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ABSTRACT

With the rapid advancement of open-world image generation models in recent
years, a series of image editing tasks have achieved excellent performance. How-
ever, considering object insertion as a representative example, this task still
presents three primary challenges. First, the inserted object should maintain iden-
tity consistency with the reference object while preserving the original scene in
non-edited regions. Second, the spatial position and scale of the inserted ob-
ject should be reasonable and align with user expectations. Third, the inserted
object should harmonize with other image components, typically involving ob-
ject style and surface illumination harmonization. To address these challenges,
we propose SpatialComposer, which leverages depth-aware image Gaussians to
construct a spatially-structured scene representation from a single scene image
and models object insertion as Gaussian composition, thereby achieving effec-
tive preservation of scene and object identity while enabling precise control over
the scale and 3D spatial position of the inserted object. Subsequently, based on
pre-trained diffusion generative models, we introduce a simple yet effective re-
finement method for the object harmonization process. By designating only the
Gaussian components corresponding to the inserted object as trainable parameters,
SpatialComposer avoids unintended modifications to other regions while simulta-
neously addressing both object-scene integration and scene detail preservation.
Furthermore, recognizing that current object insertion benchmarks lack consid-
eration for depth-aware position control, we construct a specialized benchmark
featuring high-resolution scene images with substantial depth complexity. Com-
prehensive evaluations demonstrate that SpatialComposer achieves comparable or
superior performance over state-of-the-art object insertion approaches across all
three aforementioned challenges.

1 INTRODUCTION

Object insertion is a fundamental task in image editing, defined as the process of seamlessly in-
tegrating a specified object into a target location within a scene. With the open-sourcing of re-
cent diffusion-based image generation models (e.g., Stable Diffusion (Rombach et al., 2022b), and
FLUX (Labs, 2024)), contemporary approaches to object insertion have evolved significantly be-
yond previous methods (Tripathi et al., 2019; Zhang et al., 2020; Liu et al., 2021; Niu et al., 2022;
Cong et al., 2020; Ling et al., 2021; Sofiiuk et al., 2021; Cong et al., 2022).

Current object insertion methods typically fall into two categories: training-based methods (Song
et al., 2025; Wang et al., 2025; Chen et al., 2024b) that fine-tune variants of pre-trained inpainting
models conditioned on reference object images to control the generated content, and training-free
methods (Chen et al., 2024c; Wang et al., 2024) that manipulate intermediate feature representations
and attention mechanisms during the model’s forward inference process. These methods enable
users to perform intuitive personalized customization of existing real or synthesized images using
arbitrary object references, thereby providing accessible and efficient automated tools for creating
and modifying artistic works and visual content.

Despite the promising results achieved by existing methods, object insertion is still facing three
main challenges: 1). Object and scene consistency. Due to the randomness introduced by the for-
ward diffusion process and the information loss introduced by the encoder-decoder downsampling
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of latent diffusion models, it is challenging for current methods to maintain detail consistency in
terms of both object and scene. 2). Depth and scale controllability. Existing approaches often con-
trol insertion through object-level masks or rectangular bounding box combined with optional text
prompts. However, these merely specify two-dimensional positioning and cannot accurately control
the depth-related spatial position and scale of the inserted object. Our experimental results demon-
strate that even when depth information is provided through text prompts, previous object insertion
methods still fail to meet expectations in many cases. 3). Style and illumination harmony. Current
methods often struggle to produce style consistency, natural lighting and color harmonization that
are required to achieve seamless visual integration between the inserted object and the scene.

In this paper, we propose a novel depth-aware object insertion method based on Gaussian Kerbl
et al. (2023) representation, which we term SpatialComposer. In order to tackle the above three
challenges, our approach contains three main steps: Gaussian fitting, Gaussian composition, and
Object refinement. In the first step, by leveraging a pre-trained monocular depth estimation network,
combined with a back-projection Gaussian initialization strategy, we efficiently construct consistent
object and scene Gaussian representations with meaningful spatial structure. In the second step,
object insertion is implemented through the composition of object Gaussians with scene Gaussians.
Through user-specified scaling and translation operations applied to the object Gaussians, our ap-
proach achieves precise control over both the depth and scale of the inserted object. In the third step,
following the composition of object and scene representations, we propose a simple yet effective
refinement method for inserted objects based on pre-trained inpainting diffusion models and illumi-
nation harmonization models. With separable scene Gaussians and object Gaussians, we designate
only the object Gaussian components as trainable parameters, thereby preventing unintended mod-
ifications to other scene regions. This design circumvents the limitations of pre-trained diffusion
generative models regarding resolution constraints and reconstruction fidelity. It also preserves the
integrity of unmodified scene areas while harnessing the supervisory signals provided by pre-trained
diffusion models for harmonizing inserted objects with the scene.

The existing open-source TF-ICON benchmark (Lu et al., 2023b) for image-guided object inser-
tion, which encompasses both realistic and stylized scenes, consists of generated scene images at
512 × 512 resolution with relatively low quality and simple spatial structures, where insertion po-
sitions do not involve spatial relationships with other components in the scene. Therefore, this
benchmark is insufficient to meet our evaluation requirements. To fill this research gap, we also
collect a novel benchmark dataset comprising over 200 high-resolution scene images with complex
spatial structures and over 200 object images spanning more than 9 categories, including animals,
vegetables, food, people, vehicles, and others. The scene images encompass over 100 indoor and
outdoor real photographs and over 100 artistic images across multiple artistic styles, including oil
painting, cartoon, anime, watercolor, and pixel art. Based on these scene and object collections,
we constructed over 200 semantically coherent scene-object insertion cases. We name the dataset
Depth-Aware Object Insertion (DAOI) Dataset, and will release it in the near future.

Ablation experiments demonstrate the effectiveness of our proposed image Gaussian representation
and initialization method. Using only a single image and its corresponding relative depth estimates,
we can rapidly construct scene Gaussians with meaningful depth information while maintaining
high-quality image reconstruction. Leveraging the intuitive compositionality of Gaussian repre-
sentations, scaling and translating the object Gaussians enables precise control of object scale and
placement at any spatial location within the scene Gaussians. The proposed refinement module
exhibits strong generalization capabilities and excellent performance without requiring additional
fine-tuning of pre-trained models. Furthermore, unlike existing methods, our approach is not con-
strained by scene image resolution and can be applied to ultra-high-resolution images while pre-
serving fine-grained scene details. The method also demonstrates robust performance across diverse
artistic styles, confirming its practical applicability for handling various application scenarios.

In summary, our main contributions include: (1) We propose a depth-aware image Gaussian rep-
resentation and a back-projection initialize strategy to enhance the performance of Gaussian fitting
while providing meaningful depth information. This achieves preservation of non-edited scene re-
gions and object identity consistency, while enabling precise control over depth-related spatial po-
sitioning and scale during object insertion. To our knowledge, our work is the first to consider
depth-related spatial positioning in object insertion. (2) We introduce a simple yet effective ob-
ject refinement method that achieves robust object refinement without the need for fine-tuning on
task-specific data. (3) We collect a high-resolution object insertion benchmark featuring complex
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scene spatial structures, providing a high-quality evaluation platform for advancing research in this
domain. (4) Experimental results demonstrate the superior performance and robustness of Spatial-
Composer across diverse stylistic and real scenes.

2 RELATED WORK

2.1 TRAINING-BASED OBJECT INSERTION

Built upon pre-trained text-to-image or inpainting models, training-based object insertion methods
employ techniques such as LoRA (Hu et al., 2022) and Adapters (Houlsby et al., 2019) to fine-tune
the models using paired data, i.e., scene images with and without specific objects. These approaches
typically introduce new network structures to accept the scene image, reference object, and spa-
tial mask as conditions. Several works (Yang et al., 2023; Song et al., 2022; Chen et al., 2024a;
Canet Tarrés et al., 2024; Yuan et al., 2024; Kulal et al., 2023; Zhang et al., 2023a; Song et al.,
2024; He et al., 2024) extract features from reference objects through pre-trained visual encoders
and trainable modules, then influence UNet features via cross-attention, summation, or custom fu-
sion mechanisms to control generation. Some methods (Zhang et al., 2023b; Chen et al., 2024b)
use composite images formed by directly pasting reference objects into scene regions as image con-
ditions. Insert Anything and UniCombine (Song et al., 2025; Wang et al., 2025) adopt Diffusion
Transformer (DiT) architectures, enabling operations between latent variables and condition tokens
for generation control. To achieve better environmental harmony, Zerocomp (Zhang et al., 2025)
trains models conditioned on depth, surface normal, albedo, and shading of both objects and scenes.
Objectmate (Winter et al., 2024b) concatenates reference objects and scene into a 2 × 2 grid as
diffusion input to produce coherent insertion results. Anydoor (Chen et al., 2024b) combines a
trainable ID extractor for identity features with high-pass filters for spatial information to generate
insertion results under dual feature control. While achieving satisfactory results, these methods re-
quire large-scale paired training data and suffer from insufficient generalization ability. To avoid
the over-reliance on large datasets, DreamCom and DreamEdit (Lu et al., 2023a; Li et al., 2023)
leverage DreamBooth’s (Ruiz et al., 2023) approach, fine-tuning embeddings with only several ref-
erence images. DreamEdit (Li et al., 2023) then employs DDIM Inversion (Mokady et al., 2023) for
noising-denoising processes, while DreamCom (Lu et al., 2023a) uses masked attention control for
generation. OmniPaint (Yu et al., 2025) reduces data requirements by training separate insertion and
removal models, then leveraging their inverse relationship through cycle consistency loss for opti-
mization. To reduce paired data dependency, ObjectDrop (Winter et al., 2024a) first trains an object
removal model on a small dataset, and then uses it to collect a large synthetic dataset for insertion
model training. Overall, when there exists a significant gap between training and inference data, the
preservation of non-edited scene regions and object identity, as well as the harmony between objects
and scenes, exhibit substantial degradation. These methods are also unable to control the depth-
related spatial positioning of object insertion. In contrast, SpatialComposer is training-free, enables
precise control over 3D spatial positioning, and has been validated to deliver stable performance
across real-world scenes and a variety of stylistic scenes.

2.2 TRAINING-FREE OBJECT INSERTION

Instead of parameter updating, training-free object insertion methods manipulate the intermediate
features or attention maps during the inference stage. TF-ICON (Lu et al., 2023b) employs a three-
branch inference process using initial noise from DDIM inversion of scene and reference object
images, along with composite noise created by placing resized object noise into the target scene re-
gion. During forward inference, features from scene and object reconstruction branches guide cross-
attention computation, with outputs injected into the composite generation branch. Similarly, the
method in (Li et al., 2024) uses three-branch inference with self-attention feature fusion to preserve
object features while enabling text-guided attribute modification. FreeCompose (Chen et al., 2024c)
iteratively optimizes the editing branch through key-value replacement and DDS-loss (Hertz et al.,
2023) between reconstruction and editing branches. PrimeComposer (Wang et al., 2024) introduces
a correlation diffuser that computes cross-attention between target region features and reference ob-
ject features within UNet self-attention layers. During denoising, noisy latents are processed by
both the correlation diffuser and pre-trained Stable Diffusion UNet, with correlation diffuser atten-
tion maps injected into UNet self-attention layers for appearance preservation. Region-constrained
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cross-attention ensures object-related prompt tokens only influence the target insertion region. Con-
strained by the reconstruction and generation capabilities of the underlying foundation models, these
methods exhibit limitations in preserving non-edited regions and maintaining object identity. Like-
wise, they do not provide effective control over the spatial placement of inserted objects.

3 METHOD

The pipeline of SpatialComposer is illustrated in Fig. 1. It comprises three main components:
Gaussian fitting, Gaussian composition and object refinement. We begin by introducing the foun-
dational concepts of 3D Gaussians in Sec. 3.1, and we also introduce the latent diffusion model
in Appendix A. Subsequently, we provide detailed descriptions of our proposed Depth-Aware Im-
age Gaussian (DA-ImgGS) representation in Sec. 3.2 and the Diffusion-Based Object Refinement
method in Sec. 3.3.

Figure 1: We first initialize and fit both scene and object images using our proposed depth-aware
image Gaussian representation. The object is then scaled and positioned at the desired location
through scaling and translation operations to generate the composed Gaussians. Subsequently, we
employ a refinement method based on pre-trained diffusion models to optimize the object Gaussians,
thereby achieving harmonization between the object and the scene.

3.1 3D GAUSSIAN SPLATTING (3DGS)

3DGS model is an explicit representation method that models scenes through a set of 3D Gaus-
sians Kerbl et al. (2023). The spatial distribution of each 3D Gaussian G can be determined by its
mean µ ∈ R3 and covariance matrix Σ ∈ R3×3:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

Additionally, to support subsequent image rendering, the parameters of each Gaussian also include
spherical harmonics (SH) c ∈ Rk representing color and opacity α ∈ R. Since the covariance matrix
defines an ellipsoid in space, it can be further decomposed and represented as Σ = RSSTRT , where
R ∈ R3×3 is the rotation matrix and S ∈ R3×3 is the scale matrix. Since the scale matrix S is a
diagonal matrix, it can be represented as S = diag([sx, sy, sz]). The rotation matrix R, processed
orthogonality, can be constructed from a vector v = [rw, rx, ry, rz]. To render images, given camera
pose W , the 3D Gaussians need to be approximately projected onto the pixel coordinates along the
depth dimension. The covariance matrix in the pixel coordinates can then be defined as:

Σpix = JWΣWTJT , (2)
where J is the Jacobian matrix of the affine approximation of the projection transformation. The
color at each pixel can then be obtained through alpha-blending of N overlapping Gaussians at that
pixel in depth order:

cpix =

N∑
i

ciαi

i−1∏
j

(1− αj), (3)

where ci and αi represent the color and density of each Gaussian at that pixel, respectively, which
can be obtained through weighting the corresponding Gaussian’s spherical harmonics (SH) and
opacity by the covariance matrix Σ. Since the entire rendering process is differentiable, all pa-
rameters of the Gaussians can be optimized in an end-to-end manner based on the loss computed
from the rendered images.
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3.2 DEPTH-AWARE IMAGE GAUSSIAN (DA-IMGGS)

We modify the parameter configuration, initialization, and optimization of standard 3D Gaussian to
develop depth-aware image Gaussian. This adaptation accommodates our application requirements,
enhances fitting performance on single images, while endowing the scene representation with usable
spatial structure.

Standard 3DGS defines Gaussian means in world coordinates as 3D positions. During rendering,
these world coordinates are transformed to camera coordinates through the camera’s extrinsic and
intrinsic matrices before being projected onto the image plane, enabling image rendering from arbi-
trary viewpoints. However, for applications requiring rendering only from a fixed camera pose, we
define our depth-aware image Gaussian directly in Normalized Device Coordinates (NDC). NDC
represents a standardized coordinate system in computer graphics where coordinates are normalized
to the range [−1, 1]. This coordinate system enables graphics rendering to adapt seamlessly across
display devices with different resolutions and aspect ratios.

The covariance matrix in standard 3DGS represents an ellipsoid in 3D space, which projects to
ellipses on different image planes during rendering. Since image Gaussians only require rendering
onto a fixed image plane, we reduce the covariance matrix to 2D, where Σ2d ∈ R2×2 represents an
elliptical Gaussian distribution parallel to the fixed image plane. In standard 3DGS, object colors
observed from different viewpoints depend on multiple factors including viewing angle, lighting
conditions, and material properties. Higher-order spherical harmonics decompose this lighting and
material information into coefficient sets, providing efficient and smooth representations of complex
lighting effects such as shadows, specular highlights, and viewpoint-dependent color variations.
However, since image Gaussian rendering operates from a fixed viewpoint without 3D scene lighting
variations, simple RGB values sufficiently capture the required surface colors. This reduction in
Gaussian representation parameters improves scene fitting quality. Finally, the parameters of our
depth-aware image Gaussian include: mean u ∈ R3, where the 2D covariance matrix is decomposed
via Cholesky decomposition as Σ2d = L · LT , requiring storage of only three elements from the
lower triangular matrix L, denoted as L = (l11, l21, l22)

T ∈ R3, opacity α ∈ R, and RGB color
representation c ∈ R3.

When supervised with only a single image and its corresponding monocular depth estimation, ran-
dom initialization of Gaussians followed by optimization produces floating Gaussian components in
mid-air. These components disrupt the correct spatial structure of the scene and lead to poor fitting
performance. Therefore, we adopt a back-projection initialization method based on the input image
and depth estimation. The mean of each initial Gaussian component in NDC is determined using
the normalized pixel coordinates and depth estimation of the corresponding pixel. Color values are
initialized directly from the pixel RGB values. The initial axis lengths of the ellipse corresponding
to the covariance matrix are computed based on the scene image resolution, focal length, and pixel
depth values by analyzing the distribution range of initial Gaussian components in NDC space. This
back-projection initialization approach enables rapid fitting of image Gaussians while preventing the
emergence of floating Gaussian components. The supervision during optimization combines multi-
ple loss terms: L1 and SSIM losses between the rendered and source scene images, regularization
terms for occupancy and covariance, and L1 loss with respect to the depth estimation values:

Lgs = (1− λssim)L1 + λssimLssim + L1 depth + λreg αLreg α + λreg ΣLreg Σ, (4)
we set λssim to 0.2, λreg α and λreg Σ to 0.01. After fitting Gaussians to the scene and object
images, the object can be placed at any spatial location within the scene Gaussians at arbitrary scale
by scaling and translating the object Gaussians.

3.3 DIFFUSION-BASED OBJECT REFINEMENT

After achieving depth-aware object insertion through Gaussian combination of scene and object, the
inserted object requires further refinement to harmonize its style and surface illumination with the
surrounding environment. We propose a simple yet effective object refinement approach that lever-
ages a pretrained diffusion model to harmonize the rendered image. Diffusion models pretrained
on large-scale datasets inherently capture diverse output distributions encompassing various visual
styles and lighting conditions. For cross-domain object insertion tasks (real object insert to stylized
scene), we directly exploit the knowledge embedded in the pretrained FLUX.1-Fill-dev model to
refine the inserted object, thereby achieving style harmonization between the object and scene.
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We denote the combined Gaussians of scene and object as Gcom, where R represents the differen-
tiable rendering process. Based on the combined Gaussians, we can simultaneously render the com-
posite image and the opacity of object Gaussians to obtain the object mask: Icom,Mobj = R(Gcom).
We introduce an coefficient s ∈ [0, 1] to control the refinement strength. When s = 0, the method
outputs the original image without modification, while s = 1 performs complete inpainting of the
masked region. Let T denote the total number of inference steps in the diffusion model, corre-
sponding to T different noise levels. Given refinement strength s, the corresponding noise level is
computed as T ′ = ⌈sT ⌉. Let E denote the encoder of the diffusion model. The latent variable cor-
responding to the composite image is zcom = E(Icom). The initial latent variable for the inference
process is then defined as:

zT ′ = σ(T
′
)ϵ+ (1− σ(T

′
))zcom, ϵ ∼ N (0, I). (5)

DiT models such as FLUX process inputs by dividing them into patches and converting the values
within each patch into tokens. Let the size of each patch be k = h×w, with a total of N patches. We
apply similar processing to Mobj , transforming it into a patch-wise binary mask Mpatch ∈ {0, 1}N :

mn =

[
k∑

i=1

Mobj n,i > 0

]
∈ {0, 1}. (6)

We denote the diffusion model used for refinement as Grefine, which follows the flow matching
framework. At each time step t during the refinement process, we first perform a single denoising
step on the noisy latent variables.

zt−1 = zt −∆t ·Grefine(zt, t|c), (7)

where c represents the textual condition for the model. In our implementation, we employ a simple
template format "XXX style of a XXX" that provides basic descriptions of object categories
and styles. Subsequently, we perform an overwrite operation on the latent variables based on the
patch-wise mask.

zt−1 = Mpatch ⊙ zt−1 + (1−Mpatch)⊙ zref (t− 1), (8)

with

zref(t) =

{
σ(t)ϵ+ (1− σ(t))zcom t > 0,

zcom t = 0.
(9)

This ensures precise reconstruction of the original scene image in regions outside the object mask.

In real-scene object insertion, object refinement focuses primarily on achieving consistency be-
tween object surface lighting and the surrounding environment. Since widely-used open-source
text-to-image diffusion models and inpainting models such as Stable Diffusion or FLUX possess
limited knowledge in lighting harmonization, we additionally leverage the pre-trained illumination
harmonization model LBM (Chadebec et al., 2025), denoted as Glight. For object refinement in
real-scene, we first apply low-strength refinement to harmonize the inserted object, then perform
additional lighting harmonization on the refined image using Glight. The refinement process for
real-scene domain object insertion can be expressed as:

Iharmony = Glight(Refinement(Icom, s)). (10)

After completing the refinement process on the rendered image following object insertion, the har-
monized image from the diffusion model can directly provide supervision for Gaussian parameter
updates due to the differentiable nature of the rendering process. However, during the refinement
process, diffusion models often introduce unwanted modifications or detail loss in non-target regions
due to constraints in their generative capabilities and supported resolutions. Therefore, we set only
the object Gaussians as learnable to avoid affecting the scene Gaussians.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Data Preparation Due to the current lack of high-quality object insertion datasets that feature
complex spatial relationships between inserted objects and scenes while encompassing both same-
domain and cross-domain scenarios, we construct a high-resolution dataset containing diverse real
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SceneImage Mask ObjectImage InsertAnything UniCombine Anydoor FreeCompose PrimeComposer OURS

Figure 2: Visual comparison results between our SpatialComposer and baselines. Zoom in to ob-
serve details.

photographs and artistic style scenes with complex spatial structures to validate our proposed
method. For scene images, we select high-quality indoor and outdoor photographs from the DIODE
dataset (Vasiljevic et al., 2019) that meet our spatial complexity requirements. We also incorporate
high-resolution artworks featuring various oil painting styles from the WikiArt dataset (Saleh & El-
gammal, 2024), extract qualifying frames from anime and cartoon videos, and generate additional
scene images in other styles using GPT-Image-1 (OpenAI, 2024) and FLUX-pro-1.1-ultra. This
process yields 225 high-quality scene images across multiple domains. For object images, we col-
lect web resources and utilize SAM (Kirillov et al., 2023) to segment objects from the COCO (Lin
et al., 2014) dataset, obtaining 255 object images spanning more than 9 categories including ani-
mals, vegetables, food, people, and vehicles. Based on these scenes and objects, we provide over
200 semantically coherent scene-object combination cases for evaluation. All subsequent experi-
ments are conducted on this carefully curated dataset. As a supplement, we also report results on
the existing TF-ICON benchmark in the Appendix F.

Experiment Details For Gaussian fitting, we employ the Adam optimizer with learning rates of
0.01 for means, 2.5e − 3 for opacities, 0.01 for RGB values, and 0.1 for covariances. We fix the
global random seed to 42. Since our method involves only forward inference of the refinement
model and Gaussian fitting, a single A6000 GPU is sufficient to support object refinement using
FLUX.1-Fill-dev.

Baselines To validate our method’s effectiveness, we compare against both training-based and
training-free object insertion approaches. The training-based baselines include InsertAnything, Uni-
Combine, and AnyDoor, while the training-free baselines comprise Freecompose, Primecomposer.

4.2 QUANTITATIVE EVALUATION

Existing automatic evaluation metrics primarily measure the preservation of non-edited regions by
calculating the distance between low-level features of non-edited regions in the generated results
and corresponding regions in the scene image. To evaluate the preservation of non-edited regions
in the scene, we compute the PSNR between these regions and their counterparts in the original
scene image. For object identity preservation, previous works (Lu et al., 2023b; Wang et al., 2024;
Chen et al., 2024c) typically measure the distance between high-level semantic features or low-level
perceptual features extracted by pre-trained visual encoders from the edited region in the result im-
age and the reference object image. Our method considers depth-related spatial positioning during
object insertion. After the model reasonably handles occlusion relationships of inserted objects,
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Table 1: Quantitative comparison of different methods. Bold indicates the best result, underline
denotes the second best, and † marks training-free methods.

Method Auto-Metric User-Study
PSNRbg ↑ HarmStyle ↓ HarmReal ↑ Qual Harm Reas Cons

AnyDoor 31.52 3.21 0.78 2.94 2.11 2.30 2.21
UniCombine 32.03 3.16 0.87 4.96 6.71 4.32 5.61
InsertAnything 36.82 3.18 0.79 8.92 7.17 7.08 9.38
Freecompose† 23.56 3.27 0.81 1.75 1.84 1.38 1.75
Primecomposer† 16.82 3.12 0.81 0.55 0.74 0.74 0.46
SpatialComposer† 46.99 3.08 0.84 80.88 81.43 84.19 80.61

the feature distance between edited region and the reference object image actually increases. Con-
currently, when a substantial domain gap exists between the target scene and the reference object,
modifications to the object’s color and texture are required to ensure seamless integration and vi-
sual harmony. However, these refinement adjustments inherently result in degraded performance
on the corresponding quantitative metrics. Consequently, we exclude these quantitative measures
from our experimental evaluation. Furthermore, previous work lacks effective metrics for measur-
ing whether inserted objects harmonize with the surrounding environment. Therefore, we design
automatic harmony assessment metrics specifically for object insertion in stylized scenes and real
scenes, respectively. For object insertion in stylized scenes, we compute the style loss (Karras et al.,
2019) based on the Gram Matrix between the edited region in the result image after object insertion
and the original scene image to measure style harmony. For object insertion in real scenes, harmony
focuses more on the consistency between object surface lighting and the scene, which we measure
by computing the consistency of brightness and color distributions between the object and surround-
ing scene. We provide detailed implementation of the harmony evaluation metrics for both stylized
and real-world scenes in Appendix B. For the reasonableness of inserted objects’ spatial positioning
and scale within scenes, this proves difficult to assess through automatic evaluation metrics.

Given the current lack of automatic evaluation metrics with high alignment to human perception
for such interactive generation and editing tasks, this field primarily relies on user studies for result
assessment. In our user study, we recruited 40 participants to evaluate results generated by Spatial-
Composer and baseline approaches across four dimensions: overall image quality, harmony between
object and environment, the reasonableness of inserted objects’ spatial positioning and scale, and
consistency between the object and reference object image, as well as consistency between non-
edited regions in the scene and the original scene image. For each case, participants identified the
best-performing method across these four evaluation dimensions. We subsequently computed the
average vote percentage for each method across all four dimensions. The results presented in Ta-
ble 1 demonstrate that SpatialComposer achieves comparable or superior performance to existing
approaches in automatic evaluation metrics. Our dataset comprises scenes primarily derived from
real photographs and authentic artworks, which high resolution, complex spatial structures at object
insertion locations, and diverse styles. These characteristics pose significant challenges for existing
object insertion methods. SpatialComposer overcomes these difficulties through the introduction of
depth-aware Gaussian representations and the effective utilization of diffusion models pre-trained
on large-scale data, thereby achieving significantly superior performance in the user study.

4.3 QUALITATIVE EVALUATION

As shown in Fig. 2, InsertAnything demonstrates the best performance among the baselines, show-
ing some understanding of object depth relationships and displaying reasonable depth relations in
certain insertion results. However, its capabilities for style harmonization in cross-domain insertion
and illumination processing in real scenes remain limited, as shown in the second, fourth and fifth
rows in Fig. 2. UniCombine exhibits stronger style harmonization capabilities for cross-domain
object insertion but frequently generates results with significant errors or unreasonable outcomes,
as demonstrated by the spatial positions of objects in the third and sixth rows of Fig. 2. AnyDoor
shows limitations in object-scene harmony and the visual quality in edited regions. FreeCompose

8
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lacks understanding of depth information and demonstrates limited harmonization performance. Be-
yond the issues encountered by other methods, PrimeComposer also exhibits significant problems
in preserving the original scene image. Overall, SpatialComposer achieves comparable or superior
performance in terms of image quality, reasonableness of spatial positioning and scale, consistency
of object identity with non-edited regions of the scene, and harmonization between the scene and
objects. More results are provided in Appendix D. Due to file size constraints, we provide vector-
format versions of the visualization comparison figures in the supplementary material.

4.4 ABLATION STUDY

We conduct ablation studies to validate the effectiveness of our proposed Gaussian representation,
initialization method, and refinement foundation model, as well as to examine the impact of strength
coefficient in our refinement method.

Gaussian representation and initialization method We simplify standard 3D Gaussians to better
adapt them to our task and employ a back-projection-based initialization method. This approach
not only significantly enhances scene fitting quality but also achieves superior spatial structure rep-
resentation. As shown in Fig. 3, our proposed Gaussian representation and initialization method
substantially improve the fitting quality of scene reconstruction. In Fig. 6, we visualize the Gaus-
sian means under different configurations, demonstrating that our proposed Gaussian settings and
initialization method yield the most reasonable spatial structure, which serves as the foundation for
subsequent object insertion operations.

Refinement Foundation Model In the refinement processing of inserted objects, our pipeline is
compatible with different foundation models. Fig. 4 (a) compares the refinement results across
different foundation models. Our proposed refinement method achieves the best overall performance
in maintaining object identity while achieving style consistency between objects and scenes.

Illumination Harmonization Model in Real Scenes In Fig. 4 (b), we validate the limitations of pre-
trained text-to-image and inpainting models when addressing object surface illumination harmoniza-
tion in real scenes, as well as the necessity of incorporating pretrained illumination harmonization
models. The illumination harmonization model better captures environmental lighting information,
including intensity, color, and direction.

Refinement Strength Finally, we validate the impact of the strength coefficient s on the results
during the refinement process. As shown in Fig. 5, higher refinement strength produces results that
are more harmonious with the scene style but simultaneously weakens the preservation of object
identity. An appropriate value should be determined based on the degree of domain gap between
the inserted object and the scene. In our experiments, we select s = 0.6 as the default setting for
stylized scene object insertion and s = 0.2 for real scene object insertion.

5 CONCLUSION AND LIMITATION

In this paper, we introduce SpatialComposer, which effectively reconstructs high-fidelity scene rep-
resentations with meaningful depth structure, enabling precise control over object scale and 3D spa-
tial positioning during insertion. To address insertion disharmony, we employ a refinement method
based on pretrained diffusion models, achieving reasonable harmonization that aligns object and
lighting with the surrounding scene. Furthermore, we constructed the DAOI dataset, in which we
collected over 200 high-resolution scene images with complex spatial structures and diverse styles,
along with over 200 multi-category object images. Experiments demonstrate our method’s superi-
ority, achieving comparable or superior performance across multiple evaluation dimensions.

In our task setting, given only a single image of the insertion object, we cannot construct a complete
Gaussian representation of the object and can only model the visible surface shown in the single im-
age. Consequently, in the subsequent Gaussian composition operations, our method only supports
scaling and translation of the object Gaussians, but does not support rotation of the object Gaus-
sians. Reconstructing individual object Gaussians from single object images represents an actively
pursued research direction in the 3D Gaussian field. With the rapid advancement of techniques in
this domain, incorporating object 3D Gaussian reconstruction models based on a single object image
may provide an effective approach to address the limitations of our method.

9
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research focuses on image editing tasks, where
all data are sourced from open-source datasets, generated through model API calls, and publicly
available internet data, with no involvement of personal privacy information. All data used in this
study are publicly available and were used in accordance with their respective licenses and terms of
use. We have properly cited all data sources and respected the original creators’ rights. While our
method demonstrates improvements in object insertion, we recognize that like other AI technologies,
it could potentially be misused to generate unsafe visual content. We encourage responsible deploy-
ment and further research into safety mechanisms. We believe this work contributes positively to
the research community and poses minimal ethical concerns when used responsibly.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. Our constructed dataset DAOI
will be publicly available alongside our framework and experimental source code upon publication,
while TF-ICON serves as a public benchmark. Our proposed method is detailed in Sec. 3, which
includes the hyperparameters involved in the loss terms. Additional experimental details such as
optimizers, learning rates, and random seeds are provided in Sec. 4. We commit to making the
complete framework and experimental source code, as well as the constructed benchmark, publicly
available as soon as possible after publication.
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A LATENT DIFFUSION MODEL

In this work, we leverage pre-trained text-conditioned latent diffusion models (Rombach et al.,
2022a) to guide the object refinement process. These models operate in a learned latent space
through an encoder-decoder architecture, where E(·) and D(·) represent the encoder and decoder
components, respectively. The diffusion process involves forward noise addition followed by reverse
denoising operations within this latent representation. Given an input image x0, we first encode it
into the latent space as z0 = E(x0). During training, this latent representation is progressively
corrupted through the forward diffusion process, transforming z0 into zt:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (11)

for t ∈ [1, T ], where ᾱt =
∏t

s=1 1 − βs, and βs represents the variance schedule at timestep s.
Subsequently, a denoising U-Net is trained to predict the added noise conditioned on c using the
following objective function:

L = EE(x0),ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t, c)∥22

]
, (12)

where ϵθ represents the denoising U-Net.

B IMPLEMENTATION OF HARMONY EVALUATION METRICS

The automatic evaluation metrics employed by existing works do not specifically measure the har-
mony between inserted objects and scenes. Based on the different aspects of harmony that humans
focus on in real scenes versus stylized scenes, we design and adopt different harmony measurement
approaches accordingly.

B.1 STYLIZED SCENES HARMONY EVALUATION METRIC

For object insertion in stylized scenes, we follow the StyleLoss setting in StyleGAN (Karras et al.,
2019). We compute the Gram Matrix between the edited region in the result image after object
insertion and the original scene image, and measure the harmony between the inserted object and
stylized scene based on the Gram Matrix. Given a composite image Ic, scene image Is, and bi-
nary mask M indicating the inserted object region, we extract deep convolutional features using
a pre-trained VGG-19 network. Following established practices in neural style transfer, we select
features from five representative layers (conv1 1, conv2 1, conv3 1, conv4 1, conv5 1) to capture
style information at different levels of visual abstraction. The object region is extracted by applying
the mask to the composite image: Io = Ic ⊙M , where ⊙ denotes element-wise multiplication. For
each selected layer l, we compute the Gram matrix Gl to encode style information through feature
channel correlations. Given feature map F l ∈ RNl×Ml where Nl is the number of channels and
Ml = Hl ×Wl represents spatial dimensions, the Gram matrix is computed as:

Gl
i,j =

1

NlMl

Ml∑
k=1

F l
i,kF

l
j,k. (13)

This formulation captures the correlations between different feature channels, which has been shown
to effectively represent texture and style characteristics.
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 PSNR=21.28 PSNR=26.22 PSNR=37.95 PSNR=47.78

 PSNR=15.40 PSNR=24.40 PSNR=27.17 PSNR=55.23

 PSNR=22.61 PSNR=19.73 PSNR=28.78 PSNR=43.75

SourceImage 3DGS 3DGS+ProjInit DA-ImgGS DA-ImgGS+ProjInit

Figure 3: Comparison of fitting performance under different Gaussian representations and initializa-
tion strategies. Both the proposed depth-aware image Gaussian and initialization strategy demon-
strate improved fitting quality.

The style discrepancy between the inserted object and scene is measured by comparing their respec-
tive Gram matrices across multiple layers. For each layer l, we compute the style loss using the
Frobenius norm:

Ll
s = ∥Gl

b −Gl
o∥2F , (14)

where Gl
b and Gl

o are the Gram matrices for scene and object regions respectively. The final style
consistency score is obtained by averaging losses across all selected layers:

Ls =
1

|L|
∑
l∈L

Ll
s. (15)

This multi-scale approach ensures comprehensive style evaluation from low-level textures to high-
level semantic features. Lower values indicate better style harmony between the inserted object
and scene, while higher values suggest greater stylistic discrepancy. The metric can be computed
efficiently for batch evaluation and provides a quantitative foundation for comparing different object
insertion methods.

B.2 REAL SCENES HARMONY EVALUATION METRIC

For object insertion in real scenes, we primarily consider the consistency between object surface
lighting and environmental lighting, measuring the harmony between objects and real scenes by
computing the consistency of brightness distribution and color distribution between the object and
surrounding scene.

Given an inserted object with mask Mo and its surrounding scene region Mb, we extract the corre-
sponding pixel sets Po and Pb from the composite image I . The overall consistency score is defined
as: Soverall = wb · Sbrightness + wc · Scolor, where wb + wc = 1. The brightness consistency
Sbrightness evaluates luminance distribution alignment through three measures: (1) Jensen-Shannon
divergence: SJS = 1 − JS(Ho||Hb) where Ho and Hb are normalized grayscale histograms; (2)
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CompositeImage SDXL-Inpainting FLUX.1-dev-Inpainting OURS W/O Glight W Glight

(a) (b)

Figure 4: (a) demonstrates the compatibility of our pipeline with different pre-trained diffusion
models and the effectiveness of our refinement method; (b) shows that incorporating pre-trained
illumination harmonization models in real-scene object insertion significantly enhances the harmony
between object surface lighting and the environment.

CompositeImage Strength=0.2 Strength=0.4 Strength=0.6 Strength=0.8 Strength=1.0

Figure 5: The impact of different object refinement intensities on the results. Higher refinement
strength enables greater stylistic changes to the object but makes it more challenging to preserve
object identity.

Wasserstein distance: SEMD = exp(−W (P gray
o , P gray

b )/τ) for distribution matching; and (3) Sta-
tistical similarity: Sstat = exp(−(|µo − µb|/255 + |σo − σb|/255)) for first and second-order
statistics. These are combined as: Sbrightness = 0.4 · SJS + 0.4 · SEMD + 0.2 · Sstat.

The color consistency Scolor is evaluated in the perceptually uniform CIE-LAB space to better
reflect human visual perception. For each channel c ∈ {L∗, a∗, b∗}, we compute channel-specific
scores Sc using the same JS divergence and Wasserstein distance formulations applied to the channel
distributions. The final color score employs weighted integration: Scolor = 0.5 · SL + 0.25 · Sa +
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SourceImage 3DGS 3DGS+ProjInit DA-ImgGS DA-ImgGS+ProjInit

Figure 6: The adoption of depth-aware Gaussian splatting configuration combined with back-
projection initialization strategy yields scene Gaussians with significantly more exploitable spatial
structure.

0.25 · Sb, with higher weight on luminance to reflect its dominance in visual perception. In our
implementation, we set wb = 0.4 and wc = 0.6, and automatically generate surrounding scene
regions through morphological dilation of the object mask. The metric ranges from 0 to 1, where
higher scores indicate better photometric integration between the inserted object and the scene.

C SPATIAL STRUCTURE WITH DIFFERENT GAUSSIAN SETTINGS

The depth-aware image Gaussian and back-projection initialization strategy adopted in our method
not only effectively improves the Gaussian fitting quality, but also significantly optimizes the spatial
structure of the Gaussian representation. We visualize the means of scene Gaussians fitted under
different Gaussian and initialization settings respectively, and show them in Fig. 6. The joint em-
ployment of our proposed depth-aware image Gaussian with back-projection initialization strategy
effectively captures the available spatial structure.

D ADDITIONAL VISUAL COMPARISON RESULTS

In Figs. 7 and 8, we present additional visualized comparisons of generation results.

E MULTI-OBJECT INSERTION EXAMPLES

SpatialComposer supports inserting multiple objects in a single scene. Since the Gaussians of these
objects and the scene Gaussians are distinguishable, it avoids the accumulation of influence on other
Gaussians when inserting multiple objects. In Fig. 9, we show some results of multiple object
insertion in scenes.
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Figure 7: Visualization of comparative results, zoomed in for detailed observation.

F RESULTS ON TF-ICON BENCHMARK

SpatialComposer is a training-free object insertion approach that supports application to both styl-
ized and real scenes. The existing works most similar to our method and task setting are TF-ICON,
Primecomposer, and Freecompose. These works primarily use the benchmark proposed by TF-
ICON, which contains 95 stylized scene object insertion cases and 237 real scene object insertion
cases constructed from approximately 30 scene images and about 100 object images. The object
images are constructed from real images through semantic segmentation, while the scene images
are 256×256 pixel or 512×512 pixel Stable Diffusion generated images, with object insertion posi-
tions set in open areas of the images where complex spatial relationships do not exist. Due to the
low scene resolution, generated nature of scenes, and simple object insertion position scenarios, this
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Figure 8: Visualization of comparative results, zoomed in for detailed observation.

dataset cannot perfectly meet the requirements of our task. However, we also report results on this
benchmark in this section.

We present a visual comparison of different methods on the TF-ICON benchmark in Fig. 10. Al-
though the object insertion positions in this dataset do not involve complex spatial relationships,
SpatialComposer consistently achieves performance that is comparable to or superior to existing
approaches. For the quantitative metric setup on this dataset, we follow the configurations estab-
lished in these prior works. We employ PSNR between the non-edited regions in the result image
and the corresponding regions in the scene image to measure the preservation of non-edited areas.
We use LPIPS and cosine similarity between CLIP image embeddings of the edited region in the
result image and the reference object image to evaluate object identity preservation. As mentioned
in our quantitative experiments in the main text, we believe that the evaluation results of these two
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Table 2: Quantitative comparison of different methods on TF-ICON Dataset

Method PSNRbg LPIPSobj CLIPimg img CLIPimg text

AnyDoor 23.74 0.538 0.873 0.279
UniCombine 26.61 0.632 0.790 0.286
InsertAnything 31.91 0.432 0.881 0.285
Freecompose† 21.33 0.369 0.873 0.283
Primecomposer† 12.32 0.469 0.810 0.272
SpatialComposer† 33.14 0.468 0.831 0.307

quantitative metrics often do not align with human perceptual quality. We adopt the cosine similar-
ity between the CLIP image embedding of the edited region in the result image and the CLIP text
embedding of the corresponding text prompt for the edited region (formatted as "XXX style /
professional photograph of a XXX") to comprehensively measure both inserted object
style and category. The results presented in Table 2 show that SpatialComposer achieves better per-
formance in both the preservation of non-edited regions and the alignment of edited regions with the
target style and object category.

G THE USE OF LARGE LANGUAGE MODELS

During the writing process of this paper, we utilized large language models to enhance the
manuscript quality, including employing large language models to correct grammatical errors and
modify wording and expressions to achieve a more formal and academic style.
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SourceImage ObjectImage1 ObjectImage2 Result

Figure 9: SpatialComposer supports multi-object insertion within a single scene while avoiding the
adverse effects of multiple object insertion operations on other regions of the image, zoomed in for
detailed observation.
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Figure 10: Visualization of comparative results on TF-ICON dataset, zoomed in for detailed obser-
vation.
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