman, 2023); ii) LLMs are
heavily context dependent (Shi et al., 2023); iii)
when unguided, they fail to resolve ambiguity in
language most of the time (Zhao et al., 2021; Liu
et al., 2021; Zhang et al., 2022).

5.3.4 Results from Manual Analysis

Diving deeper into the results, it is peculiar to see
some divergency. On one hand, on KBs that can be
considered "fine-grained" (e.g. Semagram, Multi-
AligNet), LLMs seem to perform better and gen-
erate new and usable knowledge. On the other,
common-sense KBs seem to heavily challenge
LLMs because of the aforementioned missing con-
text and semantic ambiguity.

This brought to a vast amount of confabulated
content, mostly dependent to directionality prob-
lems in semantic relationships. This is due to the
“Reversal Curse”, discovered in (Berglund et al.,
2023), that states “if a model has been trained on a
sentence of the form "A is B", it will not automat-
ically generalize to the reverse direction "B is A"
whatsoever”.

6 Conclusions

This study embarked on an exploration of Large
Language Models to reconfigure lexical-semantic
information, leveraging three existing resources.
Our objectives encompassed assessing their effi-
cacy and precision in this endeavor, alongside ex-
amining their ability to autonomously enrich these
resources, as verified through human evaluation.
Implicitly, our methodology also scrutinized the
comprehensiveness of the original resources.

In synthesis, LLMs, in their current state of train-
ing, evince notable limitations in the domain of
lexical semantics, extending beyond the realm of
prompt variability and output alignment challenges
(Kim et al., 2023). In resources teeming with rich
contextual nuances (thus not solely reliant on de-
contextualized x-rel-y relations), LLMs manifest
a pronounced capacity for generating novel knowl-
edge. Finally, the moderate concordance among
human evaluators in assessing LLM outputs un-
derscores significant inadequacies within the re-
sources themselves. The encoded information, or
its attempted encoding, appears markedly unstable,
subjective, and frequently incomplete, thereby sig-
nifying a pressing imperative for further refinement
and augmentation.

6.1 Future Work

Although our paper exposes the limits of LLMs
in generating data for existing KBs, recent work
suggests that, while these models may not be suit-
able for truth-telling, they excel at revising in-
correct data and identifying mistakes (Gou et al.,
2023; Tyen et al., 2023). One potential future re-
search direction is to modify our prompt engineer-
ing methodology from a purely zero/one-shot ap-
proach to a pipeline that incorporates both prompt-
ing and revision. Another research direction could
be the use of RAG (Retrieval Augmented Genera-
tion) and KEG (Knowledge Enriched Generation)
(Lewis et al., 2020; Yu et al., 2021; Gao et al., 2023)
to enhance the context capabilities of these models.
Retrieving current KB data instead of explaining
through examples might be the key to unlock their
capabilities. Finally, another direction involves the
creation of a dataset of probing questions to assess
the ability of LLMs in generating accurate and co-
herent data for KBs, serving as a benchmark to
compare LLLM performance and advance the de-
velopment of more sophisticated models for this
task.



Limitations

Our study introduces a novel approach to enhanc-
ing lexical semantic KBs using LLMs, yet it comes
with several limitations that warrant attention. The
methodology is deeply entwined with the capabil-
ities of LLMs, meaning that any intrinsic limita-
tions, such as biases in training data or a lack of
deep context understanding, are directly reflected
in the quality of our generated knowledge. The
complexity of semantic relationships within the
KB also significantly influences LLM performance,
with fine-grained KBs yielding better results com-
pared to those with more abstract, common-sense
relationships.

Furthermore, our focus on English-language re-
sources limits the applicability of our findings to
KBs in other languages, particularly those with
complex morphology or unique syntax. The val-
idation process also revealed a moderate level of
agreement among human annotators, highlighting
the subjective nature of interpreting LLM outputs,
which could introduce inconsistencies in the assess-
ment of knowledge completeness and validity.

Additionally, while human evaluation is criti-
cal for ensuring the quality of LLM outputs, it is
not scalable and requires substantial manual ef-
fort, posing a challenge for larger KBs or ongoing
maintenance. The issue of LLMs potentially gen-
erating plausible but incorrect information, known
as "hallucinations" or using a better word, "con-
fabulations"!, persists despite our efforts to mini-
mize it through strategic prompting. Finally, our
study’s success hinged on the meticulous craft-
ing of prompts, a process lacking standardized
best practices, and remains a significant challenge
in eliciting consistently accurate and relevant re-
sponses from LLMs.

Ethics Statement

The experiment was designed with the idea of pro-
viding beneficial knowledge and not harm any indi-
vidual or group. Our primary goal was to develop
a methodology for expanding the coverage of ex-
isting lexical KBs using Large Language Models
(LLMs). We recognize that the use of LLLMs car-
ries potential risks and ethical considerations, and
we have taken steps to mitigate these risks through-
out our research. For example, using open weights
LLMs and open sourcing our software helps the

"https://www.beren.io/
2023-03-19-LLMs-confabulate-not-hallucinate/

community understand the concept of risk mitiga-
tion and reproducibility in experiments.

We recognize that the use of LLMs can have
environmental and social impacts. We have made
efforts to minimize the environmental impact of our
research by optimizing our code and using energy-
efficient hardware. By using AWQ quantization,
we allowed the models to run on one A100 GPU.
The estimated working hours of the single GPU
was of 20 hours, for a CO2 emission of 2.8 kg. In
our commitment to offset these emissions, we have
initiated the establishment of a forest through Tree-
dom?. As an initial endeavor, we have planted a
tree, uniquely identified with the code YMZ-6K66.
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