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Abstract001

The rapid advancement of large language mod-002
els has raised significant concerns regarding003
their potential misuse by malicious actors. As004
a result, developing effective detectors to miti-005
gate these risks has become a critical priority.006
However, most existing detection methods fo-007
cus excessively on detection accuracy, often ne-008
glecting the societal risks posed by high false009
positive rates (FPRs). This paper addresses010
this issue by leveraging Conformal Prediction011
(CP), which effectively constrains the upper012
bound of FPRs. While directly applying CP013
constrains FPRs, it also leads to a significant re-014
duction in detection performance. To overcome015
this trade-off, this paper proposes a Zero-Shot016
Machine-Generated Text Detection Framework017
via Multiscaled Conformal Prediction (MCP),018
which both enforces the FPR constraint and019
improves detection performance. This paper020
also introduces RealDet, a high-quality dataset021
that spans a wide range of domains, ensuring022
realistic calibration and enabling superior de-023
tection performance when combined with MCP.024
Empirical evaluations demonstrate that MCP025
effectively constrains FPRs, significantly en-026
hances detection performance, and increases027
robustness against adversarial attacks across028
multiple detectors and datasets.029

1 Introduction030

The rapid advancement of large language models031

(LLMs) has led to the generation of fluent, natural,032

and high-quality text that increasingly resembles033

human-written text. LLMs are being leveraged to034

enhance productivity across various domains, in-035

cluding news reporting, storytelling, and academic036

research (Alshater, 2022; Yuan et al., 2022; Chris-037

tian, 2023), significantly contributing to both indus-038

trial and academic progress. However, this same039

capability has also opened the door for misuse,040

with malicious actors exploiting LLMs to generate041

fake news (Ahmed et al., 2021), spam (Guo et al.,042

Vanilla

FPR       

                           
        

   TPR/F1

                            

FPR

                    
                        
                        

Original CP

          

Binoculars

              

Log-Rank

Entropy

Other Detectors Likelihood

TPR/F1

               

MCP (Ours)

Figure 1: Detection performance of detectors under
different framework configurations.

2021), malicious reviews (Adelani et al., 2019), and 043

other harmful contents that pose substantial risks to 044

society. As a result, developing advanced Machine- 045

Generated Text (MGT) detectors has become an 046

urgent necessity. 047

Researchers have proposed numerous methods 048

for MGT detection, including zero-shot detec- 049

tors based on statistical metrics (Bao et al., 2024; 050

Hans et al., 2024; Mitchell et al., 2023) and su- 051

pervised detectors fine-tuned on pretrained mod- 052

els (Solaiman et al., 2019b; Conneau et al., 2019). 053

However, these approaches excessively emphasize 054

detection accuracy while neglecting the potential 055

societal harm caused by high false positive rates 056

(FPRs). This concern is consistent with the find- 057

ings of Dugan et al. (2024), who highlighted that 058

existing detectors often exhibit dangerously high 059

FPRs under default thresholds. Detectors with high 060

FPRs are impractical for real-world applications, 061

as they fail to provide reliable guidance to users. 062

In this paper, we propose leveraging conformal 063

prediction (CP) (Vovk et al., 1999) to address the 064

challenges of high false positive rates (FPRs) in 065

machine-generated text (MGT) detection. CP pro- 066

vides an upper bound on the FPR, ensuring that 067

the detection results are reliable. While directly 068

applying CP can constrain the FPR, it may also 069

allow certain machine-generated texts to evade de- 070

tection, which would degrade overall detection per- 071

formance. To address this issue, we propose a novel 072

solution, the Zero-Shot Machine-Generated Text 073
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Detection Framework via Multiscaled Conformal074

Prediction (MCP). MCP not only effectively con-075

strains the FPR but also improves detection perfor-076

mance without additional training.077

The MCP framework operates in the following078

high-level manner: First, we sample both calibra-079

tion and test sets from the target datasets. Next,080

we select a baseline detector and compute its non-081

conformity scores. From the calibration set’s non-082

conformity scores, we derive multiscaled quantiles,083

which act as thresholds for detection. These quan-084

tiles ensure that the FPR is constrained. Finally, we085

apply these thresholds to detect MGT instances in086

new, unseen data. Additionally, we introduce Re-087

alDet, a high-quality benchmark dataset designed088

to simulate realistic scenarios for MGT detection.089

RealDet is essential for ensuring that the calibration090

set reflects the true distribution of human-written091

text (HWT), addressing the gap in existing datasets.092

Extensive experiments consistently demonstrate093

that the MCP framework effectively constrains the094

upper bound of the FPR while simultaneously im-095

proving detection performance. In adversarial sce-096

narios, the MCP significantly enhances robustness.097

Our contributions are summarized as:098

• We are the first to introduce CP into MGT099

detection and provide an in-depth exploration100

of potential optimization mechanisms.101

• We propose MCP, a zero-shot detection frame-102

work that not only constrains the FPR up-103

per bound but also improves detection per-104

formance and enhances robustness against ad-105

versarial attacks.106

• We construct RealDet, the large-scale and107

comprehensive bilingual benchmark, consist-108

ing of 847k raw texts spanning 15 representa-109

tive domains, 22 popular and powerful LLMs,110

and covering two adversarial attacks.111

2 Preliminary112

Conformal Prediction. Conformal prediction113

(Vovk et al., 2005; Papadopoulos et al., 2002;114

Lei and Wasserman, 2014) is a statistical learn-115

ing framework that generates reliable prediction116

without training. It provides statistical guarantees117

for the coverage of the ground truth assuming only118

data exchangeability. The workflow is:119

1. Split the data into a calibration set Dcal and a120

test set Dtest, with Dcal containing n instances.121

2. Given a model taking input x and produc- 122

ing output y. Then define a nonconformity score 123

s(x, y) ∈ R, where larger scores encode worse 124

agreement between x and y. 125

3. Compute quantile q̂ of s derived from Dcal: 126

q̂ = quantile
(
s1, . . . , sn;

⌈(n+1)(1−α)⌉
n

)
. (1) 127

4. Using q̂ as the prediction threshold to predict 128

each test instance: 129

C (Xtest ) = {y : s (Xtest , y) ≤ q̂} . (2) 130

Theorem 1. Conformal coverage guarantee (Vovk 131

et al., 1999). Suppose the calibration set 132

(Xi, Yi)i=1,...,n and the new instance (Xtest, Ytest) 133

are independent and identically distributed (i.i.d.). 134

Then, the following holds: 135

P (Ytest ∈ C (Xtest )) ≥ 1− α. (3) 136
137

MGT Detection within CP. Given n human- 138

written texts (X1, X2, . . . , Xn) as a calibration set, 139

we are tasked to predict a new instance Xtest is 140

human-written or machine-generated. Based on 141

the output of detector Det, we define a nonconfor- 142

mity score s ∈ [0, 1], where a larger score indicates 143

a lower probability that the text is human-written. 144

Then we compute quantile q̂ according to Equation 145

1 and use q̂ as the threshold to make prediction: 146

C(Xtest) =

{
HWT, s(Xtest) ≤ q̂

MGT, s(Xtest) > q̂.
(4) 147

This gives the guarantee in Theorem 1 that no 148

more than α fraction of future human-written texts 149

will be misclassified as machine-generated, i.e. 150

FPR≤ α. 151

3 Multiscaled Conformal Prediction 152

Figure 2 illustrates the MCP prediction process. 153

First, we sample calibration and test sets from the 154

target datasets. Next, we determine a basic detector 155

and define its nonconformity scores. Subsequently, 156

we derive multiscaled quantiles from the calibra- 157

tion set’s nonconformity scores. Finally, we apply 158

the multiscaled quantiles as the threshold to per- 159

form MGT detection on new instances. 160

3.1 Data Preparation 161

We sampled from the target dataset to create cal- 162

ibration and test sets, where the calibration set 163

Dcal consists entirely of human-written texts, while 164
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Figure 2: The MCP Framework. The prediction process consists of four parts, which are executed sequentially:
data preparation, nonconformity score definition, multiscaled quantiles calculation, and MGT Detection.

the test set Dtest includes both human-written and165

machine-generated texts. Sampling from the same166

dataset ensures that the human-written text in both167

the calibration and test sets is independent and iden-168

tically distributed (i.i.d.).169

3.2 Nonconformity Score Definition170

First, we determine the basic detector Det, whose171

selection is highly flexible and can include most172

detectors designed for MGT detection. Then we173

define a nonconformity score function s(·) that con-174

verts the output of the basic detector Det(x) into a175

nonconformity score s for making predictions:176

s = (1 + e−k(Det(x)−τ))−1, (5)177

where τ represents the default threshold of the basic178

detector, and k takes a value of either -1 or 1. A179

larger value of s signifies a lower probability that180

the input text is human-written text.181

3.3 Multiscaled Quantile Calculation182

Problem in traditional quantile calculation183

within CP. As illustrated in Figure 3, while tra-184

ditional computational approaches effectively con-185

trol the FPR of prediction results, they do so at186

the significant cost of detection performance. This187

trade-off prevents the detection of the majority of188

machine-generated texts. Based on our data analy-189

sis, we observe the following:190

Observation 1. Longer texts tend to have higher191

nonconformity scores. Figure 3 shows that text192

length significantly influences the magnitude of the193

quantiles. Consequently, we further calculated the194
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Figure 3: Left: True Positive Rate (TPR) of different
detectors with the CP as a function of α. Right: Quantile
values calculated for different text length intervals.

Pearson correlation coefficient ρl,s between text 195

length and the nonconformity score, finding that 196

ρl,s is close to 1, which indicates a strong positive 197

correlation. Machine-generated texts with shorter 198

lengths and lower nonconformity scores may re- 199

main undetected, leading to a significant decline in 200

detection performance. 201

Multiscaled quantiles calculation within MCP. 202

We incorporate the positive correlation between 203

text length and nonconformity score into the predic- 204

tion process. So we perform length-aware binning 205

on the calibration set Dcal, dividing it into multiple 206

subsets {D1
cal, D

2
cal, . . . , D

K
cal}, corresponding to 207

a specific text length interval. We employ an equal- 208

width binning strategy, partitioning the maximum 209

input text length Lmax into fixed-width intervals of 210

width w, as follows: 211

K = ⌊Lmax

w
⌋. (6) 212

The multiscaled quantiles q̂M are derived from 213

nonconformity scores calculated over the subsets, 214
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each corresponding to different length intervals:215

q̂M = {q̂i | q̂i = quantile
(
si1, s

i
2, . . . , s

i
ni
; (7)216

⌈(ni + 1)(1− α)⌉ni
−1

)
, i = 1, 2, . . . ,K},217

where ni denotes the number of texts in Di
cal,218

si represents the nonconformity scores calculated219

from Di
cal, and α denotes the desired upper bound220

of the FPR. By utilizing q̂M , we can select more221

appropriate quantiles for calibration across varying222

text lengths.223

3.4 MGT Detection224

For a new instance Xtest from the test set Dtest,225

we classify it based on its nonconformity score st226

and text length lt. The detection result within MCP227

can be expressed as follows:228

st = (1 + e−k(Det(Xtest)−τ))−1, (8)229

230

C(Xtest) = I(st > q̂⌊
lt
w
⌋), (9)231

where q̂⌊
lt
w
⌋ represents the quantile within the corre-232

sponding length interval, and C(Xtest) denotes the233

detection result. C(Xtest) = 0 means that Xtest is234

human-written text, while C(Xtest) = 1 indicates235

that Xtest is machine-generated text. A detailed236

case study is in Appendix A.237

Corollary 1. The upper bound of the FPR for MGT238

detection within the MCP framework is α. The239

detailed proof is provided in Appendix B.240

4 RealDet Dataset241

Existing datasets are limited in scope and exhibit242

domain-specific biases (Wu et al., 2024a,b), ren-243

dering them inadequate for representing human-244

written texts across all domains. We introduce the245

RealDet dataset and compare it with publicly avail-246

able datasets in Table 1. RealDet offers three key247

Algorithm 1 MCP Framework
1: Input: calibration set Dcal, test set Dtest, basic detector

Det, nonconformity score function s(·)
2: Compute multiscaled quantiles q̂M :
3: Number of subsets K ← ⌊Lmax

w
⌋

4: Bin calibration set {D1
cal, . . . , D

K
cal} ← Dcal

5: for i = 1 to K do
6: Si ← {si1, . . . , sini

}
7: δi ← ⌈(ni + 1)(1− α)⌉ni

−1

8: q̂i ← quantile(Si; δi)
9: end for

10: q̂M ← {q̂i | i = 1, 2, . . . ,K}
11: Detect: Xtest ∈ Dtest

12: st ← s(Xtest)

13: C(Xtest)← I(st > q̂⌊
lt
w

⌋)
14: if C(Xtest) = 0 then
15: Xtest is a human-written text.
16: else
17: Xtest is a machine-generated text.
18: end if

advantages: (1) Comprehensive Domain Cover- 248

age. RealDet spans 15 distinct textual domains, 249

far exceeding existing datasets in domain diversity. 250

(2) Extensive Model Coverage. RealDet is con- 251

structed using 22 popular and powerful LLMs, with 252

the broadest range of base models currently. (3) 253

Large-scale Text Corpus. RealDet includes over 254

847k raw texts (excluding adversarial texts), with 255

more than 113k human-written texts, significantly 256

surpassing other datasets in the size of raw texts. 257

Furthermore, RealDet includes bilingual texts in 258

both Chinese and English and adversarial texts in- 259

volving paraphrasing and editing attacks. 260

Data Sources. To emulate the texts encountered 261

in real-world detection scenarios, we carefully fil- 262

tered the existing datasets and selected 15 represen- 263

tative data sources covering 6 writing tasks. (1) 264

Question Answering: ELI5 (Fan et al., 2019), 265

WiKiQA (Yang et al., 2015), Medical Dialog (He 266

et al., 2020), FiQA (Maia et al., 2018); (2) News 267

Dataset Origin Size Domain
Coverage

Model
Coverage

Multilingual
Coverage

Adversarial
Coverage

TuringBench (Uchendu et al., 2021) 200k X ✓(10) X X
HC3 (Guo et al., 2023) 26.9k ✓(5) X ✓ X
CHEAT (Yu et al., 2023) 50k X X X ✓
MGTBench (He et al., 2024) 18.5k ✓(3) ✓(5) X X
M4 (Wang et al., 2024) 122k ✓(5) ✓(7) ✓ X
MAGE (Li et al., 2024) 447k ✓(10) ✓(9) X X
RAID (Dugan et al., 2024) 570k ✓(8) ✓(8) X ✓

RealDet (Ours) 847k ✓(15) ✓(22) ✓ ✓

Table 1: Comparison of open-source datasets in MGT detection. The “Origin size” refers to the number of raw
texts without adversarial attacks. The “Model Coverage” column represents the count of base models.
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Figure 4: The FPR of various detectors within the MCP framework across all datasets, after applying alpha
constraints with values of alpha set to 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005.

Article Writing: XSum (Narayan et al., 2018),268

TLDR1, BBC News (Greene and Cunningham,269

2006); (3) Story Generation: WritingPrompt270

(Fan et al., 2018), ROC Stories (Mostafazadeh271

et al., 2016); (4) Review Expression: Yelp (Zhang272

et al., 2015), IMDB (Maas et al., 2011), CMV273

(Tan et al., 2016); (5) Academic Writing: Ab-274

stracts2; (6) Knowledge Explanation: Wikipedia275

(Aaditya Bhat, 2023), SQuAD (Rajpurkar et al.,276

2016). More details are in Appendix C.1.277

Model Set. We consider black-box models (ser-278

vice provider offers API access) and white-box279

models (open-source models are deployed locally),280

22 in total. (1) Black-box: Deepseek-R1, GPT-4,281

ChatGPT, PaLM 2, Ernie Bot 3.5 turbo, Spark Desk282

2.0, Qwen turbo, 360GPT S2 V9, Minimax abab283

5.5; (2) White-box: LLaMA2-13B, ChatGLM2-284

6B, MOSS-moon-003, MPT-7B, InternLM-7B,285

Alpaca-7B, Guanaco-7B, Vicuna-13B, BLOOMz-286

7B, Falcon-7B, OPT-6.7B, Baichuan-13B, Flan-T5-287

XXL. Details are in Appendix C.2.288

Prompt Design. To collect machine-generated289

text for each instance, we design three types of290

prompts to feed the LLMs. (1) Continuation Writ-291

ing: ask LLMs to continue generation based on the292

first sentence of the original human-written text;293

(2) Topical Writing: ask LLMs to generate topic-294

specific texts (e.g., news article, paper abstract,295

etc.); (3) Question-Answering: ask LLMs to gen-296

erate an answer based on a given question. Specific297

prompts are in Appendix C.3.298

1https://huggingface.co/datasets/JulesBelveze/TLDR_news
2https://www.kaggle.com/datasets/spsayakpaul/arxiv-

paper-abstracts

5 Experiments 299

We conduct comprehensive experiments to thor- 300

oughly evaluate MCP, focusing on its ability to 301

constrain the FPR, evaluate detection performance, 302

test robustness against real-world attacks, investi- 303

gate the impact of calibration data, and compare 304

with other calibration methods. 305

5.1 Experimental Setup 306

Datasets. We evaluate MCP on RealDet and 307

three representative datasets—M4 (Wang et al., 308

2024), RAID (Dugan et al., 2024), and MAGE (Li 309

et al., 2024)—all are diverse, high-quality, large- 310

scale datasets. For each dataset, we randomly sam- 311

pled 5,000 human-written texts as the calibration 312

set, and 2,500 human-written texts alongside 2,500 313

machine-generated texts as the test set. 314

Metrics. We employ the FPR, defined as the 315

proportion of human-written texts misclassified 316

as machine-generated, as the primary metric in 317

MGT detection. Additionally, we use the TPR 318

(TP@FPR) and the F1 score (F1@FPR) as met- 319

rics to evaluate detection performance. 320

Basic Detectors. We selected SOTA zero-shot 321

detectors Fast-DetectGPT (Bao et al., 2024) and 322

Binoculars (Hans et al., 2024), as well as other 323

zero-shot detectors including DetectGPT (Mitchell 324

et al., 2023), Likelihood, Log-Rank, and Entropy 325

(Gehrmann et al., 2019; Su et al., 2023; Ippolito 326

et al., 2020). We also considered the supervised de- 327

tectors OpenAI-D (Solaiman et al., 2019b), which 328

utilizes RoBERTa fine-tuned on the GPT-2 dataset. 329
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Detector Algorithm TP@20% F1@20% TP@10% F1@10% TP@5% F1@5% TP@2% F1@2% TP@1% F1@1% TP@0.5% F1@0.5%

M4
Fast-DetectGPT vanilla 78.56 79.13 74.44 80.72 70.04 80.03 65.32 78.08 60.56 74.97 54.84 70.60

MCP 79.56 80.35 75.24 81.50 71.72 81.33 67.36 79.55 62.44 76.33 58.64 73.67

Binoculars vanilla 83.20 81.87 79.44 83.87 74.80 83.19 69.72 81.21 64.52 77.96 55.36 71.03
MCP 83.24 82.40 80.00 84.41 75.72 83.87 71.20 82.27 66.68 79.59 62.72 76.88

RAID
Fast-DetectGPT vanilla 77.97 78.74 75.23 81.22 71.67 81.13 66.70 79.08 64.70 78.09 63.10 77.14

MCP 78.13 78.88 76.03 81.77 73.43 82.40 68.27 80.20 64.73 78.09 63.60 77.56

Binoculars vanilla 78.40 79.03 76.47 82.02 74.53 83.03 70.17 81.50 67.50 80.12 64.17 77.94
MCP 78.50 79.19 76.57 82.21 74.83 83.19 72.37 82.78 70.33 81.93 66.07 79.25

MAGE
Fast-DetectGPT vanilla 80.36 80.15 77.08 82.40 72.92 81.99 66.04 78.60 57.00 72.15 43.08 60.00

MCP 82.12 81.57 79.72 84.08 77.28 84.83 72.44 83.02 67.92 80.40 61.24 75.64

Binoculars vanilla 85.12 83.01 84.00 86.62 82.56 88.04 74.60 84.50 56.04 71.37 28.52 44.20
MCP 85.12 83.63 84.04 86.74 82.68 88.07 77.36 86.32 75.80 85.77 73.32 84.49

RealDet
Likelihood vanilla 83.60 82.11 79.70 84.03 76.08 84.03 67.38 79.56 58.98 73.73 36.92 53.73

MCP 84.10 82.23 80.64 84.53 76.66 84.50 70.06 81.43 62.24 76.21 52.60 68.67

Log-Rank vanilla 84.74 82.80 81.30 84.99 77.96 85.22 70.48 81.73 61.50 75.69 45.74 62.55
MCP 85.12 82.95 81.88 85.27 78.36 85.63 72.22 82.93 65.84 78.90 58.28 73.36

Entropy vanilla 68.28 72.51 46.44 59.37 30.24 44.72 14.26 24.53 6.58 12.23 3.18 6.13
MCP 70.60 74.01 48.16 60.79 31.92 46.55 17.68 29.48 9.38 16.97 5.66 10.65

DetectGPT vanilla 71.10 74.42 55.14 66.78 38.20 53.35 19.88 32.62 10.42 18.70 5.96 11.19
MCP 73.18 75.92 57.82 69.18 39.88 55.17 21.94 35.44 13.98 24.33 6.78 12.64

OpenAI-D vanilla 71.06 74.39 62.94 72.80 57.98 71.16 51.50 67.11 47.32 63.81 43.62 60.53
MCP 79.40 79.54 67.74 76.40 59.14 72.28 53.98 69.18 49.70 65.94 45.50 62.34

Fast-DetectGPT vanilla 86.02 83.52 81.86 85.34 77.46 84.91 72.00 82.76 63.74 77.38 51.22 67.52
MCP 87.10 84.07 84.24 86.68 80.86 86.93 76.86 85.90 73.20 83.97 69.32 81.59

Binoculars vanilla 90.96 86.20 90.36 90.19 89.16 91.83 84.98 90.90 78.98 87.77 70.16 82.22
MCP 91.06 86.30 90.36 90.36 89.26 92.13 87.50 92.44 86.28 92.28 84.34 91.29

Table 2: Main Experimental Results Across Various Detectors and Datasets. “Vanilla” refers to the detector’s
original configuration, whereas “MCP” denotes detectors with MCP framework.

Hyperparameter Settings. Detailed hyperpa-330

rameter settings and analysis refer to Appendix F.331

5.2 False Positive Rate Constraint332

Figure 4 shows the FPR performance of vari-333

ous detectors under the MCP framework across334

different datasets, with α values selected from335

{0.2, 0.1, 0.05, 0.02, 0.01, 0.005}. Each subfigure336

corresponds to a specific α value, and datasets are337

distinguished by color. The results confirm that338

the FPRs are consistently constrained within the339

theoretical upper bound determined by α, demon-340

strating MCP’s efficacy in controlling false posi-341

tives. Notably, the uniformity of FPR across de-342

tectors highlights the framework’s generalizability,343

making it an effective solution for environments344

demanding tight FPR control.345

5.3 Main Results346

Table 2 presents the detection results across four347

datasets and seven detectors. The MCP framework348

consistently improves detection performance com-349

pared to vanilla detectors, demonstrating strong350

generalizability. While the gains are modest at351

higher FPR levels (20%, 10%, and 5%), MCP352

shows significant improvements at lower FPR353

thresholds (2%, 1%, and 0.5%). On the RealDet354

dataset, MCP results in an average improvement355

of 11% in TPR and 8% in F1 score compared to 356

vanilla detectors, and an average improvement of 357

10% in TPR and 6% in F1 score across all datasets. 358

MCP enhances performance by balancing detec- 359

tion accuracy and FPR control through multiscaled 360

conformal quantiles, making it well-suited for ap- 361

plications with strict FPR constraints. 362

MCP demonstrates superior performance in low- 363

FPR scenarios. For example, on the MAGE dataset, 364

MCP achieves relative improvements of 157% in 365

TP@0.5% and 91% in F1@0.5%. At higher FPR 366

levels, the improvements are more limited, likely 367

due to the proximity of multiscaled quantiles. No- 368

tably, SOTA detectors with MCP maintain high 369

performance under stringent low-FPR constraints. 370

On RealDet, Fast-DetectGPT reaches 69.32% in 371

TP@0.5% and 81.59% in F1@0.5%, while Binoc- 372

ulars achieves 84.34% and 91.29%. MCP’s flex- 373

ibility in adjusting detection thresholds through 374

multiscaled quantiles allows for precise control of 375

low FPRs without sacrificing performance, making 376

it especially effective for high-precision detection. 377

5.4 Ablation Study 378

It is important to note that MCP is a framework, 379

and the ablation study focuses on the individual 380

modules within the framework, rather than remov- 381
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Figure 5: Local ROC curves (with the horizontal axis representing 1 - FPR) for the basic detectors (Binoculars,
Fast-DetectGPT) under different real-world attacks, both with and without the MCP framework.

Dataset Detector Setting TP@1% F1@1% TP@0.5% F1@0.5%

MAGE
Fast-DetectGPT MCP 65.92 78.91 51.40 67.61

w/o q̂M 59.76 74.25 48.56 65.08

Binoculars MCP 75.80 85.77 73.32 84.49
w/o q̂M 50.20 66.49 24.12 38.72

RealDet
Fast-DetectGPT MCP 73.20 83.97 69.32 81.59

w/o q̂M 64.46 77.91 51.72 67.95

Binoculars MCP 86.28 92.28 84.34 91.29
w/o q̂M 80.82 88.88 73.56 84.44

Table 3: Ablation Study of multiscaled quantiles.

ing the entire framework itself. Table 3 compares382

detection performance with and without the multi-383

scaled quantiles calculation module across differ-384

ent datasets. “w/o q̂M” refers to single quantile385

calculation based on the overall distribution. The386

results demonstrate that incorporating multiscaled387

quantiles into the MCP significantly improves de-388

tection performance. Specifically, when q̂M is re-389

moved, the average TPR decreases by 22%, and390

the average F1 score drops by 15%. These findings391

underscore that binning the calibration set and cal-392

culating more appropriate quantiles over different393

length intervals enables more precise calibration,394

highlighting the necessity of multiscaled quantiles.395

5.5 Robustness to Real-world Attacks396

Figure 5 illustrates the robustness of the MCP397

framework under two types of adversarial attacks:398

paraphrasing and token-level edits (insertion, dele-399

tion, and substitution). Paraphrasing attacks were400

conducted using DIPPER (Krishna et al., 2023)401

to rephrase the machine-generated texts. Editing402

attacks involved random insertion, deletion, or sub-403

stitution of tokens at rates of 1% or 3%.404

The results show that, under all attack scenarios, 405

the MCP framework consistently achieves higher 406

TPR compared to the vanilla detectors. Specifically, 407

MCP demonstrates superior resilience, with higher 408

true positive rates across various attack types and 409

intensities. As attack strength increases (from 1% 410

to 3%), MCP continues to maintain a more robust 411

detection performance, whereas vanilla detectors 412

experience more significant drops in TPR. For ex- 413

ample, under insertion and deletion attacks, MCP 414

outperforms the vanilla detectors by a substantial 415

margin, indicating its effectiveness in mitigating 416

the impact of adversarial edits. These trends high- 417

light the effectiveness of the MCP framework in 418

maintaining strong detection performance even in 419

challenging adversarial scenarios, emphasizing its 420

robustness compared to the baseline detectors. 421

5.6 The Impact of Calibration Data 422

To explore the impact of calibration data on MCP 423

performance, we evaluate multiple datasets, includ- 424

ing the multi-domain datasets (M4, RAID, MAGE, 425

RealDet), as well as domain-specific datasets such 426

as news writing (BBC News), academic writing 427

(Abstracts), and social media text (ELI5). As 428

shown in Figure 6, we used a single dataset for 429

calibration, while the remaining datasets were se- 430

quentially used as test data. 431

The use of diverse calibration data generally 432

leads to better performance and improved gen- 433

eralization. Figure 6 shows the FPR of MCP un- 434

der different calibration data. The results demon- 435
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Figure 6: FPR of Binoculars within the MCP at α = 1%
when calibrated with different datasets.

strate that domain-specific datasets (BBC News,436

Abstracts, ELI5) lead to relatively higher FPRs,437

suggesting that these datasets are less effective in438

achieving precise calibration. In contrast, multi-439

domain datasets (RAID, MAGE) generally perform440

better, although they still exhibit some limitations441

due to inherent biases in the data. Notably, M4 and442

RealDet calibration both yield promising results,443

with RealDet providing slightly more stable and444

consistent improvements. Specifically, TP@1% in-445

creased by an average of 13% across all test sets446

when calibrated with RealDet. However, M4 also447

produces competitive calibration results, highlight-448

ing that while RealDet offers a slight edge, diverse449

calibration data from different domains still plays450

a critical role in enhancing performance without451

being overly reliant on a single dataset.452

5.7 Comparison with Other Calibration453

Methods454

We compared MCP with other calibration methods455

in Appendix G, including metric-based maximizing456

F1 (Lipton et al., 2014), probability distribution-457

based Platt Scaling (Platt, 1999) and Isotonic Re-458

gression(Brunk et al., 1973). While these methods459

offer a modest improvement in detection, they fall460

short of effectively controlling the FPR. In contrast,461

MCP achieves SOTA classification performance462

while maintaining an exceptionally low FPR, en-463

suring higher reliability.464

6 Related Work465

MGT Detection. Existing detectors can be466

broadly categorized into two main types: zero-shot467

detectors and supervised detectors. (1) Zero-shot468

detectors leverage statistical measures extracted by469

LLMs to identify outliers (Gehrmann et al., 2019;470

Su et al., 2023; Ippolito et al., 2020; Yang et al.,471

2023). For instance, the impressive DetectGPT472

(Mitchell et al., 2023), based on the assumption 473

that MGT is more likely to lie at a local optimum 474

of the log probability, compares log probabilities 475

across multiple perturbations to detect MGT. Fast- 476

DetectGPT (Bao et al., 2024) further improves the 477

text perturbation process of its predecessor, signifi- 478

cantly enhancing detection efficiency. Binoculars 479

(Hans et al., 2024) uses cross perplexity between 480

two models from different perspectives to address 481

poor performance when detecting high-perplexity 482

text. (2) supervised detectors typically train a clas- 483

sification model using human-written and machine- 484

generated texts (Solaiman et al., 2019a; Uchendu 485

et al., 2020; Fagni et al., 2021; Zhang et al., 2024; 486

Tian et al., 2024; Pu et al., 2022; Hu et al., 2023; 487

Kumari et al., 2024). Specifically, OpenAI-D (So- 488

laiman et al., 2019b) fine-tuned a RoBERTa model 489

on GPT-2 generated text to detect MGT. 490

MGT Detection Datset. Turing Bench (Uchendu 491

et al., 2021) collected 200k human-written texts 492

and machine-generated texts from 19 different mod- 493

els. However, it has become outdated due to the 494

less advanced models. Subsequently, researchers 495

constructed datasets focusing on specific advanced 496

models or particular domains (Fagni et al., 2021; 497

Yu et al., 2023; Mosca et al., 2023). For instance, 498

Guo et al. (2023) built the HC3 dataset by col- 499

lecting nearly 40k questions covering multiple do- 500

mains along with corresponding answers generated 501

by human experts and ChatGPT. More recent ef- 502

forts have introduced large-scale, cross-domain, 503

and cross-model benchmarks, such as the MGT- 504

Bench (He et al., 2024), M4 (Wang et al., 2024), 505

MAGE (Li et al., 2024), RAID (Dugan et al., 2024) 506

and DetectRL (Wu et al., 2024b) datasets. 507

7 Conclusion 508

In this paper, we introduce a reliable machine- 509

generated text detection framework via multiscaled 510

conformal prediction (MCP), which constrains 511

FPRs to mitigate potential societal harms while 512

simultaneously enhancing detection performance. 513

Extensive experiments across seven detectors and 514

four datasets validate the effectiveness of MCP and 515

demonstrate its ability to improve robustness. In 516

future work, we will continue to update our high- 517

quality dataset, RealDet, to address the challenges 518

posed by the rapidly evolving LLMs. Additionally, 519

we plan to investigate an advanced detector, aim- 520

ing to maintain exceptional detection performance 521

even under stringent FPR within MCP. 522
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Limitations523

In our experiments, we found that although we524

applied a multiscaled optimization strategy using525

fixed-width binning based on CP, different bin526

widths consistently corresponded to varying de-527

tection performance. Therefore, a more flexible528

binning strategy could potentially lead to better529

detection results, an area we have not explored in530

depth.531

Ethics Statement532

Detection inherently carries an accusatory implica-533

tion. While our work constrains the upper bound534

of the false positive rate, offering more reliable in-535

sights to users, we strongly oppose using the detec-536

tion results from this framework as direct evidence537

in any punitive context. Regardless of the accuracy538

of the detection, such use could cause significant539

harm. Additionally, per the Code of Ethics, no pri-540

vate data or non-public information was used in541

constructing our dataset.542
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A Case Study 1027

Figure 7 illustrates the detailed detection steps of a 1028

single instance within the MCP framework when 1029

using Binoculars as the detector, with w = 100 1030

and α = 0.05. First, the multiscaled quantiles q̂M 1031

are calculated based on the nonconformity score 1032

distribution of the calibration data. Next, for a 1033

given instance Xtest, its token length is determined 1034

and processed through Binoculars to obtain the 1035

output Det(Xtest). The output Det(Xtest) is then 1036

converted into a nonconformity score st following 1037

Equation 8. Subsequently, using lt and w, the cor- 1038

responding quantile q̂0 from q̂M is retrieved for the 1039

matching length interval. Finally, the prediction 1040

result C(Xtest) is determined based on the compari- 1041

son between st and q̂0. 1042

B Corollary Proof 1043

This section provides a detailed proof of Corol- 1044

lary 1. 1045

Proof. Assumptions: 1046

1. The calibration set Dcal and the test set Dtest 1047

are independent and identically distributed 1048

(i.i.d.). 1049

2. The conformal prediction framework is em- 1050

ployed to calibrate a decision rule based on 1051

the calibration set Dcal, which is then applied 1052

to the test set Dtest. 1053

3. The nonconformity scores s(x) are properly 1054

defined such that higher scores indicate a 1055

lower likelihood of the text being HWT. 1056

Within the MCP framework, all of the assump- 1057

tions above are satisfied. 1058

Objective: To demonstrate that under the MCP 1059

framework, the False Positive Rate (FPR) on the 1060

test set Dtest does not exceed the predefined thresh- 1061

old α. 1062

Proof Steps: 1063

Nonconformity Scores Assignment: Assign a 1064

nonconformity score s(x) to each instance x in 1065

both Dcal and Dtest. These scores quantify how 1066

atypical an instance is with respect to the detector. 1067

Multiscaled Quantiles Calculation: 1068

1. Bin the calibration set and sort the nonconfor- 1069

mity scores of the subset Di
cal in ascending 1070

order: 1071

si(1) ≤ si(2) ≤ · · · ≤ si(n) 1072
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Figure 7: Detailed Detection Process of a Single Instance within the MCP Framework.

2. By applying Equation 7 to compute q̂M , the1073

following condition is guaranteed:1074

P (si(x) > qi) ≤ α for x ∈ Di
cal1075

Bounding the False Positive Rate:1076

1. Since Dcal and Dtest are i.i.d., the distribution1077

of nonconformity scores in Dcal mirrors that1078

of Dtest. After binning based on text length,1079

and since the selection is performed solely1080

on individual attributes, the subsets (Di
cal and1081

Di
test) obtained for different length intervals1082

remain i.i.d.1083

2. Consequently, the same q̂M , when applied to1084

the test set, continues to satisfy the following1085

condition:1086

P (si(x) > qi) ≤ α for x ∈ Di
test1087

3. The FPR is computed from the instances1088

across all length intervals in Dtest:1089

FPR = E
(
P
(
si(x) > qi | i = 1, 2, . . .

))
≤ α1090

1091

C Details of RealDet1092

In this subsection, we will provide additional de-1093

tailed information regarding various aspects of Re-1094

alDet.1095

C.1 Specific Quantities in Data Sources1096

Table 4 presents the detailed distribution of En-1097

glish text data in the RealDet dataset, categorized1098

by their sources. The dataset contains over 100k1099

human-written texts, and more than 618k machine- 1100

generated texts, culminating in a total of 718k En- 1101

glish texts. Table 5 illustrates the sources and spe- 1102

cific quantities of Chinese text data in the RealDet 1103

dataset. The Chinese text data is constructed with 1104

reference to the HC3 dataset sources (Guo et al., 1105

2023), resulting in a total exceeding 129k texts. 1106

Dataset HWT MGT Total
ELI5 17,111 324,220 341,331
WikiQA 1,187 23,740 24,927
Wikipedia 5,612 24,840 33,682
Medical Dialog 1,248 24,960 26,208
FiQA 3,933 78,660 82,593
Xsum 8,000 9,600 17,600
TLDR 7,887 9,600 17,487
BBC News 2,225 8,900 11,125
WritingPrompt 8,000 9,600 17,600
ROC Stories 5,000 55,941 52,941
Yelp 8,000 9,600 17,600
IMDB 8,000 9,600 17,600
CMV 8,000 9,600 17,600
Abstracts 8,000 9,600 17,600
SQuAD 8,000 9,600 17,600
Total 100,203 618,061 718,264

Table 4: Specific Quantities in RealDet-English.

C.2 Model Supplement 1107

Table 6 presents all LLMs along with their corre- 1108

sponding text quantities. In collecting machine- 1109

generated texts, we considered two distinct set- 1110

tings: black-box models and white-box models. 1111

From the black-box models, we selected 9 popular 1112

and powerful LLMs for data collection, namely 1113

Deepseek-R1 (DeepSeek-AI et al., 2025), GPT-4, 1114

ChatGPT, PaLM 2, Ernie Bot 3.5 Turbo, Spark 1115

Desk 2.0, Qwen Turbo, 360GPT S2 V9, and Mini- 1116

14



Dataset HWT MGT Total
WebTextQA & BaikeQA
(Xu, 2019)

3,293 29,637 32,930

BaiduBaike
https://baike.baidu.com/

4,600 41,685 46,285

NLPCC-DBQA
(Duan, 2016)

1,709 16,381 18,090

Medical Dialog
(He et al., 2020)

1,074 9,666 10,740

FinanceZhidao
(Finance Zhidao)

689 6,201 6,890

Chinese Psychological QA
(Chinese Psychological QA)

1,099 9,891 10,990

LegalQA
(Legal QA)

372 3,348 3,720

Total 12,836 116,809 129,645

Table 5: Data Sources and Specific Quantities in
RealDet-Chinese.

max Abab 5.5. Similarly, from the white-box mod-1117

els, we selected 13 LLMs, including LLaMA2-1118

13B (Touvron et al., 2023), ChatGLM2-6B (GLM1119

et al., 2024), MOSS-moon-003, MPT-7B (Team,1120

2023), InternLM-7B (Cai et al., 2024), Alpaca-1121

7B (Taori et al., 2023), Guanaco-7B (Dettmers1122

et al., 2023), Vicuna-13B (Chiang et al., 2023),1123

BLOOMz-7B (Muennighoff et al., 2023), Falcon-1124

7B (Penedo et al., 2023), OPT-6.7B (Zhang et al.,1125

2022), Baichuan-13B, and Flan-T5-XXL (Chung1126

et al., 2022). The number of machine-generated1127

English texts exceeds 618k, while for Chinese text1128

generation models, there are nine models with over1129

116k texts generated. The total number of texts1130

exceeds 847k.1131

C.3 Prompt Design1132

In this study, we designed 3 types of generic1133

prompts—continuation writing, topical writing,1134

and question-answering—for LLMs to generate1135

texts across 15 distinct domains. Table 11 presents1136

sample prompts for the continuation type, Table 121137

showcases examples of thematic writing prompts,1138

and Table 13 illustrates examples of question-1139

answering prompts.1140

C.4 Adversarial Attacks1141

In this study, we do not consider adversarial attacks1142

on human-written texts, as evading detection with1143

human-written content is deemed inconsequential.1144

Instead, we focus on adversarial attacks in the con-1145

text of machine-generated texts by introducing 21146

common attack types: paraphrasing attacks and1147

editing attacks. For paraphrasing attacks, we em-1148

ploy DIPPER with hyperparameters set to a lexical1149

diversity of 60 and a syntactic diversity of 60. This1150

level of paraphrasing is sufficient to potentially by-1151

Source Model En-Text Cn-Text Total
Deepseek-R1 12,800 5,000 17,800
GPT-4 14,400 - 14,400
ChatGPT 23,861 12,828 36,689
PaLM2 22,255 - 22,255
Ernie Bot turbo 3.5 46,314 12,851 59,165
Spark Desk 2.0 45,028 9,076 54,104
Qwen turbo 46,359 12,851 59,210
360GPT S2 V9 45,929 12,851 58,780
Minimax abab 5.5 20,119 - 20,119
LLaMA2-13B 33,489 - 33,489
ChatGLM2-6B 29,251 12,800 42,051
MOSS-moon-003 29,226 12,851 42,077
MPT-7B 29,315 - 29,315
InterLM-7B 23,573 - 23,573
Alpaca-7B 28,953 - 28,953
Guanaco-7B 29,264 - 29,264
Vicuna-13B 29,047 - 29,047
BLOOMz-7B 7,269 12,850 20,119
Falcon-7B 23,331 - 23,331
OPT-6.7B 27,810 - 27,810
Baichuan-13B 29,259 12,851 42,110
Flan-T5-XXL 21,129 - 21,129
Human 100,203 12,836 113,039
Total 718,264 129,645 847,909

Table 6: Specific Quantities in different LLMs generated
texts.

pass state-of-the-art (SOTA) detectors. Regarding 1152

editing attacks, we utilize the GPT-2 tokenizer to 1153

encode the text and obtain a token sequence. We 1154

then apply random insertions, deletions, and sub- 1155

stitutions to the token sequence at proportions of 1156

1%, 3%, and 5%. The tokens inserted and substi- 1157

tuted are randomly selected from the tokenizer’s 1158

vocabulary. In the adversarial attack scenario, each 1159

raw text is associated with 10 adversarial texts (cal- 1160

culated as 1 original + 3 proportions × 3 types of 1161

edits). 1162

D Performance of the Traditional CP 1163

Figure 8 shows the FPR performance of differ- 1164

ent detectors under the traditional CP framework 1165

across various datasets. We observe that the tra- 1166

ditional CP framework effectively constrains the 1167

upper bound of the FPR. Figure 9 presents the TPR 1168

performance of different detectors within the tra- 1169

ditional CP framework. Although the traditional 1170

CP framework successfully limits the FPR upper 1171

bound, we find that the TPR sharply decreases un- 1172

der low FPR settings. Even SOTA detectors ex- 1173

perience a significant decline in TPR, making it 1174

difficult to detect MGTs. This observation serves 1175
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Figure 8: The FPR of various detectors within Traditional CP framework across all datasets, after applying alpha
constraints with values of alpha set to 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005.
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Figure 9: The TPR of various detectors within Traditional CP framework across 3 datasets.

as the motivation for our proposed MCP approach.1176

E Main Experiment Supplement1177

Tables 8, 9, and 10 present a comparative analysis1178

of the detection performance of 7 different detec-1179

tors on the M4, RAID, and MAGE datasets, respec-1180

tively, both with and without the MCP framework.1181

These tables serve as supplementary material to1182

the primary experiments. The results consistently1183

demonstrate that the MCP framework enhances the1184

detection capabilities of the detectors, particularly1185

under settings with low false positive rates. Fur-1186

thermore, it was observed that non-state-of-the-art1187

(non-SOTA) detectors sometimes do not exhibit1188

performance improvements when integrated with1189

the MCP framework, especially when their baseline1190

performance is bad. We attribute this phenomenon1191

to the possibility that inaccurate outputs from non-1192

SOTA detectors may hinder the calibration pro-1193

cess within the MCP framework. This observa-1194

tion aligns with the conclusions drawn in Subsec- 1195

tion 5.3, where it was noted that accurate outputs 1196

from SOTA detectors facilitate more effective cali- 1197

bration within MCP. 1198

F Hyperparameter Sensitivity Analysis 1199

The MCP framework encompasses 3 hyperpa- 1200

rameters: the upper bound on the FPR (α), 1201

the maximum input length (Lmax), and the bin 1202

width (w). In the main experiments, the up- 1203

per bound α is typically selected from the set 1204

{0.2, 0.1, 0.05, 0.02, 0.01, 0.005}. Lmax is contin- 1205

gent upon the basic detector integrated within the 1206

framework. For instance, the OpenAI-D detec- 1207

tor, which is fine-tuned based on RoBERTa, uti- 1208

lizes Lmax = 512, whereas Fast-DetectGPT, which 1209

employs GPT-2 for sampling and scoring, adopts 1210

Lmax = 1024. The bin width w is influenced by 1211

both the data distribution and the output distribu- 1212

tion. In the main experiments, a default bin width 1213
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Figure 10: Hyperparameter Sensitivity Analysis of w.

of w = 100 is employed, as this width yields the1214

most optimal and stable performance within the1215

framework.1216

Figure 10 presents the performance of varying1217

bin width (w) values across different datasets and1218

detectors. We observe that performance remains1219

consistently strong when w ≤ 200. However, at1220

w = 500, detection performance noticeably de-1221

clines, indicating that excessively large bin widths1222

undermine the MCP framework’s ability to enhance1223

detection performance.1224

The optimal bin width is influenced by the dis-1225

tribution of the textual data. Specifically, within1226

the M4 dataset, a bin width of w = 200 consis-1227

tently outperforms other values in detection per-1228

formance. We attribute this to the inherent text1229

distribution of the M4 dataset, where the major-1230

ity of texts pertain to academic writing and peer1231

review, introducing a certain degree of bias.1232

The distribution of the detector’s outputs af-1233

fects the optimal selection of w. The original1234

output distribution of Binoculars is more concen-1235

trated, leading to a similarly concentrated distri-1236

bution of the transformed nonconformity scores.1237

Consequently, a smaller and more refined bin1238

width enhances detection performance. In contrast,1239

Fast-DetectGPT exhibits a relatively dispersed and1240

smooth output distribution, suggesting that a larger1241

bin width may achieve superior detection perfor-1242

mance in this context.1243

G Comparison with Other Calibration1244

Methods1245

Existing calibration methods can be categorized1246

into two main types: metric-based methods (e.g.,1247

maximizing F1) and probability distribution-based1248

methods (e.g., Platt Scaling and Isotonic Regres-1249

sion). Maximizing F1 derives the optimal threshold1250

by identifying the threshold that maximizes the F11251

score, whereas Platt Scaling and Isotonic Regres-1252

sion modify the output probability distribution to1253

enhance performance. MCP differs from other cal-1254

Detector Method FPR F1

Fast-DetectGPT

vanilla 9.84 82.92
Maximizing F1 9.24 83.22
Platt Scaling 8.46 83.38

Isotonic Regression 8.78 83.12
MCP 1.98 85.90

Binoculars

vanilla 7.68 89.90
Maximizing F1 7.26 90.12
Platt Scaling 6.54 90.18

Isotonic Regression 7.34 89.98
MCP 0.72 92.28

Table 7: Detection Performance with Different Calibra-
tion Methods.

ibration methods in the following two key aspects: 1255

(1) MCP effectively constrains the upper bound of 1256

the FPR, whereas other calibration methods pri- 1257

marily optimize classification performance without 1258

explicitly controlling FPR. (2) MCP is a zero-shot, 1259

dynamic threshold calibration method. Maximiz- 1260

ing F1 determines a fixed threshold that maximizes 1261

F1 performance, while Platt Scaling and Isotonic 1262

Regression train a calibration model to optimize the 1263

output probability distribution and then classify in- 1264

stances based on the newly calibrated probabilities. 1265

In contrast, MCP requires no additional training 1266

and dynamically adjusts the threshold across dif- 1267

ferent text lengths, demonstrating its efficiency and 1268

flexibility. 1269

Table 7 compares the experimental performance 1270

of MCP with other calibration methods. Using 1271

the RealDet dataset, we conducted experiments 1272

on Fast-DetectGPT and Binoculars with different 1273

calibration methods. The results indicate that al- 1274

though other methods (maximizing F1, Platt Scal- 1275

ing, and Isotonic Regression) achieve modest im- 1276

provements in classification performance, they still 1277

exhibit dangerously high FPRs (FPR > 5%). In 1278

contrast, MCP achieves SOTA classification per- 1279

formance and maintains an exceptionally low FPR 1280

(FPR < 2%), ensuring higher reliability. 1281
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Detector Algorithm TP@20% F1@20% TP@10% F1@10% TP@5% F1@5% TP@2% F1@2% TP@1% F1@1% TP@0.5% F1@0.5%

M4
Likelihood vanilla 81.48 80.87 72.76 79.62 65.12 76.54 54.72 69.85 43.92 60.61 35.96 52.70

MCP 87.28 84.17 78.68 83.52 70.04 80.10 58.12 72.89 48.28 64.88 36.04 52.83

Log-Rank vanilla 82.52 81.49 71.84 79.03 62.04 74.28 50.76 66.47 42.96 59.68 35.32 52.02
MCP 87.24 84.32 78.80 83.72 70.12 80.12 56.68 71.66 48.48 64.99 38.56 55.51

Entropy vanilla 57.12 64.50 35.28 48.53 25.12 38.61 14.00 24.14 10.48 18.80 8.48 15.57
MCP 64.80 70.59 45.48 58.71 28.44 42.82 14.84 25.53 9.88 17.87 6.48 12.14

DetectGPT vanilla 61.20 67.53 44.68 57.77 31.12 45.72 16.96 28.51 10.08 18.15 7.28 13.51
MCP 62.00 68.19 46.28 59.35 31.52 46.12 18.36 30.53 11.52 20.49 7.08 13.17

OpenAI-D vanilla 64.00 69.53 54.12 65.95 49.60 64.17 42.60 58.92 38.56 55.26 35.88 52.63
MCP 67.24 71.43 59.28 69.84 52.08 66.45 45.04 61.28 38.92 55.73 35.04 51.76

Fast-DetectGPT vanilla 78.56 79.13 74.44 80.72 70.04 80.03 65.32 78.08 60.56 74.97 54.84 70.60
MCP 79.56 80.35 75.24 81.50 71.72 81.33 67.36 79.55 62.44 76.33 58.64 73.67

Binoculars vanilla 83.20 81.87 79.44 83.87 74.80 83.19 69.72 81.21 64.52 77.96 55.36 71.03
MCP 83.08 82.03 78.84 83.96 75.72 83.87 71.20 82.27 66.68 79.59 62.72 76.88

Table 8: Main Experimental Supplement on the M4 dataset. “Vanilla” refers to the detector’s original configuration,
whereas “MCP” denotes detectors with MCP framework.

Detector Algorithm TP@20% F1@20% TP@10% F1@10% TP@5% F1@5% TP@2% F1@2% TP@1% F1@1% TP@0.5% F1@0.5%

RAID
Likelihood vanilla 64.37 69.82 52.47 64.59 38.70 53.86 24.80 39.12 19.37 32.18 14.00 24.46

MCP 62.93 68.87 53.57 65.59 44.90 60.00 36.50 52.63 32.17 48.20 26.63 41.83

Log-Rank vanilla 66.10 71.01 54.10 65.91 40.63 55.80 28.83 44.08 22.67 36.66 19.77 32.88
MCP 64.97 70.26 54.73 66.60 46.47 61.61 39.43 55.70 34.23 50.59 29.40 45.23

Entropy vanilla 40.03 50.06 22.37 33.80 17.90 29.14 15.57 26.48 14.13 24.54 11.77 20.96
MCP 42.33 52.30 29.33 42.37 23.53 36.61 17.43 29.11 14.73 25.43 12.27 21.74

DetectGPT vanilla 58.57 65.62 46.53 59.45 34.50 49.46 21.20 34.41 14.67 25.36 8.80 16.10
MCP 60.10 67.06 48.37 61.51 35.20 50.64 21.20 34.54 12.67 22.38 7.47 13.86

OpenAI-D vanilla 74.47 76.57 63.80 73.40 56.07 69.62 45.63 61.82 39.93 56.67 17.00 28.94
MCP 73.83 76.33 62.63 72.87 54.77 68.83 47.07 63.13 41.93 58.66 33.47 49.93

Fast-DetectGPT vanilla 77.97 78.74 75.23 81.22 71.67 81.13 66.70 79.08 64.70 78.09 63.10 77.14
MCP 78.13 78.88 76.03 81.77 73.43 82.40 68.27 80.20 64.73 78.09 63.60 77.56

Binoculars vanilla 78.40 79.03 76.47 82.02 74.53 83.03 70.17 81.50 67.50 80.12 64.17 77.94
MCP 78.17 79.17 76.57 82.21 74.83 83.19 72.37 82.78 70.33 81.93 66.07 79.25

Table 9: Main Experimental Supplement on the RAID dataset. “Vanilla” refers to the detector’s original configura-
tion, whereas “MCP” denotes detectors with MCP framework.

Detector Algorithm TP@20% F1@20% TP@10% F1@10% TP@5% F1@5% TP@2% F1@2% TP@1% F1@1% TP@0.5% F1@0.5%

MAGE
Likelihood vanilla 78.52 79.12 73.60 80.14 68.88 79.23 61.56 75.28 49.84 66.08 37.20 54.02

MCP 79.56 80.14 74.60 80.81 69.20 79.50 62.96 76.26 53.08 68.88 35.44 52.21

Log-Rank vanilla 78.64 79.18 74.12 80.43 69.48 79.62 61.64 75.34 51.00 67.11 45.52 62.34
MCP 79.28 80.11 74.52 80.95 70.24 80.24 64.24 77.17 55.00 70.51 44.60 61.53

Entropy vanilla 58.96 65.88 44.76 57.84 31.76 46.43 22.68 36.38 15.44 26.52 10.52 18.95
MCP 58.76 66.47 43.20 56.63 31.72 46.46 21.44 34.85 16.12 27.55 10.44 18.84

DetectGPT vanilla 59.36 66.21 38.20 51.54 19.80 31.73 7.64 13.94 3.88 7.40 2.04 3.98
MCP 58.16 65.60 39.92 53.11 24.76 38.01 11.40 20.07 6.36 11.81 2.92 5.64

OpenAI-D vanilla 82.84 81.68 71.72 78.92 63.08 75.06 54.96 70.03 49.96 66.19 43.08 60.02
MCP 80.96 80.96 74.04 80.74 67.68 78.50 59.36 73.68 53.16 69.02 44.76 61.70

Fast-DetectGPT vanilla 80.36 80.15 77.08 82.40 72.92 81.99 66.04 78.60 57.00 72.15 43.08 60.00
MCP 82.12 81.57 79.72 84.08 77.28 84.83 72.44 83.02 65.92 78.91 51.40 67.61

Binoculars vanilla 85.12 83.01 84.00 86.62 82.56 88.04 74.60 84.50 56.04 71.37 28.52 44.20
MCP 84.80 82.65 83.44 86.18 82.52 88.02 77.36 86.32 75.80 85.77 73.32 84.49

Table 10: Main Experimental Supplement on the MAGE dataset. “Vanilla” refers to the detector’s original
configuration, whereas “MCP” denotes detectors with MCP framework.
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Continuation Writing
First, I’m well aware of the fiasco that was
1989 on the cold fusion front. Please con-
tinue.

Certainly, after Martin Fleischmann and Stan-
ley Pons announced they had achieved cold
fusion in 1989, many laboratories across the
world attempted to replicate these results with
mixed results. This brought the legitimacy of
their claims into question and the scientific
community largely dismissed cold fusion as
a viable technology.

CMV GPT-4

While the main story is supposed to take place
in Morocco, this movie was shot in foggy
Romania in 18 days on a very tight budget.
Please continue.

The decision to film in Romania instead of
Morocco was likely influenced by financial
constraints and logistical challenges. Shoot-
ing in a foreign country can be expensive,
especially for a production with a limited bud-
get. Romania offered more cost-effective op-
tions, including lower labor costs, tax incen-
tives, and accessible filming locations that
could double for Moroccan settings.

IMDB 360GPT S2 V9

In 1986, Michael Dell brought in Lee Walker,
a 51-year-old venture capitalist, as presi-
dent and chief operating officer, to serve as
Michael’s mentor and implement Michael’s
ideas for growing the company. Please con-
tinue.

With Lee Walker’s appointment as Presi-
dent and Chief Operating Officer in 1986,
Dell Computer Corporation began to experi-
ence significant growth under Michael Dell’s
vision and Walker’s experienced guidance.
Walker, a seasoned venture capitalist, brought
a wealth of knowledge and expertise in fi-
nance, operations, and strategic planning to
the company.

SQuAD Ernie Bot 3.5 turbo

Table 11: Some Examples in Continuation Writing.
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Topical Writing Please write an abstract based on the following
title “Addressing Visual Search in Open and
Closed Set Settings”.

Certainly! Here is an abstract based on the title
“Addressing Visual Search in Open and Closed
Set Settings”: In recent years, visual search has
become a critical component of various applica-
tions, ranging from e-commerce to augmented
reality. This paper explores the challenges and
solutions associated with visual search in both
open and closed set settings. In closed set sce-
narios, where all possible categories are known,
the focus is on accurate classification and re-
trieval, ensuring high precision and recall rates.
Conversely, open set scenarios involve the iden-
tification of unknown categories, necessitating
robust mechanisms for distinguishing novel ob-
jects from familiar ones. We present a compre-
hensive framework that leverages deep learning
models tailored for each setting, incorporating
strategies such as feature extraction, similar-
ity metrics, and anomaly detection. Our ap-
proach aims to enhance the performance of vi-
sual search systems by adapting to the dynamic
nature of real-world data, thereby bridging the
gap between theoretical advancements and prac-
tical applications. Experimental results demon-
strate significant improvements in accuracy and
efficiency, paving the way for more versatile
and reliable visual search solutions.

Abstracts Qwen turbo

Please write a news article based on the follow-
ing title: “Wales hails new superstar”.

Title: Wales Hails New Superstar Subtitle: The
Rise of a Welsh Sporting Icon Date: 2023-04-10
Wales has been abuzz with excitement as a new
superstar emerges in the world of sports. The un-
veiling of this extraordinary talent has captured
the hearts and imaginations of the Welsh pub-
lic, and has sparked a renewed sense of pride
and optimism for the future of Welsh sports.
The young athlete, who wishes to remain anony-
mous for the time being, has been making waves
in their chosen sport, demonstrating an unpar-
alleled level of skill, determination, and sports-
manship. Their meteoric rise to fame has been
nothing short of remarkable, with many industry
experts predicting a long and illustrious career
ahead. The new superstar’s impact has been
felt far beyond the realm of sports, with their
success inspiring a new generation of Welsh
athletes to pursue their dreams. Their story
serves as a powerful reminder of the impor-
tance of hard work, dedication, and persever-
ance in achieving one’s goals. As the excite-
ment surrounding this new superstar continues
to grow, the Welsh public eagerly awaits their
next move. With the eyes of the world now
fixed on Wales, there is no doubt that the future
of Welsh sports is in good hands. In conclu-
sion, the emergence of this new superstar has
injected a much-needed dose of enthusiasm and
optimism into the Welsh sports scene. Their
remarkable journey serves as an inspiration to
us all, and we eagerly await the next chapter in
their incredible story.

BBC News Minimax abab 5.5

Table 12: Some Examples in Topical Writing.
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Question-Answering
Please explain what is “2021 FIBA Women’s
AmeriCup”.

The 2021 FIBA Women’s AmeriCup is a bas-
ketball tournament for women’s national teams
from the Americas, organized by the International
Basketball Federation (FIBA). It represents one
of FIBA Americas’ biggest events, featuring top
teams from across the continent. In 2021, the
event took place from June 11 to June 19 in San
Juan, Puerto Rico. Ten teams participated in the
tournament, which aimed to provide international
competition experience for players and contribute
to the global promotion of the sport. The United
States won the tournament, defeating Puerto Rico
in the final.

Wikipedia GPT-4

Does counting the seconds between lightning and
thunder work? I’m talking about the folk ad-
vice that says counting the seconds between see-
ing lightning and hearing thunder means you can
judge how far away it is. Does it hold true, and if
so, why? Explain like I’m five.

Yes, counting the seconds between seeing light-
ning and hearing thunder can help you determine
how far away the lightning is. Lightning is a flash
of electricity that occurs in the sky, often during
a thunderstorm. Thunder is the sound that is pro-
duced when lightning happens. Because light trav-
els faster than sound, you will see the lightning
before you hear the thunder. So, if you see light-
ning and start counting the seconds until you hear
the thunder, the number of seconds you count will
give you a rough estimate of how far away the
lightning is. For example, if you count 5 seconds
between the lightning and the thunder, the light-
ning is probably about 1 mile away. This is be-
cause it takes about 5 seconds for sound to travel
1 mile. You can use this method to help you stay
safe during a thunderstorm. If the lightning is far
away, you might not need to worry as much. But if
the lightning is closer, you should be more careful
and seek shelter to protect yourself from the storm.

ELI5 ChatGPT

How can I judge loan availability? To judge loan availability, you can consider the
following factors: Credit Score: Your credit score
is a key factor in determining loan availability.
Lenders use credit scores to assess the risk of
lending money to you. A good credit score in-
dicates that you are a low-risk borrower and may
qualify for better loan terms. Income: Lenders
will consider your income level when determin-
ing loan availability. They will want to ensure
that you have the ability to repay the loan. Debt-
to-Income Ratio: Your debt-to-income ratio is a
measure of how much of your income is going
towards debt payments. Lenders will consider this
ratio when evaluating loan applications. A high
debt-to-income ratio may indicate that you have
too much debt and may not be a good candidate
for a loan. Credit History: Your credit history is
another important factor in determining loan avail-
ability. Lenders will consider how long you have
had credit, whether you have any negative marks
on your credit report, and how you have managed
your credit in the past. Loan Type: The type of
loan you are applying for will also impact its avail-
ability. Different types of loans, such as personal
loans, mortgages, or auto loans, have different re-
quirements and conditions. By considering these
factors, you can get a better idea of whether a loan
is available to you and what terms you may be
offered.

FiQA GPT-4

Table 13: Some Examples in Question-Answering.
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