Minitron-SSM: Efficient Hybrid Language Model Compression through Group-Aware SSM Pruning

Ali Taghibakhshi; Sharath Turuvekere Sreenivas; Saurav Muralidharan*
Marcin Chochowski; Yashaswi Karnati; Raviraj Joshi, Ameya Sunil Mahabaleshwarkar
Zijia Chen, Yoshi Suhara, Oluwatobi Olabiyi, Daniel Korzekwa
Mostofa Patwary, Mohammad Shoeybi, Jan Kautz, Bryan Catanzaro
Ashwath Aithal, Nima Tajbakhsh, Pavlo Molchanov

NVIDIA

{ataghibakhsh, sharatht, sauravm, mchochowski, ykarnati, ravirajj, ameyasunilm, zijiac, ysuhara, oolabiyi, dkorzekwa, mpatwary, mshoeybi, jkautz, bcatanzaro, aaithal, ntajbakhsh, pmolchanov}@nvidia.com

Abstract

Hybrid language models that combine Attention and State Space Models (SSMs) have been shown to achieve state-of-the-art accuracy and runtime performance. Recent work has also demonstrated that applying pruning and distillation to Attention-only models yields smaller, more accurate models at a fraction of the training cost. In this work, we explore the effectiveness of compressing Hybrid architectures. To this end, we introduce a novel group-aware pruning method for Mamba layers that preserves the structural integrity of SSM blocks and their sequence modeling capabilities. We combine this method with FFN, embedding dimension, and layer pruning, along with knowledge distillation-based retraining to obtain a unified compression recipe for hybrid models. Using this recipe, we compress the Nemotron-H 8B Hybrid model down to 4B parameters with up to $40\times$ fewer training tokens compared to similarly-sized models. The resulting model surpasses the accuracy of similarly-sized models while achieving $\sim 2\times$ faster inference throughput, significantly advancing the Pareto frontier.

1 Introduction

Recent advances in language modeling have led to the development of hybrid architectures that combine Transformer layers [25] with State Space Models (SSMs) [11, 7]. These hybrid models leverage the complementary strengths of both approaches: Transformers excel at capturing global dependencies through self-attention mechanisms, while SSMs provide efficient sequence processing with O(N) scaling during training and O(1) cache size during inference. Mamba [11, 7] in particular is a popular SSM designed for efficient sequence modeling with linear-time complexity and support for long contexts and is often the preferred choice for non-attention layers in hybrid architectures.

^{*}Equal contribution.

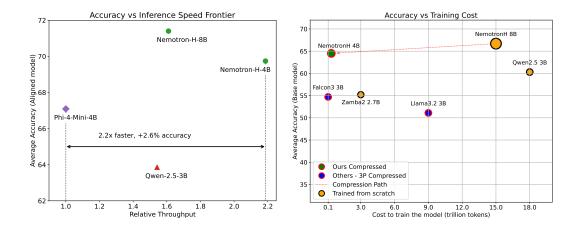


Figure 1: Comparison of NEMOTRON-H 4B model accuracy w.r.t. inference throughput (left), and training budget for the base model (right) to similarly-sized community models. Inference throughput is measured at an input and output sequence length of 65536 and 1024, respectively.

However, despite their improved efficiency, many hybrid LLMs remain incredibly large, often spanning billions of parameters - this motivates the need for efficiently creating smaller hybrid models suitable for deployment in resource-constrained environments.

Model pruning—the removal of redundant parameters while preserving accuracy—has recently emerged as a promising approach for compressing LLMs. In particular, methods that combine structured pruning (i.e., pruning of entire parameter blocks such as neurons, attention heads, etc.) with knowledge distillation [13] have proven effective at simultaneously reducing model memory footprint while improving runtime performance and accuracy [20].

While pruning techniques have been extensively studied for Transformer architectures [20, 4, 24], their application to hybrid models remains significantly underexplored. Indeed, the optimization of SSMs is an active area of research, with various methods being explored, including post-training quantization [6].

Regarding pruning specifically, some early work on Mamba and SSMs includes Mamba-Shredder [19], which removes the entire state space module from the Mamba layers, leaving only linear projections and a convolution layer. In a concurrent study, Ghattas et al. [9] propose a method for pruning Mamba architectures by focusing on three aspects: state space dimension reduction, Mamba head dimension pruning, and Mamba head merging.

To the best of our knowledge, no existing work on SSM/Mamba pruning presents a holistic compression strategy that simultaneously combines various aspects of SSM pruning with the pruning of other network components such as FFN neurons, embedding channels, and network depth; we believe such an approach is essential for obtaining the best combination of runtime performance and model accuracy. In this paper, we introduce a novel group-aware pruning method for Mamba layers that targets both Mamba heads and head channels. We combine this method with FFN, embedding dimension, and layer pruning to obtain a unified compression recipe for hybrid models that maximizes their accuracy and runtime performance.

This paper makes the following key contributions:

- Introduces a group-aware pruning method for Mamba layers that preserves SSM block structure and sequence modeling capabilities.
- Presents a novel *hybrid pruning recipe* that effectively combines Mamba pruning with the pruning of other network components such as FFN neurons, embedding channels and layers.
- Presents findings on the sensitivity of Mamba block components to pruning, along with accuracy-throughput trade-offs when combined with pruning of other network components.
- Utilizes the proposed hybrid pruning recipe to compress the Nemotron-H 8B model to 4B parameters through pruning and knowledge distillation. As shown in Figure 1, the resulting

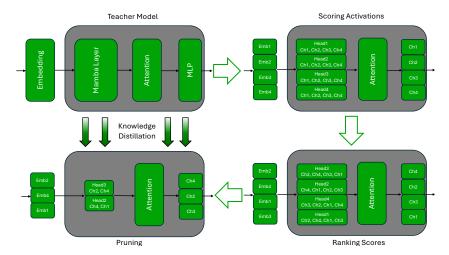


Figure 2: Overview of pruning and distillation for hybrid architectures. Starting from a pretrained LLM, we first evaluate the importance of Mamba heads and channels, FFN neurons, and embedding channels. We then rank them, trim the least important neurons, and distill the knowledge from the original LLM to the pruned model. Attention layers are not pruned since they amount to only 8% of the total number of layers.

model requires up to $40\times$ fewer training tokens compared to others in the same size range. It also achieves state-of-the-art accuracy on benchmarks, and a $\sim 2\times$ speedup in inference throughput compared to similarly-sized models, significantly pushing the Pareto frontier.

2 Pruning & Distillation Methodology

We start the pruning procedure by computing the importance or sensitivity of each network component; namely, Mamba heads and head channels, FFN neurons, embedding channels, and layers. To keep this phase lightweight, we adopt a purely activation-based strategy (requiring only forward propagation passes) for computing importance scores, similar to Minitron [20]. Once scores are computed, we sort the corresponding network components in decreasing order of importance while following any additional implementation constraints (discussed in more detail later in Section 2.1). We then prune away the network components with the lowest scores. Finally, the pruned model is distilled using the teacher model to obtain the final pruned model. The full procedure is illustrated in Figure 2.

2.1 Mamba Pruning

Background - State Space Models (SSMs). SSMs are a class of sequence models that process inputs through hidden states evolving over time [7]. The general form of an SSM is given by:

$$h_t = Ah_{t-1} + Bx_t$$
 (1) $y_t = C^{\top}h_t + Dx_t$ (2)

Here, h_t represents the hidden state, x_t the input, y_t the output, and A, B, C, and D are parameter matrices. The above equations describe linear time-invariant (LTI) SSMs, where the parameters remain constant across timesteps. The Mamba architecture [7] introduced a selective SSM variant with time-varying parameters:

$$h_t = A_t h_{t-1} + B_t x_t$$
 (3) $y_t = C_t^{\top} h_t + D_t x_t$

This selective mechanism allows the model to adapt dynamically to the input sequence, improving performance on complex tasks. Mamba2 [7] builds upon the selective SSM framework and introduces several enhancements to improve efficiency and scalability. It leverages the Structured State Space Duality (SSD), which connects SSMs and attention mechanisms through semi-separable matrix representations. This duality enables Mamba2 to combine the linear efficiency of SSMs with hardware-friendly quadratic computations typical of attention models.

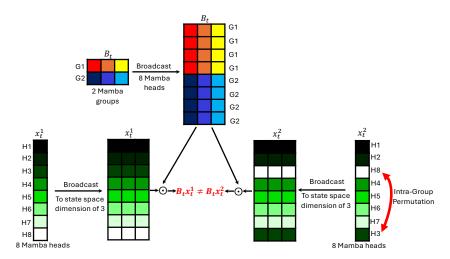


Figure 3: Mamba group structure visualization showing broadcasting and original $B_t x_t$ computation. Colors represent distinct entries. The Figure illustrates how only within-group head permutations can preserve SSM semantics. As a counter example, if H3 and H8 were to be swapped, the resulting $B_t x_t$ would NOT be any permutation of the original (no permutation) $B_t x_t$.

To better understand importance estimation and pruning of Mamba layers, we first dive into the forward pass of a Mamba layer. The Mamba layer processes input through five distinct projection matrices W_z, W_x, W_B, W_C , and W_{d_t} , following layer normalization. Let us denote the input to the Mamba layer as X. Then, these projections generate intermediate matrices $^2z=W_z(\operatorname{LN}(X))$, $x=W_x(\operatorname{LN}(X))$, $B=W_B(\operatorname{LN}(X))$, $C=W_C(\operatorname{LN}(X))$, and $d_t=W_{d_t}(\operatorname{LN}(X))$, which have the following dimensions, respectively; $W_z, W_x \in \mathbb{R}^{d_e \times (m_h \times m_d)}$; $W_B, W_C \in \mathbb{R}^{d_e \times (g \times d_s)}$, and $W_{d_t} \in \mathbb{R}^{d_e \times m_h}$. LN denotes layer normalization, d_e is the model embedding dimension (a.k.a hidden dimension), g is the number of Mamba groups, d_s is the SSM state dimension, m_h is the number of Mamba heads, and m_d is the Mamba head channels. The matrices x, B, and C undergo causal convolution, as in $\hat{x} = \operatorname{conv1d}(x)$, $\hat{B} = \operatorname{conv1d}(B)$, $\hat{C} = \operatorname{conv1d}(C)$. Consequently, the obtained matrices participate in the selective state space model (SSM) updates, $\tilde{y} = \operatorname{SSM}(\hat{x}, \hat{B}, \hat{C}, A, D, d_t)$. Here, $A, D \in \mathbb{R}^{m_h}$ are SSM learnable parameters corresponding to state transition and direct feed through, respectively (see Equations 3 and 4). The SSM output is fed into a gated normalization layer, which is then followed by output projection, $y = W_O(\operatorname{RMSNorm}(\tilde{y}, z))$, where $W_O \in \mathbb{R}^{(m_h \times m_d) \times d_e}$ is the output projection.

Group-Aware Head Permutation Constraints. Pruning requires scoring, sorting, and trimming neurons or heads of each layer, as shown in Figure 2. The FFN and embedding activations are permutation equivariant, i.e. for a permutation operator \mathcal{P} , FFN or embedding layer L, and activation \mathcal{A} , and input X we have $L(X) = \mathcal{A} \Longrightarrow \mathcal{P}(L)(X) = \mathcal{P}(\mathcal{A})$. However, Mamba layers and activations are not permutation equivariant. As shown in Figure 3, the $B_t x_t$ operation from Eq. 3 involves reshaping B into $B \in \mathbb{R}^{g \times d_s}$, and broadcasting it across $x \in \mathbb{R}^{(m_h \times m_d)}$. This broadcasting creates group-specific interaction patterns that constrain our pruning approach. As a result, permuting heads across groups would alter the $B_t x_t$ broadcast pattern, violating Eq. 3's group-wise computation as shown by $B_t x_t \neq (B\mathcal{P}(x_t))\mathcal{P}^T$. Therefore, when sorting Mamba heads using activation scores, we must preserve Mamba's group structure. Let $\mathcal{G}_g \subset \{1,...,m_h\}$ denote the set of heads belonging to group g. Any permutation \mathcal{P} of heads must satisfy $\mathcal{P}(h) \in \mathcal{G}_g \quad \forall h \in \mathcal{G}_g$. In other words, Mamba heads and activations are permutation equivariant only for the aforementioned permutation operators.

Head Channel Consistency. A similar constraint for permuting Mamba head channels applies. For head channel pruning, we maintain consistency across all heads through shared ranking. The state tensor $h \in \mathbb{R}^{m_h \times m_d \times d_s}$ requires channel-wise permutations \mathcal{P}_d to satisfy $\mathcal{P}_d(h_{i,j,k}) = \mathcal{P}_d(h_{i',j,k}) \quad \forall i,i' \in \{1,...,m_h\}$, meaning each channel index k is either preserved or pruned uniformly across all heads.

²We factor out the sequence length and batch size to simplify our description; the analysis remains valid without them.

Scoring and Ranking Methodology. The Mamba head and head channel ranking follows a nested scoring procedure:

- 1. **Head Channel Scoring**: For each head channel $d \in \{1, ..., m_d\}$, we compute aggregate importance scores $s_d = \|\sum_{B,L} s_{:,d}\|_2$ where $s = LN(X)(W_x)^T$, and the aggregation is over L, the sequence length, and B, the batch size. Aggregation metric used along L and B dimensions are mean and L_2 , respectively, following Minitron [20]. $s \in \mathbb{R}^{(m_h \times m_d)}$ contains raw activation scores, and $s_{:,d}$ denotes the d-th column across all heads. We then select the top- k_d channels, $\mathcal{D}_{top} = \sup_{d \in \{1, ..., m_d\}} (s_d, k = k_d)$.
- 2. **Head Scoring**: Using the pruned channels \mathcal{D}_{top} , compute head importance scores, $f_h = \|\mathbf{s}_{h,\mathcal{D}_{top}}\|_2 \quad \forall h \in \{1,...,m_h\}.$
- 3. **Group-Constrained Ranking**: Within each Mamba group \mathcal{G}_g , sort heads by their scores, $\mathcal{R}_g = \underset{h \in \mathcal{G}_g}{\operatorname{argsort}}(f_h)$.

The final head ranking \mathcal{R} is the concatenation of group-wise rankings, $\mathcal{R} = \bigoplus_{g=1}^{G} \mathcal{R}_g[1:k_g]$, where k_g is the target head count per group and \bigoplus denotes ordered concatenation.

The following algorithm provides a concise walkthrough of Mamba head and head channel ranking:

```
Require: Activation scores \mathbf{s} \in \mathbb{R}^{m_h \times m_d}, target channels k_d, target heads per group \{k_g\}_{g=1}^G

Ensure: Head ranking \mathcal{R}, channel ranking \mathcal{D}_{\text{top}}

1: Compute channel scores: s_d \leftarrow \|\mathbf{s}_{:,d}\|_2 \ \forall d

2: \mathcal{D}_{\text{top}} \leftarrow \text{top-}k_d indices of \{s_d\}

3: Compute head scores: f_h \leftarrow \|\mathbf{s}_{h,\mathcal{D}_{\text{top}}}\|_2 \ \forall h

4: for g \leftarrow 1 to G do

5: \mathcal{R}_g \leftarrow \text{argsort-descending}(\{f_h \mid h \in \mathcal{G}_g\})

6: \mathcal{R}_g^{\text{sel}} \leftarrow \text{first } k_g \text{ elements of } \mathcal{R}_g

7: end for

8: \mathcal{R} \leftarrow \bigoplus_{g=1}^G \mathcal{R}_g^{\text{sel}}
```

After obtaining the Mamba heads and head channel neurons to keep, we trim the corresponding matrices, $W \leftarrow W[\mathcal{R}]$, for $W \in \{W_x, W_z, W_O, W_A, W_D, W_{d_t}, \text{conv1d}\}$.

2.2 Pruning FFN, Embedding, and Depth

Similar to the Minitron approach for structured pruning of Transformers [20], we examine the activations produced by the FFN and LayerNorm layers to determine which neurons and embedding channels contribute least to the model's performance. Formally, for the i-th neuron in a feed-forward layer, we compute its importance score as: $F_{\text{neuron}}^{(i)} = \sum_{B,L} X(W_1^i)^T$, where W_1^i refers to the i-th row of the weight matrix W_1 in the first linear projection of the FFN, X is the input to the FFN layer, and $\sum_{B,L}$ denotes aggregation along the batch and sequence dimensions. Similarly, for the i-th embedding channel, we compute: $F_{\text{emb}}^{(i)} = \sum_{B,L} \text{LN}(X)_i$ where $\text{LN}(X)_i$ represents the i-th dimension of the layer-normalized input. The embedding channel scores are computed across all layers that utilize the embedding channel, including FFN, Mamba and Attention projection layers, and LayerNorm components. We use mean and L2-norm aggregation along B and B dimensions, respectively. After computing these scores, we sort them in descending order and keep the top-k neurons and embedding channels based on the target compression ratio, pruning those with the lowest importance scores.

Depth Pruning. We analyze layer importance using Kullback-Leibler divergence (KLD) between logits from a model with a specific layer removed and the full model. This importance estimation is averaged over a small random subset of 256 samples to account for sample variability. The layer(s) with lowest importance scores are subsequently removed. We provide a detailed analysis of importance distribution for the Nemotron-H 8B model in Section A.2.

FLAP Importance. FLAP [2] is a retraining-free structured pruning technique designed to measure the recoverability of a model's output feature map upon removing specific columns from weight

matrices. While we explored FLAP as an alternative importance metric, we observed that it didn't offer any clear advantage over activation-based importance (see Section A.1 for more details).

2.3 Architecture Search

Our compression strategy explores multiple axes within the 4B parameter budget through combinatorial pruning. Our search space includes depth reduction (removing 4-26 layers from the original 52-layer architecture) combined with width pruning of embedding channels (3072-4096), FFN dimension (9984-21504), Mamba heads (64-128), and Mamba head channels (32-64). This multi-axis search space includes 125 candidate architectures meeting the parameter constraints.

Our search procedure follows these steps: (1) compute the zero-shot validation loss for all candidates on 1024 calibration samples, (2) select the top K architectures (22 in this paper) with the best loss values and perform lightweight knowledge distillation (KD) on them with 3.8B tokens, using the original 8B model as the teacher, and (3) select the top architecture candidate from step (2), using throughput and latency measurements for breaking ties, and perform extended knowledge distillation with $\sim 380B$ tokens to obtain the final model (see Table 2). We note that step (2) is critical for getting a reliable ranking of architectural candidates, as also noted in prior work [20].

2.4 Accuracy Recovery with Knowledge Distillation (KD)

To recover the accuracy lost due to pruning, the model undergoes continued training. Recent work has demonstrated that distilling knowledge [13] from the original model to the pruned model outperforms conventional fine-tuning [23, 4]; we thus adopt logit-based distillation for continued training, employing forward KL divergence (FKLD) loss exclusively during the accuracy recovery phase, following Minitron [20].

3 Experiments and Results

To identify the optimal compression strategy for hybrid models, we conduct several ablation studies evaluating the impact of pruning different components on accuracy and runtime performance. Our experiments, summarized in Section 3.1, reveal key insights and highlight differences from Transformer-only compression ³. We then describe our main results for the NEMOTRON-H 4B model in Section 3.2.

3.1 Analysis and Ablations

Depth vs Width Pruning. As shown in Table 1, width-only pruning (#1) significantly outperforms depth-only pruning (#24) at a 50% compression ratio (8B to 4B). Notably, a depth-pruned model with 36 layers (#25), despite having \sim 1.4× more parameters performs worse than the least accurate width-only pruned 4B candidate (#23, with 64 Mamba heads), demonstrating the critical role of depth in maintaining accuracy as also observed with Transformer-only models.

Finding 1: Width pruning considerably outperforms depth pruning in terms of accuracy.

Impact on Inference Throughput. Table 1 shows that depth-only pruning (#24) provides the highest inference speedups. Figure 7 (Appendix) presents the correlation between pruning various network components and performance metrics such as throughput, latency, and LM-loss for a fixed 4B parameter count. We notice from the Figure that pruning Mamba components results in faster models compared to pruning FFN and embedding dimensions. Furthermore, we also compare the effects of pruning Mamba heads to pruning head channels in Figure 8 (Appendix); we observe that the former yields better speed improvements than the latter within a given Mamba layer.

Finding 2: Impact on throughput: Depth pruning > Mamba > FFN and Embedding.

³Note that due to space restrictions, we provide most of the Tables/Figures related to ablations in the Appendix.

#	Layers	Emb	FFN	Heads	Head Channel	LM Val Loss	Relative Throughput
1	52	3072	12288	112	64	1.380	1
2	52	3072	10752	128	64	1.380	0.98
3	52	3328	9984	112	64	1.384	1
4	52	3072	12288	112	60	1.388	1.02
5	52	3072	12288	120	56	1.388	1.01
6	52	3072	13056	112	56	1.389	1.04
7	44	3072	14592	128	64	1.393	1.11
8	44	3584	10752	120	64	1.394	1.12
9	52	3072	11520	112	64	1.396	1.02
10	52	3072	13056	96	64	1.396	1.04
11	52	3072	13824	128	48	1.396	1.03
12	52	3072	12288	104	62	1.397	1.03
13	52	3072	13056	104	60	1.397	1.03
14	52	3072	13056	96	62	1.397	1.04
15	52	3072	14592	96	56	1.398	1.05
16	48	3072	12288	128	64	1.398	1.08
17	48	3328	9984	128	64	1.399	1.07
18	52	3072	13824	96	58	1.401	1.05
19	52	3072	11520	128	56	1.402	1.01
20	44	3328	11648	128	64	1.402	1.12
21	48	3072	13824	112	64	1.403	1.09
22	48	3328	11648	112	64	1.403	1.08
23	52	3072	16128	64	64	1.411	1.07
24	26	4096	21504	128	64	1.533	1.31
25*	36	4096	21504	128	64	1.430	1.12
8B parent	52	4096	21504	128	64	-	0.74

Table 1: Model configurations with their corresponding LM validation loss after lightweight KD (sorted in increasing order), and relative inference throughput. Highlighted row shows the best (lowest) loss. All models have $\sim 4B$ parameters, except entries marked with *, which have more.

Impact on Accuracy. Table 1 shows that model depth (#24) is most sensitive to accuracy, followed by Mamba heads (#23), while FFN and embedding dimensions have less impact. Further ablations isolating the pruning of Mamba heads and head channels show that pruning head channels leads to a greater accuracy loss (Figure 8). Given depth pruning's effect on inference speed, we explore a combined pruning strategy, starting with depth-only pruning followed by distillation to assess its limits. As shown in Figure 5, we observe significant accuracy drops on math and coding benchmarks below 44 layers. We then apply width pruning to both the 44- and 48-layer variants to produce corresponding ∼4B-sized models. However, we notice that the best depth-width pruned candidate (#7, 44 layers) still under-performs the width-only model (#1).

Finding 3: Combining depth and width pruning mitigates the degradation seen with depth-only pruning, but still under-performs width-only pruning.

Mamba Layer Scoring. As described in Section 2.1, we choose the activations obtained from the W_x matrix for scoring the Mamba heads and head channels. We can alternatively get Mamba scores by considering the activations obtained from W_z and W_O matrices. Table 7 shows the effect of selecting the Mamba activations from different parts of the Mamba layer. For different configurations, we notice that scoring the activations from W_x output often results in the best LM-loss.

Finding 4: Scoring Mamba heads using activations from the W_x matrix yields the best LM-loss.

Effect of Parameter Choice on Performance Metrics. As described in Section 2.3, we obtain 125 checkpoints that fit the 4B parameter size constraint with different FFN channels, embedding dimensions, m_h (Mamba heads), and m_d (Mamba head channels). For each checkpoint, we evaluate the LM-loss, time to first token, and throughput. To analyze the relationships between model parameters and performance metrics, we compute correlations and visualize them in Figure 7. Additionally, since all 125 models have the same total parameter count (4B), the model parameters exhibit negative correlations with one another. Figure 7 shows that in 4B models derived from Nemotron-H 8B, Mamba components positively correlate with latency and negatively with throughput and LM-loss, indicating that pruning them improves inference speed and slightly degrades accuracy. In contrast, pruning embedding and FFN dimensions improves accuracy (lower LM-loss) but leads to slower models with increased latency and reduced throughput.

Finding 5: Pruning Mamba components improves inference speed but slightly degrades accuracy, while pruning embedding and FFN dimensions improves accuracy but slows down models.

Closer Look at Mamba Pruning. We analyze the sensitivity of pruning two axes in the Mamba layer—Mamba heads (m_h) and Mamba head channels (m_d) —to various metrics, including accuracy, latency, and throughput. In this study, each axis was pruned in isolation while keeping the rest of the network unchanged, preserving the architecture of the Nemotron-H 8B model. The objective was to determine which axis is more favorable for optimization. As shown in Figure 8, pruning Mamba heads (m_h) consistently outperforms pruning Mamba head channels (m_d) across all metrics. Specifically, reducing m_h consistently yields lower LM-loss, reduced latency, and higher throughput, making Mamba heads a particularly impactful and practical target for pruning.

Finding 6: Pruning Mamba heads (m_h) consistently improves both accuracy and speed compared to Mamba head channels (m_d) .

Transformer vs. Hybrid Pruning. The above findings highlight the importance of choosing the right pruning axes in hybrid models to balance accuracy and efficiency. Unlike Transformer-only models where pruning attention heads is less common [20], hybrid architectures can tolerate some head pruning, as seen with candidates #1 and #2 in Table 1. This tolerance may stem from Mamba layers having significantly more heads (128) than self-attention layers (32).

Finding 7: Head pruning is better tolerated in Hybrid architectures compared to Transformer-only.

3.2 Obtaining the Best Compressed Hybrid Model

For our final model, we select the candidate with the lowest LM validation loss in Table 1, which shows our architecture search results after short knowledge distillation. We note that although both candidates #1 and #2 have identical losses, candidate #1 is chosen for extended KD with 380B tokens due to its higher inference throughput, enabled by the reduction in Mamba heads.

Data and Training Hyperparameters. We use a random sample from the Phase 3 data mixture employed for training Nemotron-H models [5] for both importance estimation and knowledge distillation (KD). For importance estimation, we use 1024 samples with a sequence length of 8192. For KD, the batch size is 768, with a sequence length of 8192, a cosine decay learning rate schedule (starting at 1.6e-4 and decaying to 8e-4), with a 60-step linear warmup.

Alignment. We perform Supervised Fine-tuning with Knowledge Distillation (SFT-KD) [22] using the Nemotron-H 8B aligned model as the teacher, along with Reward-aware Preference Optimization (RPO) [1] and NeMo-Aligner [21]. The NEMOTRON-H 4B base model is fine-tuned using supervision from the top-k (100) logits of the teacher over two rounds of SFT-KD: the first round uses math and coding data, while the second round focuses on instruction-following and general chat data. The instruction-tuned model is then further aligned with two rounds of RPO.

Long Context Extension. To extend the context length of the aligned NEMOTRON-H 4B model, we perform SFT using data designed for long-context understanding: this training data is derived by manipulating the general domain chat dataset from the second SFT-KD round during alignment. We concatenate conversation turns and introduce long-range dependencies by placing related turns far apart within the extended context. The context length is varied randomly between 128k and 512k tokens, ensuring the model learns to maintain coherence and understanding across longer sequences, enhancing its ability to process information beyond shorter context windows.

Evaluation Summary. Tables 2 to 5 present accuracy comparisons between our compressed 4B hybrid model, other similar-sized community models, and the parent 8B hybrid model. As shown in Tables, our 4B model retains over 96% of the original 8B model's accuracy, including safety scores on Garak [8] and AEGIS [10], while improving throughput by \sim 1.4x. Compared to other similarly sized community models, it delivers state-of-the-art accuracy across knowledge, math, coding, commonsense reasoning, and reading comprehension tasks, despite being trained on up to \sim 40x fewer tokens. It also achieves \sim 2.2x higher throughput and \sim 1.8x lower latency than the second-best Phi-4-4B model (Figures 1 and 6). The aligned version further leads in math, coding, instruction following, and tool-use tasks. To assess long-context capabilities, we use the RULER

Benchmarks (shots)	Llama-Minitron 4B-Depth-Base*	Llama-Minitron 4B-Width-Base*	Llama-3.2 3B-Base*	Falcon-3 3B-Base*	Zamba-2 2.7B-Base	Qwen-2.5 3B-Base	NEMOTRON-H 4B-Base*	Nemotron-H 8B-Base
ARC Challenge (0)	46.8	49.0	46.5	47.4	51.5	47.3	54.4	60.1
ARC Easy (0)	75.0	76.5	72.0	72.4	79.5	72.7	81.6	83.6
CommonsenseQA (0)	70.9	71.7	66.5	64.4	76.2	77.1	70.2	72.7
GSM8K (8)	19.4	40.4	27.1	66.5	55.0	75.2	69.6	77.9
HellaSwag (0)	69.5	74.0	74.1	65.3	76.6	73.6	77.0	81.2
HumanEval (0, pass@1)	23.2	34.4	26.8	39.6	25.0	37.8	59.8	57.3
HumanEval+ (0, pass@1)	18.9	20.7	24.4	32.3	21.3	33.5	55.5	53.7
MBPP (3, pass@1)	43.2	47.9	42.0	52.1	36.2	59.9	65.0	66.9
MBPP+ (0, pass@1)	39.2	38.4	40.7	40.7	32.8	50.0	61.1	58.7
MMLU (5)	57.8	59.8	56.3	56.7	56.8	65.6	68.1	72.7
OpenbookQA (0)	42.4	44.0	41.4	39.4	46.4	42.2	44.2	47.2
PIQA (0)	75.9	77.5	78.0	75.5	80.4	78.8	79.4	82.2
RACE v.3 (0)	59.6	65.6	66.7	69.7	73.7	84.5	80.9	84.0
Social IQA (0)	46.4	47.8	46.8	45.1	51.8	49.8	45.1	45.8
TruthfulQA MC2 (0)	37.2	41.0	39.3	45.6	45.8	49.0	49.4	49.8
Winogrande (0)	68.8	70.4	69.5	65.0	74.3	68.4	71.3	76.3
Average	49.6	53.1	51.1	54.7	55.2	60.3	64.5	66.7
Tokens	0.1T	0.1T	9T	0.1T	3T	18T	0.38T	15T

Table 2: Accuracy comparison of our NEMOTRON-H 4B with other similarly sized base community models. * indicates compressed models.

Benchmarks (shots)	Phi-4-Mini 4B-Instruct-128k	Qwen-2.5 3B-Instruct-32k	Llama-3.2 3B-Instruct-128k*	Falcon-3 3B-Instruct-32k*	Zamba-2 2.7B-Instruct-4k	NEMOTRON-H 4B-Instruct-128k*	Nemotron-H 8B-Instruct-128k
MMLU (0, generative)	61.88	63.25	57.36	54.27	55.32	66.96	68.7
GSM8K (0)	87.71	83.32	78.47	77.86	66.26	88.93	90.4
MATH-500 (0)	70.8	65.6	48.2	48.80	29.40	76.4	77.6
HumanEval (0, pass@1)	73.17	75.0	55.49	46.34	37.20	76.2	79.3
HumanEval+ (0, pass@1)	64.63	70.12	51.83	43.29	32.93	70.85	74.4
MBPP (0, pass@1)	67.46	67.72	65.61	61.37	46.30	78.6	81
MBPP+ (0, pass@1)	60.31	58.47	55.29	55.03	38.62	68.25	67.7
IFEval Strict (0)	74.78	64.06	74.51	68.49	46.99	76.24	78.6
MT-Bench (0)	7.86	7.68	7.09	7.10	7.02	7.90	7.90
BFCL v2 Live (0)	61.64	59.08	49.58	52.80	39.70	65.88	62.6

Table 3: Accuracy comparison for instruction-tuned models. For IFEval, we report the average of prompt strict and instruction strict categories. For BFCL v2, we report live overall accuracy. For MT-Bench, we use GPT-4-Turbo as the judge. * indicates compressed models.

Context Length	Phi-4-Mini 4B-Instruct-128k	Qwen-2.5 3B-Instruct-32k	Llama-3.2 3B-Instruct-128k*	NEMOTRON-H 4B-Instruct-128k*	Nemotron-H 8B-Instruct-128k
16,384	34.39	83.64	77.92	86.28	91.5
32,768	32.90	79.21	72.71	82.27	89.8
65,536	35.01	63.80	66.42	75.95	87.6
131,072	20.07	23.61	59.26	63.57	81.7

Table 4: Average RULER benchmark scores up to 128k context length for aligned NEMOTRON-H 4B and other instruction-tuned models in a similar size range. * indicates compressed models.

benchmark [15]. As shown in Table 4, our model demonstrates strong performance and achieves the highest scores at context lengths up to 128k tokens. Finally, Figure 6 (Appendix) compares latency and throughput across four models: Phi-4-Mini-4B, Qwen-2.5-3B, Nemotron-H 8B, and NEMOTRON-H 4B (ours). Our model achieves the best performance on both axes—delivering the fastest time-to-first-token and highest throughput—effectively advancing the latency-throughput Pareto frontier. In summary, our compression approach successfully produces a model with state-of-the-art accuracy while significantly improving inference speed and reducing training costs.

4 Related Work

Structured Weight Pruning. Weight pruning is a powerful and well-known technique for reducing model size [20, 26, 14]. In particular, *structured pruning* removes blocks of nonzero elements at once from model weights, making it easier to realize actual hardware speedups; examples of structured pruning techniques include neuron, attention head, convolutional filter, and depth pruning [20, 17, 12, 27, 3, 18, 28, 16]. Recent work [20] has demonstrated that knowledge distillation [13] can be an effective alternative to traditional fine-tuning for post-pruning accuracy recovery.

Hybrid Model Pruning. Recent work on SSM pruning has focused on Mamba architectures: Mamba-Shredder [19] proposes removing the entire state space module from each Mamba layer, leaving only linear projections and convolution components; while effective for model size reduction, this approach can severely impact sequence modeling performance. In parallel, Ghattas et al. [9]

Model	Garak Score	AEGIS Score
Nemotron-H-8B	70.75	99.83
Nemotron-H-4B	67.77	98.17

Table 5: Safety scores before and after compression.

introduce a more granular pruning strategy, targeting state space dimension, Mamba head dimension, and head merging. Unfortunately, this approach has limited scalability, especially for large models requiring tensor parallelism; the proposed head merging also risks per-head information loss.

5 Conclusions

This paper has presented a novel group-aware pruning method for Mamba layers along with a unified *hybrid pruning recipe* that effectively combines Mamba pruning with FFN, embedding dimension and layer pruning. We have applied this unified recipe to the Nemotron-H 8B model to obtain NEMOTRON-H 4B, a compressed hybrid language model that achieves state-of-the-art accuracy and efficiency. Despite a 50% reduction in model size, NEMOTRON-H 4B retains over 96% of the original 8B model's accuracy, while requiring up to 40× fewer training tokens. Notably, our compression method also maintains the model's safety performance. NEMOTRON-H 4B advances the accuracy-efficiency Pareto frontier, achieving ~2× faster inference and 2.6% higher accuracy across a diverse set of tasks.

References

- [1] Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn, Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340b technical report. *arXiv* preprint arXiv:2406.11704, 2024.
- [2] Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured pruning for large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 10865–10873, 2024.
- [3] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman. Slicegpt: Compress large language models by deleting rows and columns. In *The Twelfth International Conference on Learning Representations*, 2023.
- [4] Akhiad Bercovich, Tomer Ronen, Talor Abramovich, Nir Ailon, Nave Assaf, Mohammad Dabbah, Ido Galil, Amnon Geifman, Yonatan Geifman, Izhak Golan, Netanel Haber, Ehud Karpas, Roi Koren, Itay Levy, Pavlo Molchanov, Shahar Mor, Zach Moshe, Najeeb Nabwani, Omri Puny, Ran Rubin, Itamar Schen, Ido Shahaf, Oren Tropp, Omer Ullman Argov, Ran Zilberstein, and Ran El-Yaniv. Puzzle: Distillation-Based NAS for Inference-Optimized LLMs, 2024.
- [5] Aaron Blakeman, Aarti Basant, Abhinav Khattar, Adithya Renduchintala, Akhiad Bercovich, Aleksander Ficek, Alexis Bjorlin, Ali Taghibakhshi, Amala Sanjay Deshmukh, Ameya Sunil Mahabaleshwarkar, et al. Nemotron-h: A family of accurate and efficient hybrid mamba-transformer models. arXiv preprint arXiv:2504.03624, 2025.
- [6] Hung-Yueh Chiang, Zhen-Hao Liu, Chien-Yu Wang, Tsung-Han Chen, Ting-An Wei, Wei-Chen Liu, Chih-Cheng Liu, Yu-Ching Chuang, Jhih-Cing Wei, Y.-C. F. Wang, and Wei-Chao Chang. Quamba2: A robust and scalable post-training quantization framework for selective state space models. arXiv preprint arXiv:2405.15077, 2024.
- [7] Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through structured state space duality. *arXiv* preprint arXiv:2405.21060, 2024.
- [8] Leon Derczynski, Erick Galinkin, Jeffrey Martin, Subho Majumdar, and Nanna Inie. garak: A framework for security probing large language models, 2024.
- [9] Tamer Ghattas, Michael Hassid, and Roy Schwartz. On pruning state-space llms. arXiv preprint arXiv:2502.18886, 2025.
- [10] Shaona Ghosh, Prasoon Varshney, Erick Galinkin, and Christopher Parisien. Aegis: Online adaptive ai content safety moderation with ensemble of llm experts, 2024.

- [11] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv preprint* arXiv:2312.00752, 2023.
- [12] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating deep convolutional neural networks. *arXiv preprint arXiv:1808.06866*, 2018.
- [13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. *arXiv* preprint arXiv:1503.02531, 2015.
- [14] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. *arXiv preprint arXiv:2102.00554*, 2021.
- [15] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language models?, 2024.
- [16] Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and Hyoung-Kyu Song. Shortened LLaMA: A simple depth pruning for large language models. In ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation Models, 2024.
- [17] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network compression. In *Proceedings of the IEEE international conference on computer vision*, pages 5058–5066, 2017.
- [18] Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng Chen. ShortGPT: Layers in Large Language Models are More Redundant Than You Expect, 2024.
- [19] J Pablo Muñoz, Jinjie Yuan, and Nilesh Jain. Mamba-shedder: Post-transformer compression for efficient selective structured state space models. *arXiv preprint arXiv:2501.17088*, 2025.
- [20] Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact language models via pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.
- [21] Gerald Shen, Zhilin Wang, Olivier Delalleau, Jiaqi Zeng, Yi Dong, Daniel Egert, Shengyang Sun, Jimmy Zhang, Sahil Jain, Ali Taghibakhshi, Markel Sanz Ausin, Ashwath Aithal, and Oleksii Kuchaiev. Nemo-aligner: Scalable toolkit for efficient model alignment, 2024.
- [22] Anna Shors, Sharath Sreenivas, Shengyang Sun, and Terry Kong. Data-efficient knowledge distillation for supervised fine-tuning with nvidia nemo aligner. https://developer.nvidia.com/blog/data-efficient-knowledge-distillation-for-supervised-fine-tuning-with-nvidia-nemo-aligner/, May 2024.
- [23] Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Ameya Sunil Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe Diao, Chenhan Yu, Wei-Chun Chen, Hayley Ross, Oluwatobi Olabiyi, Ashwath Aithal, Oleksii Kuchaiev, Daniel Korzekwa, Pavlo Molchanov, Mostofa Patwary, Mohammad Shoeybi, Jan Kautz, and Bryan Catanzaro. LLM Pruning and Distillation in Practice: The Minitron Approach, 2024.
- [24] Shengkun Tang, Oliver Sieberling, Eldar Kurtic, Zhiqiang Shen, and Dan Alistarh. Darwinlm: Evolutionary structured pruning of large language models. arXiv preprint arXiv:2502.07780, 2025.
- [25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.
- [26] Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai, and Xiaofei He. Model compression and efficient inference for large language models: A survey. arXiv preprint arXiv:2402.09748, 2024.
- [27] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model pre-training via structured pruning. In *The Twelfth International Conference on Learning Representations*, 2023
- [28] Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse. arXiv preprint arXiv:2402.11187, 2024.

A Technical Appendices and Supplementary Material

A.1 FLAP Importance for Hybrid Models

FLAP [2] is a retraining-free structured pruning technique designed to measure the recoverability of a model's output feature map upon removing specific columns from weight matrices. FLAP quantifies the "fluctuation" of each input feature relative to a baseline using calibration data. Specifically, the FLAP importance score for a column is computed as the product of the squared norm of the column weights and the sample variance of the corresponding input features across calibration samples.

We extend FLAP to the SSM layers in hybrid architectures by applying the metric to the activations serving as inputs to the output projection (W_O) . Here, we compute the FLAP importance by assessing the variance in activations input to the W_O , weighted by the squared norms of the respective columns of the W_O . Mathematically, the extended FLAP importance metric for a given column j of weight matrix W in SSM layers can be defined as:

$$S_i = ||W_i||^2 \cdot \operatorname{Var}(X_i)$$

where $||W_j||^2$ denotes the squared norm of the column weights and $Var(X_j)$ represents the variance of the activations input to the output projection matrix of SSM layer across calibration samples.

We use the above-computed metric to rank different heads within each group and remove the corresponding rows in the input projection matrix, the corresponding channels in the SSM convolution kernel, corresponding rows in the A and D matrices of SSM, as well as trimming the corresponding columns in the output projection matrix.

Results. Table 6 shows that FLAP-based importance estimation yields mixed results before lightweight KD across pruning strategies. After KD, it performs on par with the L2-based approach when applied to candidate #1; it doesn't seem to offer any clear advantage, however.

Pruning Type	Configuration	L2 LM Loss	FLAP LM Loss
Baseline	No pruning	1.168	1.168
	FFN = 16384	1.364	1.32
FFN	FFN = 11568	1.803	1.64
	FFN = 8192	2.281	1.95
Attention	ATT Heads = 16	1.282	1.40
	Mamba Heads = 112	1.305	1.73
Mamba (SSM)	Mamba Heads $= 96$	2.150	4.59
	Mamba Heads $= 64$	9.040	11.21
Mixed	#1	3.690	5.854
Mixeu	#1 + Lightweight KD	1.380	1.380

Table 6: LM loss comparison when pruning different model components using L2 and FLAP metrics. Baseline: 128 Mamba heads, 21,504 FFN size, 32 attention heads.

A.2 Depth Pruning

Figure 4 shows the average importance scores for each layer in the Nemotron-H 8B Base model, with green, blue, and red dotted lines representing self-attention, FFN, and Mamba layers. As seen in previous work [5], the most important layers are concentrated at the model's start and end. Interestingly, the first attention layer is among the least important, while other attention layers are more critical than neighboring layers. A "saw-like" pattern emerges where MLP layers are more important than adjacent Mamba layers in the middle of the network, though this reverses in the model's critical regions.

We experimented by pruning the least important layers (4, 8, 12, 16, and 26 layers), followed by distillation with 126B tokens. While core-knowledge benchmarks remained largely unaffected, tasks like math and coding showed significant performance degradation (Figure 5).

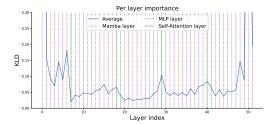


Figure 4: Layer importance measured as the KLD between logits of the full model and a model with that layer removed, averaged over a small training subset. Vertical dotted lines indicate layer types: self-attention (green), FFN (blue), and Mamba2 (red).

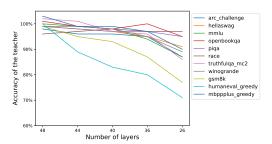


Figure 5: Accuracy drop relative to the 8B model across progressively depth-only pruned variants (48, 44, 40, 36, and 26 layers). Each model is directly pruned from the 8B and distilled using 126B tokens.

A.3 Mamba Scoring

FFN	Embedding Dim	Mamba		LM-Loss		ss
		Heads	Head Channels	W_x	W_z	W_O
12,288	3,072	112	64	3.56	4.11	3.79
13,056	3,072	112	56	3.59	6.61	5.30
13,056	3,072	96	64	4.49	5.39	4.49
14,592	3,072	96	56	4.68	7.09	10.01
12,288	3,072	128	56	5.98	5.43	4.99
13,824	3,072	128	48	5.99	6.01	9.47

Table 7: Mamba scoring ablation. The zero-shot LM-loss for top 6 pruned models based on Mamba scores calculated from activations of W_x , W_z , and W_O . The W_x activations result in the best zero-shot LM-loss in most of the cases.

A.4 Throughput and Latency Comparisons

Figure 6 compares the throughput and latency of NEMOTRON-H 4B to Phi-4 Mini 4B, Qwen-2.5 3B and Nemotron-H 8B.

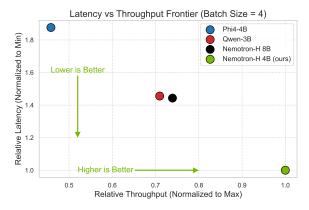


Figure 6: Throughput and latency comparisons across four models: Phi-4-Mini-4B, Qwen-2.5-3B, Nemotron-H 8B, and NEMOTRON-H 4B (ours). Relative throughput and latency represents are measured for an input and output context length of 65536 and 1024, respectively.

A.5 Model Parameter Correlations

This section details the relationships between different model components for our 4B variants, illustrating the hyperparameter trade-offs required to maintain a fixed parameter budget (Figure 7).

Furthermore, we present an ablation study justifying our choice to optimize Mamba heads (m_h) over head channels (m_d) , as m_h pruning yields superior results across all metrics (Figure 8).

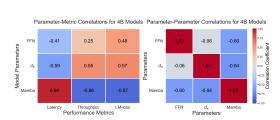


Figure 7: **Left:** Correlation matrix showing relationships between performance metrics and model components—FFN, embedding dimension (d_e) , and Mamba parameters (varying both heads m_h and head dimension m_d)—across 125 4B variants with fixed depth (52 layers). **Right:** Model parameter correlations for a fixed 4B parameter budget—highlighting trade-offs where increasing one component reduces others.

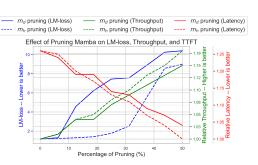


Figure 8: Impact of pruning Mamba heads (m_h) versus Mamba head channels (m_d) in isolation, with the rest of the network unchanged. Pruning m_h consistently outperforms m_d pruning across LM loss, latency, and throughput—establishing it as the preferred target for optimization.

A.6 Generalizability to Mamba2

To evaluate the generalizability of our compression strategy to other models, we apply it to the Mamba2 1.3B model [7]. We prune the model to 780M parameters via SSM and embedding pruning, and then subsequently train the pruned model on 10.5B tokens. We compare our pruned 780M model to the Mamba2 780M and 1.3B models trained from scratch on 300B tokens [7].

As shown in Table 8, our compressed 780M model, despite being trained on significantly fewer tokens (10.5B vs. 300B), outperforms the 780M model trained from scratch and achieves an average score comparable to the original 1.3B model. These results provide further insights into the generalizability of our compression method.

Table 8: Comparison of our compressed Mamba2 780M model against Mamba2 780M and 1.3B models trained from scratch [7]. Despite being trained on significantly fewer tokens (10.5B vs. 300B), our compressed model achieves a better average score than the 780M baseline.

Benchmark	Mamba2 780M	Mamba2 1.3B	Compressed 780M
arc_challenge	28.6	33.2	34.2
arc_easy	54.7	60.6	60.4
commonsense_qa	19.6	20.9	26.4
hellaswag	54.7	59.9	50.4
openbookqa	36.4	37.0	34.2
piqa	72.1	73.5	71.3
race	21.8	24.8	32.5
social_iqa	41.0	42.9	41.1
truthfulqa_mc2	38.1	36.1	38.9
winogrande	58.0	60.1	57.7
Avg	42.5	44.9	44.7
Tokens	300B	300B	10.5B

A.7 Compute Resources

All experiments were performed on 16-32 \times NVIDIA DGX H100 nodes (8 \times H100 80GB) for short turnaround times.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Experimental results provided in Section 3.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5 states the limitation of this work.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical proofs or results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide relevant information for reproducing our results in Section 3.2 and the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We intend to release the model weights and code pending internal review.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Provided in Section 3.2

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Training LLMs is extremely expensive; we are therefore unable to perform multiple runs.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Detailed in Section A.7.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: Generic algorithm for optimizing LLM training.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: No such release artifacts.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Assets are properly credited.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: No new assets released.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Does not involve crowdsourcing or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Does not involve crowdsourcing or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is not used for the core methodology, scientific rigorousness, or originality of the research.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.