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ABSTRACT

Language models often show little to no improvement (i.e., “saturation”) when
trained via vanilla supervised fine-tuning (SFT) on data similar to what they saw in
their training set (e.g., MATH). We introduce a new fine-tuning strategy, STAT, to
train such a student model by using the metacognition ability of a stronger large
language model (LLM) as the teacher. The teacher uses the task dataset to create a
list of skills needed for the task, and then labels each data point with its required
skills (Didolkar et al., 2024). By monitoring the student’s answers, the teacher
creates a Missing-Skill-Profile for the student, tracking how often they failed
to apply each skill in their responses. We use this idea to build a modified training
set in one of two ways. In STAT-Sel, the teacher uses an existing set of training ex-
amples but adaptively reweights them according to the Missing-Skill-Profile.
In STAT-Syn, the teacher synthesizes additional examples involving missing skills.
Across extensive experiments on Llama and Qwen models, our methods yield
improvements of up to 7.5% on MATH, whereas SFT provides only limited gains.
Furthermore, STAT enhances performance on out-of-distribution benchmarks (e.g.,
AIME24/25, AMC23, etc.) by an average of 4.6%. Crucially, we find that STAT is
complementary to RL via GRPO (Shao et al., 2024): after the model is improved
using STAT to address skill gaps, GRPO continues to add further gains. We con-
clude that skill-targeted adaptive training should broadly improve current training
pipelines.

Models MATH MATHD MATH2 GSM8K AMC23 MATH-perturb AIME Avg.
simple hard 2024 2025

Llama-3.2-3B-Instruct 44.0 18.2 21.9 73.0 21.7 33.7 12.2 33.3 16.7 30.5
+SFT 44.8 22.9 21.0 75.1 20.8 33.0 12.2 30.0 20.0 31.1
+GRPO 45.4 24.4 23.3 77.4 25.8 38.4 11.8 33.3 6.7 31.8

STAT-Sel 51.5 26.6 25.7 80.2 24.7 39.8 13.3 43.3 23.3 36.5
STAT-Syn 50.2 31.7 26.2 79.2 23.9 39.1 14.7 40.0 30.0 37.2

Table 1: STAT significantly enhances the performance of Llama-3.2-3B-Instruct on various math benchmarks by
targeting its missing skills in solving MATH. See Table 3 for full evaluation results.

1 INTRODUCTION

Language models have demonstrated remarkable success at acquiring knowledge from large-scale
natural text corpora through the next-token prediction objective (Shannon, 1951). Subsequent
supervised fine-tuning on curated data using the same objective then leads to strong performance
on domain-specific tasks such as mathematics. However, this process is often inefficient and data
hungry (Kaplan et al., 2020; Muennighoff et al., 2023; Zhang et al., 2024a; Villalobos et al., 2024),
with models quickly reaching a saturation point for a fixed dataset whereby further training does
not help performance. Several works have suggested that this saturation happens because the loss is
an average over data points, causing the training signal to diminish as the model becomes adept at
most of the training examples (Chen et al., 2023; Xie et al., 2023a; Lin et al., 2024; Tong et al., 2024;
Jiang et al., 2024; Xue et al., 2025; Zhang et al., 2025). In addition, there is a mismatch between the
“average” next-token prediction loss used during training and the auto-regressive generation process
used to evaluate performance. As a result, the average loss may fail to capture the specific generation
errors that remain in a saturated model (Arora et al., 2022; Fang et al., 2024).
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Figure 1: STAT is a three-stage skill-based data selection/generation method for supervised fine-
tuning (SFT). Stage 1: Identify difficult questions for each model using reward filtering on model
responses. Stage 2: Use frontier LLMs to analyze the model responses and build a model-specific
Missing-Skill-Profile. Stage 3: Use a pre-constructed Skill-Map to map the missing skill
distribution to a training question distribution, which constitutes the STAT-Sel data. STAT-Syn
synthesizes new questions using frontier LLMs targeted to the missing skills.

To tackle this saturation, prior works have shown that adapting the training data distribution can boost
performance on inference-time tasks. The key idea is to focus the next-token prediction loss on an
adapted set of examples targeted towards good generation (Xia et al., 2024; Yu et al., 2024b; Lin
et al., 2024). This is primarily done by using embeddings or gradient-based estimates to pick training
examples most relevant to reducing loss on a reference validation set. While these methods show
benefits, they remain anchored to validation-set loss, which is only a coarse proxy for a model’s actual
generation errors. In fact, our experiments reveal that embedding-based methods, which adapt training
data by measuring similarity to validation questions the model fails on, can be ineffective (Section 3.2)
on saturated models that have undergone extensive post-training, e.g., Llama-instruct models.

We propose to address the saturation problem by drawing inspiration from pedagogical prac-
tices rooted in cognitive science, which customize training to specially target the student’s skill-
deficiencies (Bandura & Walters, 1977; Hattie & Timperley, 2007).

How can we effectively use today’s strong teacher models to design better training
strategies to help small models overcome their saturation?

We turn to a growing line of research in LLM meta-cognition (Didolkar et al., 2024; Kaur et al.,
2024), which leverages the predictive abilities of frontier LLMs to reason about the high-level skills
required to solve a given task, as well as the skills actually being used in the student’s answer. Thus,
in principle, frontier LLMs can act as the teacher who guides the training process of the student
model, actively monitoring the student’s competence on individual skills and adjusting their training
examples.

Informal description of data design: Our pipeline starts with a list of relevant skills for the problem
created via teacher metacognition (Didolkar et al., 2024), and adds three stages. First, we use the
teacher to evaluate the student model on a small validation set of questions and use a reward model to
identify the questions that are difficult for the student. Second, we create a Missing-Skill-Profile
by using the teacher to check the missing skills in the model responses. Our first method STAT-Sel
simply up-weights training examples using the Missing-Skill-Profile; in effect, this guides
the student to focus on their deficiencies. Our second (more expensive) method STAT-Syn uses
the teacher to generate synthetic training data using in-context examples from the validation set
associated with a list of deficient skills in Missing-Skill-Profile.

Key findings: Applying STAT-Sel and STAT-Syn teaching on Llama and Qwen models with the
popular MATH (Hendrycks et al., 2021) data shows the following:
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1. Substantial in-distribution gains: STAT achieves improvement on MATH by up to 7.5%,
whereas naive fine-tuning yields negligible gains. Previous embedding-based data selection
strategies that adapt to the student’s validation errors are found ineffective (Section 3.2).

2. Strong out-of-distribution (OOD) generalization: Improvements in difficult and OOD
benchmarks such as AIME24/25 and AMC23 highlight the general utility of skill-targeted
training (Section 3.2).

3. Adaptivity to evolving tasks: Extending the previous observation, we show that STAT-Sel
and STAT-Syn can be continually adapted to new, harder evaluation settings, i.e., new
validation set, while still leveraging the same training set (Section 3.3).

4. Supplementary benefits over reinforcement-learning (RL): We show that STAT followed
by RL improves upon RL-only training, such as GRPO (Shah et al., 2024) (Section 3.2).
This suggests that STAT is likely to prove relevant to most training pipelines today.

We conduct extensive ablations to pinpoint the success of our proposed methods. A fine-grained
skill-level analysis reveals that even when models have been extensively trained on MATH, they
struggle on basic operation skills such as basic algebra (Section 4). By explicitly targeting these
basic skills, our methods reduce such errors and improve generation performance, including on
out-of-distribution tasks. In contrast, alternative approaches such as embedding-based methods
often underperform, as they do not explicitly address these skill gaps (Figure 2). Thus, our findings
demonstrate the robustness and broad applicability of skill-aware targeted training.

2 STAT: ADAPTING TRAINING TO MODEL’S MISSING SKILLS

Let Q be the set of test-set questions, out of which we use a subset Qval as validation data and
Qtest

= Q\Qval as evaluation data. We also have access to a set of training questions P , which has
been utilized to train the student model during its pre-training or post-training phase, and naively
fine-tuning the model on P offers little to no improvement. In our experiments, we use the test and
training dataset from MATH, denoted as Q and P respectively. We aim to build a targeted training
dataset Ptargeted to train the model further.

Our work builds on using metacognitive abilities of frontier models from Didolkar et al. (2024),
which we describe here. While hard to define precisely, a skill is informally defined as a basic
computation necessary to solve a task at hand. For example, necessary skills to solve arithmetic tasks
could be addition, subtraction, multiplication and division. We will use S, a set of skills that are
necessary to solve questions in Q and P . These skills are enlisted from a large model like GPT-4o
using an appropriate prompting strategy (Didolkar et al., 2024; Kaur et al., 2024). Then, we create
Skill-Map∶ S → P to be a map from a skill to the set of training questions that require applying the
skill, which we will also get by prompting the same LLM (Achiam et al., 2023). We use the skill set
S and the Skill-Map from Didolkar et al. (2024).

To develop STAT-Sel and STAT-Syn, we first identify difficult questions for the student model on a
validation set by analyzing its own responses. For these questions, we then use the teacher model to
infer the skills that are missing from the student’s reasoning. A skill-targeted training set is constructed
by emphasizing examples corresponding to these missing skills, either via up-weighting samples or
synthesizing new ones. Unless otherwise specified, all of our experiments use GPT-4o-mini as the
teacher model.

2.1 STAGE 1: DETECTION OF difficult QUESTIONS VIA REWARD FILTERING.

In this stage, we will label a question q ∈ Q as difficult or not for the student model. We could
simply define difficult questions as the set of questions that the model gets wrong after evaluation.
However, this requires access to the ground truth labels. Instead, to make our technique more broadly
applicable, we use a reward model to classify the responses of the student model. The reward model
need not be a perfect reward model; we give more ablations in Section E.1. Given a question q, we
use a reward model to score the response of the student model.

Reward filtering. As we primarily focus on math datasets, we assume that the model’s response is
composed of t steps for a question q and contains the answer in its final step. We will use the reward

3
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model to output reward scores for each step. For simplicity, we will refer to the scores of the reward
model as {rq,1,⋯, rq,t}. Then, we use thresholds τ1, τ2 to filter out difficult questions for the student
model. We will refer to the threshold filtering function as R ∶ Q → {0, 1}.

R(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (if) rq,t ≤ τ1 (final step has low reward)

(or)
1
t

t

∑
i=1

rq,i ≤ τ1 (average low reward across all steps)

(or) ∃i < t s.t. rq,i ≤ τ2 (low reward at any step)
1, otherwise,

(1)

Identifying difficult questions. We define Qdifficult as a model-specific subset of the MATH dataset,
consisting of questions with low-reward model responses R.

To avoid training directly on the test data, we use two splits of Qdifficult as validation and test sets:

• Qval
difficult: Difficult questions in the validation set, given by Qdifficult ∩Qval, are used to label

missing skills in Stage 2.

• Qtest
difficult: Difficult questions in the test set, given by Qdifficult ∩Qtest, are used for MATHD

evaluation in Table 3.

2.2 STAGE 2: CONSTRUCTING MODEL-SPECIFIC Missing-Skill-Profile.

For each difficult question q in Qval
difficult, we use a frontier LLM (GPT-4o-mini) to predict the set of

skills in S that are missing in the model’s responses. We call this map Missing-Skill-Profile∶
Qval

difficult → S. This map will be used to build STAT-Sel and STAT-Syn. See Section 4 for examples
and an extensive analysis of Missing-Skill-Profile across models, and Section C.3 for prompts.

2.3 STAGE 3: SELECTING OR SYNTHESIZING SKILL-BASED TRAINING DATA.

In this stage, we construct our skill-targeted training dataset, Ptargeted.

STAT-Sel. We create this set by directly sampling questions from the training dataset P according
to the skills listed in the Missing-Skill-Profile. Specifically, for each question q ∈ Qval

difficult, we
examine Missing-Skill-Profile(q) and, for every skill it contains, sample multiple questions
from P that are linked to the same skill via the Skill-Map. Consequently, the frequency with which
a skill contributes to the selection process is proportional to the number of questions associated with
that skill in the Missing-Skill-Profile.

STAT-Syn. We generate new synthetic questions using the teacher model. For each question
q ∈ Qval

difficult, we examine Missing-Skill-Profile(q). For each skill it contains, we randomly
sample 3 questions from P that are linked to the same skill via the Skill-Map, and ask the teacher
model to create new questions and responses by referring to the sampled questions. We keep only
those questions where the teacher model is consistent across at least 2 of its responses, and keep only
those question-answer pairs in our training set. Detailed procedures are given in Section B.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. All training data for STAT and the baselines are either selected or synthesized from the
MATH dataset (7.5k train / 5k test) (Hendrycks et al., 2021). In addition to the original solutions
provided in the dataset, we also collect three alternative versions of each answer by prompting
the teacher model to re-write them three times. We further report performance of STAT and each
baseline after continuing training with GRPO (Shao et al., 2024) on the same MATH training set.
We randomly split the MATH test set into 1k validation and 4k test subsets, with both MATH and
MATHD evaluations drawn from the 4k test split. See Section 2.1 for design details.

4
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Method # Unique # QA Synthetic Training Data DescriptionQuestions Pairs Data

MATH-Train
(Hendrycks et al., 2021)

7.5k 7.5k ✗ MATH original training set.

MATH-Augment
(TIGER-Lab, 2024)

7.5k 9.5k ✗
Augmented MATH training set with multiple teacher-rewritten
solutions per question.

MATH-Hard
(Sun et al., 2024) 3k 9.5k ✗ Subset of MATH-Augment with Level 4–5 MATH questions.

Embed-Sel
(Li et al., 2025) 4k 9.5k ✗

Reweighted set of MATH-Augment via upweighting training
questions similar to the difficult questions in embedding space.

Embed-Syn
(Jung et al., 2025) 4k 9.5k ✓

Synthetic MATH-level QAs generated by the teacher, using
training examples from Embed-Sel as references.

STAT-Sel
(Ours)

4k 9.5k ✗
Reweighted set of MATH-Augment via upweighting training
questions related to model’s missing skills in solving the difficult
questions.

STAT-Syn
(Ours)

4k 9.5k ✓
Synthetic MATH-level QAs generated by the teacher, with train-
ing examples from STAT-Sel and their associated skills as refer-
ences.

Table 2: Comparison of training data construction methods. We attach details of data construction
procedure in Section C.2.

We also evaluate our method on extensive OOD benchmarks including GSM8K (Cobbe et al., 2021),
MATH2 (Shah et al., 2024), MATH-perturb (Huang et al., 2025), AMC23 (AI-MO, 2025), and
AIME2024/2025 (HuggingFaceH4, n.d.; HuggingFaceH5, n.d.).

Model & Training Configuration. We focus on smaller models as a testbed, as their performance
remains noticeably weaker on MATH. We employ GPT-4o-mini as the teacher model, and apply
STAT on student models Llama-3.2-3B-Instruct, Llama-3.2-1B-Instruct (Meta AI, 2024), and
Qwen2.5-3B (Qwen et al., 2025), and evaluate under 0-shot settings. We fine-tune models for 3
epochs, with learning rate chosen separately for each method among {5e-6, 1e-5, 5e-5} based on
accuracy on MATH. We provide detailed hyperparameters in Section C.1, ablations on threshold
sensitivity in Section E.1, and a discussion of teacher model variants in Section E.3.

Baselines. We compare skill-aware training against several baselines. We begin with MATH-Train,
where the model simply trains on the original MATH responses, and MATH-Augment, which
substitutes the responses with teacher re-written answers. We also compare against MATH-Hard,
restricting training to only Level 4–5 questions. Finally, to test whether skills really matter in
STAT-Sel and STAT-Syn, we swap them out for an embedding-based approach1, selecting training
questions by their similarity to difficult validation questions from Stage 1. Please find a summary in
Table 2. We have attached detailed data creation procedure in Section C.2 and prompts in Section C.3.

3.2 EVALUATION RESULTS

We present results for Llama-3.2-3B-Instruct and Qwen2.5-3B in Table 3 and for Llama-3.2-1B-
Instruct in Table 7, Section D. We refer to each untrained model as ‘Base Model’. Our findings can
be summarized as follows.

Naive SFT provides little to no benefit. Both MATH-Train and MATH-Augment yield at most
a 1–2% gain over the base model, showing that naive SFT offers negligible improvements. It is
worth noting that we have systematically tuned hyper-parameters for naive SFT (details attached in
Section C.1). In fact, we observe that Qwen2.5-3B can even degrade under MATH-Train. Restricting
supervision to only the most difficult MATH questions (Levels 4–5) also fails to produce meaningful
gains. A natural idea is then to adapt training toward the model’s mistakes by selecting training
questions semantically close to difficult validation examples. Using embedding similarity, Embed-Sel
achieves only marginal over MATH-Train and MATH-Augment. Synthetic augmentation via
Embed-Syn provides a small additional boost, but the overall gains remain modest.

1We use Alibaba-NLP/gte-Qwen2-7B-instruct (Li et al., 2023)

5
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Methods MATH MATHD MATH2 GSM8K AMC23 MATH-perturb AIME Avg.
simple hard 2024 2025

Llama-3.2-3B-Instruct + SFT
Base Model 44.0 18.2 21.9 73.0 21.7 33.7 12.2 33.3 16.7 30.5
MATH-Train 44.8 22.9 21.0 75.1 20.8 33.0 12.2 30.0 20.0 31.1
MATH-Augment 45.2 23.9 23.8 77.8 23.8 35.1 12.5 30.0 13.3 31.7
MATH-Hard 45.6 24.9 23.3 78.2 21.6 38.0 11.8 30.0 26.7 33.3
Embed-Sel 46.0 26.5 20.5 76.6 21.6 36.2 14.7 36.7 16.7 32.8
Embed-Syn 48.8 27.3 19.5 78.4 22.7 36.9 13.3 26.7 23.3 33.0
STAT-Sel 51.5 26.6 25.7 80.2 24.7 39.8 13.3 43.3 23.3 36.5
STAT-Syn 50.2 31.7 26.2 79.2 23.9 39.1 14.7 40.0 30.0 37.2

+ GRPO
Base Model 45.4 24.4 23.3 77.4 25.8 38.4 11.8 33.3 3.3 31.8
MATH-Train 46.4 28.4 28.6 80.7 29.7 37.6 12.5 36.7 10.0 34.5
MATH-Augment 47.4 31.6 28.6 81.4 30.6 37.6 14.0 36.7 33.3 37.9
MATH-Hard 49.4 33.2 28.6 80.3 31.3 39.1 15.4 43.3 13.3 37.1
Embed-Sel 50.4 37.5 23.8 80.5 32.0 38.0 16.8 36.7 20.0 38.8
Embed-Syn 49.7 37.8 19.5 80.6 33.9 39.1 16.8 36.7 23.3 38.6
STAT-Sel 52.2 35.0 32.4 81.8 34.2 42.7 17.6 43.3 26.7 40.7
STAT-Syn 51.0 39.1 29.0 82.0 31.9 43.0 15.8 46.7 33.3 41.3

Qwen2.5-3B + SFT
Base model 55.8 45.3 34.8 80.9 26.4 43.7 24.0 23.3 20.0 39.4
MATH-Train 50.0 44.2 32.9 80.1 33.6 42.3 23.3 26.7 26.7 40.0
MATH-Augment 56.6 45.6 37.1 80.4 33.0 40.9 21.9 16.7 26.7 39.9
MATH-Hard 56.7 45.6 31.4 79.8 33.6 43.7 23.7 30.0 16.7 40.1
Embed-Sel 57.5 46.4 34.3 80.4 33.6 43.7 21.9 30.0 26.7 41.6
Embed-Syn 56.4 47.4 34.3 80.4 35.2 43.7 24.0 26.7 26.7 41.6
STAT-Sel 58.4 47.6 39.5 82.3 35.5 45.9 24.0 33.3 30.0 44.1
STAT-Syn 59.4 49.2 40.5 81.3 34.4 44.8 25.1 36.7 30.0 44.6

+ GRPO
Base model 61.6 49.8 41.0 85.1 37.7 49.8 25.8 33.3 30.0 46.0
MATH-Train 61.6 51.1 34.8 84.8 36.9 51.6 26.5 33.3 30.0 45.6
MATH-Augment 61.0 48.2 40.5 84.0 36.3 48.7 26.2 36.7 26.7 45.4
MATH-Hard 59.0 51.1 35.7 84.2 37.7 49.8 26.5 33.3 23.3 44.5
Embed-Sel 59.7 48.9 41.0 84.3 38.4 46.6 25.8 26.7 36.7 45.3
Embed-Syn 61.4 52.3 40.0 83.7 38.8 47.7 28.0 26.7 30.0 45.4
STAT-Sel 62.8 52.1 44.8 84.8 38.8 48.7 30.1 36.7 33.3 48.0
STAT-Syn 61.8 52.4 41.9 85.6 39.2 50.9 26.9 40.0 36.7 48.4

Table 3: Improvements on various math benchmarks from applying STAT. Results under ‘+SFT’ show the
performance of SFT models trained with each method, while ‘+GRPO’ shows the performance after applying
GRPO on top of the corresponding SFT models. Our methods, STAT-Sel and STAT-Syn, achieve an average gain
of up to 6.7% over the base model, with strong OOD performances (AMC23 results reported on average@64,
AIME on pass@64). Applying GRPO on top of fine-tuning with STAT further enhances these improvements by
∼4%. Full results are provided for Llama-3.2-1B-Instruct in Table 7, Section D.

Skill-targeted adaptive training shows substantial improvements. STAT achieves average gains
of up to 6.7% on Llama-3.2-3B-Instruct, 5.2% on Qwen2.5-3B, and 3.4% on Llama-3.2-1B-Instruct,
over the performance of base model. On closer analysis on MATHD test set of questions, we show that
STAT-Syn substantially improves the performance of the model on difficult questions, compared to
STAT-Sel, which leads to improved performance overall for Llama-3.2-1B-Instruct and Qwen2.5-3B.

Benefits extend beyond MATH. On out-of-distribution benchmarks, we observe consistent improve-
ments across 7 datasets, ranging from simpler problems in GSM8K to challenging competition sets
such as AIME. Specifically, STAT-Sel and STAT-Syn improve averaged OOD performances by 5.3%

and 5.8% respectively, with STAT-Syn generally excelling on harder tasks such as AIME and MATHD.
This demonstrates that targeting skills generalizes extensively beyond the source training set.

Compatibility with GRPO. A natural concern is whether our methods can work well with RL-based
methods such as GRPO, which typically follows SFT (Dubey et al., 2024; Guo et al., 2025). For both
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Figure 2: Comparison among the Top 10 frequent skills present in STAT-Sel, Embed-Sel, and MATH-Train
questions selected on Llama-3.2-1B-Instruct. The skills emphasized in both baselines, MATH-Train and Embed-
Sel, align poorly with the actual Top 10 missing skills of the model (i.e., skills in STAT-Sel).

Llama and Qwen, improvements from SFT on STAT have carried over to subsequent GRPO, yielding
average gains of up to 9.5% over GRPO on base model. Surprisingly, on Llama-3.2-1B-Instruct
and Llama-3.2-3B-Instruct, where GRPO alone does not work well (improving ≤2.4%), SFT alone
on STAT already produced better results than GRPO, and adding GRPO on top further boosts
performance by ∼4%.

3.3 CONTINUAL LEARNING ON CHALLENGING BENCHMARKS
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Figure 3: Continual learning results
on MATH-perturb-hard. Further fine-
tuning STAT models based on their
missing skills on unseen data yields a
3–4% gain (STAT-ConSel/ConSyn).

As our earlier results show, STAT already generalizes strongly
to a wide range of OOD tasks while using only MATH data for
training. But in practice, models often face evaluation settings
that grow harder over time. A natural question then is: can we
continue adapting the model to these tougher benchmarks while
still using similar questions as MATH?

For our case study, we consider MATH-perturb-hard. We report
performance for two model variants of Llama-3.2-3B-Instruct.
STAT-ConSel takes a model trained with STAT-Sel, and trains
further with a data creation pipeline identical to STAT-Sel, but
with Missing-Skill-Profile built on validation questions
from MATH-perturb-hard. STAT-ConSyn builds on STAT-Syn
model with the same idea. In both cases, the evaluation bench-
mark only gives the skill profile, and the training examples still come from MATH.

As shown in Figure 3, STAT-Sel and STAT-Syn trained models show only 1–2% improvement on
MATH-perturb-hard over the base model performance, which reflects the difficulty of this benchmark.
However, continual trained models show a larger gain of 3–4%. This shows that our framework can
be readily adapted to unseen test-time datasets by constructing Missing-Skill-Profile directly on
them, while still using MATH training data. Thus, skill-aware training provides a flexible solution to
adapt the models with more challenging evaluations while still relying on existing training datasets.

4 WHY SKILL-TARGETED TRAINING WORKS

In this section, we dig into the effectiveness of our proposed skill-aware targeted training. We conduct
all the ablations and analyses on Llama-3.2-1B-Instruct due to limited computational resources. First,
we present the Missing-Skill-Profile across all models. We then show that STAT improves the
student’s performance uniformly across these skills. Finally, we show that the baseline strategies are
ineffective because of misalignment in the skill distribution in their proposed training data and the
missing skills.

Models struggle with basic skills. First, we closely examine the Missing-Skill-Profile across
different models, obtained at the end of Stage 2 (Section 2.2). We present the Top 10 frequently
missing skills for each model according to their Missing-Skill-Profile in Figure 2 (Left) and
Figure 6 (appendix D). The key observations are:
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Figure 4: Trained model performances (Left) and performance gain over base model (Right) on Top
10 frequent missing skills, across training strategies on Llama-3.2-1B-Instruct. Accuracies on the left
plot are normalized per skill axis for better visualization. Our approaches STAT-Syn and STAT-Sel
are most effective in enhancing model performance across nearly all the skills.

• Algebra-centric skills appear at the top, e.g., manipulating equations, handling expressions,
and solving linear forms. This suggests that even though both Llama and Qwen models achieve high
performance on MATH, they systematically struggle with operation computations.

• Most missing skills are shared across models, e.g., equation-solving skills and basic arithmetic
operations are missing in different model families (Llama and Qwen) and sizes (1B and 3B). However,
smaller models show more frequent weaknesses in basic computational skills like arithmetic.

STAT effectively addresses models’ frequent missing skills: We take Llama-3.2-1B-Instruct as
a case study to examine how different training strategies impact performance across skills. From its
Missing-Skill-Profile, we select the 10 most frequently missing skills and build corresponding
evaluation sets, each containing questions annotated via the Skill-Map. We then measure both
absolute performance and performance gains under each method.

As shown in Figure 4 (Left), STAT consistently outperform all baselines across all 10 skills, whereas
baseline models can even fall behind the base model on skills such as Algebraic Manipulation and
Modular Arithmetic. Figure 4 (Right) provides a quantitative breakdown, showing that STAT can
deliver over 10% accuracy gains on 5 skills, with the largest improvements on basic skills like
Calculation Conversion, Algebraic Expression, and Combinatoric Expressions. Notably, STAT also
brings clear improvements on knowledge-intensive skills such as Number Theory and Combinatorics.

Misalignment between baseline training data and missing skills. To investigate the reason behind
the ineffectiveness of our baseline strategies, we adopt a skill-based evaluation by comparing the skill
distribution of their training data with the model’s missing skills in the Missing-Skill-Profile.
Figure 2 highlights a clear misalignment between the model’s actual missing skills (STAT-Sel) and
the baselines: Neither MATH-Train nor Embed-Sel targeted the basic algebraic skills the model
struggles with, even though Embed-Sel selects data directly via embedding similarity to difficult
questions. They prioritize more advanced and conceptual areas such as polynomials, prime number
theory, and trigonometric or matrix operations. We provide concrete question examples in Section D.3
to illustrate the distinct emphasis of each skill.

Comparing STAT to GRPO. One of our interesting findings in Section 3.2 was that STAT could
outperform GRPO training on Llama instruct models. Here, we compare these two approaches
from a skill-based perspective. As shown in Figure 4 (Right), although GRPO on Llama-3.2-1B-
Instruct also yields positive gains across nearly all the top skills, the overall effect remains less
pronounced compared to STAT. A possible reason is that GRPO provides only coarse feedback to
the model by contrasting correct and incorrect responses, whereas skill-targeted training pinpoints
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model weaknesses in a fine-grained way. In light of this, one future direction is to develop a GRPO
variant that incorporates skill-based feedback into the reward.

Case study on synthetic data. To understand why our training samples are skill-targeted, we conduct
a case study of the training data.

Original Question (on Ellipse Properties)

Let F1 and F2 be the foci of the ellipse kx
2 + y

2
= 1, where k > 1

is a constant. Suppose that there is a circle which passes through F1

and F2 and which lies tangent to the ellipse at two points on the x-axis.
Compute k.

Model Response & Missing Skill (on Solving Equations)

We can rewrite this equation in the standard form of an ellipse: x
2

12
+

y
2

(1/
√
k)2 = 1. We can see that the length of the semi-horizontal axis is

1 and the semi-vertical axis is 1√
k

. (Correct ✓)
......
Therefore, we have

√
k−1√
k

=
1√
k

. Simplifying this equation, we

get:
√

1
k
− 1 =

√
1
k
− 1. This equation is true for all values of k.

Therefore, the value of k is not uniquely determined by the given
conditions. (Incorrect ✗ , Missing skill: Solving Equations)

Embed-Syn Question
(on Ellipse Properties)

The ellipse x
2

9
+ y

2

4
= 1 has foci

located along one of the coordi-
nate axes. What is the distance
between the foci?

STAT-Syn Question
(on Solving Equations)

Solve for x > 0:

1√
x + 4

= 2.

Figure 5: Comparison between synthesized questions
from Embed-Syn and STAT-Syn.

Here we compare STAT-Syn with Embed-Syn,
as their data are both created with a spe-
cific focus (e.g., embedding-based similarity or
missing-skill targeting).

In this example (see Figure 5), the original ques-
tion centers on ellipse geometry; the model han-
dles this part well, but showed a gap in the fi-
nal equation-solving step. The new question in
Embed-Syn, though highly relevant, captures
only the main topic (Ellipse Properties) through
embedding similarity. By contrast, STAT-Syn
leverages the missing-skill information (Solving
Equations) and generates a targeted question to
practice it.

This case study demonstrates that semantic simi-
larity, as captured by embedding-based methods,
is not always the right approach. Skill-targeted
adaptive training provides a direct way to con-
stantly improve the model.

5 DISCUSSION

Related Works: We provide a more detailed discussion of related works in Section A. Broadly,
prior approaches can be grouped into three directions. First, several skill-aware algorithms improve
language models either by designing more targeted inference-time instructions or by generating
synthetic data to instill new skills (Kaur et al., 2024; Gandhi et al., 2025; Didolkar et al., 2024). In
contrast, our method adapts training data toward skills that the model continues to struggle with, even
after having been extensively trained.

Second, performance-aware adaptation methods adjust training data to improve efficiency and
performance (Xia et al., 2024; Yu et al., 2024b; Xie et al., 2023b). However, these techniques largely
focus on minimizing validation loss on a target set, which is only an indirect proxy for generation-time
errors. Some attempts to remove dependence on explicit validation sets instead optimize implicit
properties such as embedding or gradient diversity (Jung et al., 2025; Wang et al., 2024; Yu et al.,
2024a; Ni et al., 2024). By contrast, our approach explicitly targets the model’s generation mistakes
through a metacognitive framework.

Finally, while existing works have shown effectiveness of teacher-in-the-loop training (Zhou & Ai,
2024; Gu et al., 2024; Zhang et al., 2024b; Wang et al., 2023; Zhou et al., 2023; Xu et al., 2024),
where a teacher provides repeated feedback to student through logits or targeted generations, our
skill-aware targeted training provides an effective and cheaper way to adapt student with the teacher.

Conclusion: We investigate whether targeted skill-based training can improve language models
when naive re-training yields little benefit. Using a frontier LLM to analyze responses, we construct
a skill profile and selectively re-train on relevant examples, achieving significant gains on both in-
and out-of-distribution tasks. Ablations show that models often fail on basic skills like algebraic
computations, and STAT efficiently addresses such gaps with carefully adapting training data.

Our work points to two promising directions for future research. First, since the general skill feedback
identified by a frontier LLM can effectively guide student training, it would be valuable to investigate
whether these skills correspond to specific mechanistic circuits within the model. Second, while our
focus has been on mathematical datasets, exploring whether STAT can also improve dimensions such
as safety and interpretability presents an interesting avenue for further study.
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6 ETHICS STATEMENT

All authors of this work have read and agree to abide by the ICLR Code of Ethics. We affirm that
this research was conducted in compliance with the principles of research integrity, fairness, and
transparency outlined therein.

Our study focuses on developing and evaluating a novel fine-tuning approach for language models,
targeted at improving mathematical reasoning benchmarks. The work exclusively utilizes publicly
available datasets such as MATH, AMC23, and AIME24/25. These datasets are widely used in
the research community and do not involve human subjects, private data, or personally identifiable
information. No sensitive, proprietary, or confidential data were accessed or released.

We acknowledge that research in language model training can have broader societal impacts, par-
ticularly regarding potential misuse (e.g., generating misleading or harmful content). However, our
contributions are specifically focused on mathematical problem-solving and skill-targeted fine-tuning,
which pose minimal direct risk of harmful applications. The methods proposed are not designed for,
nor evaluated on, domains involving sensitive personal, social, or political content.

We have no conflicts of interest or external sponsorships that could bias the reported results. All
experiments were performed under standard academic conditions with openly available resources.
Our work complies with legal and ethical standards for dataset usage, algorithm development, and
reporting.

Use of LLM: We used an LLM solely to improve the clarity and readability of the manuscript
text (e.g., grammar and style polishing). The model was not employed for designing experiments,
analyzing data, or generating results. All scientific contributions, methodologies, and findings
reported in this work are the product of the authors.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. A detailed description of
the STAT algorithms, including pseudocode, is provided in Section 2 and Section B.1. The datasets
used in all experiments (MATH, AMC23, AIME24/25, GSM8K, and others) are publicly available
and fully cited in the references. We describe our experimental setup, model configurations, training
hyperparameters, and ablations in Section 3.1 and Section C.

To facilitate replication, we will release our code repository along with all the STAT-Syn data if
we proceed to the camera-ready version. Together, these resources provide sufficient detail for
independent researchers to reproduce our results and extend our methods to related benchmarks.
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A RELATED WORKS

Recent line of works have shown that cognitive theories relevant for human learning can also be
utilized to improve performance of language models. Arora & Goyal (2023) argue that language
models learn to generalize beyond training data, by learning generalizable skills that connect the
text tokens. This argument was later used by Wu et al. (2024); Yu et al. (2023a); Zhao et al. (2024)
to create evaluation benchmarks to compare how different LLMs can generalize beyond training.
Furthermore, Didolkar et al. (2024); He et al. (2025) utilize this framework to create effective instance
specific in-context learning examples for language models. More related to our work is the work by
Kaur et al. (2024) who create synthetic instruction following datasets using arbitrary combination of
skills and show that small language models learn more efficiently from such synthetic tasks. Similarly,
Gandhi et al. (2025) show that certain cognitive skills are necessary for models to explore during
reinforcement learning, and one can similarly enforce such skills by targeted continual pretraining. In
contrast, we show that we can use the skill-based framework to create targeted training datasets by
analyzing the missing skills in model’s responses after training and even unlock further gains.

Related to our work is a line of research that leverages model gradients to construct targeted training
datasets (Xia et al., 2024; Yu et al., 2024b). These approaches utilize gradients on both training and
test sets to identify effective subsets of training data. However, a key limitation is their reliance on
ground-truth solutions for the test data. In contrast, our work offers a complementary strategy: we
employ a frontier LLM to analyze the model’s responses and generate targeted training data based on
its feedback.

We also compare our proposed method to embedding based data selection. Embedding based methods
Wang et al. (2024); Yu et al. (2024a); Ni et al. (2024) have primarily been used to improve diversity
of training dataset. As shown by our results, embedding similarity could also be utilized (albeit with
a drop in performance) to get questions from training dataset that are similar to difficult questions.

Finally, we introduce STAT-Syn, an approach analogous to STAT-Sel, which synthesizes additional
training data specifically targeted to the identified missing skills. Synthetic data generation has
recently attracted significant attention as a practical alternative for augmenting real-world datasets, and
has been shown to improve language model performance both in-distribution and out-of-distribution
(Jung et al., 2025; Yu et al., 2023b; Lu et al., 2023; Li et al., 2023; Kaur et al., 2024). A comprehensive
comparison of STAT-Syn with prior work on synthetic data generation is left to future study.

B DETAILS OF STAT DATA CREATION

B.1 ALGORITHM FOR CONSTRUCTING STAT-SEL AND STAT-SYN DATA

Algorithm 1 outlines the procedure to construct Ptargeted in Stage 3 (Section 2). For each question
in the test set Q, the algorithm first identifies the associated missing skills using the Missing-Skill
Profile. For each missing skill, a small set of examples is retrieved from the Skill-Map, which
links each skill to corresponding training data. In STAT-Sel, these retrieved examples are directly
added to the target training set. Otherwise, the examples are used as seeds to prompt GPT-4o to
generate new, skill-specific questions, which are then included instead. This process ensures that the
resulting training set Ptargeted is adaptively enriched with examples that directly address the model’s
weaknesses.

B.2 TRAINING DATA CREATION PROCEDURE OF STAT

We now provide a detailed interpretation of our training data creation approach outlined Algorithm 1.

STAT-Sel. 4k unique questions, 9.5k QA pairs. We begin by filtering 500 difficult questions from
the validation set using our process reward model. For each such question, the teacher model identifies
2–3 missing skills in the student’s response. As described in Section 2.3, we then create the training
set by selecting 5 questions for each missing skill in the question’s Missing-Skill-Profile. We
use 3 answers for each question and randomly sample a subset of 9.5k question-answer pairs as our
training set.
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Algorithm 1 Skill-based data selection/generation
Input: Test set Q, Skill-Map: S→P , MissingSkillProfile: Q→S, STAT-Sel: bool
Output: Ptargeted

1: Ptargeted ← []
2: for q in Q do
3: skill list← MissingSkillProfile[q]
4: if skill list is not empty then
5: for skill in skill list do
6: Pskill ← Skill-Map[skill]
7: Pselected ← random sample(Pskill, 3)
8: if STAT-Sel then
9: Ptargeted ← Ptargeted + Pselected

10: else
11: Pnew ← GPT-4o(Pselected, skill, prompt=”Propose a new question based on
12: the given questions and the given skill.”)
13: Ptargeted ← Ptargeted + Pnew

14: end if
15: end for
16: end if
17: end for
18: return Ptargeted

STAT-Syn. 4k unique questions, 9.5k QA pairs. We begin by filtering 500 difficult questions from
the validation set using our process reward model. For each such question, the teacher model
identifies 2–3 missing skills in the student’s response. For each pair of (difficult question,
missing skill), we retrieve 3 questions from MATH training set. We input these 3 questions,
along with the missing skill, to the teacher model, prompting it to synthesize 2 new questions.
The teacher further generates 3 solutions for each new question. We then filter the newly synthesized
data by:

1. Compute consistency scores for each set of (new question, solution) pairs, according
to the number of solutions agreeing on the final answer. For example, a new question with 2 solutions
agreeing on the final answer has a consistency score of 2.

2. Keep only the new question with a consistency score of ≥ 2.

3. For each filtered question, keep only the solution that agrees on the final answer. 2

This process enables our approach to generate diverse data, as we input 3 questions to the teacher
model as references each time. The consistency-filtering step filters out both invalid questions and
solutions, ensuring the quality of STAT-Syn.

2For STAT-Syn, after filtering teacher-generated answers using consistency, we obtained 9.5k valid ques-
tion–answer pairs. To ensure comparability, we standardize the training data size to 9.5k pairs for all experiments.
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C EXPERIMENTAL DETAILS

C.1 MODEL & TRAINING CONFIGURATIONS

Model Settings. All inferences are under 0-shot settings, with temperature 0.1 for pass@1 sampling,
and temperature 1.0 for average@64 or pass@64 sampling. For the process reward model in Stage 1
(Section 2.1), we use RLHFlow/Llama3.1-8B-PRM-Mistral-Data (Xiong et al. (2024)), an 8B process
reward model fine-tuned from Llama-3.1-8B, with filtering thresholds τ1 = 0.85, τ2 = 0.7. We use
seed=0 for all evaluations.

SFT configurations. For SFT, we adopt QLoRA with rank 16, scaling factor α = 32, and dropout 0.05,
applied to the attention and MLP projection modules. Models are trained in 4-bit NF4 quantization
with bfloat16 compute, using the paged AdamW (8-bit) optimizer. We train for 3 epochs with a
cosine learning rate schedule and a 3% warmup ratio. Peak learning rate is chosen separately for each
method among 5e-6, 1e-5, and 5e-6, depending on the downstream performance. The effective batch
size is 8 (per-device batch size of 2 with gradient accumulation of 4). We apply gradient clipping at
0.3, weight decay of 0.1, and enable group-by-length packing for efficiency. Other configurations
follow the official code base from Llama3 and Qwen4.

GRPO configuration. We train for 6 epochs using a constant learning rate of 5e-7. The objective
includes only the policy update loss, without any KL-divergence term, and the entropy coefficient is
fixed at 0.0. Each batch contains 256 questions, with 4 rollouts generated per question. Responses
are truncated at a maximum length of 2048 tokens. We set the PPO mini-batch size to 64, which
implies that each batch of 256 questions is split into four mini-batches. The model performs four
gradient updates before refreshing the reference model.

C.2 TRAINING DATA CREATION PROCEDURE OF BASELINES

We compare STAT-Sel and STAT-Syn with the following baseline models fine-tuned with various
data selection/generation methods, to measure the effectiveness of skill-aware training:

• MATH-Train: 7.5k unique questions, 7.5k QA pairs. We naively train the model on all question
from the training dataset, with a single answer from the original dataset for each question.

• MATH-Augment: 7.5k unique questions, 9.5k QA pairs. In order to make a fair comparison to
our proposed methods, we pick 3 answers per question to create 22.5k question-answer pairs and
then randomly sample a subset of 9.5k question answer pairs as our training set.

• MATH-Hard: 3k unique questions, 9.5k QA pairs. We include all questions from the levels 4
and 5 of the MATH dataset. We use 3 responses per question to create a pool of 12k question-answer
pairs and then keep a random subset of 9.5k question answer pairs.

• Embed-Sel: 4k unique questions, 9.5k QA pairs. Here, we compare the effectiveness of skill-

based training data selection to embedding-based training data selection 5. We use our difficult
question set from stage 1 and for each question, we pick 5 similar questions from the training set
using an embedding model based similarity score. We pick 3 answers per selected questions and keep
a random subset of 9.5k question answer pairs.

• Embed-Syn: 4k unique questions, 9.5k QA pairs. For each question in the difficult set identified
during stage 1, we retrieve 5 question–answer pairs from the training set P using an embedding-
based similarity measure. The teacher model is then prompted to generate 5 new questions, each
accompanied by 3 candidate responses, conditioned on different groups of 3 retrieved pairs as in-
context examples. We retain only those generated questions for which the LLM produces at least 2
consistent responses, and add the corresponding consistent question–answer pairs to our training set.
Finally, we keep a random subset of 9.5k question answer pairs to create our training set.

3https://github.com/meta-llama/llama-cookbook
4https://github.com/QwenLM/Qwen
5We use Alibaba-NLP/gte-Qwen2-7B-instruct as our embedding model (Li et al., 2023)
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C.3 PROMPTS

C.3.1 CONSTRUCTING SKILL-MAP ON MATH

Statistics of skill lists. We adopt the list of mathematical skills obtained in Didolkar et al. (2024)
using an LLM labeling→clustering pipeline. The skill list contains 128 skills in total, divided into 7
subsets across 7 subjects. Each subject includes ∼18 skills.

Skill-Map construction procedure. To construct the Skill-Map (see Section 2), we follow Di-
dolkar et al. (2024) to label skills on both the training and test sets of MATH using GPT-4o-mini
(OpenAI, 2024). We enlist all skills that we used to annotate the questions in MATH and dataset
in Tables 5 and 6, which have been taken from Didolkar et al. (2024). We ask the LLM to read the
question and provide up to five skills required to solve this question, from the given existing skill list.
We show an example prompt for annotating MATH Number Theory questions as follows.

Example skill annotation prompt for MATH Number Theory questions

[TASK]
You’ll be given a math question. Your task is to output:
(1) < skill> list here up to five skill(s) that are required to solve this problem, seperated by
commas </skill>.
(2) <reason> reason here why these skills are needed </reason>.

[SKILL LIST]
You should only choose the skills from this list:
[
”arithmetic sequences”,
”base conversion”,
”basic arithmetic”,
”division and remainders”,
”exponentiation”,
”factorization”,
”greatest common divisor calculations”,
”modular arithmetic”,
”number manipulation”,
”number theory”,
”polynomial operations”,
”prime number theory”,
”sequence analysis”,
”solving equations”,
”understanding of fractions”
]

[QUESTION]
{question}

[REASON AND SKILL(S)]

Table 4 shows some example MATH questions and their corresponding annotated skills. From the
skill annotation, we construct a Skill-Map (see Section 2) that stores the required skills for each
question.
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Question Annotated skills

What is the units digit of
3
1 + 3

3 + 3
5 + 3

7 + . . . + 3
2009?

exponentiation, modular arithmetic,
sequence analysis

In the addition problem each letter represents a
distinct digit. What is the numerical value of E?
[Figure]

basic arithmetic, number manipulation,
solving equations

In triangle ABC, tan(∠CAB) = 22
7

, and the
altitude from A divides BC into segments of
length 3 and 17. What is the area of triangle
ABC?

geometry and space calculation,
trigonometric calculations, arithmetic
operations

Table 4: Example MATH questions, and the annotated skills generated by GPT-4o-mini.

Subject List of Skills

Per subject split in MATH

Algebra algebraic expression skills,
algebraic manipulation skills, arithmetic skills,
calculation and conversion skills,
combinatorial operations and basic arithmetic,
complex number skills,
distance and midpoint skills,
exponent and root skills, factoring skills,
function composition skills, function skills,
geometric sequence skills,
graph and geometry skills, inequality skills,
logarithmic and exponential skills,
number theory skills, polynomial concepts,
quadratic equation skills,
ratio and proportion skills,
sequence and series skills, solving equations

Counting and Probability calculating and understanding combinations,
combinatorial mathematics, combinatorics concepts,
counting principals,
factorials and prime factorization,
number theory and arithmetic operations,
permutation and combinations,
probability calculation with replacement,
probability concepts and calculations,
probability theory and distribution,
combinatorics operations

Geometry 3d geometry and volume calculation skills,
algebraic skills, area calculation skills,
circle geometry skills,
combinatorics and probability skills,
coordinate geometry and transformation skills,
other geometric skills, pythagorean skills,
quadrilateral and polygon skills,
ratio and proportion skills,
triangle geometry skills, trigonometry skills,
understanding circle properties and algebraic manipulation

Table 5: List of skills used for annotating questions in each subject in MATH dataset
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Subject List of Skills

Per subject split in MATH

Intermediate Algebra absolute value skills,
algebraic manipulation and equations,
calculus optimization skills,
complex number manipulation and operations,
function composition and transformation,
graph understanding and interpretation,
inequality solving and understanding,
polynomial concepts,
properties and application of exponents,
quadratic equations and solutions,
recursive functions and sequences,
sequence and series analysis skills,
simplification and basic operations,
solving inequalities, solving system of equations,
summation and analysis of series,
understanding and application of functions,
understanding and applying floor and ceiling functions,
understanding and manipulation of rational functions,
understanding and utilizing infininte series,
understanding ellipse properties,
understanding logarithmic properties and solving equations

Number Theory arithmetic sequences, base conversion,
basic arithmetic, division and remainders,
exponentiation, factorization,
greatest common divisor calculations,
modular arithmetic, number manipulation,
number theory, polynomial operations,
prime number theory, sequence analysis,
solving equations, understanding of fractions

Pre-algebra average calculations, basic arithmetic operations,
circles, counting and number theory,
exponentiation rules, fractions and decimals,
geometry, multiples and zero properties,
multiplication and division, perimeter and area,
prime number theory, probability and combinatorics,
ratio and proportion, linear equation

Pre-calculus algebra and equations, basic trigonometry,
calculus, complex number operations,
complex numbers, coordinate systems,
determinant calculation, geometric relations,
geometry and space calculation,
geometry triangle properties, matrix operations,
parametric equations,
sequences series and summation,
three dimensional geometry,
trigonometric calculations, vector operations

Table 6: List of skills used for annotating questions in each subject of MATH dataset (continued from
Table 5)
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C.3.2 MISSING SKILL IDENTIFICATION FROM MODEL RESPONSES

In Stage 2 of STAT, we use GPT-4o-mini to label the skills that are missing from a model response.
We ask the LLM to read the question along with the SLM response and provide the skills that the
model fails to leverage in the response, from the given existing skill list. Below we show an example
prompt for labeling missing skills for MATH Number Theory questions, as well as an example LLM
output.

Example missing skill identification prompt for a MATH Number Theory question

[TASK]
You’ll be given a math question and a step-by-step solution written by a Small Language
Model. Your task is to output:
(1) <judge> judge here whether the solution is correct or incorrect </judge>
(2) <reason> if it’s incorrect, reason here why the solution is incorrect </reason>,
(3) <skill> list here what skill(s) should the SLM enhance in order to answer correctly,
seperated by commas </skill>.

[SKILL LIST]
{list of 15 number theory skills}

[QUESTION]
{question}

[MODEL SOLUTION]
{model response}

[YOUR REASON AND SKILL(S)]

Example GPT-4o-mini output for missing skill identification

(1) <judge> incorrect </judge>
(2) <reason> The solution incorrectly simplifies the expression and misapplies properties
of modular arithmetic. The solution claims that the sum of the inverses from 1 to ( p-1 ) is
(-1 pmodp), which is incorrect. The correct approach involves recognizing that each term
(a−1 ⋅ (a+ 1)−1) should be evaluated individually, and the sum should be calculated directly
without assuming incorrect simplifications. The solution also fails to correctly apply the
properties of modular inverses and does not properly evaluate the sum. </reason>
(3) <skill> modular arithmetic, number theory, understanding of fractions </skill>
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C.3.3 PROPOSING NEW QUESTIONS FROM SKILL-BASED TRAINING QUESTION DISTRIBUTION

In Stage 3 of STAT-Syn, we use GPT-4o to propose new questions based on existing questions in the
skill-based training question distribution. Below we show an example prompt.

Example prompt for proposing new questions using GPT-4o

[TASK]
You’ll be given three math questions (e.g., [QUESTION 1]), with their solutions for reference.
Your task is to output a new, novel math question that emphasizes the use of [SKILL].
Important Note: the new question should not be very similar to any of the given questions
(e.g., naive adaptions like altering variable names or values from a given question is strictly
prohibitted). Meanwhile, the new question should have similar difficulty with the given
questions.
Output format:
(1) <reason> reason here how the given questions relates to the [SKILL] </reason>
(2) <draft> reason here how to design a new, novel question while emphasizing the [SKILL]
</draft>
(3) <question> your newly constructed math question </question>

[QUESTION 1]
{train set question1}

[QUESTION 2]
{train set question2}

[QUESTION 3]
{train set question3}

[SKILL]
{missing skill}
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D ADDITIONAL RESULTS

D.1 EVALUATION RESULTS ON LLAMA-3.2-1B-INSTRUCT

Table 7 shows the evaluation results on Llama-3.2-1B-Instruct. Similar to Table 3, STAT consistently
outperforms both heuristic-based and embedding-based data augmentation baselines on in-distribution
dataset and most OOD benchmarks. We presented more discussion in Section 3.2 and Section 4.

Models MATH MATHD MATH2 GSM8K AMC23 MATH-perturb AIME Avg.
simple hard 2024 2025

Llama-3.2-1B-Instruct + SFT
Base Model 26.0 15.1 9.1 40.7 11.1 17.2 6.5 20.0 10.0 17.3
MATH-Train 27.0 14.5 10.0 42.8 8.8 19.0 6.8 26.7 10.0 18.4
MATH-Augment 27.8 14.2 8.1 43.4 11.1 17.9 6.8 26.7 3.3 17.7
MATH-Hard 28.4 15.4 8.6 44.6 10.8 18.6 7.2 23.3 3.3 17.8
Embed-Sel 27.4 15.6 8.6 44.6 8.8 18.6 6.8 26.7 3.3 17.8
Embed-Syn 28.4 17.2 11.0 44.3 10.0 20.1 7.9 23.3 6.7 18.8
STAT-Sel 32.4 15.6 11.0 45.0 12.0 19.4 7.9 26.7 16.7 20.7
STAT-Syn 34.5 18.3 12.4 45.6 11.0 20.8 7.5 23.3 10.0 20.4

+ GRPO
Base Model 31.8 14.4 9.5 49.7 13.3 23.3 8.2 20.0 6.7 19.7
MATH-Train 32.0 16.0 11.9 50.8 10.0 23.7 7.9 16.7 6.7 19.5
MATH-Augment 31.2 15.0 9.0 49.1 13.6 24.7 7.9 23.3 13.3 20.8
MATH-Hard 32.2 14.8 11.0 50.6 11.6 22.9 6.5 26.7 10.0 20.7
Embed-Sel 32.8 16.2 11.4 49.9 12.0 21.9 6.5 23.3 13.3 20.8
Embed-Syn 32.6 15.0 10.5 51.0 13.9 21.1 6.8 26.7 3.3 20.1
STAT-Sel 34.8 16.6 13.8 50.1 14.8 23.7 9.0 30.0 16.7 23.3
STAT-Syn 35.2 21.1 13.8 51.0 14.8 24.7 7.9 33.3 16.7 24.3

Table 7: Improvements on various math benchmarks from applying STAT. Results under ‘+SFT’ show
the performance of SFT models trained with each method, while ‘+GRPO’ shows the performance af-
ter applying GRPO on top of the corresponding SFT models. Our methods, STAT-Sel and STAT-Syn,
achieve an average gain of up to 3.4% over the base model, with strong OOD performances (AMC23
results reported on average@64, AIME on pass@64). Applying GRPO on top of fine-tuning with
STAT further enhances these improvements. See Table 3 for results on Llama-3.2-3B-Instruct and
Qwen2.5-3B.

D.2 MISSING-SKILL-PROFILE

Figure 6 shows the snippets of model-specific Missing-Skill-Profile of Llama-3.2-3B-Instruct, Llama-
3.2-1B-Instruct, and Qwen2.5-3B, obtained at the end of Stage 2 (see Section 2.2). These profile
snippets include the Top 10 frequent missing skills of the models. As discussed in Section 4, most of
the frequent missing skills in both models are algebra-related, such as solving equations, manipulation,
and calculation. In addition, both models also demonstrate noticeable weaknesses in conceptual and
reasoning-oriented mathematical skills, including combinatorics, understanding and application of
functions, and number theory. Compared to Llama-3.2-3B-Instruct, the missing skill profile of Llama-
3.2-1B-Instruct concentrated more towards basic operations (e.g., solving equations), suggesting that
smaller models have more pronounced limitations in fundamental computational abilities.
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Figure 6: Top 10 missing skills of Llama-3.2-3B-Instruct, Llama-3.2-1B-Instruct, and Qwen2.5-3B.
The models struggle most with fundamental mathematical skills such as solving equations and basic
arithmetic operations.

D.3 CASE STUDY: EXAMPLE QUESTIONS WITH DIFFERENT SKILLS

We observe in Section 4 that the baseline training data distribution largely misaligns with model’s
actual missing skills, with baseline data emphasizing more advanced and conceptual skills (e.g.,
Prime Number Theory, Polynomial Concepts) while the model lacking more basic operational skills
(e.g., Solving Equations). To better visualize this misalignment in data distribution, here we showcase
three example QA pairs from the MATH training set, respectively associated with the three skills
above.

Question with skill “Solving Equations”

Question: The inverse of f(x) = 2x−1
x+5 may be written in the form f

−1(x) = ax+b
cx+d , where a,

b, c, and d are real numbers. Find a/c.

Solution:
If we substitute f

−1(x) into our expression for f , we get

f(f−1(x)) = 2f
−1(x) − 1

f−1(x) + 5
.

Since f
−1(f(x)) = x, we obtain

2f
−1(x) − 1

f−1(x) + 5
= x

⇒ 2f
−1(x) − 1 = x(f−1(x) + 5)

⇒ 2f
−1(x) − 1 = xf

−1(x) + 5x.

Moving the terms involving f
−1(x) to the left-hand side and the remaining terms to the

right-hand side, we get

2f
−1(x) − xf

−1(x) = 5x + 1

⇒ f
−1(x)(2 − x) = 5x + 1

⇒ f
−1(x) = 5x + 1

−x + 2
.

Now we can see that (a, b, c, d) = (5, 1,−1, 2) for this representation of f−1(x), so

a
c =

5

−1 = −5 .
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Question with skill “Prime Number Theory”

Question: The positive integers A, B, A −B, and A +B are all prime numbers. The sum
of these four primes is
• A. even
• B. divisible by 3
• C. divisible by 5
• D. divisible by 7
• E. prime
Express your answer using a letter, as A, B, C, D, or E.

Solution: The numbers A − B and A + B are both odd or both even. However, they are
also both prime, so they must both be odd. Therefore, one of A and B is odd and the other
even. Because A is a prime between A−B and A+B, A must be the odd prime. Therefore,
B = 2, the only even prime. So A − 2, A, and A + 2 are consecutive odd primes and thus
must be 3, 5, and 7. The sum of the four primes 2, 3, 5, and 7 is the prime number 17, so the
correct answer is (E), prime.

Question with skill “Polynomial Concepts”

Question: The polynomial P (x) = 2x
3 + ax

2 + bx+ c has the property that the mean of its
zeros, the product of its zeros, and the sum of the coefficients are all equal. The y-intercept
of the graph of y = P (x) is 8. What is b?

Solution: The y-intercept of the graph is the point at which x = 0. At that point, P (x) = c,
which we are told is equal to 8. Thus, c = 8. The product of the roots of the given polynomial
is − c

2
= −4. The problem states that the mean of the zeros must also equal −4, so the sum of

the three zeros (this is a cubic equation) is equal to 3 ⋅−4 = −12. The sum of the zeros is also
equal to −a

2
, so a = 24. Finally, we are given that the sum of the coefficients, or 2+ a+ b+ c,

is also equal to −4. Plugging in our known values of a and c, we have 2 + 24 + b + 8 = −4.
Solving for b, we get b = −38 .
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D.4 EFFECTIVENESS OF STAT ON EACH SUBJECT

To evaluate whether STAT enhances general subject-level competence, we measure model accuracy
across the 7 subject categories in MATH. These subjects are: prealgebra, algebra, intermediate algebra,
geometry, precalculus, number theory, and counting & probability. As shown in Figure 7, both
STAT-Sel and STAT-Syn consistently outperform the base model and data augmentation baselines
across nearly all subjects. Notably, STAT-Sel achieves the strongest improvements in precalculus
and number theory, while STAT-Syn excels in intermediate algebra, prealgebra, algebra, geometry
and counting & probability. It is worth noting that STAT brought most improvements on the 3
algebra-related subjects. This aligns with our observation in Section 4 that Llama-3.2-1B-Instruct
shows its most pronounced weaknesses in algebra, and confirms that our approaches effectively target
the skills the model fundamentally lacks.

geometry

intermediate
algebra

precalculus

counting &
probability

number theory

prealgebra

algebra

Base Model
MATH-Train
MATH-Augment
MATH-Hard
Embed-Sel
Embed-Syn
STAT-Sel
STAT-Syn

Figure 7: Fine-tuned model performances on MATH subjects, across different training methods.
For better visualization, accuracies are normalized per skill axis, with the base model drawn as a
uniform circle and the highest-performing method on each skill placed at the outer edge. STAT-Syn
and STAT-Sel are most effective in enhancing model performance across nearly all the subjects.

E ABLATION & ANALYSIS

E.1 ABLATIONS ON THE REWARD FILTERING METHOD IN STAGE 1

Recall that in Stage 1 of the STAT pipeline, we use an off-the-shelf process reward model
(RLHFlow/Llama3.1-8B-PRM-Mistral-Data) to score small language models’ responses, in or-
der to filter out a set of difficult questions for each model. Here, we conduct various ablation studies
on the reward filtering process.

Effect of threshold values on the reward model prediction. We investigated the effect of τ1 and
τ2 (defined in Section 2.1) on the classification performance of difficult questions. Specifically, we
measure whether our classification of questions as difficult also corresponds to the correctness of
responses assessed using ground-truth labels. In Table 8, we report four metrics (accuracy / precision
/ recall / F1) evaluating the prediction accuracy resulting from different filtering thresholds. Note
that τ1 = 0 or τ2 = 0 means completely removing the constraints of τ1 or τ2. Across all evaluated
combinations of threshold values, our choice of the threshold values (τ1 = 0.85, τ2 = 0.7) gives a
good combination of prediction scores. To further visualize this effect, we conduct STAT on top of all
combinations of thresholds, and report the final accuracy in Table 9. Our choice of threshold values
yields the highest final accuracy among all the combinations.

Out-of-distribution (OOD) prediction performance of reward model. Although we primarily
evaluated STAT on MATH and GSM8K, our method can potentially be extended to other math
datasets. While the reward model we used in Stage 1 was only trained on the MATH and GSM8K
distribution, we show that it is capable of scoring responses for various OOD math datasets. Table 10
reports the reward model’s performance on classifying correct/incorrect responses from Qwen2.5-3B
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τ1\τ2 τ2 = 0 τ2 = 0.6 τ2 = 0.7 τ2 = 0.8

τ1 = 0 53 / 0 / 0 / 0 80 / 78 / 79 / 79 80 / 74 / 88 / 79 75 / 66 / 95 / 78
τ1 = 0.8 80 / 79 / 78 / 79 80 / 76 / 85 / 80 79 / 72 / 90 / 80 75 / 66 / 96 / 78
τ1 = 0.85 79 / 74 / 88 / 80 79 / 72 / 90 / 80 78 / 70 / 92 / 80 74 / 65 / 96 / 78
τ1 = 0.9 73 / 64 / 95 / 77 73 / 64 / 95 / 77 72 / 64 / 96 / 77 70 / 62 / 97 / 75

Table 8: Reward model performance (accuracy / precision / recall / F1) on classifying correct/incorrect
responses from Qwen2.5-1.5B-Instruct on MATH, accross different thresholds. τ1 = 0 or τ2 = 0
means completely removing τ1 or τ2. Our choice of threshold values (τ1 = 0.85, τ2 = 0.7) gives a
good combination of prediction scores.

τ1\τ2 τ2 = 0 τ2 = 0.6 τ2 = 0.7 τ2 = 0.8

τ1 = 0 52.8 55.7 55.9 55.7
τ1 = 0.8 55.1 56.3 56.2 55.6
τ1 = 0.85 55.3 56.4 56.4 55.6
τ1 = 0.9 55.7 55.7 55.6 55.2

Table 9: Final STAT performance of Qwen2.5-1.5B-Instruct on MATH, with different thresholds.
Our choice of threshold values (τ1 = 0.85, τ2 = 0.7) leads to the highest accuracy.

on four popular math benchmarks: AMC23, AIME24, AIME25, and MATH2. The reward model
achieves comparably high performance on scoring model responses on these OOD, significantly more
difficult benchmarks, indicating that the model is highly generalizable. This implies the potential to
extend our method to new datasets without the need to train a specialized reward model for each one.

Metric AMC23 AIME24 AIME25 MATH2

Accuracy 92.5 86.7 86.7 84.8
Precision 90.9 92.6 86.7 95.2
Recall 95.2 92.6 100.0 88.5
F1 93.0 92.6 92.9 91.0

Table 10: Reward model prediction metrics across four OOD math benchmarks. Despite not being
trained on these benchmarks, the reward model’s prediction capability is largely generalizable to
them.

Reward Filtering vs. Simple Heuristics for classifying difficult questions. Considering the
computational overhead of calling a separate PRM, we explored alternative approaches to classifying
questions that rely on computation-free simple heuristics. Specifically, we experimented with two
heuristic strategies:

• Consistency heuristic: We measure the consistency of the model across five sampled gen-
erations per question and classify questions with lower consistency as difficult. Specifically,
a question is difficult if, among 5 sampled generations, the most common response appears
< 2 times.

• Length heuristic: We use the length of the model’s responses as a proxy and classify
questions with longer responses as difficult. Specifically, a question is difficult if the average
model response length on this question is ≥ 800 words.

Table 11 shows that both heuristics yield reasonably accurate predictions. Moreover, applying STAT
on top of these heuristic-classified difficult questions can improve the final accuracy by 2%. However,
we leave a more thorough investigation into the robustness and generalizability of these strategies in
relation to PRM-based classification for future work.

Process Reward vs. Outcome Reward. We also compare the prediction accuracy of our process
reward model (PRM) with threshold filtering (see Section 2.1) against directly loading the reward
model as an outcome reward model (ORM). Our preliminary experiments indicated 0.9 as the optimal
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Classification method Classification accuracy

Consistency Heuristic 79.8%
Length Heuristic 74.2%
Reward Filtering 78.0%

Table 11: Performance of consistency heuristic and length heuristic on classifying difficult questions.
The classification accuracy of simple heuristics are on par with the reward filtering method.

threshold for the outcome rewards. With τ = 0.9, the prediction metrics of the ORM are: Precision
= 0.54 / Recall = 0.90 / F1 = 0.68, whereas the prediction metrics of the PRM with optimal
thresholds are Precision = 0.70 / Recall = 0.92 / F1 = 0.80. Therefore, our method using PRM with
threshold filtering is superior to directly using ORM.

E.2 STATISTICS OF DIFFICULT QUESTIONS

In Stage 1 of STAT (see Section 2.1), we identify a set of difficult questions for each individual model
using a process reward model along with a filtering heuristic. Table 12 reports the proportions of
difficult questions classified for different models in each math domain. Compared to Table 3, the
proportions of difficult questions closely correspond to the accuracy numbers of each model, even
though we did not access the ground truth in the whole pipeline. Notably, our classification method
captures not only questions that the model gets wrong, but also questions that the model passes with
a flawed solution process.

Model Geometry Precalculus Algebra Prealgebra Intermediate Algebra

Qwen2.5-3B 61.8 70.1 29.7 33.2 75.9
Llama-3.2-1B-Instruct 93.5 92.0 91.4 89.7 99.0
Llama-3.2-3B-Instruct 68.2 82.7 45.5 48.9 85.7

Model Count.&Prob. Number Theory MATH Avg.

Qwen2.5-3B 62.2 56.1 52.1
Llama-3.2-1B-Instruct 97.9 95.2 94.0
Llama-3.2-3B-Instruct 65.2 62.3 62.3

Table 12: Proportions of difficult questions (%) classified by STAT for each model. Although our
method did not access the ground truth, the proportion of classified difficult questions still closely
mirrors each model’s accuracy (see Table 3) in each domain.

E.3 ANALYSIS OF THE TEACHER MODEL

Teacher model need not be overwhelmingly stronger than student. One feature of STAT is the
demand of a substantially stronger teacher model to supervise the student. In this section, we evaluate
this demand by directly comparing teacher and student performances on math reasoning benchmarks.
Due to resource constraints, our evaluation is limited to a representative set of benchmarks, but the
results are sufficient to illustrate the key trend: the teacher is not strictly dominant, and the student
can approach or even match the teacher’s performance within a manageable gap.

As shown in Table 13, although teacher models obtain higher absolute scores, they are not over-
whelmingly stronger than the students. In particular, the gap between GPT-4o-mini and Qwen2.5-3B
is only around 10 points across GSM8K and MATH, a margin that is significant but manageable. This
suggests that STAT does not strictly rely on a much stronger teacher to succeed. Instead, even when
teacher and student are relatively close in ability, the student can still benefit and recover most of the
teacher’s performance. This opens up the possibility of self-improvement, where a model iteratively
teaches and refines itself without requiring access to an external teacher that is substantially stronger.

Agreement across different teacher models. Since our approach relies on a frontier LLM as
teacher, a natural concern is potential bias in the missing-skill labeling process. In light of this, we
present a preliminary investigation into the level of agreement among different LLMs in missing skill
labeling, using an LLM-as-a-judge approach. We first evaluate GPT-4o-mini’s ability to self-verify
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Benchmark Teacher Student

GPT-4o GPT-4o-mini Qwen2.5-3B Llama-3.2-3B-Instruct Llama-3.2-1B-Instruct

GSM8K 97.0 94.0 80.9 73.0 40.7
MATH 73.0 69.1 55.8 44.0 26.0
MATH-perturb-simple 62.0 N/A 43.7 33.7 17.2
MATH-perturb-hard 39.4 N/A 24.0 12.2 6.5

Table 13: Math reasoning accuracy (%). Comparison between teacher models (GPT-4o, GPT-4o-
mini) and student models (Qwen2.5-3B, Llama-3.2-3B-Instruct, Llama-3.2-1B-Instruct) on GSM8K,
MATH, MATH-perturb-simple, and MATH-perturb-hard.

the correctness of its own predicted missing skills and find that it judges its predictions to be correct
70% of the time. To further assess the reliability of these predictions, we compute the agreement
between GPT-4o-mini and Claude-3.5-Sonnet. The models agree on 43% of the predicted skills,
where agreement is defined as the average fraction of overlapping skills relative to the total number
of skills predicted by GPT-4o-mini. Given the fine-grained nature of our skill list, we consider this
level of agreement significant.
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