
Published as a conference paper at ICLR 2025

CAT-3DGS: A CONTEXT-ADAPTIVE TRIPLANE AP-
PROACH TO RATE-DISTORTION-OPTIMIZED 3DGS
COMPRESSION

Yu-Ting Zhan*1, Cheng-Yuan Ho*1, Hebi Yang1, Yi-Hsin Chen1, Jui Chiu Chiang2

Yu-Lun Liu1, Wen-Hsiao Peng1

1National Yang Ming Chiao Tung University, Taiwan
2National Chung Cheng University, Taiwan
{dotori25.ii12, kelvinhe0218.cs12}@nycu.edu.tw
{mrrrimge32.cs13, yhchen12101.cs09}@nycu.edu.tw
rachel@ccu.edu.tw
{yulunliu,wpeng}@cs.nycu.edu.tw
* Contributed equally

Figure 1: Comparison of the proposed CAT-3DGS and HAC (Chen et al., 2024). CARM: Channel-
wise Autoregressive Models. SARM: Spatial Autoregressive Models.

ABSTRACT

3D Gaussian Splatting (3DGS) has recently emerged as a promising 3D repre-
sentation. Much research has been focused on reducing its storage requirements
and memory footprint. However, the needs to compress and transmit the 3DGS
representation to the remote side are overlooked. This new application calls for
rate-distortion-optimized 3DGS compression. How to quantize and entropy en-
code sparse Gaussian primitives in the 3D space remains largely unexplored. Few
early attempts resort to the hyperprior framework from learned image compres-
sion. But, they fail to utilize fully the inter and intra correlation inherent in Gaus-
sian primitives. Built on ScaffoldGS, this work, termed CAT-3DGS, introduces
a context-adaptive triplane approach to their rate-distortion-optimized coding. It
features multi-scale triplanes, oriented according to the principal axes of Gaussian
primitives in the 3D space, to capture their inter correlation (i.e. spatial corre-
lation) for spatial autoregressive coding in the projected 2D planes. With these
triplanes serving as the hyperprior, we further perform channel-wise autoregres-
sive coding to leverage the intra correlation within each individual Gaussian prim-

1



Published as a conference paper at ICLR 2025

itive. Our CAT-3DGS incorporates a view frequency-aware masking mechanism.
It actively skips from coding those Gaussian primitives that potentially have lit-
tle impact on the rendering quality. When trained end-to-end to strike a good
rate-distortion trade-off, our CAT-3DGS achieves the state-of-the-art compression
performance on the commonly used real-world datasets.

1 INTRODUCTION

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged as a promising representation for
3D scenes. It lends itself to novel view synthesis particularly within differentiable rendering frame-
works. Unlike Neural Radiance Fields (NeRF) (Mildenhall et al., 2021), which require many sam-
pling points per pixel for volumetric rendering, 3DGS, as a rasterization-based method, uses 3D
Gaussians as geometric primitives, achieving greater efficiency for real-time rendering and the state-
of-the-art rendering quality.

Despite these advantages, the redundancy inherent in the 3DGS representation has prompted new
research directions. Many prior works have been focused on a compact representation of Gaussian
primitives. This category of methods aim at minimizing the parameter count or quantizing param-
eters to save storage space and memory footprint. These techniques include pruning insignificant
Gaussian primitives (Lee et al., 2024; Fan et al., 2023; Girish et al., 2024; Ali et al., 2024; Wang
et al., 2024a), vector quantizing their attributes (Lee et al., 2024; Fan et al., 2023; Navaneet et al.,
2023; Niedermayr et al., 2024; Wang et al., 2024a; Morgenstern et al., 2023), developing compact
latent representations for attributes (Girish et al., 2024), and representing sparse Gaussian primitives
in a more structural way (Lu et al., 2024; Ren et al., 2024; Sun et al., 2024). However, most of them
overlook the needs to transmit the compressed 3DGS representation to the remote side, which calls
for entropy coding and rate-distortion-optimized compression.

Recently, the rate-distortion-optimized compression for 3DGS started to attract attention. Unlike the
compact 3DGS representation, this new school of thought (Wang et al., 2024a; Liu et al., 2024; Chen
et al., 2024; Wang et al., 2024b) aims to strike an optimized trade-off between the compressed bit
rate and rendering image quality in an end-to-end manner. Built on the vanilla 3DGS representation,
RDO-Gaussian (Wang et al., 2024a) adopts the entropy-constrained vector quantization to quantize
the attributes (e.g. opacity, scales, rotations and colors) of each Gaussian primitive. Instead of
performing vector quantization, HAC (Chen et al., 2024) and ContextGS (Wang et al., 2024b) turn
to the ScaffoldGS (Lu et al., 2024) representation to perform scalar quantization with respect to the
latent features of these attributes, a technique analogous to the well-established transform coding
plus scalar quantization for image/video compression. To entropy encode the quantized features,
both introduce the hyperprior from learned image compression (Ballé et al., 2018) to model their
coding probabilities. In formulating the hyperprior, HAC (Chen et al., 2024) draws inspiration from
BiRF (Shin & Park, 2024) to create multi-scale binary hash grids (Figure 1 (a)), whereas ContextGS
learns a separate feature as the hyperprior for each individual Gaussian primitive. Both assume the
components of the hyperpior are independent and identically distributed, in coding the hyperprior.
Notably, ContextGS organizes Gaussian primitives in the 3D space in a hierarchical manner in order
to benefit from the contextual coding of the quantized latent features. In this regard, CompGS (Liu
et al., 2024) shares parallels with ContextGS.

This work introduces a novel rate-distortion-optimized compression framework for 3DGS (Figure 1
(b)). First, motivated by the tensor decomposition (Fridovich-Keil et al., 2023), we project the
unorganized Gaussian primitives in the 3D space onto a set of multi-scale triplanes. These triplanes,
oriented according to the principal components of the Gaussian primitives (Figure 1 (d)), serve as
the hyperprior for coding their attributes in the latent space. Because they capture largely the inter
correlation (i.e. spatial correlation) between the Gaussian primitives in the 3D space, we are able
to encode efficiently the triplane-based hyperprior by spatial autoregressive models. This design
aspect differs significantly from most existing techniques, in which the hyperprior is assumed to be
factorial. Second, given that our triplane-based hyperprior has exploited much of the inter correlation
between the Gaussian primitives, we decouple their coding dependency and encode their latent
features independently by channel-wise autoregressive models. This avoids the challenge of having
to organize sparse Gaussian primitives in the 3D space to leverage their inter correlation. Moreover,
the intra correlation within each individual Gaussian primitive is explored for coding. Lastly, we

2



Published as a conference paper at ICLR 2025

Figure 2: Taxonomy of the rate-distortion-optimized 3DGS compression.

develop a view frequency-aware masking mechanism, skipping from coding the Gaussian primitives
that contribute little to the rendering quality (Figure 1 (c)). To sum up, our contributions include:

• A triplane-based hyperprior that leverages the inter correlation (i.e. spatial correlation) between
Gaussian primitives in the 3D space for efficient spatial autoregressive coding.

• A channel-wise autoregressive model with uneven slice partition that exploits the intra correla-
tion within each individual Gaussian primitive to further improve coding efficiency.

• A view frequency-aware masking mechanism that evaluates the significance of Gaussian primi-
tives based on their impact on the rendering quality to skip less critical ones from coding.

With these novel elements, our scheme, called CAT-3DGS, is able to achieve the state-of-the-art
rate-distortion performance on several commonly used real-world datasets (Figure 1 (e)).

2 RELATED WORK

The related work can be divided into two main categories: the compact 3DGS representation and
the rate-distortion-optimized 3DGS compression.

Compact 3DGS Representation. This category of methods, being a weak form of compression,
aims to make more compact the 3DGS representation by pruning, quantizing, or structuring Gaus-
sian primitives. Typical methods that involve pruning include Compact3DGS (Lee et al., 2024),
LightGaussian (Fan et al., 2023), EAGLES (Girish et al., 2024), and Trimming the fat (Ali et al.,
2024). Compact3DGS features a learnable binary mask and a mask loss to suppress less criti-
cal Gaussian primitives during training. In contrast, LightGaussian and EAGLES adopt a post-
processing strategy to remove less significant Gaussians based on score-based criteria. In a similar
vein, Trimming the fat (Ali et al., 2024) performs pruning progressively. Other methods that in-
volve structuring sparse Gaussian primitives are ScaffoldGS (Lu et al., 2024), OctreeGS (Ren et al.,
2024), and F3DGS (Sun et al., 2024). For instance, ScaffoldGS takes an anchor-based approach,
where each anchor represents a group of Gaussian primitives whose attributes are represented col-
lectively by a latent feature vector.

Rate-distortion-optimized 3DGS Compression. This emerging research area targets the gen-
eration and coding of Gaussian primitives in an end-to-end and rate-distortion-optimized manner.
Figure 2 presents a taxonomy for methods in this category, including RDO-Gaussian (Wang et al.,
2024a), CompGS (Liu et al., 2024), ContextGS (Wang et al., 2024b), and HAC (Chen et al., 2024).
Unlike the compact 3DGS representation, these compression techniques involve entropy coding the
quantized Gaussian primitives. One central theme is how to predict the probability distributions of
the coding features and/or attributes. To this end, some (Chen et al., 2024; Liu et al., 2024; Wang
et al., 2024b) borrow the idea of hyperprior from learned image compression to model the distribu-
tions of the latent features of Gaussian primitives. One exception is RDO-Gaussian (Wang et al.,
2024a), which applies entropy-constrained vector quantization to the Gaussian attributes. As op-
posed to HAC (Chen et al., 2024) and CompGS (Liu et al., 2024), ContextGS (Wang et al., 2024b)
additionally introduces contextual coding in the latent space to leverage the inter correlation be-
tween Gaussian primitives. In common, all these schemes consider the hyperprior to be factorial.
From Figure 2, our CAT-3DGS represents a novel attempt that makes use of both inter and intra

3



Published as a conference paper at ICLR 2025

correlation for coding Gaussian primitives. In terms of the use of inter correlation, it differs from
ContextGS (Wang et al., 2024b) and CompGS (Liu et al., 2024) in performing spatial autoregressive
coding in the hyperprior domain, which is made possible with our triplane-based hyperprior. More
than that, it makes full use of the intra correlation within each individual Gaussian primitive by per-
forming channel-wise autoregressing coding in the latent domain, which is first proposed for 3DGS
compression.

3 PRELIMINARY

ScaffoldGS (Lu et al., 2024) builds upon 3DGS (Kerbl et al., 2023) and introduces a storage-
efficient, anchor-based representation of 3D Gaussian primitives. Instead of directly storing a large
number of Gaussian primitives and their attributes, ScaffoldGS introduces the notion of anchor
points, with each representing a cluster of Gaussian primitives. The attributes of a Gaussian prim-
itive include its 3D position µg , scale s, rotation r, spherical harmonic coefficients c, and opacity
α. Likewise, each anchor is characterized by its position x, latent feature f , scaling factor l, and
K learnable offsets {Oi}Ki=1. The latent feature f encodes the attributes of the Gaussian primitives
attached to the same anchor, effectively reducing the data redundancy. The learnable offsets indicate
their relative positions with respect to that of the anchor.

With ScaffoldGS, rendering a 2D image involves decoding the view-dependent attributes for all the
Gaussians primitives from an anchor representation according to the anchor feature f and camera
position xc:

{ci, ri, si,αi}Ki=1 = FS(f ,σc, d⃗c), (1)

where σc = ∥(x − xc)∥2, d⃗c = x − xc/∥x − xc∥2, and FS is an MLP decoder. The position
µg

i of a Gaussian in the cluster is evaluated by adding the anchor position x to the offsets Oi,
regularized by the scaling factor l, as follows:

{µg
i }

K
i=1 = x+ {Oi}Ki=1 · l. (2)

Given these parameters, the rendering process proceeds similarly to 3DGS (Kerbl et al., 2023).

4 PROPOSED METHOD: CAT-3DGS

Based on ScaffoldGS, this work (termed CAT-3DGS) introduces a content-adaptive triplane ap-
proach to coding the anchors’ attributes (i.e. the latent feature f ∈ R50, scaling factor l ∈ R6, and
offsets {Oi ∈ R3}Ki=1) in an end-to-end, rate-distortion-optimized fashion. Our CAT-3DGS adopts
a hyperprior framework to model the probability distributions of the anchors’ attributes. Because of
the unordered and sparse nature of the anchor points, which collectively form an unorganized point
cloud in the 3D space, we project them onto the multi-scale, dense triplanes oriented according to
the principal components of the anchor points. As such, our triplane-based hyperprior organizes the
projected anchor points in an ordered way on the 2D triplanes. This enables us to use spatial autore-
gressive models to exploit their inter correlation (i.e. spatial correlation) for better entropy coding
the hyperprior itself and thus the anchors’ attributes. In comparison, the 3D hash-based grid hy-
perprior (Chen et al., 2024), although compact, is not able to exploit such inherent inter correlation
due to the pseudo random mapping between the dense grid points and their hyperprior representa-
tions in the hash table. In addition, CAT-3DGS features a channel-wise contextual coding scheme
to leverage the intra correlation among the components of individual latent features f for their cod-
ing. Lastly, we incorporate a view frequency-aware masking mechanism to skip from coding those
Gaussian primitives that contribute little to the rendering quality in different views.

4.1 SYSTEM OVERVIEW

Figure 3 illustrates our CAT-3DGS framework. The encoding of a 3D scene begins with the gen-
eration of the anchor points characterized by their positions x ∈ R3 and attributes, including the
latent feature f ∈ R50, offsets {Oi ∈ R3}Ki=1 and scaling l ∈ R6. Given the geometry infor-
mation x of the anchor points, we formulate multi-scale, dense triplanes by conducting a principal
component analysis. These triplanes consist of regularly structured grid points, which are quantized
and coded by our lightweight spatial autoregressive models (Sec. 4.2). They serve the purpose of

4



Published as a conference paper at ICLR 2025

Figure 3: Illustration of our CAT-3DGS framework. CARM: Channel-wise Autoregressive Models.
SARM: Spatial Autoregressive Models.

the hyperprior, and are queried and decoded to arrive at the coding distributions of the learned at-
tributes associated with an anchor point according to its position x (Sec. 4.2). Considering that the
latent features f collectively constitute a large portion of the compressed bitstream, they each are
encoded recursively by channel-wise autoregressive coding (Sec. 4.4). During the learning process,
our view frequency-aware masking mechanism is incorporated to mask out the Gaussian primitives
which have a minimal impact on the rendering quality (Sec. 4.5). With CAT-3DGS, the information
to be compressed in the bitstream include (a) the triplanes, (b) the anchors’ attributes and positions,
(c) the binary mask, (d) the network weights of the MLP decoder Fs, spatial autoregressive model
FARM , hyperprior decoder Ftri, and channel-wise autoregressive model Fch. The anchors’ posi-
tions x and the network weights are signaled in 16-bit and 32-bit floating-point formats, respectively.
The binary mask is entropy encoded.

The rendering of a 2D image proceeds in much the same way as Scaffold-GS (Lu et al., 2024).
Specifically, we use an MLP decoder FS to decode the coded latent feature f̂ of an anchor point
to obtain the attributes (i.e. color, opacity, rotation, scale) of all the Gaussian primitives belonging
to the same anchor. Accordingly, the coded offsets {Ôi}Ki=1 and scaling l̂ are combined with the
anchor’s position x to reconstruct their positions. The same decoding process is repeated for the
remaining anchor points needed to render the 2D image of a specific viewpoint.

4.2 TRIPLANE-BASED HYPERPRIOR

Our triplane-based hyperprior aims to learn the prior distributions on the attributes (the latent fea-
tures f , offsets {Oi}Ki=1 and scaling l) of the anchor points. Conceptually, a triplane is composed
of three 2D planes, denoted as Pc, c ∈ {xy, yz, zx}, of the same 2D spatial resolution and channel
dimension (See Figure 1 (b)). The notion of triplanes originates from decomposing a dense, 3D grid,
which is costly to represent, into three 2D planes, which are storage friendly yet with more restricted
expressiveness. Each grid point in these 2D planes is a learnable parameter. Our CAT-3DGS learns
multiple triplanes of various resolutions to capture both coarse and fine detail. We thus augment Pc

with an upsampling scale r as Pr,c ∈ Rch×rB×rB , where ch denotes the number of channels, r are
integers denoting the upsampling scales and B denotes the spatial resolution of the triplane at the
lowest scale (i.e. r = 1).

To retrieve the hyperprior h(x) for an anchor point x in the 3D space, we project x onto each 2D
plane Pr,c, with the projected 2D coordinates given by πr,c(x). When πr,c(x) is fractional, we
interpolate between the nearest integer grid points with an interpolation kernel ψ to get the triplane
feature. In symbols, we have ψ(Pr,c, πr,c(x)). The same process is repeated for every combination
of permissible r and c, with the resulting triplane features concatenated to formulate the hyperprior

5



Published as a conference paper at ICLR 2025

h(x):
h(x) =

⋃
r

⋃
c∈{xy,yz,zx}

ψ(Pr,c, πr,c(x)). (3)

In doing so, we notice that x may potentially be unbounded. However, the spatial resolutions of the
triplanes must be bounded, because these triplanes need to be signaled in the bitstream. With their
finite spatial resolutions, a contraction function (Barron et al., 2022b) is applied in order to fit the
potentially unbounded x to our bounded triplanes:

contract(x) =

{
x if ∥x∥ ≤ 1

(2− 1
∥x∥ )(

x
∥x∥ ) if ∥x∥ > 1.

(4)

Careful examination of Eq. (4) reveals that x needs to be normalized in order to minimize the
impact of the non-linear scaling applied to x with ∥x∥ > 1 while maximizing the usage of the grid
points in each triplane to represent those x with ∥x∥ ≤ 1. To this end, we conduct a principal
component analysis (PCA) with respect to the positions x of the anchor points, performing a linear
transformation T (x) of x before it is contracted with Eq. (4). More specifically, T (x) is given by

x′ = T (x) = contract(
Rx(x− µx)

σx ), (5)

where µx ∈ R3 is the mean vector, σx ∈ R3 are the variances along the three principal axes, and
Rx ∈ R3×3 is the PCA rotation matrix. As illustrated in Figure 1 (d), this transformation centers
the point cloud of the anchor points, allowing most of the central anchor points to be linearly scaled.
We finally substitute T (x) into Eq. (3) to evaluate the hyperprior h(x′).

To entropy encode (or decode) the quantized attributes â ∈ {f̂1, {Ôi}, l̂}) of an anchor, an MLP
Ftri is used to decode h(x′) to predict their means, variances, and quantization step size. That
is, (µ,σ, q) = Ftri(h(x

′)). Notably, each of these attributes is assumed to follow a Gaussian
distribution, with their coding probabilities given by

p(â|h(x′)) =

∫ â+ q
2

â− q
2

N (µ,σ) da. (6)

The acute reader may have observed that only part of the latent feature f̂ is involved in Eq. (6). The
coding of the remaining part (i.e. f̂2, f̂3, ...) will be elaborated in Sec. 4.4.

4.3 SPATIAL AUTOREGRESSIVE MODELS (SARM) FOR TRIPLANE CODING

The triplane-based hyperprior must be encoded into the bitstream. Observing that the grid points
in each 2D plane capture to a large extent the inter correlation (i.e. spatial correlation) between
the anchor points in the 3D space, we introduce spatial autoregressive models for triplane coding.
Currently, a dedicated autoregressive model FARM is learned and shared for 2D planes Pr,c of the
same orientation c ∈ {xy, yz, zx} without regard to its upsampling scale r. Thus, a total of three
FARM , one for each orientation, are learned. Moreover, the 2D plane Pr,c has ch channels. These
channels are encoded (and decoded) independently of each other with the same FARM to strike a
balance between complexity and coding efficiency. In fact, all the channels from these 2D planes
Pr,c can be encoded (and decoded) in parallel.

To entropy encode (and decode) a grid point yi,j,k in the channel k of the 2D plane Pr,c, FARM

formulates the context ci,j,k by referring to the previously decoded grid points of the same channel
in the neighborhood specified by ci,j,k = [ŷi−2:i−1,j−2:j+2,k; ŷi,j−2:j−1,k] (Figure 3 (e)). It outputs
the parameters (µi,j,k, σi,j,k) = FARM (ci,j,k) of a Laplace distribution that models the distribution
of yi,j,k. The coding probability of the quantized grid point ŷi,j,k is then given by

p(ŷi,j,k|ci,j,k) =
∫ ŷi,j,k+

Q
2

ŷi,j,k−Q
2

Laplace(µi,j,k, σi,j,k) dyi,j,k, (7)

where Q = 1/16 is the quantization step size. This small quantization step is chosen to make the
training more stable when the training process transitions from the non-quantization-aware training
to the quantization-aware training.

6



Published as a conference paper at ICLR 2025

4.4 CHANNEL-WISE AUTOREGRESSIVE MODELS (CARM) FOR FEATURE CODING

The coding of the latent features f deserves additional effort as they normally represent a con-
siderable portion of the compressed bitstream. For efficient feature coding, we leverage the intra
correlation among the components of a feature f . We divide every individual feature f into M
slices along the channel dimension, followed by introducing a channel-wise autoregressive models
for coding these slices. The coding of slice fm with m > 1 is able to benefit from referring to
the previous coded slices, i.e. {fi|i < m}, and the hyperprior. In symbols, we have the coding
probability of the quantized slice f̂m as

p(f̂m|h(x′), f̂0:m−1) =

∫ f̂m+ q
2

f̂m− q
2

N(µ+ µch,σ + σch)df , (8)

where (µ,σ, q) = Ftri(h(x
′)) and (µch,σch) = Fch(f̂0:m−1). In our design, the slices are

unevenly partitioned, with further details provided in Sec. 5.3.

4.5 VIEW FREQUENCY-AWARE MASKING

Our view frequency-aware masking is designed to distinguish between Gaussian primitives in terms
of their potential contribution to the rendering quality. As observed in Compact-3DGS (Lee et al.,
2024) and HAC (Chen et al., 2024), using a learnable binary mask Mn,k to mask out the k-th Gaus-
sian primitive of the n-th anchor can be effective in reducing the number of Gaussian primitives to
be signaled, thereby saving the storage space and transmission bandwidth. This masking mechanism
is usually implemented as Mn,k = 1(sigmoid(mn,k) > ϵ), where mn,k is a learnable parameter
and ϵ is a global hyperparameter shared across every Gaussian primitive to determine its existence.
Although effective, this blind approach may risk removing some critical Gaussian primitives. A
question that arises naturally is whether we could prioritize Gaussian primitives in the masking
process according to their potential contribution to the rendering quality. We observe that during
training, some Gaussian primitives are more frequently used in rendering the training views. As
such, we attach to each Gaussian primitive a weight pn,k that reflects its relative frequency of being
used in rendering these training views. We adopt pn,k in our masking function:

Mn,k = 1(sigmoid(mn,k) · pn,k > ϵ). (9)
With the same ϵ applied to every Gaussian primitive, a higher pn,k requires sigmoid(mn,k) to
approach zero more closely in order to skip the corresponding Gaussian primitive, making the task
more difficult. As a result, more Gaussian primitives that are critical to rendering the training views
are retained. For this scheme to work well, the basic premise is that the distribution of training views
should be similar to that of test views. We argue that this is true to some extent because when their
distributions differ significantly, there is little guarantee of the rendering quality in those test views.

4.6 TRAINING OBJECTIVES

The training of CAT-3DGS involves minimizing the rate-distortion cost LScaffold + λrLrate together
with a masking loss λmLm:

L = LScaffold + λrLrate + λmLm, (10)
where we follow Scaffold-GS Lu et al. (2024) to evaluate LScaffold, which includes the distortion
between the original and rendered images as well as a regularization term imposed on the scales s
of Gaussian primitives. Lrate indicates the number of bits needed to signal the hyperprior and the
anchors’ attributes:

Lrate =
1

N(50 + 6 + 3K)
(LA

rate + λtriL
P
rate), (11)

where LA
rate = −

∑
â log2 p(â) is the estimated bit rate of the anchors’ attributes, LP

rate =
−
∑

ŷ log2 p(ŷ) is the triplanes’ bit rate, and N(50 + 6 + 3K) is the total number of parameters
of anchors’ attributes. In Eq. (10), Lm is the mask loss adopted from Compact3DGS (Lee et al.,
2024) to regularize the view frequency-aware masking:

Lm =

N∑
n=1

K∑
k=1

sigmoid(mn,k). (12)

7



Published as a conference paper at ICLR 2025

Figure 4: Rate-distortion comparison of our CAT-3DGS, HAC, ContextGS, RDO-Gaussian,
CompGS, and several other compact 3DGS representations (normally without entropy coding and
visualized as rate-distortion points).

Figure 5: Qualitative results of our CAT-3DGS, HAC and ScaffoldGS.

In particular, λm = max(10−3, 0.3 · λr) changes with the rate parameter λr. Further details about
this design aspect are provided in Appendix B.

5 EXPERIMENTAL RESULTS

5.1 IMPLEMENTATION DETAILS

This part summarizes some crucial implementation details for reproduciability. First, the spatial
resolution B of the triplane at the lowest scale (r = 1) is determined in proportional to the number
of anchor points obtained after 10k training iterations. The choices of the other hyperparameters
include: the channel number ch = 72, ϵ = 0.01 (0.0004 for BungeeNeRF) for the view frequency-
aware masking, M = 4 with uneven slices (5, 10, 15, 25) for the channel-wise autoregressive cod-
ing. The rate parameter λr ranges from 0.002 to 0.04, and from 0.001 to 0.02 for BungeeNeRF.
Lastly, our triplanes have only two scales; that is, r = 1, 2.

5.2 RATE-DISTORTION COMPARISON

Baselines. For comparison, our baseline methods include (1) the vanilla 3DGS, (2) ScaffoldGS
(our base model), and (3) four rate-distortion-optimized approaches–namely, HAC (Chen et al.,
2024), RDO-Gaussian (Wang et al., 2024a), CompGS (Liu et al., 2024), and ContextGS (Wang
et al., 2024b). Notably, ContextGS is a concurrent work of our CAT-3DGS. Due to the emerging
nature of the rate-distortion-optimized 3DGS compression, there are only few early attempts. We
thus also include for comparison several compact 3DGS techniques without joint rate-distortion-
optimized training (Lee et al., 2024; Fan et al., 2023; Niedermayr et al., 2024; Navaneet et al.,
2023; Morgenstern et al., 2023; Girish et al., 2024; Ali et al., 2024). Generally, these techniques
do not consider entropy coding. They are visualized as individual rate-distortion points in our rate-
distortion plots.

8



Published as a conference paper at ICLR 2025

Figure 6: (a) Rate-distortion curves comparing our triplanes and the binary hash grids in HAC. (b)
Rate-distortion curves comparing our SARM with the factorized model (FM).

Datasets. We follow the common test protocol to test our CAT-3DGS on real-world scenes, includ-
ing Mip-NeRF 360 (Barron et al., 2022a), Tanks & Temples (Knapitsch et al., 2017), Deep Blend-
ing (Hedman et al., 2018) and BungeeNeRF (Xiangli et al., 2022). For comparison, we choose the
same scenes from each dataset as those used in the prior works (Lu et al., 2024; Chen et al., 2024).

Metrics. We compare the rate-distortion performance of the competing methods by visualizing
their rate-distortion plots. The quality metric is PSNR measured in the RGB domain. The bit rate is
the file size of the compressed bitstream obtained by performing entropy encoding. When reporting
the rate-distortion results for a dataset, we take the average of the per-sequence PSNRs and file sizes.
In our ablation study, we additionally report the BD-rate saving (Bjontegaard, 2001) to single out the
contribution of individual components. In particular, the BD-rate saving is evaluated for each test
scene and averaged across all the scenes in the dataset. Negative values suggest rate saving at the
same quality level as compared to the anchor (a chosen baseline method) and vice versa. Note that
evaluating the BD-rate requires at least 4 rate-distortion points and largely overlapping distortion
intervals. We thus use it only in our ablation study.

Compression Results. In Figure 4, our CAT-3DGS outperforms the competing methods (partic-
ularly those rate-distortion-optimized ones) across all the datasets, achieving the state-of-the-art
rate-distortion performance. On the Mip-NeRF 360 dataset, our CAT-3DGS achieves (at its sec-
ond highest rate point) 78× and 26x rate reductions than 3DGS and ScaffoldGS, respectively, while
achieving slightly higher PSNR by 0.16 dB. Figure 5 offers the subjective quality comparison among
ScaffoldGS, HAC, and our CAT-3DGS. On the bicycle scene, our CAT-3DGS achieve a 57% size re-
duction while showing similar visual quality to HAC. Likewise, on the amsterdam scene, it achieves
0.32dB higher PSNR and better subjective quality than HAC, but with a similar file size.

5.3 ABLATION EXPERIMENTS

We conduct ablation experiments on the Mip-NeRF360 dataset for its diverse scenes.

Triplanes versus Binary Hash Grids. This study investigates the benefits of our triplane-based
hyperprior. Based on the HAC framework, we change its hyperprior from the binary hash grids to
our multi-scale triplanes with spatial autoregressive coding. The remaining components and training
procedure are the same as HAC. From Figure 6 (a), our triplane-based hyperprior achieves an 18%
BD-rate saving. It highlights the advantage of the triplane representations, which are able to capture
the spatial correlation of the anchor points and enable more efficient entropy coding with spatial
autoregressive models.

Spatial Autoregressive Models (SARM) versus Factorized Models (FM). Based on CAT-
3DGS, this ablation study replaces our SARM with FM. The latter assumes that the triplane-based
hyperprior has independent and identically distributed components. For fair comparison, 3 FMs (one
for each plane orientation) are trained and used for coding the triplanes. The result on Mip-NeRF360
indicates that our SARM achieves 19% BD-rate saving as compared to FM. The result suggests the
strong spatial correlation in the triplane-based hyperprior. Figure 6 (b) offers a breakdown anal-
ysis, showing that SARM benefits not only the coding of the triplane-based hyperprior, but more
importantly that of the anchors’ attributes, which constitute the major portion of the compressed
bitstream.

9



Published as a conference paper at ICLR 2025

Figure 7: Breakdown analysis of different coding parts w/
and w/o our CARM for the bicycle scene.

Table 1: The impact of the slice number
and partition in our CARM on compres-
sion performance The results are ob-
tained with Mip-NeRF 360.

M Slices Channels per Slice BD-rate
1 50 0
2 25, 25 -6.3
2 15, 35 -8.9
4 12, 12, 13, 13 -8.9
4 5, 10, 15, 20 -11.9

Table 2: Comparison of decoding time and rendering throughput: Ours (CAT-3DGS) vs. HAC.

Scene Anchor Count (K) Base Resolution B
Decoding Time (s) ↓ Rendering Speed (FPS) ↑

Triplane Anchor Attributes Total

Ours room 36.5 64 11.4 2.2 13.6 127.0
amsterdam 533.0 128 47.4 17.0 64.4 83.4

HAC room 228.8 N/A N/A - 6.6 103.1
amsterdam 483.5 N/A N/A - 11.3 77.9

Channel-wise Autoregressive Models (CARM). Figure 7 presents two pie charts to single out
the contribution of our CARM on the bicycle scene. As shown, CARM reduces the compressed
size of the latent features from 5.7 MB to 3.4 MB, amounting to a 40% rate reduction in this part
of the bitstream. We also observe a similar trend in the other scenes. More results are provided in
Appendix F. From Table 1, more slices lead to improved coding performance. Unevenly-partitioned
slices perform slightly better than evenly-partitioned slices. With uneven slices, we found that more
essential information is packed in the first or two slices, an effect that is similar to energy compaction
and is much desirable for coding purposes. More discussions are presented in Appendix C.

View Frequency-Aware Masking. We conduct another ablation study that disables the view
frequency-aware masking in our CAT-3DGS. In other words, we remove the weight pn,k in the
masking function. Doing so results in a 16% BD-rate drop on Mip-NeRF360. The removal of
Gaussian primitives less critical to the rendering quality helps reduce the bit rate. More results are
provided in Appendix D.

Decoding Time and Rendering Throughput. Table 2 compares the decoding time (seconds) and
rendering throughput (frames per second) of our CAT-3DGS and HAC for two scenes, amsterdam
in BungeeNeRF (Xiangli et al., 2022) and room in Mip-NeRF360 (Barron et al., 2022b). This
information is collected on one NVIDIA V100. CAT-3DGS has much higher decoding time than
HAC due to the use of autoregressive models. However, in terms of rendering throughput, our CAT-
3DGS is faster than HAC. This is because our frequency-aware masking effectively reduces the
number of anchors. The decoding time of CAT-3DGS can be further improved by making full use
of the parallelism in decoding triplanes. Recall that all the 2D planes in our triplane-based hyerprior
are independently decodable and so are the channels in each 2D plane (Sec. 4.3). Currently, only
the channel parallelism is used in our implementation. The decoding of different anchor attributes is
parallelizable to some extent. The coding dependency is in the channel dimension and not between
the anchors’ attributes. Last but not least, the 3DGS system normally has decoding and rendering as
two decoupled processes. The Gaussian primitives are decoded first, followed by rendering images
in different views. The decoding is generally less time sensitive and has little impact on the rendering
process, which is the same as ScaffoldGS (Lu et al., 2024) with our CAT-3DGS.

6 CONCLUSIONS

This work presents a novel rate-distortion-optimized 3DGS compression framework. In an effort
to leverage the inter correlation between Gaussian primitives for coding, it features PCA-guided
triplanes as the hyperprior and incorporates a spatial autoregressive model for their coding. Fur-
thermore, a channel-wise autoregressive model is introduced for the first time to explore the in-
tra correlation within each individual Gaussian primitive for coding. When combined with a view
frequency-aware masking mechanism, these features lead to the state-of-the-art coding performance.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work is supported by National Science and Technology Council, Taiwan under the Grant NSTC
113-2634-F-A49-007-, MediaTek, and National Center for High-performance Computing, Taiwan.

REFERENCES

Muhammad Salman Ali, Maryam Qamar, Sung-Ho Bae, and Enzo Tartaglione. Trimming the fat:
Efficient compression of 3d gaussian splats through pruning. arXiv preprint arXiv:2406.18214,
2024.

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior, 2018. URL https://arxiv.org/abs/1802.
01436.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5470–5479, 2022a.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-
nerf 360: Unbounded anti-aliased neural radiance fields, 2022b. URL https://arxiv.org/
abs/2111.12077.

Gisle Bjontegaard. Calculation of average psnr differences between rd-curves. ITU SG16 Doc.
VCEG-M33, 2001.

Yihang Chen, Qianyi Wu, Jianfei Cai, Mehrtash Harandi, and Weiyao Lin. Hac: Hash-grid assisted
context for 3d gaussian splatting compression. arXiv preprint arXiv:2403.14530, 2024.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps, 2023.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg, Benjamin Recht, and Angjoo Kanazawa.
K-planes: Explicit radiance fields in space, time, and appearance, 2023. URL https://
arxiv.org/abs/2301.10241.

Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians
with lightweight encodings. European Conference on Computer Vision, 2024.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG), 37(6):1–15, 2018.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 21719–21728, 2024.

Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong. Compgs: Efficient
3d scene representation via compressed gaussian splatting. arXiv preprint arXiv:2404.09458,
2024.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654–20664, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

11

https://arxiv.org/abs/1802.01436
https://arxiv.org/abs/1802.01436
https://arxiv.org/abs/2111.12077
https://arxiv.org/abs/2111.12077
https://arxiv.org/abs/2301.10241
https://arxiv.org/abs/2301.10241


Published as a conference paper at ICLR 2025

Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. Compact 3d scene repre-
sentation via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299, 2023.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compact3d: Compressing gaussian splat radiance field models with vector quantization. arXiv
preprint arXiv:2311.18159, 2023.

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting
for accelerated novel view synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10349–10358, June 2024.

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. Octree-
gs: Towards consistent real-time rendering with lod-structured 3d gaussians. arXiv preprint
arXiv:2403.17898, 2024.

Seungjoo Shin and Jaesik Park. Binary radiance fields. Advances in neural information processing
systems, 36, 2024.

Xiangyu Sun, Joo Chan Lee, Daniel Rho, Jong Hwan Ko, Usman Ali, and Eunbyung Park. F-
3dgs: Factorized coordinates and representations for 3d gaussian splatting. arXiv preprint
arXiv:2405.17083, 2024.

Henan Wang, Hanxin Zhu, Tianyu He, Runsen Feng, Jiajun Deng, Jiang Bian, and Zhibo Chen. End-
to-end rate-distortion optimized 3d gaussian representation. arXiv preprint arXiv:2406.01597,
2024a.

Yufei Wang, Zhihao Li, Lanqing Guo, Wenhan Yang, Alex C Kot, and Bihan Wen. Contextgs:
Compact 3d gaussian splatting with anchor level context model. arXiv preprint arXiv:2405.20721,
2024b.

Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai,
and Dahua Lin. Bungeenerf: Progressive neural radiance field for extreme multi-scale scene
rendering. In European conference on computer vision, pp. 106–122. Springer, 2022.

12



Published as a conference paper at ICLR 2025

A TRAINING PROCESS

Figure 8: Detailed Training Process of our CAT-3DGS.

Figure 8 depicts our detailed training procedure. It includes the following training stages.

Anchor Spawning In this stage, we adopt ScaffoldGS to ensure a stable start of both anchor
attribute training and anchor spawning. However, to simulate the quantization effect, we introduce
noise to the attributes of the anchor points starting at iteration 3000. To prevent the generation of an
excessive number of anchors, we disable anchor growing during iterations 3000 to 4000.

Triplane-based Hyperprior After adding noise to the attributes of the anchor points during itera-
tions 3000 to 10,000, we begin using the triplane as a hyperprior to learn the distribution of anchors’
attributes starting from the 10,000th iteration.

Spatial Autoregressive Models for Triplane Coding We start triplane coding at iteration 15,000.
Specifically, we warm up the spatial autoregressive model while freezing the other learnable param-
eters between iterations 15,000 and 16,000.

B RATE-AWARE MASK TRADE-OFF (RMT)

Figure 9: Rate-distortion comparison w/ and w/o our rate-aware mask trade-off. RMT: Rate-aware
Mask Trade-off.

Based on the observation that the number of anchors can be further reduced while maintaining
similar PSNR, we accordingly relate the mask hyperparameter λm to the rate hyperparameter λr
using the relationship λm = max(10−3, 0.3 · λr). This implies that, at higher bit rates, λr decreases
and more offsets (i.e. Gaussian primitives) and anchors are kept. Conversely, at lower bit rates, λr
increases and more offsets and anchors are removed.

In Figure 9 (a), we evaluate the performance with a fixed mask trade-off set to 0.0005 (labeled “w/o
RMT”) and compare it with the rate-aware mask trade-off approach (labeled “w/ RMT”) on Mip-

13



Published as a conference paper at ICLR 2025

NeRF 360. The rate-aware mask trade-off has greater coding performance gain, particularly at lower
bit rates. For further details regarding this gain, we select the treehill scene from Mip-NeRF 360,
as shown in Figure 9 (b). Our method with RMT demonstrates that, at the lowest rate point, the
number of anchor points is only one-third of that “w/o RMT”, and the total size achieves a 60%
reduction, while maintaining similar PSNR.

C THE IMPACT OF SLICE PARTITIONING ON OUR CARM

Table 3: Analysis the number of bits per channel within a slice in different cases.
Method slices Channels per slice Size per channel within one slice (kB) Size for f (MB) Total size (MB) PSNR

w/o CARM 1 (50) (8.91) 0.44 1.69 30.78
w/ CARM (even) 4 (12, 12, 13, 13) (22.2, 6.38, 4.65, 3.98) 0.45 1.74 30.85

w/ CARM (uneven) 4 (5, 10, 15, 20) (17.22, 9.61, 5.35, 3.64) 0.33 1.59 30.89

In this section, we further analyze the number of bits per channel within a slice in the cases of w/o
CARM, w/ CARM (even), and w/ CARM (uneven), as shown in Table 3. We observe that when
only one slice is used, indicating CARM is disabled, the kilo bytes per channel is 8.91. However,
when CARM is enabled, the first slice uses 22.2 kilo bytes per channel for the even partition case
and 17.22 kilo bytes per channel for the uneven case. The data suggest that the earlier slices contain
more information, resulting in larger sizes. This also indicates that the richer information in the
earlier slices can help the coding of the subsequent slices, allowing them to use fewer bits. As for
the even and uneven cases, we observe that the uneven partition yields a better result, reducing the
size of f by 0.12MB compared to the even case.

D VIEW FREQUENCY-AWARE MASKING

Figure 10: Rate-distortion comparison w/ and w/o our view frequency-aware masking. VFM: View
Frequency-aware Masking.

In Figure 10, we compare CAT-3DGS (denoted by “w/ VFM”) with a variant (denoted by “w/o
VFM”) that removes the weight pn,k in the masking function. The view frequency-aware masking
has a significant effect at low bit rates, reducing the total size by 29% at the lowest rate point while
PSNR drops by only 0.1dB. At the highest rate point, it reduces the total size by 14% while still
maintaining similar PSNR. This indicates that the view frequency-aware masking can retain more
important points while pruning a larger number of relatively less important ones, even when most of
the anchors are masked out.

E BITSTREAM OF EACH COMPONENT

Our bit stream consists of seven components: the anchor positions a, three anchor attributes (features
f , offsets {Oi}, and scaling factors l), a set of triplanes P , binary masks M , and MLPs FS , Ftri,
Fch, FARM . After applying our triplane hyperprior and channel-wise autoregressive model, the
size of the attributes has been significantly reduced. Additionally, due to the spatial autoregressive

14



Published as a conference paper at ICLR 2025

model, the triplane size occupies only a small portion. The rate-aware mask tradeoff further allows
us to reduce the number of anchors that need to be compressed at low bit rates, thereby reducing the
total size.

Table 4: Bitstream of each component. The result is for the scene treehill on Mip-NeRF 360 dataset.

Number of Bitstream of Each Component (MB) Total size (MB) Fidelity
Anchors (K) Position Feature Scaling Offsets Masks MLPs Triplane PSNR SSIM

treehill (high-rate) 516.3 3.10 7.75 2.47 3.19 0.53 0.35 0.11 17.5 23.28 0.646
treehill (low-rate) 85.1 0.51 0.33 0.28 0.18 0.06 0.35 0.04 1.74 22.71 0.558

F ADDITIONAL BREAKDOWN RESULTS FOR CARM

Figure 11: The breakdown analyses of different coding parts w/ and w/o our CARM for the flower
and bonsai scenes, respectively.

Figure 11 provides additional breakdown results for flower and bonsai scenes. The results confirm
again that our CARM effectively reduces the compressed size of the latent features associated with
anchors’ attributes.

G THE IMPACT OF CARM ON DECODING TIME

Table 5: Comparison of the decoding time w/ and w/o our CARM.

Scene Method Decoding Time (s)
Triplane Anchor Attributes Total

room CAT-3DGS (w/ CARM) 11.4 2.2 13.6
CAT-3DGS w/o CARM 11.3 2.1 13.4

amsterdam CAT-3DGS (w/ CARM) 47.4 17.0 64.4
CAT-3DGS w/o CARM 47.2 14.9 62.1

We compare the decoding time of our schemes w/ and w/o CARM in Table 5. The results indicate
that CARM has a negligible impact on the decoding time.

H COMPLETE BREAKDOWN OF QUANTITATIVE RESULTS

Quantitative results For a more comprehensive data presentation, we present detailed information
on the rate-distortion curves, as shown in Figure 4, and the quantitative results are shown in Table
6.

Per-scene Results of Our CAT-3DGS Framework The detailed results of our approach for Mip-
NeRF 360 dataset (Barron et al., 2022a) are presented in Table 7.

15



Published as a conference paper at ICLR 2025

The detailed results of our approach for BungeeNeRF dataset (Xiangli et al., 2022) are presented in
Table 8.

The detailed results of our approach for Tank&Temples dataset (Knapitsch et al., 2017) are presented
in Table 9.

The detailed results of our approach for Deep Blending dataset (Hedman et al., 2018) are presented
in Table 10.

Per-scene Results of the Baseline Models Per-scene results for all datasets from our two baseline
models, ScaffoldGS (Lu et al., 2024) and HAC (Chen et al., 2024) are also provided in Table 15
and Table 11 12 13 14, respectively.

Table 6: The Quantitative results of our CAT-3DGS and other approaches. 3DGS (Kerbl et al.,
2023) and ScaffoldGS (Lu et al., 2024) are baseline methods, which are presented in the first sec-
tion. Approaches in the second section are compact representation, while the third section covers
rate-distortion-optimized compression approaches. For comparison, we also provide two results of
different size and fidelity tradeoffs by adjusting λr. The size is measured in megabytes (MB).

Datasets Mip-NeRF360 Tank&Temples DeepBlending BungeeNeRF
Methods psnr ↑ ssim ↑ lpips ↓ size ↓ psnr ↑ ssim ↑ lpips ↓ size ↓ psnr ↑ ssim ↑ lpips ↓ size ↓ psnr ↑ ssim ↑ lpips ↓ size ↓

3DGS(SIGGRAPH’23) 27.49 0.813 0.222 744.7 23.69 0.844 0.178 431.0 29.42 0.899 0.247 663.9 24.87 0.841 0.205 1616
ScaffoldGS (CVPR’24) 27.50 0.806 0.252 253.9 23.96 0.853 0.177 86.50 30.21 0.906 0.254 66.00 26.62 0.865 0.241 183.0

EAGLES(ECCV’24) 27.15 0.808 0.238 68.89 23.41 0.840 0.200 34.00 29.91 0.910 0.250 62.00 25.24 0.843 0.221 117.1
LightGaussian 27.00 0.799 0.249 44.54 22.83 0.822 0.242 22.43 27.01 0.872 0.308 33.94 24.52 0.825 0.255 87.28
Compact3DGS (CVPR’24) 27.08 0.798 0.247 48.80 23.32 0.831 0.201 39.43 29.79 0.901 0.258 43.21 23.36 0.788 0.251 82.60
Compressed3D (CVPR’24) 26.98 0.801 0.238 28.80 23.32 0.832 0.194 17.28 29.38 0.898 0.253 25.30 24.13 0.802 0.245 55.79
Morgenstern et al. 26.01 0.772 0.259 23.90 22.78 0.817 0.211 13.05 28.92 0.891 0.276 8.40 - - - -
Navaneet et al. 27.16 0.808 0.228 50.30 23.47 0.840 0.188 27.97 29.75 0.903 0.247 42.77 24.63 0.823 0.239 104.3
Trimming the fat 27.13 0.798 0.248 20.057 23.68 0.831 0.210 8.555 29.42 0.897 0.267 12.49 - - - -

CompGS (high-rate) 27.26 0.802 0.239 16.5 23.70 0.835 0.205 9.61 29.33 0.900 0.270 10.4 - - - -
CompGS (low-rate) 26.79 0.791 0.258 11.0 23.105 0.815 0.235 5.89 28.99 0.900 0.280 7.00 - - - -
RDO-Gaussian (high-rate) 27.05 0.802 0.239 23.46 23.34 0.835 0.195 12.02 29.63 0.902 0.252 18.00 - - - -
RDO-Gaussian (low-rate) 24.43 0.683 0.406 1.71 22.09 0.755 0.318 1.32 28.38 0.872 0.331 1.22 - - - -
HAC (ECCV’24)(high-rate) 27.77 0.811 0.230 21.87 24.40 0.853 0.177 11.24 30.34 0.906 0.258 6.35 27.05 0.868 0.217 26.16
HAC (ECCV’24)(low-rate) 26.11 0.759 0.312 5.96 23.11 0.809 0.238 3.68 28.62 0.888 0.302 2.64 24.56 0.768 0.327 9.74

Ours (high-rate) 27.77 0.809 0.241 12.35 24.41 0.853 0.189 6.93 30.29 0.909 0.269 3.56 27.35 0.886 0.183 26.59
Ours (low-rate) 25.82 0.730 0.362 1.72 22.97 0.786 0.293 1.42 28.53 0.878 0.336 0.93 25.19 0.808 0.279 10.14

16



Published as a conference paper at ICLR 2025

Table 7: Results of Our approach for each scene from Mip-NeRF 360 dataset (Barron et al., 2022a).
λr Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.002

bicycle 25.04 0.735 0.280 21.42
bonsai 32.98 0.947 0.192 6.06
counter 29.66 0.915 0.197 6.33
flower 21.41 0.580 0.375 18.92
garden 27.49 0.847 0.152 18.64
kitchen 31.34 0.926 0.135 6.92
room 31.95 0.924 0.212 4.11
stump 26.79 0.766 0.271 11.23
treehill 23.28 0.646 0.359 17.50
AVG 27.77 0.809 0.241 12.35

0.004

bicycle 25.16 0.738 0.280 16.56
bonsai 32.74 0.944 0.198 4.79
counter 29.51 0.911 0.203 4.98
flower 21.37 0.576 0.383 14.28
garden 27.30 0.840 0.164 14.55
kitchen 30.97 0.922 0.140 5.36
room 31.73 0.921 0.221 3.22
stump 26.87 0.766 0.278 8.50
treehill 23.27 0.642 0.370 13.20
AVG 27.66 0.807 0.249 9.49

0.01

bicycle 25.03 0.728 0.302 9.40
bonsai 31.67 0.932 0.217 2.94
counter 28.89 0.898 0.225 3.15
flower 21.25 0.564 0.403 8.13
garden 26.83 0.816 0.210 8.65
kitchen 30.37 0.911 0.160 3.32
room 31.24 0.911 0.243 2.06
stump 26.62 0.752 0.309 4.45
treehill 23.22 0.629 0.400 7.17
AVG 27.24 0.793 0.274 5.47

0.015

bicycle 24.80 0.714 0.323 6.59
bonsai 31.25 0.927 0.227 2.35
counter 28.51 0.886 0.244 2.45
flower 21.12 0.552 0.419 6.13
garden 26.56 0.803 0.231 6.82
kitchen 29.90 0.902 0.174 2.59
room 30.90 0.902 0.262 1.60
stump 26.38 0.736 0.333 3.25
treehill 23.08 0.616 0.423 5.13
AVG 26.94 0.782 0.293 4.10

0.03

bicycle 24.38 0.676 0.368 3.35
bonsai 29.99 0.905 0.260 1.58
counter 27.63 0.860 0.285 1.49
flower 20.74 0.519 0.455 3.32
garden 25.81 0.755 0.304 3.85
kitchen 28.76 0.878 0.216 1.53
room 30.19 0.887 0.292 1.05
stump 25.64 0.690 0.389 1.83
treehill 22.84 0.580 0.472 2.44
AVG 26.22 0.750 0.338 2.27

0.04

bicycle 24.02 0.646 0.399 2.36
bonsai 29.44 0.892 0.277 1.30
counter 27.14 0.845 0.306 1.23
flower 20.44 0.496 0.477 2.42
garden 25.40 0.727 0.337 3.01
kitchen 28.16 0.862 0.244 1.20
room 29.73 0.879 0.307 0.88
stump 25.30 0.666 0.415 1.35
treehill 22.71 0.558 0.499 1.74
AVG 25.82 0.730 0.362 1.72

17



Published as a conference paper at ICLR 2025

Table 8: Results of Our approach for each scene from BungeeNeRF dataset (Xiangli et al., 2022).
λr Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.001

amsterdam 27.57 0.908 0.148 31.98
bilbao 28.25 0.897 0.165 25.38

hollywood 25.16 0.815 0.254 24.58
pompidou 25.82 0.864 0.214 28.83

quebec 30.59 0.943 0.144 21.72
rome 26.74 0.887 0.178 27.06
AVG 27.35 0.886 0.184 26.59

0.002

amsterdam 27.52 0.903 0.159 27.33
bilbao 28.15 0.892 0.176 22.03

hollywood 25.12 0.808 0.268 20.95
pompidou 25.70 0.857 0.224 24.26

quebec 30.23 0.938 0.154 17.84
rome 26.57 0.881 0.190 23.17
AVG 27.22 0.880 0.195 22.60

0.003

amsterdam 27.28 0.897 0.169 24.47
bilbao 28.13 0.888 0.181 19.41

hollywood 25.05 0.801 0.280 18.72
pompidou 25.69 0.854 0.232 21.52

quebec 30.04 0.934 0.163 15.89
rome 26.42 0.875 0.200 20.81
AVG 27.10 0.875 0.204 20.14

0.006

amsterdam 26.96 0.882 0.194 19.38
bilbao 27.72 0.876 0.202 15.63

hollywood 24.68 0.778 0.307 14.90
pompidou 25.21 0.839 0.251 17.22

quebec 29.53 0.925 0.178 13.28
rome 25.78 0.856 0.223 16.87
AVG 26.65 0.859 0.226 16.21

0.01

amsterdam 26.32 0.863 0.215 15.96
bilbao 27.26 0.861 0.222 12.73

hollywood 24.41 0.757 0.325 12.71
pompidou 24.86 0.825 0.267 14.33

quebec 28.84 0.914 0.197 10.68
rome 25.13 0.834 0.245 13.86
AVG 26.14 0.842 0.245 13.38

0.02

amsterdam 25.65 0.833 0.253 12.33
bilbao 26.30 0.829 0.258 9.74

hollywood 23.80 0.714 0.361 9.12
pompidou 23.78 0.789 0.298 10.75

quebec 27.76 0.891 0.225 8.28
rome 23.85 0.790 0.283 10.63
AVG 25.19 0.808 0.280 10.14

18



Published as a conference paper at ICLR 2025

Table 9: Results of Our approach for each scene from Tank & Temples dataset (Knapitsch et al.,
2017).

λr Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.002
train 22.68 0.820 0.221 6.28
truck 26.14 0.885 0.157 7.57
AVG 24.41 0.853 0.189 6.93

0.004
train 22.45 0.817 0.226 5.06
truck 25.98 0.882 0.162 5.88
AVG 24.22 0.850 0.194 5.47

0.01
train 22.31 0.802 0.249 3.43
truck 25.68 0.871 0.184 3.74
AVG 23.99 0.837 0.217 3.58

0.015
train 22.23 0.794 0.262 2.71
truck 25.55 0.866 0.195 3.00
AVG 23.89 0.830 0.228 2.86

0.03
train 22.01 0.769 0.295 1.80
truck 24.97 0.842 0.238 1.89
AVG 23.49 0.806 0.266 1.85

0.04
train 21.42 0.750 0.315 1.47
truck 24.51 0.822 0.271 1.38
AVG 22.97 0.786 0.293 1.42

Table 10: Results of Our approach for each scene from Deep Blending (Hedman et al., 2018).
λr Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.002
drjohnson 29.67 0.906 0.266 4.27
playroom 30.90 0.911 0.272 2.85

AVG 30.29 0.909 0.269 3.56

0.004
drjohnson 29.51 0.904 0.272 3.43
playroom 30.81 0.909 0.279 2.21

AVG 30.16 0.906 0.275 2.82

0.01
drjohnson 29.23 0.898 0.288 2.12
playroom 30.23 0.903 0.295 1.46

AVG 29.73 0.900 0.292 1.79

0.015
drjohnson 29.06 0.892 0.299 1.76
playroom 29.91 0.897 0.309 1.21

AVG 29.48 0.894 0.304 1.48

0.03
drjohnson 28.52 0.879 0.323 1.20
playroom 29.19 0.887 0.331 0.85

AVG 28.85 0.883 0.327 1.03

0.04
drjohnson 28.31 0.874 0.332 1.09
playroom 28.74 0.881 0.340 0.76

AVG 28.53 0.878 0.336 0.93

19



Published as a conference paper at ICLR 2025

Table 11: Results of HAC (Chen et al., 2024) for each scene from Mip-NeRF 360 dataset (Barron
et al., 2022a).

λe Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.001

bicycle 25.11 0.742 0.259 39.15
bonsai 32.97 0.948 0.180 12.72
counter 29.74 0.918 0.184 10.44
flower 21.27 0.575 0.377 27.55
garden 27.46 0.849 0.139 32.17
kitchen 31.63 0.930 0.122 12.07
room 31.90 0.926 0.198 7.85
stump 26.59 0.763 0.264 25.26
treehill 23.26 0.648 0.345 29.65
AVG 27.77 0.811 0.230 21.87

0.002

bicycle 25.10 0.742 0.262 33.14
bonsai 32.70 0.945 0.184 10.51
counter 29.65 0.915 0.189 8.88
flower 21.32 0.576 0.377 23.73
garden 27.43 0.847 0.143 27.52
kitchen 31.46 0.928 0.125 10.05
room 31.87 0.925 0.201 6.47
stump 26.59 0.761 0.268 21.75
treehill 23.34 0.647 0.350 24.83
AVG 27.72 0.809 0.233 18.54

0.004

bicycle 25.05 0.742 0.264 27.54
bonsai 32.28 0.942 0.189 8.56
counter 29.35 0.911 0.195 7.26
flower 21.26 0.572 0.381 19.59
garden 27.28 0.842 0.151 22.69
kitchen 31.16 0.923 0.131 8.05
room 31.55 0.921 0.208 5.53
stump 26.58 0.762 0.269 18.11
treehill 23.30 0.645 0.356 20.04
AVG 27.53 0.807 0.238 15.26

0.01

bicycle 24.79 0.733 0.284 17.80
bonsai 31.27 0.933 0.208 5.16
counter 28.68 0.898 0.220 4.54
flower 21.18 0.561 0.400 12.15
garden 26.76 0.822 0.188 14.53
kitchen 30.51 0.914 0.149 4.85
room 31.20 0.912 0.234 3.27
stump 26.54 0.752 0.296 11.21
treehill 23.13 0.628 0.392 12.27
AVG 27.12 0.795 0.263 9.53

0.02

bicycle 24.60 0.717 0.306 14.97
bonsai 30.51 0.922 0.225 4.24
counter 27.78 0.878 0.248 3.30
flower 20.84 0.537 0.425 8.90
garden 26.34 0.800 0.222 10.87
kitchen 29.86 0.902 0.169 3.69
room 30.51 0.900 0.256 2.56
stump 26.20 0.730 0.326 8.68
treehill 23.03 0.610 0.418 9.25
AVG 26.63 0.777 0.288 7.38

0.035

bicycle 24.16 0.694 0.333 11.59
bonsai 29.63 0.909 0.242 3.72
counter 27.19 0.864 0.269 2.68
flower 20.57 0.513 0.449 7.17
garden 25.86 0.780 0.252 8.90
kitchen 29.09 0.886 0.191 3.08
room 29.94 0.889 0.276 2.15
stump 25.77 0.707 0.358 7.03
treehill 22.82 0.591 0.443 7.32
AVG 26.11 0.759 0.312 5.96

20



Published as a conference paper at ICLR 2025

Table 12: Results of HAC (Chen et al., 2024) for each scene from BungeeNeRF dataset (Xiangli
et al., 2022).

λe Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.001

amsterdam 27.25 0.886 0.190 31.84
bilbao 27.98 0.886 0.190 24.38

hollywood 24.59 0.772 0.319 23.41
pompidou 25.58 0.851 0.236 29.19

quebec 30.30 0.934 0.163 21.23
rome 26.61 0.876 0.203 26.91
AVG 27.05 0.868 0.217 26.16

0.002

amsterdam 27.13 0.880 0.202 27.14
bilbao 28.02 0.880 0.205 20.91

hollywood 24.43 0.763 0.330 20.09
pompidou 25.27 0.842 0.249 24.85

quebec 29.98 0.929 0.175 17.90
rome 26.28 0.866 0.219 23.07
AVG 26.85 0.860 0.230 22.33

0.003

amsterdam 26.95 0.873 0.214 24.41
bilbao 27.82 0.872 0.218 18.76

hollywood 24.27 0.753 0.342 17.87
pompidou 25.34 0.837 0.255 22.49

quebec 29.67 0.924 0.185 16.15
rome 25.98 0.855 0.231 20.83
AVG 26.67 0.852 0.241 20.08

0.004

amsterdam 26.80 0.865 0.224 22.49
bilbao 27.65 0.864 0.231 17.14

hollywood 24.25 0.748 0.347 16.55
pompidou 25.16 0.829 0.266 20.40

quebec 29.33 0.918 0.192 15.06
rome 25.68 0.845 0.243 19.30
AVG 26.48 0.845 0.250 18.49

0.008

amsterdam 26.13 0.839 0.258 17.22
bilbao 26.81 0.842 0.262 14.01

hollywood 23.83 0.713 0.377 12.90
pompidou 24.48 0.807 0.289 16.10

quebec 28.60 0.906 0.216 11.71
rome 24.71 0.811 0.276 15.34
AVG 25.76 0.820 0.280 14.55

0.02

amsterdam 25.03 0.788 0.308 11.92
bilbao 25.84 0.799 0.308 9.08

hollywood 22.92 0.640 0.425 8.38
pompidou 23.16 0.759 0.332 10.43

quebec 27.15 0.872 0.262 8.18
rome 23.25 0.750 0.327 10.47
AVG 24.56 0.768 0.327 9.74

21



Published as a conference paper at ICLR 2025

Table 13: Results of HAC (Chen et al., 2024) for each scene from Tank & Temples dataset
(Knapitsch et al., 2017).

λe Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.001
truck 26.02 0.883 0.147 12.42
train 22.78 0.823 0.207 10.07
AVG 24.40 0.853 0.177 11.24

0.004
truck 25.88 0.878 0.158 9.26
train 22.19 0.815 0.216 6.94
AVG 24.04 0.846 0.187 8.10

0.01
truck 25.69 0.874 0.172 7.04
train 22.13 0.807 0.230 5.26
AVG 23.91 0.841 0.201 6.15

0.02
truck 25.36 0.863 0.189 5.59
train 22.02 0.795 0.250 3.97
AVG 23.69 0.829 0.219 4.78

0.035
truck 24.96 0.853 0.208 5.04
train 21.96 0.783 0.266 3.17
AVG 23.46 0.818 0.237 4.10

0.045
truck 24.81 0.847 0.216 4.64
train 21.42 0.771 0.279 2.72
AVG 23.11 0.809 0.248 3.68

Table 14: Results of HAC (Chen et al., 2024) for each scene from Deep Blending dataset (Hedman
et al., 2018).

λe Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.001
playroom 30.84 0.906 0.262 5.03
drjohnson 29.85 0.906 0.255 7.67

AVG 30.34 0.906 0.258 6.35

0.002
playroom 30.66 0.905 0.265 4.12
drjohnson 29.69 0.905 0.258 6.51

AVG 30.17 0.905 0.262 5.32

0.004
playroom 30.44 0.902 0.272 3.15
drjohnson 29.53 0.903 0.265 5.55

AVG 29.98 0.902 0.269 4.35

0.01
playroom 30.31 0.906 0.279 2.58
drjohnson 29.34 0.901 0.275 4.23

AVG 29.83 0.903 0.277 3.40

0.02
playroom 29.87 0.900 0.292 2.23
drjohnson 28.81 0.893 0.288 3.65

AVG 29.34 0.897 0.290 2.94

0.035
playroom 29.26 0.893 0.302 2.01
drjohnson 27.97 0.883 0.302 3.26

AVG 28.62 0.888 0.302 2.64

22



Published as a conference paper at ICLR 2025

Table 15: Results of ScaffoldGS (Lu et al., 2024) for all evaluated datasets.

Datasets Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

Mip-NeRF360

bicycle 24.50 0.705 0.306 248.00

bonsai 32.70 0.946 0.185 258.00

counter 29.34 0.914 0.191 194.00

flower 21.14 0.566 0.417 253.00

garden 27.17 0.842 0.146 271.00

kitchen 31.30 0.928 0.126 173.00

room 31.93 0.925 0.202 133.00

stump 26.27 0.784 0.284 493.00

treehill 23.19 0.642 0.410 262.00

AVG 27.50 0.806 0.252 253.89

Tank&Temples

truck 25.77 0.883 0.147 107.00

train 22.15 0.822 0.206 66.00

AVG 23.96 0.853 0.177 86.50

DeepBlending

playroom 30.62 0.904 0.258 63.00

drjohnson 29.80 0.907 0.250 69.00

AVG 30.21 0.906 0.254 66.00

BungeeNeRF

amsterdam 27.16 0.898 0.188 223.00

bilbao 26.60 0.857 0.257 178.00

hollywood 24.49 0.787 0.318 155.00

pompidou 24.94 0.839 0.271 209.00

quebec 30.28 0.936 0.190 159.00

rome 26.23 0.873 0.225 174.00

AVG 26.62 0.865 0.241 183.00

23


	Introduction
	Related work
	Preliminary
	Proposed Method: CAT-3DGS
	System Overview
	Triplane-based Hyperprior
	Spatial Autoregressive Models (SARM) for Triplane Coding
	Channel-wise Autoregressive Models (CARM) for Feature Coding
	View Frequency-Aware Masking
	Training Objectives

	Experimental Results
	Implementation Details
	Rate-Distortion Comparison
	Ablation Experiments

	Conclusions
	Training Process
	Rate-aware Mask Trade-off (RMT)
	The impact of slice partitioning on our CARM
	View frequency-aware masking
	Bitstream of each component
	Additional Breakdown Results for CARM
	The Impact of CARM on Decoding Time
	Complete Breakdown of Quantitative Results

