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Abstract

This paper investigates the potential of Large001
Language Models (LLMs) to augment lexical002
knowledge bases (KBs) and to address their003
common limitations, such as static nature, lim-004
ited coverage, and labor-intensive creation and005
maintenance. We propose a methodology that006
leverages LLMs to accurately reconstruct in-007
formation from a source KB and generate new008
knowledge. Then, we evaluate this methodol-009
ogy using various LLMs and prompting tech-010
niques across three separate KBs. The results011
suggest that LLMs can accurately provide infor-012
mation when given ample contextual cues and013
when dealing with high-specificity concepts.014
However, they are prone to errors and inconsis-015
tencies when asked for rare or generic knowl-016
edge. The findings also indicate that LLMs can017
contribute to KB management by reducing the018
need for manual intervention. This study high-019
lights the potential and limitations of LLMs020
in lexical semantics and emphasizes the im-021
portance of novel approaches to KB creation,022
maintenance, and integration.023

1 Introduction024

Lexical semantics represents a foundational aspect025

of Natural Language Processing (NLP), serving as026

the intersection where the meanings of words and027

their interrelationships converge. This discipline028

has always seen unstructured data become struc-029

tured through the means of knowledge bases (KBs).030

These latter ones, however, face three common lim-031

itations: i) they exhibit a static nature, making it032

challenging to adapt to domains evolution; ii) they033

suffer from limited coverage, hindering their appli-034

cability across diverse domains; iii) their creation035

and maintenance is typically laborious, involving036

human-in-the-loop procedures.037

The rise of Large Language Models (LLMs)038

within Generative AI highlights the importance of039

interpretable knowledge encapsulation, with KBs040

being crucial for both enhancing LLM training and041

providing a means of error, inconsistency, and bias 042

checking (Pan et al., 2024). This necessity becomes 043

particularly pronounced given the expanding influ- 044

ence of Generative AI and its accompanying chal- 045

lenges, including issues such as hallucination (Ji 046

et al., 2023). 047

This paper unveils an innovative methodology 048

grounded in LLMs to tackle pivotal concerns 049

within lexical semantics. In particular, our contri- 050

bution is three-fold: i) we harness LLMs to recon- 051

stitute information encapsulated in a source KB to 052

test their proficiency on this task; ii) subsequently, 053

LLMs are deployed to create novel knowledge, 054

proving their aptitude in crafting, and encoding 055

KBs; iii) through a third-phase assessment of the 056

newly generated content, we can finally evaluate 057

the capability to expand upon the original KBs and, 058

consequently, assess their completeness. 059

By conducting thorough experiments utilizing di- 060

verse LLMs and prompting techniques across three 061

separate KBs, we elucidate the capacity of LLMs 062

to furnish accurate information, particularly when 063

supplied with substantial contextual cues and when 064

dealing with concepts of high specificity. When 065

confronted with requests for rare or generic knowl- 066

edge, LLMs are instead prone to errors and incon- 067

sistencies. 068

2 Related Work 069

In the context of this work, it is essential to clarify 070

that lexical semantic resources, KBs, ontologies 071

and knowledge graphs represent facets or interpre- 072

tations of the same underlying subject matter. 073

2.1 Knowledge Acquisition: KBs and KGs 074

Construction of KBs involves both manual and au- 075

tomatic methods, with famous KBs like WordNet 076

(Fellbaum, 2020) and ConceptNet (Speer et al., 077

2017) initially depending on manual input. To re- 078

duce labor, automated IE techniques have been 079

developed (Fader et al., 2011; Angeli et al., 2015; 080
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Vo and Bagheri, 2017), extracting information from081

texts to update KBs. ML and NLP progress has082

also advanced in automatic Knowledge Graph (KG)083

construction, utilizing data to enhance traditional084

approaches (Chen et al., 2021).085

2.2 Large Language Models086

Recently, the advent of LLMs has opened new av-087

enues for knowledge acquisition and representation.088

LLMs, such as GPT-3 (Brown et al., 2020) and089

LLama-2 (Touvron et al., 2023), have demonstrated090

remarkable capabilities in understanding and gen-091

erating natural language text. Researchers have092

begun exploring the knowledge encoded within093

LLMs, probing their ability to serve as implicit094

KBs (Petroni et al., 2019; Razniewski and Weikum,095

2021). This approach offers a novel means of ac-096

cessing vast amounts of knowledge without explicit097

curation, although challenges remain in interpret-098

ing and validating the knowledge encoded in these099

models (Chang et al., 2023).100

Despite the speed of breakthrough advancements101

in the field, LLMs still grapple with issues that fall102

into two main categories: architectural and data-103

related problems. Architectural problems are in-104

herent to the model’s structure and necessitate a105

change in architecture for resolution. These include106

the prompt engineering problem, wherein mod-107

els are non-deterministic and require the "perfect"108

prompt to elicit the correct response, as highlighted109

by Park et al. (2022). Conversely, data-related prob-110

lems stem from the training methodologies and111

the datasets used, affecting the models’ mathemati-112

cal and reasoning capabilities (Imani et al., 2023;113

Hendrycks et al., 2021), as well as their common114

sense understanding (West et al., 2022).115

2.3 KBs/KGs and LLMs116

Petersen and Potts (2023) demonstrate LLMs’ ca-117

pability to interpret the word “break” and suggest118

that these models can advance lexical semantics.119

Their analysis reveals LLMs’ proficiency in iden-120

tifying both known and novel meanings, as well121

as their superiority in semantic analysis. Kandpal122

et al. (2023) indicate that the knowledge represen-123

tation in LLM training data affects content genera-124

tion accuracy, particularly for uncommon concepts,125

challenging our understanding of LLMs’ seman-126

tic encoding. Cohen et al. (2023) propose a new127

approach for examining LLM knowledge using128

graph-based queries, which aligns with our empha-129

sis on structured prompts to retrieve and leverage130

knowledge from LLMs. In contrast to previous 131

efforts, our work presents a scalable pipeline for 132

standardized KB extension, leveraging LLMs and 133

human-in-the-loop evaluation techniques. 134

3 A Methodology for KB Extension 135

Our proposed methodology encompasses different 136

key modules, answering the following two main 137

research questions: RQ1) How well can LLMs 138

mimic KB concepts and relationships?; and RQ2) 139

Do LLMs possess the capability to produce novel 140

information suitable for integration into existing 141

KBs? However, these inquiries serve as gateways to 142

further exploration. Particularly in relation to RQ1: 143

what factors of both LLMs and KBs impact the qual- 144

ity of generated content? This paper delves into 145

the following considerations: LLM architecture 146

(pre-trained, fine-tuned, and storytelling-oriented); 147

prompting and extraction techniques (zero-shot ver- 148

sus one-shot); as well as the scale and intricacy of 149

the KBs. Additionally, in relation to RQ2: how 150

does the quality of newly generated content com- 151

pare to that of the original KB? A manual assess- 152

ment could provide insights into the completeness 153

of the original resource, enhancing the proposed 154

framework. 155

Figure 1: Architecture of the proposed framework for
KBs extension. i) (KPrompt) encodes the source knowl-
edge into masked prompts, that LLMs use for ii) (AutE-
val) re-generating existing knowledge and iii) (HLoop)
generate new content to be manually-validated.
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On this direction, the proposed framework in-156

cludes three modules which are designed i) to sys-157

tematically assess the proficiency of LLMs in de-158

livering concepts aligned with existing KBs, ii) to159

probe their ability to generate novel concepts for160

potential integration into the KB, and iii) to as-161

certain the role of limited manual intervention in162

evaluating the completeness and coverage of the163

KB. An overview of the architecture is shown in164

Figure 1, while each module is presented in the165

following sections.166

3.1 Knowledge Base-to-Prompt (KPrompt)167

The first module involves the development of a168

Knowledge Base-to-Prompt strategy (KPrompt),169

which serves as the bridge between the lexical170

knowledge stored in the KB and the queries posed171

to LLMs. This strategy aims to convert the struc-172

tured information within the KB into prompts that173

effectively capture the nuances and intricacies of174

the underlying semantic content. The objective is to175

enable LLMs to generate responses that align with176

the pre-existing knowledge stored in the KB, thus177

addressing the fundamental question of whether178

LLMs can proficiently deliver concepts consistent179

with the KB. For example, if a resource holds the180

information that x is connected with y through a se-181

mantic relation r (or, more formally, r(a, b)), then a182

generic template prompt for extracting b-candidates183

could be the following:184

Given the relation r with the specific185

meaning < r_description >, which concepts186

(like b) might be also connected to a187

through r?188

Depending on the kind of knowledge encoded189

in the target KB, this template may be adapted in190

different ways and through prompting strategies191

such as zero- and one-shot, which are defined later192

on in the experimental sections.193

3.2 Automatic Evaluation (AutEval)194

The second module focuses on an intrinsic evalu-195

ation of the LLM-based extension via knowledge196

masking (AutEval), assessing the capacity of LLMs197

to obtain both correct and novel knowledge by198

first masking existing semantic units in the source199

knowledge and then asking LLMs to generate pos-200

sible candidates (see Section 3.1 example). By201

systematically matching the generated candidates202

with the original KBs, we assess the LLM’s capa-203

bility to generate correct and existing information,204

as in the following example:205

Here is a list of candidates to connect 206

with < a > through < r >: x, y, z 207

By checking the presence of x, y and z in the 208

source KB (i.e. specifically of r(a, x), r(a, y) and 209

r(a, z)), it will be possible to give some answers 210

related to the first research question RQ1. 211

3.3 Human-in-the-loop Strategy (HLoop) 212

The third module incorporates a human-in-the- 213

loop strategy (HLoop) to evaluate the novel LLM- 214

extracted knowledge not covered by the source KB, 215

aiming to answer the nuanced question of whether 216

LLMs can effectively extend the KB and, simulta- 217

neously, serve as a means to verify its completeness. 218

In particular, human evaluators, through limited 219

manual intervention, are asked to assess the rele- 220

vance and accuracy of the novel LLMs-generated 221

knowledge. 222

Continuing with the example of Section 3.2, if 223

r(a, y) and r(a, z) are found not to be included in 224

the source KB, a focused manual examination of 225

such new content may be conducted to evaluate 226

their accuracy. 227

4 Experimentation 228

In this section, we detail the experiment settings, 229

i.e. the implementation of the three modules 230

(KPrompt, AutEval and HLoop) on three knowl- 231

edge bases: Semagram (Leone et al., 2020), Mul- 232

tiAligNet (Grasso et al., 2022), and ConcepNet 233

(Speer et al., 2017). The selection of these KBs 234

has been carefully done by considering features 235

such as scale and complexity of the encoded knowl- 236

edge. By experimenting on this diversity, we aim 237

to highlight insights and challenges under a reliable 238

lens. 239

All the code for our experiments is openly avail- 240

able at https://anonymous.4open.science/r/LLM- 241

Semagram-2C44/. 242

4.1 Prompting Strategy 243

KBs encapsulate complex real-world information 244

by codifying semantic relationships, presenting a 245

challenge for LLMs, which are typically tailored 246

to process natural language. No standard prompt- 247

ing method yet exists for repurposing KB data to 248

align with LLMs’ textual processing. Our KPrompt 249

methodology transfigures KB data into structured 250

prompts for LLMs, however we do not propose 251

KPrompt as a definitive standard but rather as an 252
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innovative step towards bridging the gap between253

KB-based data and language model processing.254

Within the plethora of prompt engineering255

methodologies present in literature, we selected256

those that do not require an interactive dialogue257

with a LLM and are considered state of the art:258

Zero-Shot prompt (Kojima et al., 2022), and Few259

Shot prompt (Min et al., 2022; Touvron et al., 2023).260

In our prompts, we instruct LLMs to return 10 con-261

cepts in order to align them with the automatic262

evaluation in Section 5.1.263

The output generated by a LLM typically con-264

sists of plain text that enumerates various concepts.265

To isolate these concepts (or entities), we employ266

regular expressions, which serve as a necessary267

step due to the model’s potential to “hallucinate"268

- that is to append extraneous descriptions to the269

actual list of concepts. To address this, we crafted270

the following regular expression “\b\w+\b". We271

also experimented with a simpler one, \w+, but it272

yielded sub-optimal results across different KBs.273

4.2 Knowledge Bases274

In this section, we overview the KBs chosen for275

experimentation.276

4.2.1 Semagram277

The Semagram KB, introduced by Leone et al.278

(2020), boasts a versatile structure that captures the279

semantics of a given concept through a slot-filler280

representation. The current version encompasses281

over 300 concepts and 26 slots (i.e., semantic re-282

lationships). Each concept is also interconnected283

with other resources, e.g. BabelNet (Navigli and284

Ponzetto, 2010). Following (Ventrice and Siragusa,285

2023), we observed that these descriptions adhered286

to straightforward ontology relations; for example,287

the material slot could be translated as "can be288

made of ". Consequently, we opted to craft simple289

sentences, each posing a criterion to the LLM. Each290

criterion was then coupled with all its associated291

fillers. Subsequently, we devised a concise prompt:292

Provide a list of 10 words that satisfy293

the condition.294

Desired output: comma-separated list of295

words296

Condition: can be made of wood297

Here, condition encompasses the textual interpre-298

tation of the corresponding slot. This prompt struc-299

ture serves as a streamlined and effective means to300

elicit targeted responses from the LLM based on301

the semantics encoded in Semagram.302

4.2.2 MultiAligNet 303

The MultiAligNet KB, introduced by Grasso et al. 304

(2022), constitutes a recently-developed lexical- 305

semantic resource constructed using plain textual 306

information gathered from several corpora in mul- 307

tiple languages. It encompasses knowledge across 308

1,047 noun concepts called heads and it results in 309

21,514 interconnected concepts. It is also linked 310

to WordNet (Fellbaum, 2020) and BabelNet (Nav- 311

igli and Ponzetto, 2010) synsets. In a simplified 312

depiction, its internal framework resembles a KG 313

comprising three primary node types — noun, verb 314

and adjective nodes, alongside two distinct relation- 315

ship types — paradigmatic and syntagmatic. Our 316

experiment centered on the latter category, formu- 317

lating prompts such as the following: 318

Provide a list of 10 English nouns 319

related to the concept “shape, form, 320

configuration” in the form of a 321

comma-separated list of lowercase lemmas. 322

Examples: solubility, mean, packing, 323

weight, load, color, size, style, art 324

4.2.3 ConceptNet 325

ConceptNet, introduced by Speer et al. (2017), 326

serves as a multilingual KB that captures the con- 327

nections and common-sense relationships among 328

words. The inclusion of words and relationships 329

stems from diverse sources, ranging from crowd- 330

sourced inputs to expert-generated content. The 331

dataset boasts more than 21M edges and over 8M 332

nodes, with the English vocabulary alone compris- 333

ing around 1,5M nodes. ConceptNet is character- 334

ized by two fundamental types of relations: sym- 335

metric relations and asymmetric relations. In par- 336

ticular, we focused on UsedFor (symmetric) and 337

RelatedTo (asymmetric). 338

We then designed a straightforward prompt that 339

receives a concept as input and instructs the LLM to 340

identify 10 concepts that possess either a “related 341

to” or “used for” relation with the given concept. 342

An example of prompt (“used for”) is as follow: 343

Given the concept ’car’, list 10 344

concepts for which ’car’ is used for, in 345

the form of a comma-separated list. 346

4.3 LLMs Selection 347

Among all the different types of openly available 348

LLMs, one way to select the optimal model is 349

through Open LLM Leaderboard, a widely recog- 350

nised LLM competition list. At the time of the 351

selection of the model, the LLama-2 architecture 352
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(Touvron et al., 2023) and the models fine-tuned353

from its associated weights were the highest ranked.354

The models are filtered by: pre-trained, fine-tuned355

on domain-specific datasets and chat models. The356

second and third categories are both derived from a357

fine-tuning on the first one. Another sub-distinction358

that we argue being ever so important in the current359

LLM panorama are storytelling fine-tuned mod-360

els (Xie et al., 2023). One goal of this paper is361

also to discover if these models can enhance the362

capabilities to carry out the task under study.363

For our purpose, we used three principles for364

LLMs selection: i) State-of-the-art for their respec-365

tive categories at the time of selection. These were366

selected via an average score over different bench-367

marks for language capabilities of LLMs: ARC368

(Chollet, 2019), HellaSwag (Zellers et al., 2019),369

MMLU (Hendrycks et al., 2020), TruthfulQA (Lin370

et al., 2022), and WinoGrande (Sakaguchi et al.,371

2021). ii) With more than 30B parameters. This372

is justified by empirical evidence suggesting that373

larger language models tend to outperform smaller374

ones across various language tasks. iii) Pertaining375

to the three categories illustrated in Section 4.3.376

For the aforementioned reasons, our choices fell377

on: i) Yi-34B: a model trained from scratch with378

the LLama-2 architecture; ii) Tulu-2-70B: a model379

that combines instruction and RLHF tuned chat380

models on a mix of publicly available, synthetic381

and human-created datasets; iii) Aetheria-L2-70B:382

a model specifically tailored for storytelling, that383

combines Euryale v1.3 base with the DPO training384

of the Tulu v2 model, and the GOAT Storytelling385

model. The LimaRP v3 QLora was then added386

(RoyalLab, 2023).387

Each model was tasked to process the full set of388

prompts for each KB, with the sampling parameters389

configured to a top-p (nucleus) sampling value of390

0.95, temperature of 0.4, PagedAttention enabled391

(Kwon et al., 2023), and a maximum token limit of392

100. We used AWQ 4-bit quantization (Lin et al.,393

2023) to reduce memory utilization without losing394

language capability (Yao et al., 2023).395

5 Evaluation396

Within our framework, we assess two key aspects:397

i) the proficiency of the LLMs in accurately extract-398

ing verified knowledge from the KB (AutEval), and399

ii) the extent to which novel knowledge is extracted400

that was not originally encoded in the KB (HLoop),401

through manual annotation.402

5.1 The AutEval process 403

We adopted standard evaluation metrics to assess 404

the performance of LLMs. Formally, let p represent 405

a prompt from the set P , Cp = {c1, c2, . . . , cn} 406

denote the list of concepts returned by the LLM, 407

Ck = {c1, . . . , ck} the set of the first k concepts 408

of Cp, and Kp = {k1, k2, . . . , km} denote the list 409

of concepts existing in the KB and related to the 410

prompt. The metrics are defined as follows: Pre- 411

cision@K: proportion of the returned items in the 412

top-k (Ck) that are actually relevant; Recall@K: 413

proportion of relevant items found in the top-k rec- 414

ommendations (Kq); and F-Measure@K: the har- 415

monic mean between Precision and Recall. We also 416

provide an asymptotic Recall value based on trun- 417

cating the concept list to 10 items in the prompt. 418

5.1.1 Semagram 419

Table 1 presents the performance scores for both 420

zero-shot and one-shot prompts across the three 421

LLMs. The scores in the table reveal that Tulu 422

outperforms the other models. Additionally, the 423

performance disparity between zero-shot and one- 424

shot prompts is marginal (0.41 percentage points 425

for F1@10). 426

Prompt P@10 R@10 F1@10

Zero-shot
Aetheria 8.73 44.00 14.57

Tulu 9.59 46.36 15.89
Yi 5.82 25.30 9.46

One-shot
Aetheria 7.52 36.21 12.45

Tulu 9.42 43.36 15.48
Yi 5.9 28.11 9.75

Table 1: Results on Semagram for Precision, Recall and
F1-Measure at 10.

Figure 2 illustrates the Precision and Recall 427

scores for varying values of k: 1, 2, 5, and 10. A 428

notable trend is that at lower values of k, one-shot 429

prompts outperform the zero-shot in both metrics. 430

This trend reverses when k > 5. 431

5.1.2 MultiAligNet 432

We constructed distinct prompts for each syntac- 433

tic category—noun, verb, and adjective—to eval- 434

uate potential performance discrepancies across 435

these types. Their outcomes are detailed in Table 436

2. Our findings suggest that model efficacy varies 437

significantly with syntactic category; specifically, 438

Aetheria and Tulu demonstrate superior Precision 439

and Recall for noun nodes, outstripping verb and 440
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Figure 2: Precision and Recall on Semagram as k in-
creases (best performing model). The asymptotic Recall
value (at 10) is 0.98.

adjective nodes. Conversely, for verb and adjec-441

tive nodes, Aetheria and Yi lead in zero-shot and442

one-shot settings. Overall, the zero-shot prompting443

strategy on Aetheria demonstrates the most efficacy,444

except for adjective nodes.445

Prompt P@10 R@10 F1@10
Zero-shot Aetheria 41.89 6.54 11.30
(Nouns) Tulu 39.47 6.00 10.40

Yi 12.21 1.78 3.11
Zero-shot Aetheria 21.45 5.88 9.23

(Adjs) Tulu 16.16 4.36 6.87
Yi 4.74 1.24 1.97

Zero-shot Aetheria 31.5 3.98 7.07
(Verbs) Tulu 30.20 3.50 6.27

Yi 8.58 1.02 1.83
One-shot Aetheria 36.83 5.52 9.59
(Nouns) Tulu 37.55 5.66 9.84

Yi 26.23 4.25 7.33
One-shot Aetheria 20.54 4.94 7.97

(Adjs) Tulu 22.32 5.77 9.18
Yi 25.61 7.84 12.00

One-shot Aetheria 27.29 3.20 5.73
(Verbs) Tulu 26.86 3.29 5.86

Yi 27.5 3.72 6.55

Table 2: Results on MultiAligNet for Precision, Recall
and F-Measure at 10.

Figure 3 presents the performance metrics across446

varying values of k. The observed trends align with447

those reported in Section 5.1.1, albeit with notable448

distinctions. For verb and adjective nodes, there is449

a minor but consistent enhancement in Precision.450

Figure 3: Precision and Recall on MultiAligNet as k
increases (best performing models). The asymptotic
Recall value (at 10) for nouns is 0.17, for adjectives
is 0.32, for verbs is 0.14.

5.1.3 ConceptNet 451

As discussed in Section 4.2.3, we focused on Relat- 452

edTo and UsedFor relationships. Table 3 presents 453

the results, where Tulu, employing a one-shot 454

prompt strategy, achieves the highest scores. The 455

performance gap between zero-shot and one-shot 456

is about 1.03 percentage points. Differently, Yi 457

demonstrated a notably poorer performance. Fi- 458

nally, the one-shot strategy aided the models in 459

comprehending the task, thereby enhancing their 460

ability to retrieve more accurate concepts. 461

In Figure 4, Tulu consistently shows the high- 462

est Precision and Recall values for the RelatedTo 463

relationship across different values of k. The Re- 464

call scores remain comparable up to k = 2, with a 465

slight improvement for the one-shot prompt beyond 466

this point. Differently, the UsedFor relationship ex- 467

hibits lower performance overall, with a peak on 468

Precision at k = 2. 469

5.2 The HLoop process 470

Our comprehensive automatic evaluation indicated 471

a consistent pattern of moderate to low Precision 472

and Recall scores across both fine-tuned (Aetheria, 473

Tulu) and non-fine-tuned (Yi) models. Such results 474

pointed out the necessity for an additional layer 475

of scrutiny. Therefore, we structured a manual 476

evaluation to understand whether the unsatisfactory 477

scores stemmed from model errors or the genera- 478

tion of novel data absent from the KBs. 479

To this end, we selected a sample of 300 prompt 480

outputs, from the best performing models, refer- 481

ring respectively to each of the three employed 482
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Prompt P@10 R@10 F1@10
Zero-shot Aetheria 19.62 10.68 13.83
(RelTo) Tulu 20.25 10.38 13.72

Yi 9.37 4.60 6.17
Zero-shot Aetheria 6.79 3.29 4.43
(UsedFor) Tulu 8.7 3.98 5.46

Yi 1.92 0.8 1.13
One-shot Aetheria 20.8 11.43 14.75
(RelTo) Tulu 22.18 11.96 15.54

Yi 8.16 4.07 5.43
One-shot Aetheria 7.06 3.43 4.62
(UsedFor) Tulu 8.46 4.09 5.51

Yi 4.20 1.80 2.50

Table 3: Results on ConceptNet for Precision, Recall
and F-Measure at 10.

Figure 4: Precision and Recall on ConceptNet as k in-
creases (best performing model). The asymptotic Recall
value (at 10) for RelatedTo is 0.67, for UsedFor is
0.56.

KBs. We then asked three annotators to examine483

the 900 prompt outputs and to determine if a gener-484

ated concept is related to the target one within the485

predefined relationship. The potential verdicts for486

each entry were categorized as correct, incorrect,487

or misspelled, with the latter specifically denoting488

any grammatical inaccuracies introduced by the489

models.490

We used Fleiss (1971)’s kappa (F-κ) and Ran-491

dolph (2005)’s multirated kappa (R-κ) to evaluate492

the Inter Annotator Agreement (IAA). Both met-493

rics provide a lower and upper bound on the IAA.494

For Semagram, we obtained an F-κ of 0.43 – mod-495

erate agreement – and an R-κ of 0.60 – substan-496

tial agreement. MultiAligNet has an F-κ of 0.51 –497

moderate agreement – and an R-κ of 0.64 – sub-498

stantial agreement. Finally, ConceptNet obtained 499

the lowest agreement scores, having an F-κ of 0.33 500

– fair agreement – and an R-κ of 0.5 – moderate 501

agreement. 502

Figure 5 shows the results of the annotation. 503

Both Semagram and MultiAligNet have almost the 504

same amount of correct and incorrect concepts, 505

with a small difference on the misspelled (8 vs 6). 506

Having such a small pool of misspelled concepts 507

demonstrates that our prompting methodology does 508

not elicit word hallucinations. ConceptNet, instead, 509

has a large amount of incorrect concepts (179 in- 510

correct vs 115 correct). These results, discussed in 511

Section 5.3, show that LLMs “prefer” more fine- 512

grained and specific relationships, whereas they 513

hallucinate on more generic and abstract relation- 514

ships. 515

Figure 5: The ratio of correct, incorrect, and misspelled
concepts on the three KBs.

5.3 Discussion 516

Throughout the evaluation phases, we noticed fur- 517

ther interesting patterns that serve as additional 518

contributions of the paper. 519

5.3.1 KB Size and Recall Relationship 520

From the observations gathered across varying 521

sizes of KBs, we noticed an increase of Recall 522

rates over the KB sizes. This phenomenon can be 523

attributed to bigger data coverage within the KB 524

(i.e., the greater the volume of entries within a KB, 525

the higher the probability that it encompasses infor- 526

mation pertinent to a broader spectrum of queries 527

(Kandpal et al., 2023)). 528

5.3.2 Fine-tuned Models are Better 529

Another confirmed hypothesis regards the relation- 530

ship between LLMs fine-tuning and performance in 531
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generating new and correct data for the KBs. Both532

Tulu and Aetheria performed 2 and 2.1 times better533

than the standard pre-trained Yi, given their Recall534

scores on the three KBs. Finally, the storytelling535

model, Aetheria, performed slightly better.536

5.3.3 LLMs Cannot Improvise537

LLMs could only recall up to 40% of the infor-538

mation within the tested resources, often falling539

short of this benchmark, verging on null accuracy.540

This underscores a noteworthy constraint in their541

capabilities. Even with guidance (i.e. using a one-542

shot prompt), their low recall capability does pose543

three possible hypothesis: i) LLMs cannot infer se-544

mantic relationships; ii) the given prompts are not545

accurate enough to give an explanation of the task546

to the model, and so contextual information may547

be missing. LLMs can struggle with understand-548

ing and maintaining context, especially if the KB549

is complex and the semantic relationships are too550

general; iii) LLMs might misunderstand the mean-551

ing of terms within the KB and thus fail to recall552

relevant information that depends on a different553

interpretation of these terms.554

All of the above can be in fact true knowing555

that i) LLMs do not "understand" semantics be-556

cause they have no formal grounding or theory of557

mind (Pavlick, 2023; Ullman, 2023); ii) LLMs are558

heavily context dependent (Shi et al., 2023); iii)559

when unguided, they fail to resolve ambiguity in560

language most of the time (Zhao et al., 2021; Liu561

et al., 2021; Zhang et al., 2022).562

5.3.4 Results from Manual Analysis563

Diving deeper into the results, it is peculiar to see564

some divergency. On one hand, on KBs that can be565

considered "fine-grained" (e.g. Semagram, Multi-566

AligNet), LLMs seem to perform better and gen-567

erate new and usable knowledge. On the other,568

common-sense KBs seem to heavily challenge569

LLMs because of the aforementioned missing con-570

text and semantic ambiguity.571

This brought to a vast amount of confabulated572

content, mostly dependent to directionality prob-573

lems in semantic relationships. This is due to the574

“Reversal Curse”, discovered in (Berglund et al.,575

2023), that states “if a model has been trained on a576

sentence of the form "A is B", it will not automat-577

ically generalize to the reverse direction "B is A"578

whatsoever”.579

6 Conclusions 580

This study embarked on an exploration of Large 581

Language Models to reconfigure lexical-semantic 582

information, leveraging three existing resources. 583

Our objectives encompassed assessing their effi- 584

cacy and precision in this endeavor, alongside ex- 585

amining their ability to autonomously enrich these 586

resources, as verified through human evaluation. 587

Implicitly, our methodology also scrutinized the 588

comprehensiveness of the original resources. 589

In synthesis, LLMs, in their current state of train- 590

ing, evince notable limitations in the domain of 591

lexical semantics, extending beyond the realm of 592

prompt variability and output alignment challenges 593

(Kim et al., 2023). In resources teeming with rich 594

contextual nuances (thus not solely reliant on de- 595

contextualized x-rel-y relations), LLMs manifest 596

a pronounced capacity for generating novel knowl- 597

edge. Finally, the moderate concordance among 598

human evaluators in assessing LLM outputs un- 599

derscores significant inadequacies within the re- 600

sources themselves. The encoded information, or 601

its attempted encoding, appears markedly unstable, 602

subjective, and frequently incomplete, thereby sig- 603

nifying a pressing imperative for further refinement 604

and augmentation. 605

6.1 Future Work 606

Although our paper exposes the limits of LLMs 607

in generating data for existing KBs, recent work 608

suggests that, while these models may not be suit- 609

able for truth-telling, they excel at revising in- 610

correct data and identifying mistakes (Gou et al., 611

2023; Tyen et al., 2023). One potential future re- 612

search direction is to modify our prompt engineer- 613

ing methodology from a purely zero/one-shot ap- 614

proach to a pipeline that incorporates both prompt- 615

ing and revision. Another research direction could 616

be the use of RAG (Retrieval Augmented Genera- 617

tion) and KEG (Knowledge Enriched Generation) 618

(Lewis et al., 2020; Yu et al., 2021; Gao et al., 2023) 619

to enhance the context capabilities of these models. 620

Retrieving current KB data instead of explaining 621

through examples might be the key to unlock their 622

capabilities. Finally, another direction involves the 623

creation of a dataset of probing questions to assess 624

the ability of LLMs in generating accurate and co- 625

herent data for KBs, serving as a benchmark to 626

compare LLM performance and advance the de- 627

velopment of more sophisticated models for this 628

task. 629
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Limitations630

Our study introduces a novel approach to enhanc-631

ing lexical semantic KBs using LLMs, yet it comes632

with several limitations that warrant attention. The633

methodology is deeply entwined with the capabil-634

ities of LLMs, meaning that any intrinsic limita-635

tions, such as biases in training data or a lack of636

deep context understanding, are directly reflected637

in the quality of our generated knowledge. The638

complexity of semantic relationships within the639

KB also significantly influences LLM performance,640

with fine-grained KBs yielding better results com-641

pared to those with more abstract, common-sense642

relationships.643

Furthermore, our focus on English-language re-644

sources limits the applicability of our findings to645

KBs in other languages, particularly those with646

complex morphology or unique syntax. The val-647

idation process also revealed a moderate level of648

agreement among human annotators, highlighting649

the subjective nature of interpreting LLM outputs,650

which could introduce inconsistencies in the assess-651

ment of knowledge completeness and validity.652

Additionally, while human evaluation is criti-653

cal for ensuring the quality of LLM outputs, it is654

not scalable and requires substantial manual ef-655

fort, posing a challenge for larger KBs or ongoing656

maintenance. The issue of LLMs potentially gen-657

erating plausible but incorrect information, known658

as "hallucinations" or using a better word, "con-659

fabulations"1, persists despite our efforts to mini-660

mize it through strategic prompting. Finally, our661

study’s success hinged on the meticulous craft-662

ing of prompts, a process lacking standardized663

best practices, and remains a significant challenge664

in eliciting consistently accurate and relevant re-665

sponses from LLMs.666

Ethics Statement667

The experiment was designed with the idea of pro-668

viding beneficial knowledge and not harm any indi-669

vidual or group. Our primary goal was to develop670

a methodology for expanding the coverage of ex-671

isting lexical KBs using Large Language Models672

(LLMs). We recognize that the use of LLMs car-673

ries potential risks and ethical considerations, and674

we have taken steps to mitigate these risks through-675

out our research. For example, using open weights676

LLMs and open sourcing our software helps the677

1https://www.beren.io/
2023-03-19-LLMs-confabulate-not-hallucinate/

community understand the concept of risk mitiga- 678

tion and reproducibility in experiments. 679

We recognize that the use of LLMs can have 680

environmental and social impacts. We have made 681

efforts to minimize the environmental impact of our 682

research by optimizing our code and using energy- 683

efficient hardware. By using AWQ quantization, 684

we allowed the models to run on one A100 GPU. 685

The estimated working hours of the single GPU 686

was of 20 hours, for a CO2 emission of 2.8 kg. In 687

our commitment to offset these emissions, we have 688

initiated the establishment of a forest through Tree- 689

dom2. As an initial endeavor, we have planted a 690

tree, uniquely identified with the code YMZ-6K66. 691
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