000 What can Mamba do for 3D Volumetric Medi-001 CAL IMAGE SEGMENTATION? 002 003

Anonymous authors

Paper under double-blind review

ABSTRACT

Mamba, with its State Space Model (SSM), offers a more computationally efficient solution than Transformers for long-range dependency modeling. How-012 ever, there is still a debate about its effectiveness in high-resolution 3D medical image segmentation. In this study, we present a comprehensive investiga-014 tion into Mamba's capabilities in 3D medical image segmentation by tackling 015 three pivotal questions: Can Mamba replace Transformers? Can it elevate multi-016 scale representation learning? Is complex scanning necessary to unlock its full potential? We evaluate Mamba's performance across three large public bench-018 marks—AMOS, TotalSegmentator, and BraTS. Our findings reveal that Ulike-019 Mamba, a U-shape Mamba-based network, consistently surpasses UlikeTrans, a U-shape Transformer-based network, particularly when enhanced with customdesigned 3D depthwise convolutions, boosting accuracy and computational efficiency. Further, our proposed multi-scale Mamba block demonstrates superior performance in capturing both fine-grained details and global context, especially 023 in complex segmentation tasks, surpassing Transformer-based counterparts. We also critically assess complex scanning strategies, finding that simpler methods 025 often suffice, while our Tri-scan approach delivers notable advantages in the most challenging scenarios. By integrating these advancements, we introduce a new network for 3D medical image segmentation, positioning Mamba as a transforma-028 tive force that outperforms leading models such as nnUNet, CoTr, and U-Mamba, offering competitive accuracy with superior computational efficiency. This study provides key insights into Mamba's unique advantages, paving the way for more efficient and accurate approaches to 3D medical imaging. All code used in the experiments will be made publicly available.

004

010 011

013

017

021

026

027

029

031

INTRODUCTION 1

Volumetric medical image segmentation, which involves extracting 3D regions like organs, lesions, 037 and tissues from modalities such as CT and MRI scans, is crucial for clinical applications like lesion contouring, diagnosis, and surgical planning. These tasks require not only local feature extraction but also the ability to capture long-range dependencies across entire volumes, which is vital for 040 understanding the relationships between distant anatomical structures. While convolutional neural 041 networks (CNNs), particularly U-Net (Ronneberger et al., 2015), have been foundational in 3D 042 medical image segmentation (Zhou et al., 2019; Isensee et al., 2021; Zhang et al., 2020; Ye et al., 043 2023; Yu et al., 2020; Valanarasu et al., 2021), their limited receptive fields and locality biases hinder 044 their capacity to model global context effectively. Transformers (Vaswani et al., 2017) address 045 this with dynamic self-attention mechanisms, but their computational demands are impractical for handling large-scale, high-resolution 3D data. 046

047 With the introduction of the State Space Model (SSM), Mamba (Gu & Dao, 2023) offers a promising 048 alternative for modeling long-range dependencies in 3D medical image segmentation. Unlike Transformers, Mamba achieves higher inference throughput and scales linearly with sequence length, making it a more computationally efficient solution. This efficiency makes Mamba particularly 051 well-suited for the demands of 3D medical imaging, where high-resolution volumetric data requires both precision and speed to process large-scale structures effectively. Inspired by Mamba's suc-052 cess, a burgeoning body of work has sought to leverage its advantages for vision tasks, pioneering efforts such as Vision Mamba (ViM) (Zhu et al., 2024) and VMamba (Liu et al., 2024b). These models employ multi-scan strategies, replacing the vanilla Mamba's single-scan approach, to allow long-range dependencies to manifest in multiple directions, improving the model's ability to capture spatial relationships in complex image data. As a result, several studies have explored replacing Transformers with Mamba blocks in 3D medical image segmentation. Notably, works like
U-Mamba (Ma et al., 2024), SegMamba (Xing et al., 2024) and SwinUMamba (Liu et al., 2024a) have successfully integrated Mamba blocks as plugin modules within CNN architectures, achieving promising performance across various biomedical segmentation datasets. However, these efforts primarily demonstrate Mamba's feasibility without fully exploring its broader potential or its benefits.

To address this gap, in this work, we use three challenging 3D medical image segmentation benchmarks (*i.e.*, AMOS (Ji et al., 2022), TotalSegmentator (Wasserthal et al., 2023), and BraTS (Baid et al., 2021)) to conduct an in-depth exploration of Mamba's impact on 3D medical image segmentation, providing valuable insights for future research. Our investigation focuses on three aspects:

066 Mamba's ability to replace Transformers We aim to evaluate whether Mamba networks can re-067 place Transformer-based architectures for long-range dependency modeling in 3D medical image 068 segmentation, focusing on segmentation accuracy and computational efficiency. To this end, we 069 designed two models: a Mamba-based network (UlikeMamba) and a Transformer-based network (UlikeTrans), both following a U-shaped encoder-decoder structure. Notably, we replace the orig-071 inal 1D depthwise convolutions (DWConv) (Chollet, 2017) in Mamba with 3D DWConv to better preserve volumetric data's spatial coherence. Our results show that UlikeMamba outperforms Ulike-072 Trans in both accuracy and efficiency, especially with the 3D Mamba layer, while also avoiding the 073 Out of Memory (OOM) issues faced by UlikeTrans. 074

075 Mamba's capacity to enhance multi-scale representation learning This section delves deeper 076 into Mamba's potential for long-term dependency modeling to enhance multi-scale representation 077 learning, a critical factor in achieving accurate 3D medical image segmentation. Successful volumetric segmentation requires the ability to capture both fine-grained details (such as small lesions or subtle tissue changes) and broader anatomical structures (such as large organs like the liver, heart, 079 or kidneys). We design and implement four distinct multi-scale modeling schemes, and our re-080 sults show that Mamba-based models excel at capturing and integrating multi-scale features. These 081 models consistently demonstrate superior performance, especially in complex tasks like TotalSegmentator, which involves segmenting 117 anatomical structures, proving Mamba to be a versatile 083 and robust solution for challenging 3D medical image segmentation scenarios. 084

Whether complex multi-way scanning strategies are necessary? Mamba's parallelized selective 085 scan operation, designed for one-dimensional data, faces challenges when adapted to visual tasks. Many works, like Vision Mamba (Zhu et al., 2024) and VMamba (Liu et al., 2024b), introduce multi-087 way scanning mechanisms to preserve spatial coherence in vision tasks. To determine whether these 880 complex scanning strategies are necessary for 3D medical image segmentation, we evaluate exist-089 ing methods-single-scan (forward) and dual-scan (forward+backward)-and introduce two new 090 approaches: dual-scan (forward+random) and Tri-scan (left-right, up-down, front-back). Dual-scan 091 (forward+backward) offers minimal improvement due to strong structural priors in medical data. 092 While dual-scan (forward+random) may capture complex dependencies, it risks distorting these priors, compromising segmentation precision. Tri-scan delivers the best performance by preserving comprehensive spatial relationships but incurs higher computational costs. Simpler scanning meth-094 ods often suffice, with Tri-scan proving advantageous in more complex scenarios. 095

- Our contributions are three-fold:
- 1. Rather than simply designing a new network, we conduct a thorough analysis of Mamba's role in 3D medical image segmentation, tailored to the specific challenges of the task, using three large, authoritative public datasets. This analysis provides strong insights and a foundation for future research in this domain.
- We not only validate the effectiveness of existing strategies but also propose task-specific approaches, such as introducing 3D DWConv before SSM, developing multi-scale Mamba, and designing Tri-scan for 3D data, to further explore and enhance Mamba's capabilities for volumetric medical image segmentation.
- 104 for volumetric medical image segmentation.
 3. Using validated strategies, we construct a Mamba-based network that sets a new benchmark for 3D medical image segmentation, outperforming advanced models such as CNN-based nnUNet, Transformer-based CoTr, UNETR and SwinUNETR, as well as existing Mambabased U-Mamba, offering competitive accuracy with higher computational efficiency.

108 2 RELATED WORK

109

Mamba (Gu & Dao, 2023), known for its ability to capture long-range dependencies with superior memory efficiency and computational speed compared to Transformers, has gained traction in medical image segmentation. In this domain, U-Net and its variants dominate, however, integrating
 Mamba with CNN architectures has sparked interest, leading to the development of both hybrid and pure Mamba-based models. These efforts aim to harness Mamba's strengths in modeling global dependencies while maintaining the local feature extraction capabilities essential for segmentation.

116 In hybrid models, Mamba blocks are often combined with CNN-based architectures to balance the 117 strengths of both methods. SegMamba (Xing et al., 2024) uses a multi-orientated Mamba mod-118 ule in the encoder, paired with CNN decoders. P-Mamba (Ye & Chen, 2024) integrates ViM (Zhu 119 et al., 2024) blocks with noise suppression and local feature extraction, while Prompt-Mamba (Xie 120 et al., 2024) incorporates prompt-based segmentation with ViM blocks. T-Mamba (Hao et al., 2024) enhances ViM blocks with frequency-based features, and U-Mamba (Ma et al., 2024) combines 121 Mamba and CNNs in both the encoder and decoder, offering improved global context comprehen-122 sion. Additionally, H-vmunet (Wu et al., 2024a) uses high-order interactions, and UltraLight VM-123 UNet (Wu et al., 2024b) optimizes multi-scale fusion with ViM layers and attention mechanisms. 124

125 Pure Mamba-based models rely on Mamba blocks either in the encoder, combined with a CNN 126 decoder, or throughout the entire architecture. Swin-UMamba (Liu et al., 2024a) and LMa-UNet (Wang et al., 2024a) replace CNN blocks in the encoder with Visual State-Space (VSS) and bidi-127 rectional ViM blocks, capturing contextual information and refining pixel- and patch-level features. 128 LightM-UNet (Liao et al., 2024) incorporates Residual Vision Mamba layers in both the encoder 129 and bottleneck for better long-range spatial modeling. In fully Mamba-based architectures, both 130 the encoder and decoder rely entirely on Mamba blocks. VM-UNet (Ruan & Xiang, 2024) was 131 the first model to adopt this approach, using VSS blocks throughout. Mamba-UNet (Wang et al., 132 2024b) also employs a fully Mamba-based structure with VMamba blocks in the bottleneck, while 133 TM-UNet (Tang et al., 2024) introduces Triplet SSM modules to fuse spatial and channel features, 134 enhancing overall feature extraction. 135

The developments demonstrate the versatility of Mamba in medical image segmentation, offering a range of solutions w.r.t. specific tasks. However, these initial works primarily validate the feasibility of Mamba in this domain, lacking a comprehensive analysis of its impact and potential advantages.

139 140

141

3 MATERIAL

We use three publicly available volumetric medical image segmentation datasets to comprehensively
 evaluate the performance. These datasets are widely recognized as benchmarks in the medical image
 analysis community, covering a broad range of anatomical regions and imaging conditions:

AMOS dataset (Ji et al., 2022) The AMOS dataset consists of 300 abdominal CT scans collected from multiple centers and vendors, encompassing various imaging modalities and phases. Each scan is annotated at the voxel level for 15 abdominal organs, presenting a challenging test-bed for segmentation algorithms. Its diversity in disease cases, patient demographics, and imaging conditions makes it ideal for studying model robustness in real-world scenarios. In our experiments, we used the official training and validation sets.

TotalSegmentator (TotalSeg) dataset (Wasserthal et al., 2023) This dataset includes 1,228 CT
 images with annotations for 117 anatomical structures. The scans were randomly selected from
 clinical routines, offering a highly representative dataset that reflects real-world clinical conditions.
 The dataset spans a wide range of pathologies, scanners, sequences, and institutions, making it
 particularly well-suited for evaluating the generalizability of segmentation models. We used the
 official training and test sets in our experiments.

BraTS 2021 challenge dataset (Baid et al., 2021) The BraTS 2021 dataset includes 1,251 subjects,
each with four 3D MRI modalities: native (T1), post-contrast T1-weighted (T1Gd), T2-weighted
(T2), and T2 Fluid-attenuated Inversion Recovery (T2-FLAIR). It is a widely used benchmark for
evaluating brain tumor segmentation algorithms, specifically for delineating tumor sub-regions such
as enhancing tumor, necrosis, and edema, offering voxel-wise ground truth annotations provided by
expert physicians. We split the dataset into 80% for training and 20% for testing.

Figure 1: Mamba-based network (UlikeMamba) and Transformer-based network (UlikeTrans).

4 ANALYSIS 1: MAMBA VS TRANSFORMER

4.1 EXPERIMENTAL DESIGNS

176

177 178

179

181

188 189

This experiment is designed to compare the performance of U-shape Mamba- and Transformerbased networks, denoted as UlikeMamba and UlikeTrans, specifically for modeling long-range dependencies in volumetric medical image segmentation tasks. The goal is to evaluate both segmentation accuracy and computational efficiency, which is crucial for practical applications in clinical environments. As shown in Fig. 1, both UlikeMamba and UlikeTrans consist of an encoder \mathcal{E} and a decoder \mathcal{D} . The corresponding blocks can be defined as

$$\begin{cases} \mathcal{E}_i := f_i \circ h_i & \mathcal{E}_i \in \mathcal{E} \\ \mathcal{D}_j := g_j \circ h_j & \mathcal{D}_j \in \mathcal{D}, \end{cases}$$
(1)

where f_i and h_i are the convolution layers and Mamba/Transformer layers, respectively, in the *i*-th block of the encoder, while g_j and h_j are the transposed convolution layers and Mamba/Transformer layers in the *j*-th block of the decoder. Concretely, in this section, we replace *h* from Transformer to Mamba while keeping others unchanged.

194 Mamba-based network As illustrated on the left of Fig. 1, the Mamba-based network, referred to 195 as UlikeMamba, adopts a U-shaped encoder-decoder architecture (Ronneberger et al., 2015). The 196 encoder consists of a 3D convolutional (Conv) block and four stages (ES1 to ES4), with each stage 197 composed of a 3D Conv block followed by a Mamba layer. This progressively downsamples the input through 3D Conv blocks, generating feature embeddings at each stage, which are then flattened 199 and passed into the Mamba layers for sequential processing. These Mamba layers balance compu-200 tational efficiency and feature extraction across multiple resolutions. The Mamba layer processes input through a series of operations. First, the input is normalized and passed through a linear layer 201 for initial feature transformation. Depthwise convolutions (DWConv) are then applied to capture 202 local spatial features, followed by a SiLU activation function to introduce non-linearity. The data 203 is further processed by the state space model (SSM), which efficiently captures long-range depen-204 dencies with linear complexity. A residual connection merges the output from the SSM with earlier 205 features, followed by further refinement via a final linear layer. 206

The decoder structure mirrors the encoder and consists of three stages (DS1 to DS3). Each stage 207 upsamples the feature maps using 3D transposed Conv layers, followed by Mamba layers to refine 208 the upsampled features. Skip connections link corresponding encoder and decoder stages to retain 209 high-resolution, low-level information essential for accurate segmentation. The final segmentation 210 head outputs the segmentation map through a 3D Conv upsampling layer. This overall architecture 211 leverages the Mamba's strengths to efficiently process volumetric medical images while maintaining 212 low computational overhead compared to more complex architectures. The specific architecture 213 details can be found on the left of Figure 5 of Supplementary. 214

Transformer-based network The Transformer-based network, as shown on the right in Fig. 1, adopts a U-shaped encoder-decoder architecture similar to the Mamba-based network, but replaces

Table 1: Segmentation Dice scores (higher is better) and FLOPs (lower is better) of UlikeTrans and
UlikeMamba across three test datasets. 'Parameters (Params)' and 'FLOPs' are calculated based on
an input size of 128×128×128 and evaluated using an NVIDIA 3090 GPU.

	AMOS	TotalSeg	BraTS	Average	Params (M)	FLOPs (G)
UlikeTrans_vanilla	OOM	OOM	OOM	OOM	31.54	OOM
UlikeTrans_SRA	88.00	79.80	90.12	85.97	45.05	64.47
UlikeMamba_1d (Vanilla)	88.40	78.00	90.20	85.53	24.10	44.88
UlikeMamba_3d	89.45	82.60	90.29	87.45	24.30	46.03

the Mamba layers with Transformer layers, hence referred to as UlikeTrans. Each Transformer layer consists of a self-attention module and a feed-forward network (FFN) with two hidden layers. Initially, we experimented with vanilla point-to-point self-attention, however, this approach resulted in extreme computational complexity and excessive memory usage when applied to 3D volumetric images, making quantitative comparisons impractical. To address this, we implemented the spatial-reduction attention (SRA) layer (Wang et al., 2021) to reduce spatial complexity and enable UlikeTrans to handle high-resolution volumetric medical images for comparisons. Given a query q, a key k, and a value v as the input, SRA first reduces the spatial resolution of k and v, and then feeds q, reduced k, and reduces v to a multi-head self-attention layer to produce refined features. The specific architecture details can be found on the right of Figure 5 of Supplementary.

4.2 TRAINING SETUP AND EVALUATION METRICS

239 Both UlikeMamba and UlikeTrans were implemented using the nnUNet (Isensee et al., 2021) frame-240 work, which automatically selects batch sizes and patch sizes tailored to each dataset. We utilized 241 the AdamW optimizer (Loshchilov & Hutter, 2018) with an initial learning rate of 0.0001. All networks were trained for 1000 epochs, with each epoch consisting of 250 iterations. To evaluate the 242 segmentation results quantitatively, we calculated the Dice coefficient (Dice), a metric measuring 243 the overlap between the predicted segmentation and the ground truth. Additionally, we computed 244 the floating-point operations per second (FLOPs) to assess the computational complexity of each 245 model. Ideally, higher Dice scores indicate better segmentation accuracy, while lower FLOPs reflect 246 greater computational efficiency. 247

247 248 249

4.3 RESULTS AND ANALYSIS

250 Directly using vanilla Mamba The results in Table 1 show that UlikeMamba_1d, using the vanilla 251 Mamba layer with DWConv 1D, performs competitively across all datasets, achieving Dice scores 252 similar to UlikeTrans_SRA, while requiring fewer parameters and computational resources (44.88 253 GFLOPs vs. 64.47 GFLOPs). UlikeMamba_1d avoids the Out of Memory (OOM) issues faced by 254 the vanilla UlikeTrans model, which is hindered by the excessive memory demands of point-to-point 255 self-attention for 3D volumetric data. This highlights the efficiency of Mamba in handling longrange dependencies while maintaining a low computational footprint, making it especially suited 256 for resource-constrained environments. 257

258 The main reason is that Transformers are limited by memory capacity and complexity at higher 259 resolutions and cannot be used directly. Moreover, when sequences are too long, establishing point-260 to-point relationships makes it difficult to effectively focus on key information. Mamba's sequence 261 modeling combined with memory modules gives it certain advantages in volume segmentation, where longer sequence modeling is required. Besides, the ability of Mamba networks to achieve 262 comparable or even superior Dice scores to Transformer models across the datasets (AMOS, To-263 talSeg, BraTS) indicates their proficiency in capturing long-range spatial relationships within the 264 data. This is particularly significant given that medical image segmentation often relies on the pre-265 cise delineation of complex anatomical structures that may be distributed sparsely across the image 266 space. The Mamba model's performance suggests that its architecture can effectively encapsulate 267 these relationships without the need for extensive computational resources. 268

DWConv 1D vs. DWConv 3D We noted that in vanilla Mamba layer (Gu & Dao, 2023) and Vision Mamba (Zhu et al., 2024), DWConv 1D with a kernel size of 4 is used. However, in Mamba, the

220 221 222

228

229

230

231

232

233

234

235

270 input feature embeddings are flattened and processed sequentially, causing DWConv 1D to disrupt 271 the original 3D spatial structure. This sequential processing links distant voxels while neglecting 272 immediate neighbors in the 3D space, undermining spatial coherence essential for accurate seg-273 mentation. To address this, we replace DWConv 1D with DWConv 3D in establishing 3D priors, 274 ensuring local features are captured across all dimensions. This adjustment preserves the 3D structure of volumetric medical images, allowing the network to capture both local details and global 275 context better. As shown in Table 1, Mamba 1D performs on par with Transformer (average Dice 276 score: Transformer 85.97 vs. Mamba 1D 85.53), while the Mamba 3D improves result from 85.53 to 87.45 and consistently outperforms Mamba 1D across all the datasets with only a slight increase 278 in parameters and FLOPs. This proves our above claims and further demonstrates that Mamba is 279 not only effective but also has the potential to exceed the capabilities of Transformer in volumetric 280 medical image segmentation tasks. 281

282 283

284

286

5 ANALYSIS 2: MAMBA'S POTENTIAL IN MULTI-SCALE MODELING

285 5.1 EXPERIMENTAL DESIGNS

In the first section, we establish that Mamba could effectively replace Transformers for long-range dependency modeling in volumetric medical segmentation tasks. This section aims to delve deeper into the potential of Mamba and investigate whether its long-term dependency modeling can significantly enhance multi-scale representation learning—a critical aspect of accurate volume segmentation. Multi-scale modeling plays a crucial role in medical image segmentation, where structures vary in size and capturing both fine details and broader anatomical context is essential.

While the pyramid structure captures features at different resolutions, we are further inspired 293 by (Szegedy et al., 2015) to use multiple receptive fields within each resolution feature map to capture details at varying levels. Small receptive fields focus on fine structures like lesions, while 295 larger receptive fields capture broader context, such as organ boundaries and anatomical regions. 296 We design and implement four distinct multi-scale modeling schemes (Fig. 2). These schemes ex-297 plore different strategies for fusing features from multiple receptive fields, leveraging Mamba's and 298 Transformer's long-range dependency modeling capabilities for multi-scale representation learning. 299 Specifically, we replace the whole blocks \mathcal{E}_i and \mathcal{D}_j in Eq. (1) with the following different multi-300 scale ones:

 $\begin{array}{l} \textbf{MSv1} \\ \textbf{MSv1} \\ \textbf{This model combines two parallel convolution layers with different kernel sizes (3 \times 3 \times 3 and 7 \times 7 \times 7) to extract multi-scale features. These features are then processed through either parallel Mamba or Transformer layers. The outputs are integrated via element-wise summation, allowing efficient fusion of local and global information from different receptive fields. \\ \end{array}$

- **MSv3** This scheme extends the multi-scale feature extraction by incorporating an additional convolution layer with a $5 \times 5 \times 5$ kernel, alongside the $3 \times 3 \times 3$ and $7 \times 7 \times 7$ convolutions. The outputs are concatenated and then passed through Mamba or Transformer layers. The inclusion of the intermediate $5 \times 5 \times 5$ convolution provides an additional scale, improving the granularity of multi-scale feature extraction.
- To evaluate the effectiveness of these multi-scale modeling strategies, we systematically replace the
 encoder stages (ES1 to ES4) in both UlikeTrans_SRA and UlikeMamba_3d with the proposed MSv1,
 MSv2, and MSv3 schemes. MSv4, due to its specific design for Mamba, was applied only to the
 UlikeMamba_3d model. This design allows us to directly compare the performance of Mamba and

Figure 2: Four multi-scale modeling schemes for evaluating and comparing the long-range dependency modeling capabilities of Mamba and Transformers for multi-scale representation learning.

Table 2: Segmentation Dice scores (higher is better) and FLOPs (lower is better) of UlikeTrans and UlikeMamba with different multi-scale strategies across three test datasets.

	AMOS	TotalSeg	BraTS	Average	Params (M)	FLOPs (G)
UlikeTrans_SRA	88.00	79.80	90.12	85.97	45.05	64.47
UlikeTrans_SRA with MSv1	88.49 (+0.49)	82.40 (+2.60)	90.21 (+0.09)	87.03 (+1.06)	88.02	139.28
UlikeTrans_SRA with MSv2	88.87 (+0.87)	82.40 (+2.60)	90.43 (+0.31)	87.23 (+1.26)	47.83	116.59
UlikeTrans_SRA with MSv3	88.78 (+0.78)	82.70 (+2.90)	90.31 (+0.19)	87.26 (+1.29)	49.03	135.71
UlikeMamba_3d	89.45	82.60	90.29	87.45	24.30	46.03
UlikeMamba_3d with MSv1	89.43 (-0.02)	83.20 (+0.60)	90.09 (-0.20)	87.57 (+0.12)	55.13	112.50
UlikeMamba_3d with MSv2	89.33 (-0.12)	83.40 (+0.80)	90.52 (+0.23)	87.75 (+0.30)	27.09	98.16
UlikeMamba_3d with MSv3	89.50 (+0.05)	83.70 (+1.10)	90.40 (+0.11)	87.87 (+0.42)	28.29	117.28
UlikeMamba_3d with MSv4	89.48 (+0.03)	84.50 (+1.90)	90.06 (-0.23)	88.01 (+0.56)	31.57	62.23

Transformer layers in the context of multi-scale modeling. By testing Mamba and Transformer in MSv1, MSv2, and MSv3, we can determine which architecture better exploits multi-scale features for long-range dependency modeling. Since MSv4 is specifically designed to leverage Mamba's capabilities, it is used solely to evaluate Mamba's efficiency in handling complex 3D medical data.

5.2 RESULTS AND ANALYSIS

The results of both UlikeTrans_SRA and UlikeMamba_3d architectures, incorporating different multi-scale receptive field modeling schemes, are summarized in Table 2.

Comparison of multi-scale schemes on UlikeTrans_SRA and UlikeMamba_3d Both UlikeTrans_SRA and UlikeMamba_3d show improvements with the application of multi-scale receptive field modeling, but UlikeMamba_3d consistently outperforms UlikeTrans_SRA in terms of segmentation accuracy and computational cost. For example, UlikeMamba_3d with MSv4 achieves the highest average Dice score of 88.01 while maintaining 62.23 GFLOPs, significantly better than the 116.59 GFLOPs required by UlikeTrans_SRA with MSv2 achieving the Dice score of 87.23.

Interestingly, the performance gains from multi-scale strategies are more noticeable in Ulike-Trans_SRA. For instance, UlikeTrans_SRA improves from 85.97 to 87.23 with MSv2, while Ulike-Mamba_3d shows a smaller improvement from 87.45 to 87.75. This may be because Ulike-Trans_SRA has lower initial performance, so it gains more from multi-scale modeling, which helps overcome self-attention's limitations in capturing long-range dependencies in high-resolution data. In contrast, UlikeMamba_3d is already efficient at modeling long-range dependencies through its SSM, which is well-suited for high-resolution volumetric data. As a result, Mamba-based models see relatively smaller gains from multi-scale strategies since they are already effective at capturing fine details and broader context through their long-term sequence modeling.

Task-specific impact The performance improvements for multi-scale schemes are most evident in
the TotalSeg dataset for both UlikeTrans_SRA and UlikeMamba_3d. For instance, UlikeTrans_SRA
improves from 79.80 (baseline) to 82.40 (MSv2), while UlikeMamba_3d improves from 82.60 to
84.50 with MSv4. This is in contrast to smaller gains observed on AMOS and BraTS. The TotalSeg
dataset with a larger-scale data size requires the segmentation of 117 anatomical classes, making it
much more complex than AMOS (with 15 organs) and BraTS (focused on three brain tumor subregions). The presence of a wide range of structures in TotalSeg—varying in size from fine tissues to

Figure 3: UlikeMamba_3d with different sequential scanning strategies.

large anatomical structures—makes multi-scale feature extraction particularly important. The ability
 to capture both fine-grained and large-scale structures is crucial, and this is where the integration of
 multi-scale receptive fields brings significant performance improvements. In contrast, AMOS and
 BraTS deal with fewer segmentation classes, where a single receptive field might suffice for most
 features, resulting in more modest performance gains.

Strength of MSv4 Our proposed MSv4, specifically designed for Mamba, optimizes multi-scale feature extraction in 3D medical data. It delivers the best overall performance across datasets while maintaining lower computational costs. With MSv4, UlikeMamba_3d achieves the highest Dice score on TotalSeg (84.50) and remains competitive on AMOS and BraTS, all with fewer FLOPs than other multi-scale schemes. MSv4's design excels by fully leveraging Mamba's SSM for efficient long-range dependency modeling, integrating multi-scale features with minimal overhead, making it ideal for complex volumetric segmentation tasks.

- 6 ANALYSIS 3: MULTI-SCAN STRATEGY VS SINGLE-SCAN STRATEGY
- 6.1 EXPERIMENTAL DESIGNS

391 392

405 406

407 408

409

Mamba's core mechanism, particularly its parallelized selective scan operation, was originally designed for one-dimensional sequential data processing. This introduces potential challenges when
adapting it to visual data, where spatial components are not inherently sequential. To address this,
Vision Mamba (Zhu et al., 2024) and Vmamba (Liu et al., 2024b) propose multi-way scanning mechanisms tailored to preserve spatial coherence in vision tasks. The goal here is to assess whether these
complex scanning strategies are needed or if simpler approaches suffice for volumetric medical image segmentation, where maintaining spatial relationships between voxels is critical for accuracy.

417 To investigate, we conducted experiments using the same backbone architecture UlikeMamba_3d 418 but varied the scanning mechanism to evaluate its effect on segmentation performance. In other words, we consider different scanning strategies for UlikeMamba_3d by modifying it in h of Eq. (1) 419 only. We implemented the following scanning strategies, as shown in Fig. 3: Single-scan (Gu & 420 Dao, 2023), proposed in vanilla Mamba, processes 3D features by flattening the volumetric features 421 and scanning them sequentially along a single axis, typically in the forward direction. **Dual-scan** 422 (forward + backward), proposed in Vision Mamba (Zhu et al., 2024), processes 3D input by scan-423 ning twice along the same axis—once in the forward direction and once in the backward direction. 424 The features from both scans are then merged, allowing the model to incorporate information from 425 both directions along the chosen axis. This method maintains the same backbone structure but intro-426 duces bidirectional data flow in Mamba layers to capture more comprehensive spatial information. 427 Dual-scan (forward + random) is a new approach that combines a standard forward scan with an 428 additional scan in a random order. This method introduces variation in the scanning sequence to cap-429 ture a broader range of spatial relationships, while still preserving the overall sequential structure. The features from forward and random scans are merged to create a more diverse feature represen-430 tation of the volumetric input. Tri-scan, inspired by Vmamba (Liu et al., 2024b) and adapted for 431 3D medical volumetric data, scans the input in three directions: left-right, up-down, and front-back.

Table 3: Segmentation Dice scores (higher is better) and FLOPs (lower is better) of UlikeMamba with different sequential modeling scanning strategies across three test datasets.

	AMOS	TotalSeg	BraTS	Average	Params (M)	FLOPs (G)
Single-scan	89.45	82.60	90.29	87.45	24.30	46.03
Dual-scan (forward + backward)	89.74 (+0.29)	83.00 (+0.40)	90.27 (-0.02)	87.67 (+0.22)	25.34	49.56
Dual-scan (forward + random)	89.42 (-0.03)	83.30 (+0.70)	90.08 (-0.21)	87.60 (+0.15)	25.34	49.56
Tri-scan	89.77 (+0.32)	83.60 (+1.00)	90.43 (+0.14)	87.93 (+0.48)	26.38	53.09

Each scan generates a sequence of features along its respective axis. These features are then passed through separate SSM layers for further processing, and the outputs are merged to form a unified representation of the 3D volume.

6.2 RESULTS AND ANALYSIS

Results The experimental results are summarized in Table 3. Across the three datasets (AMOS, 448 TotalSeg, and BraTS), we observe that Tri-scan achieves the highest average Dice score (87.93) but 449 comes at the cost of increased computational complexity, as indicated by its higher parameter count 450 (26.38M) and FLOPs (53.09G). The Dual-scan (forward + backward) approach performs slightly 451 better than Single-scan and Dual-scan (forward + random), with an average Dice score of 87.67 452 and 87.60 respectively. However, the performance gains for dual-scan methods over single-scan are 453 marginal. The Single-scan method, while having the lowest computational requirements (24.30M 454 parameters, 46.03G FLOPs), still delivers competitive performance with an average Dice score of 455 87.45, closely trailing the more complex scanning mechanisms.

456 Analysis The Dual-scan (forward + backward) method aims to help the model capture spatial in-457 formation from both the start and end of the sequence, potentially building a more complete data 458 representation. However, in our task, the improvement over Single-scan is slight probably because 459 3D medical images have strong structural priors, allowing most key spatial relationships to be cap-460 tured effectively by a unidirectional scan. The added backward scan introduces limited sequential 461 diversity, failing to uncover significantly more data patterns. Besides, Mamba's long-range depen-462 dency modeling is already highly effective, further reducing the need for a backward pass. As a 463 result, the additional computational cost of the backward scan brings little benefit, resulting in only slight gains in segmentation accuracy. 464

The Dual-scan (forward + random) method, which introduces a random scan alongside a forward pass, is designed to capture more complex sequential relationships that may not be evident in standard scanning orders. Although randomizing the scanning order can diversify the captured spatial relationships, it also risks compromising the spatial coherence of the data, which could explain why its performance is on par with Dual-scan (forward + backward) rather than exceeding it. This method may identify some complex dependencies but does so at the cost of distorting the structural priors of medical images, which is essential for precise segmentation.

472 Tri-scan obtains the best results, achieving the highest Dice scores across all datasets. Scanning 473 in three directions (left-right, up-down, front-back) effectively mitigates the spatial discontinuity 474 that can arise from sequential scanning, ensuring a more thorough capture of spatial relationships across the 3D volume. This is particularly beneficial for tasks like TotalSeg, where the segmentation 475 involves 117 classes and complex spatial relationships are needed be captured. The improvement 476 in TotalSeg is more pronounced since the complexity of the task, which requires distinguishing 477 between a wide variety of structures, benefits more from a comprehensive multi-directional scan. 478 Despite this, the trade-off is clear—the higher computational cost makes Tri-scan limitations for 479 resource-constrained applications. 480

481

7 COMPARISON WITH ADVANCED BASELINES

482 483

To further validate the correctness of the aforementioned conclusions, we integrate all the validated
 strategies into a unified model and compare its performance against advanced baselines. Specifically, we 1) replace the Transformer with Mamba while modifying the 1D depthwise convolution to 3D

9

432

443

444

445 446

Figure 4: Segmentation Dice scores (higher is better) and FLOPs (lower is better) of Ulike-Mamba_3dMT and against advanced baselines on AMOS and BraTS test sets.

depthwise convolution in the Mamba layer, 2) adopt the multi-scale strategy, *i.e.*, MSv4, and 3)
adopt tri-directional scanning, *i.e.*, Tri-scan, to better capture comprehensive spatial relationships
in 3D volumetric data. We denote this network as UlikeMamba_3dMT. The specific architecture
details can be found in Fig. 6 of Supplementary.

505 The results in Fig. 4 demonstrate the superiority of UlikeMamba_3dMT over other advanced 506 networks on both AMOS and BraTS datasets. UlikeMamba_3dMT achieves the competitive Dice scores (89.95 in AMOS and 90.60 in BraTS) with the lowest computational cost (93.09G 507 FLOPs), outperforming leading the CNN-based network nnUNet (Isensee et al., 2021), Transformer-508 based networks such as CoTr (Xie et al., 2021), UNETR (Hatamizadeh et al., 2022), and Swin-509 UNETR (Hatamizadeh et al., 2021), as well as the existing Mamba-based networks U-Mamba (Ma 510 et al., 2024), which simply integrates Mamba with CNNs. Our UlikeMamba_3dMT integrates 511 Mamba's SSM with 3D depthwise convolutions, the proposed multi-scale modeling, and the de-512 signed Tri-scan strategy, proving highly effective by delivering competitive accuracy (Dice scores) 513 while maintaining computational efficiency. This establishes UlikeMamba_3dMT as a new bench-514 mark in 3D medical image segmentation.

515 516 517

518

498

499 500

8 CONCLUSION AND DISCUSSION

519 In this study, we present a comprehensive exploration of Mamba networks for 3D medical image 520 segmentation, addressing three critical questions: Can Mamba replace Transformers for long-range dependency modeling? Can it improve multi-scale representation learning? Are complex scanning 521 strategies necessary? Our results show that Mamba, with its state space model, not only serves 522 as an effective replacement for Transformers but also offers superior computational efficiency. By 523 modifying the Mamba layer with 3D depthwise convolutions, we address the unique challenges of 524 3D medical imaging, ensuring better preservation of volumetric spatial coherence and achieving 525 high segmentation accuracy. We further demonstrate the power of Mamba in enhancing multi-526 scale representation learning by introducing MSv4, a multi-scale modeling strategy that captures 527 both fine-grained details and global context. This capability is particularly important in complex 528 segmentation tasks like those presented in segmenting 117 anatomical structures, where multiple 529 anatomical structures of varying sizes must be accurately delineated. Besides, our study critically 530 evaluates the necessity of complex scanning strategies. While simpler approaches like single-scan 531 generally suffice, the Tri-scan approach significantly improves performance in the most challenging cases by better capturing comprehensive spatial relationships across all dimensions of 3D data. 532

The UlikeMamba_3dMT network, which integrates all these validated strategies—3D depthwise
convolutions, multi-scale modeling, and Tri-scan—establishes a new benchmark for 3D medical
image segmentation. It consistently outperforms advanced models such as nnUNet, CoTr, UNETR,
SwinUNETR, and U-Mamba, achieving competitive Dice scores with reduced computational complexity. These findings underscore the potential of Mamba-based architectures to push the boundaries of volumetric medical image segmentation, offering both greater accuracy and computational
efficiency. Future research should explore further optimizations, *e.g.*, adaptive multi-scan mechanisms, to extend Mamba's applicability across a wider range of medical imaging tasks.

540 REFERENCES 541

541	
542	Ujjwal Baid, Satyam Ghodasara, Suyash Mohan, Michel Bilello, Evan Calabrese, Errol Colak, Key-
543	van Farahani, Jayashree Kalpathy-Cramer, Felipe C Kitamura, Sarthak Pati, et al. The rsna-asnr-
544	miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. <i>arXiv</i>
545	preprint arXiv:2107.02314, 2021.
546	François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
547	of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.
548	Albert Gu and Tri Dao, Mambay Linear time sequence modeling with selective state spaces, grViv
549	nreprint arXiv:2312.00752.2023
550	preprint drifter.2512.00752, 2025.
551 552	Jing Hao, Lei He, and Kuo Feng Hung. T-mamba: Frequency-enhanced gated long-range dependency for tooth 3d cbct segmentation. <i>arXiv preprint arXiv:2404.01065</i> , 2024.
553	Ali Hatamizadeh Vishwesh Nath Yucheng Tang Dong Yang Holger R Roth and Daguang Xu
554	Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In
555	International MICCAI brainlesion workshop, pp. 272–284. Springer, 2021.
556	Ali Hatamizadah, Yuchang Tang, Vishwash Noth, Dang Yang, Andriy Myronanka, Bannatt Land
557	man. Holger R Roth, and Daguang Xu. Unetr: Transformers for 3d medical image segmentation.
558	In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 574–
559	584, 2022.
561	Fabian Isansaa Daul F. Jaagar, Simon A.A. Kohl, Jans Datarsan, and Klaus U. Majar Usin, nnu
562	net: a self-configuring method for deen learning-based biomedical image segmentation Nature
563	methods, 18(2):203–211, 2021.
564	
565	Yuanfeng Ji, Haotian Bai, Chongjian Ge, Jie Yang, Ye Zhu, Ruimao Zhang, Zhen Li, Lingyan Zhanng Wanling Ma, Xiang Wan, et al. Amos: A large scale abdominal multi-organ bandbmark
566	for versatile medical image segmentation Advances in neural information processing systems
567	35:36722–36732, 2022.
568	
569	Weibin Liao, Yinghao Zhu, Xinyuan Wang, Cehngwei Pan, Yasha Wang, and Liantao Ma. Lightm-
570	arXiv:2403.05246.2024
571	urxiv.2705.05210, 2021.
572	Jiarun Liu, Hao Yang, Hong-Yu Zhou, Yan Xi, Lequan Yu, Yizhou Yu, Yong Liang, Guangming Shi,
573 574	pretraining. <i>arXiv preprint arXiv:2402.03302</i> , 2024a.
575	Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
576	Yunfan Liu. Vmamba: Visual state space model, 2024b. URL https://arxiv.org/abs/
577	2401.10166.
579	Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. 2018.
580 581	Jun Ma, Feifei Li, and Bo Wang. U-mamba: Enhancing long-range dependency for biomedical
582	image segmentation. arXiv preprint arXiv:2401.04722, 2024.
583	Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
584	cal image segmentation. In International Conference on Medical image computing and computer-
585	assisted intervention, pp. 234–241. Springer, 2015.
586	Jiacheng Ruan and Suncheng Xiang. Vm-unet: Vision mamba unet for medical image segmentation.
587	arXiv preprint arXiv:2402.02491, 2024.
588	Christian Szegedy Wei Liu Yangging Jia Pierre Sermanet Scott Reed Dragomir Anguelov Du-
589	mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
590	Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.
591	Heo Tang Lionglun Chang Cuphang Huang Zhangguang Tan Lunkas Lun and Kalbarg W. Dutat
592	to scan. Unet-like mamba with triplet ssm module for medical image segmentation arYiv preprint
593	arXiv:2403.17701, 2024.

- Jeya Maria Jose Valanarasu, Vishwanath A Sindagi, Ilker Hacihaliloglu, and Vishal M Patel. Kiu net: Overcomplete convolutional architectures for biomedical image and volumetric segmenta tion. *IEEE Transactions on Medical Imaging*, 41(4):965–976, 2021.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, pp. 6000–6010, 2017.
- Jinhong Wang, Jintai Chen, Danny Chen, and Jian Wu. Large window-based mamba unet
 for medical image segmentation: Beyond convolution and self-attention. *arXiv preprint arXiv:2403.07332*, 2024a.
- Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 568–578, 2021.
- Ziyang Wang, Jian-Qing Zheng, Yichi Zhang, Ge Cui, and Lei Li. Mamba-unet: Unet-like pure visual mamba for medical image segmentation. *arXiv preprint arXiv:2402.05079*, 2024b.
- Jakob Wasserthal, Hanns-Christian Breit, Manfred T Meyer, Maurice Pradella, Daniel Hinck,
 Alexander W Sauter, Tobias Heye, Daniel T Boll, Joshy Cyriac, Shan Yang, et al. Totalsegmentator: robust segmentation of 104 anatomic structures in ct images. *Radiology: Artificial Intelligence*, 5(5), 2023.
- Renkai Wu, Yinghao Liu, Pengchen Liang, and Qing Chang. H-vmunet: High-order vision mamba unet for medical image segmentation. *arXiv preprint arXiv:2403.13642*, 2024a.
- Renkai Wu, Yinghao Liu, Pengchen Liang, and Qing Chang. Ultralight vm-unet: Parallel vision mamba significantly reduces parameters for skin lesion segmentation. *arXiv preprint arXiv:2403.20035*, 2024b.
- Jianhao Xie, Ruofan Liao, Ziang Zhang, Sida Yi, Yuesheng Zhu, and Guibo Luo. Promamba:
 Prompt-mamba for polyp segmentation. *arXiv preprint arXiv:2403.13660*, 2024.
- Yutong Xie, Jianpeng Zhang, Chunhua Shen, and Yong Xia. Cotr: Efficiently bridging cnn and trans former for 3d medical image segmentation. In *Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27– October 1, 2021, Proceedings, Part III 24*, pp. 171–180. Springer, 2021.
- ⁶²⁷
 ⁶²⁸
 ⁶²⁹
 ⁶²⁹ Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, and Lei Zhu. Segmamba: Long-range sequential modeling mamba for 3d medical image segmentation. *arXiv preprint arXiv:2401.13560*, 2024.
- Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, and Yong Xia. Uniseg: A prompt-driven universal segmentation model as well as a strong representation learner. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 508–518. Springer, 2023.
- Zi Ye and Tianxiang Chen. P-mamba: Marrying perona malik diffusion with mamba for efficient pe diatric echocardiographic left ventricular segmentation. *arXiv preprint arXiv:2402.08506*, 2024.
- Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao Zhang, Alan L Yuille, and Daguang Xu.
 C2fnas: Coarse-to-fine neural architecture search for 3d medical image segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4126–4135, 2020.
- Jianpeng Zhang, Yutong Xie, Yan Wang, and Yong Xia. Inter-slice context residual learning for 3d
 medical image segmentation. *IEEE Transactions on Medical Imaging*, 2020.
- Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++:
 Redesigning skip connections to exploit multiscale features in image segmentation. *IEEE Transactions on Medical Imaging*, 39(6):1856–1867, 2019.
- Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision mamba: Efficient visual representation learning with bidirectional state space model. In *Forty-first International Conference on Machine Learning*, 2024.

648 A APPENDIX

A.1 IMPLEMENTATION DETAILS

In Table 4, we outline the implementation details for the three datasets, covering aspects such as task
type, imaging modality, loss function, patch size, batch size, optimizer, learning rate, and maximum
iterations. To mitigate overfitting on the training data, we apply online data augmentation techniques, including random rotations, scaling, flipping, the addition of white Gaussian noise, Gaussian
blurring, brightness and contrast adjustments, low-resolution simulation, and Gamma transformation (Isensee et al., 2021).

Table 4: Implementation details for three datasets. Dice: Dice loss; CE: Cross-entropy loss.

Dataset	AMOS	TotalSegmentator	BraTS
Tasks	15 abdominal organs	117 anatomical structures	3 brain tumors
Modality	3D CT	3D CT	3D MRI (Four modalities)
Loss	Dice+CE	Dice+CE	Dice+CE
Patch size	$64 \times 192 \times 160$	$128 \times 128 \times 128$	$128 \times 128 \times 128$
Online augmentation	\checkmark	\checkmark	\checkmark
Optimizer	AdamW	AdamW	AdamW
Learning rate	0.0001	0.0001	0.0001
Batch size	2	2	2
Max. iterations	250,000	250,000	250,000

A.2 ARCHITECTURES OF ULIKEMAMBA_3D AND ULIKETRANS_SRA

Figure 5 shows the detailed configurations of the UlikeMamba_3d and UlikeTrans_SRA networks.

A.3 OUR PROPOSED MAMBA LAYER IN ULIKEMAMBA_3DMT

Figure 6 shows the details of our proposed Mamba layer in UlikeMamba_3dMT.

	Layer_name	UlikeMamba_3d			Layer_name		UlikeTrans_SRA	Output Size
31	D Conv Downsample	Conv: K=7, C=32, S=(1,2,2)	$D \times \frac{H}{2} \times \frac{W}{2}$		3D Conv Downsample		Conv: K=7, C=32, S=(1,2,2)	$D \times \frac{H}{2} \times \frac{W}{2}$
	3D Conv Downsample	Conv: K=3, C=48, S=2	$\frac{D}{2} \times \frac{H}{4} \times \frac{W}{4}$			3D Conv Downsample	Conv: K=3, C=48, S=2	$\frac{D}{2} \times \frac{H}{4} \times \frac{W}{4}$
ES1	Mamba Layer	$\begin{bmatrix} Linear1: 48 \rightarrow 2 \times 48 \\ Linear2: 48 \rightarrow 2 \times 48 \\ DWConv: K=3 \times 3 \times 3, C=2 \times 48 \\ SSM, C=2 \times 48 \\ Multiplicative \\ Linear3: 2 \times 48 \rightarrow 48 \end{bmatrix} \times 2$	$\frac{D}{2} \times \frac{H}{4} \times \frac{W}{4}$		ES1	Transformer Layer	R = 6 $H = 1 \times 2$ E = 4	$\frac{D}{2} \times \frac{H}{4} \times \frac{W}{4}$
	3D Conv Downsample	Conv: K=3, C=128, S=2	$\frac{D}{4} \times \frac{H}{8} \times \frac{W}{8}$			3D Conv Downsample	Conv: K=3, C=128, S=2	$\frac{D}{4} \times \frac{H}{8} \times \frac{W}{8}$
ES2	Mamba Layer	$\begin{bmatrix} \text{Linear1: } 128 \rightarrow 2 \times 128 \\ \text{Linear2: } 128 \rightarrow 2 \times 128 \\ \text{DWConv: } K=3 \times 3 \times 3, C=2 \times 128 \\ \text{SSM, } C=2 \times 128 \\ \text{Multiplicative} \\ \text{Linear3: } 2 \times 128 \rightarrow 128 \end{bmatrix} \times 3$	$\frac{D}{4} \times \frac{H}{8} \times \frac{W}{8}$	-	ES2	Transformer Layer	$ \begin{array}{l} R=4\\ H=2 \times 3\\ E=4 \end{array} $	$\frac{D}{4} \times \frac{H}{8} \times \frac{W}{8}$
	3D Conv Downsample	Conv: K=3, C=256, S=2	$\frac{D}{8} \times \frac{H}{16} \times \frac{W}{16}$			3D Conv Downsample	Conv: K=3, C=256, S=2	$\frac{D}{8} \times \frac{H}{16} \times \frac{W}{16}$
ES3	Mamba Layer	Linear1: 256 → 2×256 Linear2: 256 → 2×256 DWConv: K=3×3×3, C=2×256 SSM, C=2×256 Multiplicative Linear3: 2×256 → 256	$\frac{D}{8} \times \frac{H}{16} \times \frac{W}{16}$	-	ES3	Transformer Layer	R = 2 $H = 4 \times 4$ E = 4	$\frac{D}{8} \times \frac{H}{16} \times \frac{W}{16}$
	3D Conv Downsample	Conv: K=3, C=512, S=2	$\frac{D}{16} \times \frac{H}{32} \times \frac{W}{32}$			3D Conv Downsample	Conv: K=3, C=512, S=2	$\frac{D}{16} \times \frac{H}{32} \times \frac{W}{32}$
ES4	Mamba Layer	$\begin{bmatrix} \text{Linear1: } 512 \rightarrow 2\times512 \\ \text{Linear2: } 512 \rightarrow 2\times512 \\ \text{DWConv: } K=3\times3\times3, \text{C=}2\times512 \\ \text{SSM, C=}2\times512 \\ \text{Multiplicative} \\ \text{Linear3: } 2\times512 \rightarrow 512 \end{bmatrix} \times 3$	$\frac{D}{16} \times \frac{H}{32} \times \frac{W}{32}$	-	ES4	Transformer Layer	R = 1 $H = 8 \times 3$ E = 4	$\frac{D}{16} \times \frac{H}{32} \times \frac{W}{32}$
	3D Conv Upsample	TransposeConv: K=2, C=256, S=2	$\frac{D}{8} \times \frac{H}{16} \times \frac{W}{16}$			3D Conv Upsample	TransposeConv: K=2, C=256, S=2	$\frac{D}{8} \times \frac{H}{16} \times \frac{W}{16}$
DS1	Mamba Layer	$\begin{bmatrix} \text{Linear1: } 256 \rightarrow 2\times 256 \\ \text{Linear2: } 256 \rightarrow 2\times 256 \\ \text{DWConv: } K=3\times 3\times 3, \ C=2\times 256 \\ \text{SSM, } C=2\times 256 \\ \text{Multiplicative} \\ \text{Linear3: } 2\times 256 \rightarrow 256 \end{bmatrix} \times 3$	$\frac{D}{8} \times \frac{H}{16} \times \frac{W}{16}$	-	DS1	Transformer Layer	R = 2 $H = 8 \times 3$ E = 4	$\frac{D}{8} \times \frac{H}{16} \times \frac{W}{16}$
	3D Conv Upsample	TransposeConv: K=2, C=128, S=2	$\frac{D}{4} \times \frac{H}{8} \times \frac{W}{8}$			3D Conv Upsample	TransposeConv: K=2, C=128, S=2	$\frac{D}{4} \times \frac{H}{8} \times \frac{W}{8}$
DS2	Mamba Layer	$\begin{bmatrix} Linear1: 128 \rightarrow 2 \times 128 \\ Linear2: 128 \rightarrow 2 \times 128 \\ DWConv: K=3 \times 3 \times 3, C=2 \times 128 \\ SSM, C=2 \times 128 \\ Multiplicative \\ Linear3: 2 \times 128 \rightarrow 128 \end{bmatrix} \times 4$	$\frac{D}{4} \times \frac{H}{8} \times \frac{W}{8}$		DS2	Transformer Layer	R = 4 $H = 4 \times 4$ E = 4	$\frac{D}{4} \times \frac{H}{8} \times \frac{W}{8}$
	3D Conv Upsample	TransposeConv: K=2, C=48, S=2	$\frac{D}{2} \times \frac{H}{4} \times \frac{W}{4}$			3D Conv Upsample	TransposeConv: K=2, C=48, S=2	$\frac{D}{2} \times \frac{H}{4} \times \frac{W}{4}$
DS3	Mamba Layer	$\begin{bmatrix} Linear1: 48 \rightarrow 2 \times 48 \\ Linear2: 48 \rightarrow 2 \times 48 \\ DWConv: K=3 \times 33, C=2 \times 48 \\ SSM, C=2 \times 48 \\ Multiplicative \\ Linear3: 2 \times 48 \rightarrow 48 \end{bmatrix} \times 3$	$\frac{D}{2} \times \frac{H}{4} \times \frac{W}{4}$	-	DS3	Transformer Layer	R = 6 $H = 2 \times 3$ E = 4	$\frac{D}{2} \times \frac{H}{4} \times \frac{W}{4}$
	3D Conv Upsample	TransposeConv: K=2, C=32, S=2	$D \times \frac{H}{2} \times \frac{W}{2}$		3D	Conv Upsample	TransposeConv: K=2, C=32, S=2	$D \times \frac{H}{2} \times \frac{W}{2}$
:	Segmentation Head	Conv: K=3, C=32, S=1 Upsample: S=(1,2,2) Conv: K=1, C=Num classes, S=1	D×H×W		Segmentation Head		Conv: K=3, C=32, S=1 Upsample: S=(1,2,2) Conv: K=1, C=Num classes, S=1	D×H×W

Figure 5: Left: detailed configurations of UlikeMamba_3d network. Here, 'K': kernel size of Conv, DWConv or TransposeConv; 'C': number of channels; and 'S': stride. Right: Detailed configura-tions of UlikeTrans_SRA network. Here, 'R': reduction ratio of SRA; 'H': head number of SRA; and 'E': expansion ratio of FFN.

metric data.