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ABSTRACT

The growing popularity of large-scale visual-language models (VLMs) has led
to their employment in various downstream applications as they provide a rich
source of image and text representations. However, these representations are
highly entangled and complex to interpret by machine learning developers and
practitioners. Recent works have shown visualizations of image regions that
VLMs focus on but fail to describe the change in explanations generated for
visual-language classifiers in zero-shot (using image and text representations)
vs. fine-tuned settings (using image representations). In this work, we perform
the first empirical study to establish the trustworthy properties of explanations
generated for VLMs used in zero-shot vs. fine-tune settings. We show that
explanations for zero-shot visual-language classifiers are more faithful than their
fine-tuned counterpart. Further, we demonstrate that VLMs tend to attribute high
importance to gender, despite being non-indicative of the downstream task. Our
experiments on multiple real-world datasets show interesting VLM behavior in
zero-shot vs. fine-tuned settings, opening up new frontiers in understanding the
trustworthiness of large-scale visual-language models.

1 INTRODUCTION

Explaining complex machine learning models remains a challenge despite several efforts to develop
new explanation methods (Fong & Vedaldi, 2017; Agarwal & Nguyen, 2020; Smilkov et al., 2017),
benchmark state-of-the-art explainers (Agarwal et al., 2022a), and explore their interplay with
trustworthy properties like fairness and robustness (Pawelczyk et al., 2022; Agarwal et al., 2022b).
The problem is exacerbated by the arrival of large-scale visual-language models (VLMs) (Radford
et al., 2021; Li et al., 2022; 2021; Kim et al., 2021; Singh et al., 2022) pre-trained with millions
of image and text caption data, providing dense image and text representations to perform accurate
predictions in both zero-shot or fine-tuned settings.

To this end, most works explaining image classification models focus on generating an attribution
map that finds image regions that contribute more to the final classification (Smilkov et al., 2017;
Fong & Vedaldi, 2017) by assigning an importance score to each pixel in the image. Recent works
for explaining large-scale VLMs employ a similar technique using a fine-tuned VLM for specific
image classification datasets (Chen et al., 2022; Seth et al., 2023). However, there is little to no
work on explaining how differently VLMs behave when used as a zero-shot vs. fine-tuned image
classifier. In particular, how faithful and reliable are explanations generated for zero-shot and fine-
tuned VLMs?

Present work. In this work, we perform the first empirical exploration to understand the
performance of explanations generated for zero-shot vs. fine-tuned visual-language image
classifiers. The core idea is to analyze key properties of fidelity and reliability of explanations
generated for VLMs in different classification settings. Our empirical results using the real-world
occupation dataset shows that explanations generated using zero-shot visual-language classifiers are
less biased than their fine-tuned counterpart. We also observe that the explanations generated using
zero-shot VLMs are more localized and successfully leverage textual information in the image to
perform classification. Further, our results establish that VLMs perform differently in zero-shot vs.
fine-tuned settings, highlighting an inherent trade-off between accuracy, explainability, and fairness.
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2 METHOD

Next, we define the problem of generating attribution maps and feature attribution methods for
generating explanations of large-scale zero-shot vs. fine-tuned VLM classifiers.

2.1 PRELIMINARIES

We formally describe visual-language models and the problem of generating attribution maps.

Vision-Language Models. Generally, a visual-language model comprises of i) an image encoder
I : Rm×n×3 → Rd that maps a three-channel image X to a d-dimensional representation, and ii)
a text encoder T : Rt → Rd that maps a given set of text tokens T to a similar d-dimensional
latent space. Recently developed VLMs (Radford et al., 2018; Li et al., 2022; Singh et al., 2022)
learn image I(X) and text T (T) representations in a similar latent space using self-supervised
learning. The similarity between the image and text representations is obtained using cosine
similarity sim(X,T) = I(X)·T (T)⊤

||I(X)|| ||T (T)|| . The complex representation of VLMs can be used for
several downstream tasks, and we utilize them for performing image classification in this work.

Zero-shot vs. Fine-tuned Setting. In a zero-shot image classification setting, a VLM is provided
with an image to be classified and a range of text inputs with the prompt “a photo of a {class}”
where {class} is substituted with all possible categories in the given classification dataset. We
classify the image into the category which obtains the maximum cosine similarity (defined above).
However, for a fine-tuned image classification setting, we use the image encoder I of the VLM
followed by a new classification layer on top to produce logits with output sizes similar to the
number of classes in the given image classification dataset.

Problem Formulation (Attribution Map). Let f : (Rm×n×3, Rd×t) → R be a visual-language
model employed for image classification task in zero-shot and fine-tuned settings. We aim to
generate an attribution map A ∈ Rm×n, where each input pixel has a corresponding attribution
score Ai,j ∈ [0, 1] indicating the contribution of the pixel to the final model prediction score.

2.2 ATTRIBUTION MAPS

We leverage the meaningful perturbation (MP) (Fong & Vedaldi, 2017) explanation algorithm to
generate explanations for a zero-shot and fine-tuned visual-language model in image classification
tasks. The MP method learns a minimal and continuous attribution map A that identifies the smallest
image region which blurs the input image, leading to the minimization of the target class probability.
In particular, the MP method solves the following optimization problem:

A∗ = argmin
A

λ1∥A∥1 + λ2TV(A) + ŷ, (1)

where TV(·) is the total-variation loss that acts as a smoothness prior over the attribution map,
(λ1, λ2) are the regularization coefficient for the ℓ1- and TV-loss, and ŷ is the predicted probability
for the blurred image obtained using a Gaussian blurring kernel over the input image.

Note that the first two terms are similar for both zero-shot and fine-tuned VLM settings. Next, we
discuss how to compute the third term (prediction probability).

Zero-Shot Setting. In the zero-shot setting, we first convert all the dataset’s classes into captions
such as “a photo of a chef”, “a photo of a doctor”, “a photo of a police”, etc. We get the text
representation of each of these captions using the pre-trained text encoder T , i.e., zt1, zt2, and zt3.
Given an image of a doctor, we encode the image using the encoder I to a representation zi. We then
calculate the similarity of these text and image representations using cosine similarity and return the
similarity score of the target class as the final predicted score, i.e., ŷ = sim(zi, zt2).

Fine-tuned Setting. For a fine-tuned VLM, we simply train an additional classification head using
CrossEntropy loss and Adam optimizer (please see Appendix A.1 for more training details). For
the third term in Eqn. 1, we apply the softmax operator on the output logits and utilize the softmax
probability of the target class for generating attribution maps.
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3 EXPERIMENTS

Next, we present results from our empirical study and address three key questions: Q1) Are
explanations more faithful to zero-shot or fine-tuned visual-language classifiers? Q2) How does
the interplay between vision and language affect the generated explanations? Q3) Do VLMs rely on
protected attributes to achieve high predictive performance in zero-shot and fine-tuned settings?

3.1 DATASET AND EXPERIMENTAL SETUP

Datasets. We experiment with two datasets. 1) The StanfordCars (Krause et al., 2013) dataset
contains 16,185 images of 196 car classes split into 8,144 training images and 8,041 testing images.
2) The Profession (Ola) dataset contains images of identifiable professionals and comprises 11,000
images that span over ten profession categories. Further, we crawled an additional set of 200
profession-based images for studying the fairness properties of explanations, where we compute
the segmentation mask for the faces using MTCNN Face identification network (Zhang et al., 2016)
and mask out the face from each image. In particular, we added a black mask on the face of humans
from each profession so that we can determine whether the VLM focuses on the face to classify
occupations. See Figure 6 in the appendix for some example images.

Performance evaluation. We use two evaluation metrics to quantify the fidelity and reliability of
output explanations. For fidelity, we use the deletion metric (Petsiuk et al., 2018) that measures the
area under the curve of the predicted class probability as we zero out input pixels of the highest
attribution as identified by an output explanation, where lower deletion scores are considered more
accurate. For fairness, we extend the pointing game (Zhang et al., 2018) metric to evaluate if the
most salient pixels identified by an explanation lie within the annotated face mask of the image. The
final fairness accuracy is computed as: Fairness Accuracy = #Images with high attribution inside face mask

Total number of images .

Baseline Model and Explainer. To investigate the explanation behavior of VLMs in zero-shot
and fine-tuned settings, we consider the CLIP (Radford et al., 2021) model and use the meaningful
perturbation (Fong & Vedaldi, 2017) to generate explanations for model predictions. We set all
model and explainer hyperparameters following the authors’ guidelines. For a fair comparison, we
tested the explanations for images correctly classified by zero-shot and fine-tuned CLIP models.
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Figure 1: Attribution maps for zero-shot visual-language classifiers are more faithful (accurate localization)
than their fine-tuned counterpart. In the occupation examples, we observe that explanations in the zero-shot
column focus only on profession-related regions (e.g., bib apron for Chef and helmet and notes for Engineer).

3.2 RESULTS

Q1) Zero-shot VLM explanations are more reliable. Across both datasets, we observe that
explanations generated for zero-shot CLIP are more reliable than their fine-tuned counterparts. On
average, explanations for zero-shot CLIP improve the deletion score by 18.52% and 5.44% for
StanfordCars and Occupation datasets, respectively (Figure 4). Further, in Figure 1, we find that
attribution maps for zero-shot CLIP are more localized to the objects in the image and identify
regions that are more related to the context of the classification task, i.e., car model and profession.
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IMAGE ZERO-SHOT FINE-TUNED IMAGE ZERO-SHOT FINE-TUNED

Figure 2: Attribution maps for zero-shot visual-language StanfordCar classifier show that CLIP utilizes the
text in images to classify specific car categories by detecting relevant text like car manufacturer and model.

Q2) Zero-shot VLM explanations identify relevant text. One key difference between the zero-
shot and fine-tuned CLIP settings is that zero-shot CLIP explicitly uses the representations from the
text encoder to make classification, whereas, in the fine-tuned setting, we only use CLIPs’ image
encoder to perform classification. Thus, we hypothesize that explanations from zero-shot CLIP
should identify more textual content for the StanfordCars dataset as there are several images with
information about the car model and make in the text form. In Figure 2, we show that explanations
generated for zero-shot CLIP identify the text in the image, like the car manufacturer name or model,
better than explanations from fine-tuned CLIP. Please see Figure 8 for more such examples.

Q3) Zero-shot VLM explanations are less biased. Here, we demonstrate the fairness properties of
explanations generated using zero-shot vs. fine-tuned CLIP by generating explanations for human
professional images with masked faces (see Figure 6 for examples) so that an explanation identifies
the importance using image context (e.g., Bib Aprons for Chef, a lab coat and stethoscope for Doctor,
etc.) Across different genders, we find that explanations for zero-shot and fine-tuned CLIP are
more faithful and achieve 6.16% lower deletion scores when generated using face-masked images.
Further, we observe that explanations generated for zero-shot CLIP do not highlight regions inside
the face masks as the most salient pixels (Figure 3). We show that despite occluding the face,
fine-tuned CLIP models attribute high face importance as if it has learned the face location as a
proxy of the gender bias for the classification task. In Table 1, we calculate the fairness accuracy
and find that the explanations of the zero-shot model achieve lower accuracy than their fine-tuned
counterparts, i.e., the number of images for which we get high attribution on the masked faces are
more for explanations of fine-tuned CLIP and male professions, highlighting gender disparity.
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Figure 3: Masking faces show contrasting behavior
between zero-shot vs. fine-tuned visual-language
classifiers. Explanations for zero-shot classifiers attribute
low importance to masked faces than their original and
fine-tuned counterparts. See Figure 9 for more examples.

Gender Zero-Shot Fine-Tuned

Female 12.50% 20.45%

Male 21.17% 29.41%

Table 1: Fairness Accuracy of
explanations generated for zero-shot
vs. fine-tuned VLM. Explanations
for zero-shot classifiers achieve
lower fairness accuracy, i.e., they
attribute lower importance to faces.

4 CONCLUSION

In this work, we perform the first empirical study to evaluate the trustworthiness of explanations
generated for zero-shot vs. fine-tuned VLMs. Our results on real-world datasets show that
explanations generated for zero-shot CLIP classifiers are more faithful (lower deletion scores) and
reliable (lower gender bias) than their fine-tuned counterpart. We observe that explanations for zero-
shot VLMs achieve better localization and utilize multi-modal features to perform classification.
Our preliminary exploration paves the way for several exciting future directions in understanding
and developing trustworthy large-scale ML models.
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A APPENDIX

Here, we discuss the datasets, training details, and additional results from our experiments.

A.1 TRAINING DETAILS

Datasets. We experiment with two datasets. 1) The StanfordCars (Krause et al., 2013) dataset
contains 16,185 images of 196 car classes. The dataset is split into 8,144 training images and 8,041
testing images, where each class has been split roughly in a 50-50 split. Different car classes are
typically at the level of make, model, and year of a car. 2) The Occupation (Ola) dataset contains
images of identifiable professionals collected in order to ensure that ML models can recognize
professionals using image context (mode of dressing). The dataset comprises 11,000 images that
span over ten profession categories, where there are 1100 images in each class, with 900 images for
training and 200 images for testing.

Implementation details. For training the fine-tuned visual-language model, we add a linear layer
to produce logits of size 196 (for StanfordCars dataset) and 10 (for Occupation dataset), where the
logit sizes were determined using the number of classes in the respective datasets. We freeze the
image and text encoder of the VLMs and fine-tune the linear layer using an Adam optimizer with
a learning rate of 0.01 and CrossEntropy loss. We follow Fong & Vedaldi (2017) and optimize a
coarse 28 × 28 mask and finally upsample the mask to the full 224 × 224 image using bilinear
interpolation.

A.2 RESULTS
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Figure 4: Deletion metric (lower is better) values for zero-shot and fine-tuned CLIP model on StanfordCars
and Occupation dataset. Zero-shot CLIP classifier achieves more faithful explanations than their fine-tuned
counterparts.
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Figure 5: Deletion metric (lower is better) values for explaining zero-shot and fine-tuned CLIP predictions
of 200 original and face-masked images of the Occupation dataset. Explanations generated for face-masked
occupation images achieve better deletion scores than their original counterparts.
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StanfordCars Occupation
Zero-Shot Fine-Tuned Zero-Shot Fine-Tuned

58.67% 78.26% 92.70% 95.80%

Table 2: Evaluation of StanfordCars and Occupation dataset. We show the testing accuracy obtained from the
zero-shot and fine-tuned CLIP model. As expected, the CLIP model fine-tuned using an additional linear layer
achieves higher predictive performance than its zero-shot counterpart.

Figure 6: Random images from the masked profession dataset. We utilize these images to quantify the fairness
accuracy of zero-shot and fine-tuned VLMs. Here, we mask the face by inserting a black patch on top so that
machine learning models can learn to classify using profession-based features from the image and not bias on
the gender of the human.

IMAGE ZERO-SHOT FINE-TUNED IMAGE ZERO-SHOT FINE-TUNED

Figure 7: Attribution maps for zero-shot visual-language classifiers are more faithful (accurate localization)
than their fine-tuned counterpart.
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Figure 8: Attribution maps for zero-shot visual-language StanfordCar classifier show that CLIP utilizes the text
in images to classify specific car categories by detecting relevant text like car manufacturer, model, or logo.
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ZERO-SHOT FINE-TUNED ZERO-SHOT FINE-TUNED

Figure 9: Masking faces show contrasting behavior between zero-shot vs. fine-tuned visual-language
classifiers. Explanations for zero-shot classifiers attribute low importance to masked faces than their original
and fine-tuned counterparts.
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