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ABSTRACT

Human cognitive behavior arises from the interaction of specialized brain net-
works dedicated to distinct functions, such as language, logic, and social reason-
ing. Inspired by this organization, we propose Mixture of Cognitive Reasoners
(MICRO): a modular, transformer-based architecture post-trained with a curricu-
lum that induces functional specialization across experts. Concretely, we partition
the layers of a pretrained language model into four expert modules aligned with
well-studied cognitive networks in the human brain. MICRO offers three key
advantages over standard language models. (1) The specialized experts are in-
terpretable and causally meaningful—ablating a module causes substantial drops
on benchmarks requiring its specialized domain. (2) MICRO’s behavior can be
dynamically steered at inference time by routing tokens to particular experts (e.g.,
favoring social over logical reasoning), enabling fine-grained control over out-
puts. (3) MICRO outperforms or matches comparable baselines on both machine-
learning reasoning benchmarks (e.g., GSM8K, BBH) and alignment to human
behavior (CogBench), while maintaining interpretability. Taken together, cogni-
tively grounded functional specialization yields models that are both more human-
like and more human-interpretable]l|

1 INTRODUCTION

Neuroscience research suggests that distinct brain regions support language, reasoning, social cog-
nition, and other cognitive functions (Saxe & Kanwisher, 2003} Kanwisher, |2010; [Fedorenko et al.,
2024])). In contrast, the internal organization of Large Language Models (LLMs) is largely unstruc-
tured. While certain units or subnetworks show selective activation (Zhang et al., 2022} 2023;
Bayazit et al.| [2023; |AlIKhamissi et al., [2025a; [Wang et al.| [2025), such specialization is implicit
and difficult to interpret or control. Motivated by this discrepancy, we propose a model architec-
ture that explicitly incorporates specialization. On the machine learning (ML) side, such designs
hold great potential for improving interpretability and controllability; on the cognitive science side,
they provide a framework toward formulating testable computational hypotheses about how the rel-
ative contributions of different brain networks support complex behavior. To this end, we propose
the Mixture of Cognitive Reasoners (MICRO), a class of modular language models that partition
computation across brain-inspired expert modules.

The MICRO architecture partitions each layer of a pretrained language model into four experts,
each designed to mirror a major cognitive network in the human brain: language (Fedorenko et al.,
2011)), logic (multiple demand;|Duncan,|2010), social reasoning (theory of mind;|Saxe & Kanwisher,
2003)), and world knowledge (default mode; |Gusnard et al} [2001). To provide the model with the
inductive bias to learn this partitioning and cohesively integrate these experts, we design a three-
stage curriculum that uses lightweight training in the first two stages to sequentially (1) specialize the
experts to mirror cognitive networks, and (2) bias a router to use certain experts for particular types
of inputs (e.g., the logic expert for mathematics problems). The final training stage of this curriculum
uses this now inductively-biased architecture to perform large-scale supervised finetuning.

!Code, data and models will be made publicly available upon publication.



Under review as a conference paper at ICLR 2026

(a) Neuroscience Inspiration  (b) Model Architecture  (c) Expert Ablations (d) Token Routing Example

Prompt

Emma hides 5 candies in a box.

x L | Jack secretly eats 2. When Emma
returns, how many candies are in
the box, and how does she reacts
when she finds out?

MATH
Benchmark

Response

e (5089 (5 S ) 660 -
ek ety e _ 2 andien
W] Foms_ccurns [} @8 i) 6
i 0 e §0E8-080 50
Ei reacts with surprise and disappointment

when she finds out that () @) _ 3

candies in [{i§ box .

APerformance

Lang . Logic Social . World

#7154, Language ﬁ Multiple @55 Theory i/ Default
G20 Netmonk fi,_ ) Domana L s GD ay

Ablate Social

Ablate Lang

Figure 1: Brain-Inspired Modular Language Model. (a) Illustration of major cognitive networks
in the human brain. (b) Our proposed Mixture of Cognitive Reasoners (MICRO) architecture. The
MICRO architecture partitions each transformer block into four expert modules corresponding to
analogous brain networks; a router assigns each token to an expert at every layer (i.e., assignments
can vary across layers and tokens). (c) Illustration for causal steering via mechanistic ablations:
removing a module shifts behavior and degrades domain-relevant performance. (d) Token-level
routing on a sample prompt shows semantically coherent expert usage.

Our results demonstrate that MICRO’s architecture and training procedure induce interpretable spe-
cialization across these experts. This is evidenced by routing patterns and their correlations with
human judgments (§5.1I) and by causal ablations, which show dramatic drops in performance on
reasoning categories when their corresponding experts are removed (§5.2). Moreover, the semantic
behavior of these experts parallels the specialization of brain networks: (1) functional localizers
used to recover brain-like mechanisms in LLMs (AlKhamissi et al.| [2025a) identify the relevant ex-
perts in MICRoO (§5.3), and (2) MICRO achieves high behavioral alignment scores in large models
on CoGBENCH (Coda-Forno et all,[2024), a human behavioral benchmark, relative to two critical
controls trained on the same data: (i) a mixture-of-experts model without induced brain-like spe-
cialization (MOB) and (ii) a non-modular dense transformer (DENSE) (§|3E[). Finally, we find that
MICRO’s performance matches or exceeds these baselines (§5.3)), indicating that interpretable and
controllable specialization can be achieved without sacrificing overall performance.

2 BACKGROUND & RELATED WORK

2.1 NEUROSCIENCE MOTIVATION

Our design follows evidence that human cognition emerges from interacting, specialized brain net-
works. Cognitive neuroscience has mapped this modular organization by measuring how strongly
different regions engage when people perform specific cognitive tasks 2010). We align
MICRO’s architecture with four core cognitive networks as shown in Figure [Ia). We summarize
the functions of these networks below and their relevance to our modeling approach.

The Language Network. The Language expert mirrors the human language network, which com-
prises a set of left-lateralized frontal and temporal regions that selectively respond to linguistic input
over perceptually matched non-linguistic stimuli (e.g., lists of nonwords; [Fedorenko et al.| 2010).
These regions are highly specific to language, showing minimal activation during tasks such as arith-
metic or music perception (Fedorenko et al.l 2012} 201T)), and their disruption can lead to selective
language deficits (aphasia) without impairing general reasoning capabilities (Varley et al.| 2005).

The Multiple Demand Network. The Logic expert mirrors the Multiple Demand (MD) network,
which spans bilateral regions and is activated across diverse cognitively demanding tasks such as
difficult math problems, with stronger responses for higher difficulty levels (Duncan & Owenl, 2000}
Fedorenko et al, [2013). It correlates with fluid intelligence (Woolgar et all, 2010).
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The Theory of Mind Network. The Social expert mirrors the Theory of Mind (ToM) network,
which is centered in the bilateral temporo-parietal junction and medial prefrontal cortex. This net-
work supports reasoning about beliefs, intentions, and mental states (Gallagher et al.,|2000; |Saxe &
Kanwisher, 2003} |[Saxe & Powell, [2006). It is robustly recruited across both verbal and non-verbal
tasks involving perspective-taking and indirect communication (Koster-Hale & Saxel 2013).

The Default Mode Network. The World expert mirrors the Default Mode Network (DMN), which
is active during rest and internally directed thought such as self-reflection, memory recall, and men-
tal simulation (Gusnard et al.l 20015 [Buckner et al.l 2008} [Buckner & DiNicolal 2019). Centered in
medial prefrontal and parietal regions, the DMN integrates information over long timescales, sup-
porting discourse- and event-level processing across sentences or episodes (Hassabis & Maguire|
2007; |[Fedorenko et al., 2024), in contrast to the shorter temporal scope of the language network.

2.2 MODULAR LANGUAGE MODELS

In parallel with advances in cognitive neuroscience, recent years have seen growing interest in mod-
ular language models as a way to promote specialization, mitigate interference, and improve out-of-
distribution generalization (Pfeiffer et al., 2023 [Zhang et al.,2025). One major line of work centers
on Sparse Mixture-of-Experts (MoE) architectures (Shazeer et al.l |2017), with approaches ranging
from curating domain-labeled datasets to train (Gururangan et al.| 2022)) or prompt (S1 et al., [2023)
domain-specific experts, to frameworks such as ModuleFormer (Shen et al., [2023)), which introduce
load-balancing and concentration losses to encourage modular specialization without explicit do-
main labels. Other modular approaches extend to multimodal integration (Liu et al., 2023} Swamy
et al.,[2023; |Ye et al., 2023) or to disentangling representations by domain or language for multilin-
gual and domain-specific applications (Pfeiffer et al.l [2020; 2022} [Zhong et al., [2022; |/Al-Maamari
et al.| 2024). In contrast, MICRO is, to our knowledge, the first modular language model explicitly
designed to induce brain-like specialization, aligning experts with well-studied cognitive networks.

2.3  BRAIN-INSPIRED MODELS

Recent studies have shown that some models achieve strong alignment with activity in the human
language network (Schrimpf et al.;, 2021; [Toneva & Wehbe, 2019; |Caucheteux & King} [2022; |Aw
et al.| 2023} |AlKhamissi et al.;,2025b). To further improve brain alignment, researchers have begun
to integrate biologically inspired principles into model design—drawing from structures like the
visual cortex hierarchy (Kubilius et al., [2019; |Dapello et al., |2020; [Spoerer et al., |2020), and the
spatio-functional organization of the brain (Margalit et al., [ 2024; |Rathi et al.,|2025)).

3  THE MIXTURE OF COGNITIVE REASONERS FRAMEWORK

3.1 MODEL ARCHITECTURE

To build MICRO, we begin with a pretrained transformer-based backbone. For each layer, we
clone the entire transformer block N times, where N corresponds to the number of experts intended
for specialization, in a similar spirit to parameter upcycling (Komatsuzaki et al., 2023; Zhang et al.,
2024). Then, we initialize a MLP-based router that assigns each token to a single expert. To maintain
computational efficiency and a comparable number of active parameters to the original model, we
use top-1 routing akin to |[Fedus et al.| (2022). We refer to this architecture as mixture-of-blocks
(MoB), distinguishing it from the more common mixture-of-experts (MOE), which restricts experts
to FFN layers with shared attention. Importantly, we focus on MOB in the main paper because
it induces clear functional specialization in all models, as reflected by lower router entropy and
domain-consistent routing patterns, whereas MOE does not exhibit the same effect at those scales
(see Appendix[G.T). Results for MICRO-MOE variants on reasoning benchmarks in Appendix[G.2]

3.2 TRAINING CURRICULUM FOR INDUCING SPECIALIZATION

We induce functional specialization in MICRO experts using a three-stage training curriculum (see
Figure[2). The first two stages use a small, curated dataset (MICROgpr) to provide targeted inductive
biases, allowing specialization to emerge and solidify during the final full-scale training stage.
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Figure 2: Training Curriculum for Inducing Specialization. Our brain-inspired Mixture of
Cognitive Reasoners (MICRO) model contains four experts per layer, each aligned with a distinct
cognitive network in the brain. In Stage-I, we train only the experts using a small, curated dataset
MICROgpr (see example on the left), providing each expert with an initial inductive bias. In Stage-
II, we freeze the whole model and train the router on the same dataset to learn expert selection. In
Stage-III, we finetune the entire model end-to-end on a large-scale instruction tuning dataset.
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Stage 1: Inducing Specialization. In the first stage, we train the experts on a small dataset of
M = 3055 examples (described below), each crafted to reflect the functional domain of a specific
expert (Section [2.1). We denote this dataset as MICROsgr = {(2i 1.1y, 7i.1.7;) }2,, where each
input sequence x; contains T} tokens, and r; provides token-level routing labels. Each label r; ;
{1,..., N} assigns the ¢-th token to one of the N experts. This stage focuses solely on training
the expert parameters using a next-token prediction loss. Tokens attend to all preceding tokens in
the sequence regardless of which expert processed them using the key and value representations
produced by the same expert. However, only tokens that are assigned to the expert in question
continue to be processed through the feed-forward network. The same setup is applied in the next
training stages, with the only difference that the router assigns the tokens to the experts.

Stage 2: Calibrating Router. Next, we freeze the whole model and train only the routers on the
same dataset MICROgpr. The objective remains next-token prediction. Given the initial expert
specialization from Stage 1, the router now learns to assign tokens to the most suitable expert. To
encourage smoother transitions and more robust routing decisions, we use a soft mixture of the top-2
experts per token, which we found to be more effective than top-1 routing during this phase.

Stage 3: End-to-End Supervised Finetuning. Finally, we finetune the entire model end-to-end on
a full instruction-tuning dataset, TULU-3 (Lambert et al.; [2024)), which consists of 939k examples.
Even though this phase constitutes the majority of the training budget, we observe that the functional
specialization seeded by the small MICROgpr dataset is largely preserved. Moreover, the experts
continue to improve on tasks aligned with their initial domains, demonstrating that early inductive
biases can lead to meaningful and lasting functional decomposition.

Constructing the MICROgpy Dataset. To build MICROggy for inducing expert and router spe-
cialization, we first selected 19 existing reasoning datasets corresponding to the cognitive domains
of our non-language experts, ensuring that each group of datasets spanned a diverse range of func-
tions known to engage the corresponding brain networks. From each of the three sets, we randomly
sampled 1,000 examples and used OpenAI’s 01 model (Jaech et al.,|2024) to generate detailed, step-
by-step responses for each input. We then pseudo-labeled each sentence in the generated reasoning
chains by prompting GPT-40 (Hurst et al.| [2024) to assign it to one of the four experts. The to-
kens within each sentence inherit the corresponding expert label 7; ;, which is used for deterministic
routing in Stage 1. Details of the datasets are provided in Appendix [A]
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Figure 3: Semantically Meaningful Routing Across Experts. Token routing patterns in MICRO-
LLAMA-1B. Each bar indicates the proportion of tokens routed to a given expert across layers, with
variance shown across sentences (n=50). The model exhibits clear domain-specific specialization
consistent with the intended brain-inspired organization. For example, social cognition samples are
routed to the social expert, while arithmetic tasks are routed to the logic expert. We find that the
language expert is consistently activated in the early layers (see Appendix |B|for layer-wise routing
plots and results from additional models). Two random samples are shown below each subplot.

4 EXPERIMENTAL SETUP

We post-train five models of varying scales from three different families under our MICRO frame-
work, in order to assess the generalizability of our method and identify the conditions under which
it fails. Specifically, we use LLAMA-3.2-{1B, 3B} (Dubey et al., 2024), SMOLLM2-{135M,
360M} (Allal et al., [2025), and OLMo0-2-1B (OLMo et al., 2024). Due to space constraints, we
present the results of LLAMA-3.2-{1B, 3B} in the main paper while providing the full results for
the remaining models in Appendix [E] Each model is first finetuned for two epochs on the curated
MICROgpr dataset (Stages 1 and 2), followed by one epoch of end-to-end training using the TULU-
3 dataset (Lambert et al.l [2024), as described in Section @ We use next token prediction as the
only learning objective in all training stages, with the loss masked on the input tokens. We use an
effective batch size of 32 and the AdamW optimizer across all stages. The learning rate follows a
linear schedule, warming up over the first 3% of training to a peak of 2 x 1072, then decays linearly
for the remainder of training. This schedule is applied for each stage separately.

Reasoning Benchmarks. We evaluate on four widely used reasoning benchmarks: GSMS8K
(Cobbe et al., [2021), MATH (Hendrycks et al., 2021b), BBH (Suzgun et al.l [2022), and MMLU
(Hendrycks et al.| 202Ta). Evaluation follows zero- or fewshot settings as detailed in Appendix [E]

Behavioral Benchmarks. We evaluate alignment to human behavior using COGBENCH bench-
mark (Coda-Forno et al., |2024), which provides 10 metrics from 7 cognitive psychology experi-
ments. These metrics capture how participants (or models) complete tasks that are designed to dis-
entangle different behavioral strategies. Examples include Directed Exploration, Meta-Cognition,
and Risk Taking. We refer readers to|Coda-Forno et al.| (2024)) for a detailed description of the tasks.

5 RESULTS & ANALYSIS

Our results unfold in two parts. First, we ask whether brain-like specialization emerges under our
training curriculum, analyzing routing behavior, correlations with human judgments, causal abla-
tions to test the functional contributions of those experts, and whether neuroscience experiments
used to identify brain networks also identify the corresponding experts in our models. Second, we
ask how this specialization influences alignment with human behavior and reasoning performance.

5.1 ROUTER PATTERNS ARE INTERPRETABLE AND CONSISTENT WITH HUMAN JUDGMENTS

Token Routing Per Expert. We first verify that our model routes tokens to the most relevant
expert module, analogous to how specialized brain networks are selectively engaged by specific
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Figure 4: Expert Ablations Reveal the Causal Contributions of Specialized modules. Top and
bottom panels show results for MICRO-LLAMA-1B and MICRO-LLAMA-3B. Removing the Logic
expert causes large drops on MATH and GSM8K, while removing the Social expert yields slight
gains. For MMLU and BBH, results indicate that some group of subtasks rely on distinct experts,
whereas others draw on overlapping contributions. Additional models in Appendix

stimuli. Figure [3] shows the routing behavior of MICRO-LLAMA-1B, revealing clear domain-
specific specialization. To generate test inputs, we sampled 50 question—answer pairs using GPT-5
prompted with descriptions of the four brain networks (prompt provided in Appendix [B)). Results for
the other MICRO variants are consistent and reported in Appendix [B] There, we also show routing
patterns on reasoning benchmarks, where tokens are directed to experts consistent with the bench-
mark’s domain. Finally, layer-wise analyses in Figure [[4]reveal a hierarchical organization: earlier
layers focus on linguistic grounding, while deeper layers increasingly delegate to domain-specific
experts—an organization that emerged without being enforced by the training procedure and that
parallels evidence from cognitive neuroscience (Fedorenko et al., [2024).

Correlation with Human Judgments. We evaluate model-human correspondence using 1,000
six-word sentences from [Tuckute et al.| (2024), each annotated with human ratings across several
behavioral dimensions (e.g., mental state content, grammaticality). These annotations were col-
lected independently of our routing framework. We find that router probabilities correlate with the
corresponding human judgments: for example, the social expert’s selectivity aligns with ratings of
mental state content (r = 0.7). Full results are provided in Appendix [C|

5.2 EXPERTS ARE CAUSALLY MEANINGFUL

Validation of Functional Experts via Ablations. Figure ] illustrates how expert ablations reveal
the causal contributions of specialized modules to task performance. By selectively removing indi-
vidual experts, we can directly test whether their specialization is functionally necessary for different
domains. For example, on MATH and GSM8K, ablating the Logic expert causes a substantial drop
in accuracy, confirming its central role in numerical reasoning. In contrast, removing the Social ex-
pert slightly improves performance, suggesting it plays a detrimental role in these tasks. For broader
benchmarks such as MMLU, which span multiple subdomains, we report results for each subcat-
egory separately. Performance drops after ablating the corresponding experts indicate that these
clusters depend on distinct functional modules. Still, not all subtasks within a category align neatly
with a single cognitive domain, and some require overlapping contributions, such as BBH. We show
in Appendix [D] the effect of removing the language expert, which causes a significant drop on all
benchmarks, along with additional ablation results on other models.

Steering Model Behavior at Test-Time. Our results demonstrate that test-time ablations can steer
expert behavior, with social responses emerging when only the social expert is active and logical
reasoning dominating when only the logic expert is retained. Qualitative examples in Appendix [J}
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Figure 5: Neuroscience Localizers Recover Functionally Specialized Experts. (a) MICRoO-
LLAMA-1B and (b) MICRO-LLAMA-3B. For each model, we apply three neuroscience-inspired
localizers—Language, Multiple Demand (MD) and Theory of Mind (ToM)—to examine the selec-
tivity of localized units across experts and layers. Each plot shows the percentage of units in each
expert of each layer that belongs to the top-10% selective units in the whole model.

5.3 NEUROSCIENCE LOCALIZERS REVEAL FUNCTIONAL EXPERT SPECIALIZATION

Neuroscientists rely on localizer experiments to identify the brain regions associated with specific
functional networks, as their precise locations can vary across individuals. This raises a natural
question: can we apply these established neuroscience localizers to identify the corresponding expert
modules in our model? If so, this would provide further support for the hypothesis that our experts
are functionally analogous to their associated brain networks.

To investigate this, we adopt the methodology of |AlKhamissi et al.| (2025a)), which has been used
to localize the language network, the multiple demand network, and the theory of mind network
in LLMs. We apply these localizers to our MICRO models to test whether they can recover the
corresponding expert modules. Figure [5]shows the percentage of units in each expert of each layer
that belongs to the top 10% of selective units across the whole model, similar to what is done in the
brain (Lipkin et al., [2022). The results show that language selectivity, as defined by the language
localizer, favors the language expert at early layers while favoring the world expert at later layers for
both models. The multiple demand localizer successfully favors the logic expert in both models. In
contrast, ToM localization is less effective at isolating units within the social experts, but improves
with scale, suggesting that ToM ability must emerge before it can be localized. One other possible
reason for this is the limited size of the ToM stimulus set, which includes only 10 contrastive pairs,
in contrast to 240 for language and 100 for multiple demand. This small sample may lack the
robustness needed to reliably localize ToM-selective units (Jamaa et al.| 2025).

5.4 STRONG ALIGNMENT TO HUMAN BEHAVIOR

Figure[6]presents the results on COGBENCH, evaluating alignment with human behavior. Unlike the
original paper, we pick the option with the highest log-probability for multiple-choice tasks to avoid
invalid generations and run each experiment across five seeds. Metrics are normalized such that
random = 0 and human = 1. To quantify overall alignment, we introduce the bounded relative error
similarity score (Sgrg), which avoids inflation from superhuman scores. For a normalized score s;
on metric ¢, we compute BRE; = |s; — 1|/ max(1, s;) and aggregate as Sprg = 1 — % Z?zl BRE,.
Thus, BRE; remains bounded in [0, 1] even if s; > 1.

Overall, we find competitive alignment across models, with MICRO-LLAMA-1B showing superior
alignment compared to its counterparts. Panel (a) reports the average similarity score (Sgrg) aggre-
gated across the 10 behavioral metrics for both MICRO-LLAMA-{1B, 3B} models, while panel (b)
breaks down the human-normalized scores for each metric separately across the three post-trained
models for the LLAMA-3.2-1B base model. Finally, panel (c) illustrates example inputs from two
of the seven classical psychological experiments included in COGBENCH, which are verbalized for
LLM evaluation following the original benchmark design. More in Appendix [H]
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(c) Examples of Tasks

{BART Instructions} {Probabilistic Reasoning Instructions}

YYou observed the following previously where the type of balloon is given in parenthesis: Q: The wheel of fortune contains 6 sections labelled F and 4 sections labelled J.

. Balloon 1 (A): You inflated the balloon 0 times for a total of O points. It did not explode. The um F contains (8, 2) and the urn J contains (2, 8) red/blue balls. A red ball was

n ! w
. Balloon 2 (C): You inflated the balloon 4 times for a total of 4 points. It did not explode. drawn. What is the probability that it was drawn from Urn F2 (Give your probability

estimate on the scale from 0 to 1 rounded to two decimal places)
Q: You are currently with Balloon 3 which is a balloon of type A.
What do you do? (Option 1 for 'skip' or 2 for 'inflate) Q A: | estimate the probability of the red ball to be drawn from the urn F to be 0.<ans> @

A: Option <ans>

Figure 6: Alignment with Human Behavior on COGBENCH. (a) Average similarity score (Sgrg)
across 10 behavioral metrics, showing that MICRO-LLAMA models achieves superior alignment
compared to their MOB and Dense baselines. (b) Human-normalized scores for each metric sep-
arately across the three models. (¢) Example inputs from two of the seven classical psychological
experiments verbalized for LLM evaluation following COGBENCH.

5.5 COMPETITIVE PERFORMANCE ON REASONING BENCHMARKS

Having established that our MICRO models exhibit human-like specialization that is causally linked
to task performance, we next examine whether they incur any performance degradation compared
to two: one without brain-like specialization (MOB) and one without any modularization (DENSE).
Both models are post-trained on a mixture of 2x MICROggr and 1x TULU-3 matching the total
amount of data used in the MICRO training curriculum.

Figure [/| shows performance on GSM8K, MINERVA-MATH, MMLU, and BBH, along with their
average. Models are evaluated using fewshot chain-of-thought prompting, except for GSM8K,
which is evaluated under zero-shot CoT prompting. For both base models, MICRO-MOB matches
or exceeds comparable MoB baselines, while ablating the least relevant expert (i.e., the social expert
for these benchmarks) further improves performance. We conduct pairwise Welch’s ¢-tests between
models and report significance directly in the plot. Results show that some models, such as LLAMA-
3.2-1B, benefit significantly from brain-like specialization, whereas others, such as LLAMA-3.2-
3B, only show significant differences relative to their baselines on some benchmarks. We report
additional results for the other models and benchmarks in Appendix [E| We further show that our
method is robust to different post-training pipelines, including DPO (Rafailov et al., [2023) and
domain-specific instruction tuning (Appendix [F).

6 DISCUSSION & FUTURE WORK

Extending Specialization Beyond Cognitive Domains While inspired by the brain’s functional
organization, our specialization framework can be applied to any meaningful partition of exper-
tise, such as technical domains or natural languages. One key question is whether the model pre-
serves the intended specialization through large-scale end-to-end training. Our results suggest that
brain-inspired partitions provide a robust inductive bias: they persist throughout training and lead to
structured, interpretable routing patterns. Supporting evidence in Appendix [[| shows that expert us-
age remains consistent across checkpoints over the course of Stage 3 training. Looking ahead, this
framework could also be extended to other cognitive domains. For example, recent neuroscience
findings point to a distinct brain network involved in reasoning about intuitive physics (Kean et al.,
2025). Incorporating a corresponding module could improve the model’s performance on tasks
involving spatial or causal reasoning.
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Figure 7: Competitive Performance. Results on GSM8K (0-shot CoT), MINERVA-MATH,
MMLU, and BBH (fewshot CoT). MICRO matches or outperforms baselines, and ablating the
least relevant expert (e.g., social for math benchmarks) yields further gains. For MOB (ABLATION)
and MICRO (ABLATION) (on MMLU and BBH subtasks), results reflect the best performance ob-
tained when ablating up to one expert. Significance is assessed with pairwise Welch’s t-tests (shown
in plot). The dense model is shown as a dashed line. Results of the remaining models and on more
benchmarks are provided in Appendix [E|

The Crucial Role of Stage-1 Pretraining Data Our experiments highlight the importance of the
curated MICROgpt dataset in inducing effective specialization. Notably, we used only 3,055 sam-
ples in Stage-1, suggesting that even minimal domain-aligned supervision can shape expert behav-
ior. This finding raises the possibility that different or more expansive data mixtures could further
strengthen functional specialization and lead to additional gains in the model’s behavior.

Towards Brain Alignment Beyond Language Since our model is explicitly designed to mirror
distinct cognitive networks in the human brain, and given that established neuroscience localizers
can identify the corresponding expert modules, an exciting direction for future work is to examine
whether the internal representations of these experts align more closely with neural activity in their
respective brain networks (Schrimpf et al., 2018} 2020). Prior studies have shown that language-
selective units in large language models correlate more strongly with activity in the human lan-
guage network than randomly selected units (AlKhamissi et al., [2025a), suggesting a meaningful
link between specialization in models and brains. This raises the natural question of whether similar
alignment can be observed for other cognitive domains, such as reasoning or social cognition.

7 CONCLUSION

This work presents the Mixture of Cognitive Reasoners (MICRO), a modular architecture and train-
ing paradigm inspired by the functional specialization of the human brain. By aligning expert mod-
ules with distinct cognitive domains—Ilanguage, logic, social reasoning, and memory—each reflect-
ing the functionality of well-studied brain networks, we show that incorporating cognitive inductive
biases into transformer models can effectively promote functional specialization. This results in im-
proved behavioral alignment as measured by COGBENCH, enhanced interpretability, all while being
competitive or outperforming comparable models on reasoning benchmarks. Our staged training ap-
proach leverages a small curated dataset and enables specialization to emerge in a controllable and
data-efficient manner. Furthermore, we show that the resulting modularity allows for targeted inter-
ventions at inference time, enabling the model to favor one mode of reasoning over another. These
findings highlight a promising path toward more transparent, steerable, and cognitively grounded
language models.
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APPENDIX

A CONSTRUCTING THE EXPERTS DATASET

Datasets To construct the small curated datasets used in stages 1 and 2 of our training curriculum,
we first identified existing datasets that align with the cognitive domain of each expert. Table|l|lists
these datasets, the number of examples sampled from each, the corresponding high-level cognitive
skill they were chosen to represent, and whether we used O1 to generate responses or relied on the
original reasoning chains provided with the dataset.

Table 1: Datasets Used to Induce Specialization in Stage-1. Overview of datasets used to induce
expert specialization during stages 1 and 2. Each dataset is aligned with a cognitive skill targeted
by a specific expert. We indicate the number of examples sampled from each dataset and whether
responses were generated using O1 or taken directly from the dataset’s original reasoning chains.

Expert Task Dataset # Samples Use O1
O1-Journey (Qin et al., [2024)) 327 No
Math Math (Li et al., [2023) 200 No
. GSMB8K (Cobbe et al., [2021) 100 Yes
Logic
Logic Folio (Han et al., 2022) 100 Yes
g LogicQA (Liu et al|;[2020) 100 Yes
Physics Physics (Li et al.,[2023) 200 No
Total (Logic) 1027
Deceits (Hu et al.| [2023) 20 Yes
Indirect Speech (Hu et al., 2023) 20 Yes
Irony (Hu et al.} 2023) 25 Yes
Pragmatics Maxims (Hu et al.,[2023)) 19 Yes
Metaphor (Hu et al.,[2023) 20 Yes
Social Humor (Hu et al.[ |2023) 25 Yes
Coherence (Hu et al.| [2023) 40 Yes
Emotion Detection EmoCause (Kim et al.,[2021) 100 Yes
FanToM 1st Order (Kim et al.,|[2023) 100 Yes
Theory of Mind FanToM 2nd Order (Kim et al.,[2023) 100 Yes
BigToM (Gandhi et al., [2023)) 128 Yes
Social Reasoning Mixture [ProlificAl/social-reasoning-rlhf] 531 Yes
Total (Social) 1028
Biology (Li et al., 2023) 100 No
Chemistry (Li et al.|[2023) 100 No
World Knowledge by (Bisk et al |, 020) 200 Yes
World WikiQA (Yang et al., 2015) 100 Yes
Spatial Reasoning SpatialEval (Wang et al., [2024) 100 Yes
Temporal Reasoning TextTemporal (Li et al., [2025) 100 Yes
World Building World Building archit] 1/worldbuilding] ~ 200 No
Cause Effect CoPA (Wang et al., [2022) 100 Yes
Total (World) 1000

Generating Reasoning Responses Since most of the existing datasets we identified (listed in Ta-
ble[T) do not include reasoning steps for the final answer, we used O1 to generate them. Specifically,
we prompted the model with the input followed by “Let’s think step by step.” to elicit a longer re-
sponse that includes intermediate reasoning before reaching the final answer. This was only done
for datasets that did not already contain suitable reasoning chains.
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Figure 8: Distribution of Expert Assignments across Tokens and Phrases. (a) The distribution
of expert assignments across tokens using the LLAMA-3.2-1B tokenizer. (b) The distribution of
expert assignments labeled using GPT-40 for each phrase in the provided response.

Pseudo-Labeling Responses Finally, once we obtained responses with intermediate reasoning
steps for all sampled examples, we used GPT-40 to pseudo-label each phrase in the response.
During stage-1 training, each token in a phrase was then assigned to the expert identified by the
pseudo-label. This labeling process was guided by the prompt shown in Figure[9} Figure [IT] pro-
vides examples of labeled responses, while Figure [§] shows the distribution of expert assignments
across tokens and phrases.

B TOKEN ROUTING PATTERNS

GPT-5 Prompt for Generating Expert Specific Stimuli Figure |10| presents the prompt used to
instruct GPT-5 to generate the question—answer pairs shown in the non-benchmark token-routing
pattern plots. The descriptions of the brain networks are identical to those in Figure[9] which were
previously used to pseudo-label O1-generated responses for constructing the MICROgpt dataset.
We queried GPT-5 separately for each expert. We show the routing patterns for additional models
in Figure[T2]and for MOE models in Figure[T7]

Layerwise Routing Patterns Figure [[3]illustrates layer-wise token routing patterns for five MI-
CRO models. Surprisingly, consistent trend emerges: tokens are initially processed by the lan-
guage expert before being delegated to higher-level experts depending on the task domain. This
organization parallels findings in cognitive neuroscience, where the language network is engaged
early for virtually all linguistic input and then interfaces with other specialized networks (such as
multiple-demand or social cognition systems) depending on task demands (Fedorenko et al ,[2024).
In Figure[T4] we show benchmark-specific token routing patterns across layers as well. To probe so-
cial specialization directly, we also include evaluation on the EMPATHY benchmark
[2018), which primarily engages the social expert, further confirming the expected routing behavior
is generalizable across datasets.

C CORRELATION WITH HUMAN JUDGMENTS

We use a dataset of 1,000 six-word sentences from [Tuckute et al.|(2024), each annotated with human
ratings across several behavioral dimensions, collected independently of our routing framework. To
test correlations with human judgments, we selected features expected to align with specific experts:
GRAMMATICALITY and PLAUSIBILITY with the language expert, MENTAL STATES with the social
expert, and PHYSICAL OBJECTS and PLACES with the world expert. The dataset does not include
features relevant to the logic expert.

To analyze these relationships, we divide each model into three layer segments (early, middle, late)
and averaged router probabilities within each segment. Figure [I3]reports correlations between the

18



Under review as a conference paper at ICLR 2026

GPT-40 Prompt for Pseudo-labeling O1 Responses 1
J I\

| am training a mixture-of-experts (MoE) model that routes tokens individually (token-level routing) to specialized experts. The
model includes four distinct experts, each clearly analogous to a specific cognitive network in the human brain. Below is a detailed
explanation of each expert, along with examples of the types of tasks or token sequences each should typically handle:

- Language Network (LN): Primarily responsible for linguistic processing, grammatical structures, vocabulary usage, syntax,
semantics, and sentence coherence. This expert should handle tasks involving language comprehension, text fluency, sentence
construction, paraphrasing, and interpreting linguistic nuances.
- Example tasks: Completing sentences, grammar correction, paraphrasing sentences, translating between languages,
summarizing text.

- Multiple Demand Network (MD): Specializes in analytical thinking, mathematical calculations, numerical reasoning, and logical
problem-solving. This expert engages explicitly in arithmetic operations, logical deductions, comparisons, quantitative reasoning,
and systematic analysis.
- Example tasks: Performing arithmetic operations, solving logical puzzles, analyzing numerical data, interpreting
mathematical expressions, evaluating logical arguments.

- Theory of Mind Network (ToM): Dedicated to social cognition and interpersonal reasoning. This expert interprets and predicts
social interactions, emotional states, intentions, desires, beliefs, and motivations of individuals or groups.
- Example tasks: Inferring a person's feelings or intentions from their actions, understanding dialogue involving interpersonal
relations, predicting characters' behaviors based on emotional context, interpreting subtle social cues.

- Default Mode Network (DMN): Responsible for integrating general world knowledge, context understanding, background
information retrieval, and conceptual reasoning about everyday scenarios or common-sense understanding.
- Example tasks: Providing background knowledge on common scenarios, contextualizing real-world situations, recalling
general facts, understanding cause-and-effect relationships, providing narrative context.

Given the following example of model-generated text in response to a prompt, carefully label each token sequence with the expert
best suited to handle it (LN, MD, ToM, or DMN). Ensure each sequence is assigned to only one expert. Output your answer clearly
and explicitly in the following JSON format with each {sequence_i} corresponding to the actual sequence of tokens:

“json

{
"{sequence_1}": "{expert_ label}",
”(sequence_2)": "{expert_label}",
"{sequence_3}": "{expert_ label}",

}

## Prompt

{prompt}

## Generation

{generation}

- J

Figure 9: Prompt Used for Pseudo-Labeling O1 Responses The prompt used to instruct GPT-40
to label the O1 model generations given a specific input prompt.

GPT-5 Prompt for Generating Expert Specific Stimuli
L

{BRAIN NETWORKS DESCRIPTION}

Using the description above and your knowledge of the mentioned brain networks, generate {¥} prompt and chain of thought
answer pairs that activate only the {BRAIN NETWORK} expert and do not activate any of the other experts. Output the results only
and nothing else in JSONL format. Each JSON object should be in an LLM chat format as the following.

{"user": <prompt>, "assistant": <cot-answer>}

Figure 10: Expert-Specific Prompt Template Used with GPT-5 Prompt provided to GPT-5
for generating expert-specific question—answer pairs. The stimuli for each expert was prompted
separately using the same brain-network descriptions as in Figure 0]
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(a)
Input Prompt

Task: You will read pairs of sentences. Reach each pair and decide
whether they form a coherent story.
The answer options are 1 or 2.

Scenario: Mary's exam was about to start. Her palms were sweaty.
Options:

1) Incoherent

2) Coherent

Let's think step by step:

—

-
Step 1: Read the sentences carefully.

Sentence 1: "Mary's exam was about to start."

Sentence 2: "Her palms were sweaty."

Step 2: Analyze the logical connection between the
sentences.

- The first sentence introduces a situation where Mary is
about to take an exam.
@ - The second sentence describes a physical reaction
(sweaty palms) that is commonly associated with

“ nervousness or anxiety.

- Nervousness is a typical emotion before an exam.

Step 3: Determine if the sentences form a coherent story.
- The physical reaction in the second sentence logically
follows the situation in the first sentence.

- There is a clear cause (exam starting) and effect (sweaty
palms due to nervousness).

**Answer:** 2) Coherent

Input Prompt
e

(b)

A cube with an edge length of 4 units has the
same volume as a square-based pyramid with
base edge lengths of 8 units and a height of
$h$ units. What is the value of $h$?

—

- ™

Let's work through this problem step by step, keeping a
close eye on each detail and exploring any uncertainties as
we go. Our goal is to find the height \\( h \\) of a square-
based pyramid given that its volume matches that of a cube
with an edge length of 4 units.

To start, we know the volume of a cube is given by the
formula \\( V_{\\text{cube}} = sA3 \\). With \\( s = 4 \\), we
calculate the volume of the cube:

. W[ V_{\\text{cube}} = 443 = 64 \\]
Now, let's consider the pyramid. The volume of a square-
. based pyramid is determined by the formula \(
V_{\text{pyramid}} = \\frac{1}3} \\times \\text{base area}
\\times \\text{height} \\). The base area for our pyramid,
given the base edge length \\(1 =8 \\), is \\( 82 \\)."

Substituting into the formula, we have:

So, it appears the height \\( h \\) is 3 units. Let's pause and
consider what we have done so far. Initially, we
encountered a mistake with division, but after revisiting our
steps, we corrected it by accurately isolating \\( h \\).

Thus, the final height \\( h \\) of the pyramid, maintaining the

equality of volumes, is \\( \\boxed{3} \\).

/

Expert Legend

'Il Logic

Language

. World

Social

Figure 11: Examples of Pseudo-Labeled Responses using GPT-40 (a) shows a response gener-

ated by O1 for a prompt from the coherence subset of the PRAGMATICS dataset (Hu et al.|[2023)). (b)

shows a response taken directly from the O1-JOURNEY dataset (Qin et al.,[2024). Each subfigure in-
cludes the original prompt, the full model-generated response, and the corresponding pseudo-labels

assigned to each phrase.
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Figure 12: Token Routing Patterns in Additional MICRO-Maodels. Percentage of tokens routed
to each expert, aggregated across all layers, for additional MICRO models. Distributions are com-
puted over GPT-5—-generated question—answer pairs designed to engage specific domains. Results
show consistent brain-inspired specialization, with tokens preferentially assigned to the relevant ex-
perts depending on the task domain. Figure [I3]shows the corresponding layer-wise token routing of
these plots, while Figure[T4]shows the token routing on benchmark testing data.

21




Under review as a conference paper at ICLR 2026

(a) MiCRo-Llama-3B

Language Samples i Logic Samples Social Samples World Samples

geCflin f.\'/ P .f\.\.,.. \"\.
B

g
H

(b) MiCRo-Llama-1B

Language Samples Logic Samples Social Samples World Samples

Tokens (%)

rcentage of Tokens (%)
ntage of Tokens (%)

(c) MiCRo-OLMo2-1B
r \ N\
Language Samples Logic Samples Social Samples
: : H /.,.,.\,/'\ A g w
& £ AN i

. -> N SNIDENS =

s 6189
Layer Number

N
)

S 7 8 90
Layer Number

\ J \ J

(d) MiCRo-SmolLM2-360M

Language Samples Logic Samples Social Samples

A A

o6
—
)

AL

() MiCRo-SmolLM2-135M

Language Samples Logic_ Saq\ples Social Samples World Samples

ns (%)

Percentage of Tokens (%)
s

Figure 13: Layer-wise Token Routing in MICRO Models. Token routing distributions across lay-
ers for five MICRO models, measured on GPT-5—generated question—answer pairs targeting specific
domains. In all models, the language expert is consistently engaged in early layers, while domain-
specific experts (logic, social, world) are increasingly activated in deeper layers. This hierarchical
organization parallels findings from cognitive neuroscience, where linguistic processing precedes
engagement of higher-level networks.
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Figure 14: Benchmark Token Routing Patterns. Token routing patterns for (a) MICRO-LLAMA-
3.2-1B, (b) MICRO-LLAMA-3.2-3B, and (¢) MICR0O-OLMo0-2-1B, evaluated on up to 1,000
samples drawn from the GSM8K, MINERVA-MATH, EMPATHY, and MMLU test sets. For each
model, the top panel reports the overall percentage of tokens routed to each expert across the whole
model (variance across samples), while the bottom panel shows layer-wise routing. The latter re-
veals an emergent hierarchy: earlier layers emphasize language grounding, whereas deeper layers
increasingly delegate to domain-relevant experts.
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Figure 15: Correlations Between Expert Routing Probabilities and Human Ratings. Correla-
tions are shown for MICRO-LLAMA-3.2-1B and MICRO-LLAMA-3.2-3B, averaged across early,
middle, and late layer segments. Mental state ratings correlate most strongly with the social expert,
grammaticality and plausibility correlate to some degree with the language expert (primarily in early
layers), and physical objects and places with the world expert. The logic expert shows no positive
correlations with these features.

average routing probability of each expert and human ratings for MICRO-LLAMA-3.2-1B and
MICRoO-LLAMA-3.2-3B. For both models and layer segments, mental state ratings correlate most
strongly with the social expert. Language expert probabilities correlate with GRAMMATICALITY
and PLAUSIBILITY, but primarily in early layers. PHYSICAL OBJECTS and PLACES correlate with
the world expert, while the logic expert shows no positive correlations (and in most cases negative
correlations) with these features. These findings suggest that our router exhibits a meaningful degree
of correspondence with human behavioral judgments.

D ADDITIONAL EXPERT ABLATION RESULTS

Figure [I6] reports the effect of ablating individual experts, including the language expert, on bench-
mark performance for five MICRO models. We find that the language expert is essential for most
tasks, while domain-specific experts—such as the logic expert for GSM8K and MINERVA MATH—
are also necessary to maintain performance. Interestingly, in some cases, ablating an expert im-
proves performance, suggesting that certain experts may interfere with more relevant ones, leading
to performance degradation when all are active.

E BENCHMARKS

Benchmarks Description We evaluate our models on eight benchmarks using various fewshot
settings, four of which are prompted to generate a reasoning chain before producing the final answer.
These reasoning steps are intended to more meaningfully engage the expert modules throughout the
generation process, which is why we focused on them in the main paper. The other benchmarks are
multiple choice questions where the most likely candidate—as measured by the log-probabilities
of the model—is taken as the prediction. Table [2] lists the number of in-context examples used
and the number of samples tested for each benchmark. For the remaining benchmarks, we used
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Figure 16: Expert Ablation Results Across Benchmarks. Impact of ablating individual experts on
benchmark performance for five MICRO models. Results are shown for GSM8K, MINERVA MATH,
BBH, and MMLU, with the latter divided into its four subcategories. Removing the language
expert causes substantial drops across most tasks, while domain-specific experts (e.g., logic for math
benchmarks) are critical for their respective domains. In some cases, ablating an expert improves
performance, suggesting interference with more relevant experts.

Table 2: Number of Shots and Samples Per Benchmark Used in Evaluation. Number of shots
and samples used when evaluating the test-set of each benchmark. Last two row shows whether we
used CoT or evaluated using log-probabilities and the metric used to obtain the final accuracy.

Benchmark GSMSK Minerva Math MMLU BBH HellaSwag PIQA ARCEgay  ARCchalienge
N-Shots 0-Shot 4-shots 4-shots 3-Shots 0-Shot 0-Shot 0-Shot 0-Shot
Num Samples 1,319 5,000 14,042 6,511 10,042 1,838 2,376 1,172
CoT Prompting Yes Yes Yes Yes No No No No
Metric Exact Match Exact Match Exact Match  Exact Match ~ Acc Norm  Acc Norm Acc Acc Norm
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Table 3: Additional Benchmark Results for MiCRo and Baselines Accuracy (%) + standard
error across reasoning and knowledge benchmarks. Results are reported for different model classes
(Dense, MoB, and MiCRo) under each base model.

GSMS8K  Minerva MMLU  BBH ARCray  ARCcppienge HellaSwag  PIQA

Base Model Model

Dense 2.7+04 0.5%0.1 215+03 2414+05 628+1.0 296+13 43605 677+
SmollIM2-135M  MoB 30£05  0.6+0.1 2194+03 235+05 63.0£1.0 299+13 435+05 678+
MiCRo 39405 0.8+0.1 225+04 254+05 560+£1.0 27.6+13 41.8+05 675+

1
1
1
Dense 150£1.0 37403 264+£04 273+£05 69.7+£09 375£14 56.6+05 71.4%1.
1
1
1
1

SmolIM2-360M  MoB 174+£1.0 39+03 268+04 27.7+05 700+£09 371+14 569+05 720+
MiCRo 165+10 34+03 260+04 272+05 699+09 382+14 56.7+05 717+

Dense 368+13 48+03 297+04 304+05 643£1.0 33.7+14 584+05 738%
Llama-3.2-1B MoB 30513 374+03 271+£04 274+£05 61.7+£1.0 324£14 562+05 713+
MiCRo 347+13 46+£03 31.2+04 298+05 596+£1.0 328+14 547£05 731%£1.0
Dense 580+1.4 144+£05 486+04 441£06 736F£09 429%14 689+05 77.0X£1.0
Llama-3.2-3B MoB 516+14 123+£05 452404 422+06 71.6+£09 413+14 67.3+05 77.0+1.0
MiCRo 572414 13.0+£05 454+04 420+06 73.0+£09 433+14 67.4+05 76.6+1.0

the default fewshot examples from the lm-evaluation-harness (Gao et al.,2024) repository.
Specifically, we used the bbh_cot_fewshot task for BBH, the mmlu_flan_cot_fewshot task
for MMLU, the minerva_math task for MINERVA MATH, and the gsm8k_cot_zeroshot for
the GSMS8K task. We used the default tasks for the multiple-choice benchmarks.

Extended Benchmark Results Table [3| reports results for additional base models as well as on
benchmarks beyond those presented in the main paper. Consistent with the main results, MICRO
remains comparable to Dense and MoB baselines across most tasks while being interpretable. These
supplementary experiments provide further evidence that the observed trends hold across a broader
range of model scales and evaluation settings.

F ROBUSTNESS ACROSS POST-TRAINING METHODS

We further assess the robustness of our method to different post-training methods by applying two
variations. First, we further post-train our MICRO models using Direct Preference Optimization
(DPO) (Rafailov et al.l|[2023) on a subset of the TULU-2.5 preference dataset (Ivison et al., 2024)
(Table[d). Second, we replace the large-scale general-purpose TULU-3 dataset used in stage-3 with
a more domain-specific (medical) instruction-tuning set used in Bosselut et al.|(2024) (TableE]). Our
results show that our method is robust to different post-training pipelines, whether applying DPO or
using an alternative instruction-tuning dataset, as shown in Tables 4] and [5|respectively.

Table 4: Performance After DPO Finetuning Comparison of MICRO models and baselines after
further finetuning with DPO on a preference dataset. Results show average performance across the
4 benchmarks, indicating that specialization remains beneficial after DPO.

Base Model Model GSM8K Minerva Math MMLU BBH Average

Dense 38.1 3.9 294 30.3 25.4
Llama-3.2-1B  yropo 393 5.8 3.8 303 268
Dense 458 5.6 393 298 30.1
OLMo-2-1B yrcro 4811 5.8 398 304 310

G MIXTURE-OF-EXPERTS RESULTS

In the main paper, we report results using the mixture-of-blocks (MOB) architecture, where each
expert is a full transformer block with its own attention mechanism. Here, we contrast these results
with the more standard mixture-of-experts (MOE) architecture, where experts consist only of FFN
blocks and attention is shared across experts within each layer. We first present routing patterns for
MICRoO-MoE models, highlighting cases where our training curriculum fails to induce the intended
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Table 5: Performance on Medical Benchmarks After Domain-Specific Instruction Tuning.
Models are finetuned during Stage-3 using a medical instruction-tuning dataset instead of TULU-3,
and evaluated on four medical benchmarks. Results show that specialization achieve competitive
performance across both base models, and outperforming in the out-of-distribution (OOD) setting.
We choose the option with the highest log-probability among the multiple-choice options.

Out-of-Distribution \ In-Distribution \
Base Model Model MMLU Medicine MedQA \ MedMCQA PubMedQA \ Average
Dense 26.0 34.3 339 73.4 41.9
Llama-3.2-1By11cRro 283 352 ‘ 33.9 714 ‘ 2.2
Dense 35.8 34.2 35.3 74.0 44.8
OLMo-2-1B  \11cRo 35.8 363 ‘ 34.5 73.8 ‘ 45.1

Table 6: Results with Mixture-of-Experts (MoE) Architectures. Accuracy (%) * standard error
is reported for Dense, MoE, and MICRO-MOE models across multiple benchmarks. For each base
model, the best score per benchmark is highlighted in bold.

GSMSK Minerva MMLU BBH ARCpagy ARCchalienge HellaSwag  PIQA

Base Model Model

Dense 27+04 05401 21.5+03 241+05 628+1.0 296+1.3 436+05 67.7+1.1
SmolIM2-135M  MoE 28+05 06401 223+03 246+05 629+1.0 294+13 43.6+05 67.6+1.1

MiCRo-MoE 4.1+05 04401 222403 245+05 620+1.0 290+1.3 434+05 675+1.1

Dense 150+ 1.0 374+03 264+04 273+05 69.7+09 375+14 56.6+05 714+1.1
SmolIM2-360M  MoE 16.1+1.0 3.6+03 266+04 274+05 702+09 372+14 56.8+05 71.8+1.1

MiCRo-MoE 16.1 £1.0 40£0.3 26.1+04 27.0+05 69.7+09 375+14 56.7+£05 714+£1.1

Dense 368+ 13 48+03 297+04 304+05 643+1.0 337+14 584+05 738+1.0
Llama-3.2-1B MoE 291+13 47+03 257+04 286+05 641+10 352+14 579+05 725+1.0

MiCRo-MoE 354+13 50403 304+04 301+05 650+1.0 355+14 57.3+05 738+ 1.0

specialization—an issue we primarily observe in models larger than 1.5B parameters. We then report
the performance of the models that did exhibit specialization on reasoning benchmarks.

G.1 MOE TOKEN ROUTING PATTERNS

Figure [17] shows routing patterns for five MICRO-MoE models on question—answer pairs gener-
ated with GPT-5 to target specific experts. The MICRO-MOE-LLAMA-1B model exhibits the
intended specialization, whereas the 3B variant does not. Within the SMOLLM?2 family, the 135M
and 360M models display partial specialization, though less cleanly than LLAMA-1B, often de-
faulting to the language expert regardless of the input domain. The 1.7B model fails to specialize,
similar to MICRO-MOE-LLAMA-3B, indicating that the MoE architecture does not reliably induce
the desired specialization under our training curriculum.

G.2 MOE BENCHMARK RESULTS

Table[6]presents results for models trained with a Mixture-of-Experts (MoE) design, complementary
to the Mixture-of-Blocks (MoB) results reported in the main paper. The key distinction between
MoE and MoB lies in what is replicated to form the experts. In standard MoE, only the feed-forward
network (FFN) within each layer is cloned into multiple experts, with the self-attention module
shared across all experts. In contrast, MoB duplicates the entire transformer block—including both
the attention and FFN components—so that each expert has its own attention mechanism as well as
its own FFN. We find that MoB scales more effectively: under our training curriculum, specialization
emerges reliably in larger models (>,1B parameters) for MoB, but not for MoE. For this reason, we
focus on MoB in the main text and do not include the MoE variants of the other base models, as they
did not exhibit the expected functional specialization.
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Figure 17: Routing Patterns in MICRO-MoE Models. Routing behavior for five MICRO-MoE
models on GPT-5—generated question—answer pairs targeting specific experts. The MICRO-MOE-
LLAMA-1B model shows the intended specialization, while larger variants (e.g., 3B, SmolLM2-
1.7B) fail to specialize. Smaller SMOLLM?2 models (135M and 360M) display partial but less
consistent specialization, often defaulting to the language expert. These results suggest that the
MoE architecture does not reliably induce brain-like specialization under our training curriculum.
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H ADDITIONAL BEHAVIORAL ALIGNMENT RESULTS

Figure|18|shows alignment to human behavior for additional base models, comparing MICRO with
corresponding MOB and DENSE baselines. We find that MICRO achieves higher average behavioral
alignment on COGBENCH metrics in larger models, while maintaining comparable performance in
smaller models. Please refer to §5.4]for more details on how we evaluate the models.

I  SPECIALIZATION REMAINS CONSISTENT THROUGHOUT TRAINING

Figure illustrates token routing assignments across checkpoints during stage-3 training, with
checkpoint-0 representing the final weights from stage-2. The results show that the model consis-
tently preserves the specialization established in stages 1 and 2, despite no explicit constraints being
enforced during this phase, except for the initial weak inductive bias. This suggests that brain-like
specialization may offer a robust initialization, enabling the model to maintain functionally distinct
expert behaviors throughout continued end-to-end training.

J QUALITATIVE EXAMPLES OF STEERING BEHAVIOR

Figures [20] and [21] show examples of how one can use MICRO to steer the model’s behavior by
selectively ablating or activating certain experts. In the examples provided, we only retain the target
expert along with the language expert using the MICRO-LLAMA-3B. When the social expert is ab-
lated, the model shifts toward a more analytical tone, producing a response that is logically coherent
but lacking in empathy.

K LARGE LANGUAGE MODEL USAGE

We used large language models (LLMs) solely for editing and grammatical refinement of the
manuscript. All substantive ideas, analyses, and conclusions presented in this work are our own.
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Figure 18: Behavioral Alignment on Additional Base Models. Results for LLAMA-3.2-3B,
SMOLLM2-360M, and SMOLLM?2-135M on COGBENCH. Left: average similarity to human
behavior across all metrics. Right: fine-grained results for each behavioral metric. MICRO is
compared with MOB and DENSE baselines, showing stronger alignment in larger models and com-

parable performance in smaller ones.
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Specialization Remains Consistent Throughout Training. Token routing across

checkpoints during Stage 3 training on the Empathy Benchmark. Checkpoint O corresponds to
the final weights from Stage 2. The plot shows that expert assignments remain stable throughout
training, with minimal variation, indicating that the model retains its learned specialization despite
the absence of explicit constraints.

Prompt \
—

If two people disagree on how to split $10 fairly, what should they do?

No Ablation

Iftwo people disagree on how to split $10 fairly, they should try to find a
compromise that satisfies both parties. This could involve discussing the
different ways of splitting the money and finding a solution that is fair to both
of them. It's important to remember that the goal is to reach a fair and equal
agreement, so both parties should be willing to work together to find a
solution.

Logic

If two people disagree on how to spliit $10 fairly, they should try to find a
compromise that both can agree on. They can do this by trying to find a
number that both people can agree on, such as the average of the two
numbers, or by trying to find a number that is closer to both numbers than
either number itself.

If two people disagree on how to split $10 fairly, they should try to find a
compromise that satisfies both parties. Here are some steps they can take:

1. **Communicate openly**: Both parties should express their opinions and
listen to each other's perspectives. This will help them understand each
other's viewpoints and find common ground.

2.**Find common ground**: Lok for areas of agreement or values that both
parties share. This will help them find a compromise that is fair to both of
them.

3. **Discuss the reasons behind their disagreement**: Ask both parties why
they disagree on how to split $10 fairly. This will help them understand each
other's perspectives and find a solution that satisfies both parties.

4. **Explore altemative solutions™*: If they cannot find a compromise that
satisfies both parties, they can explore aiterative solutions, such as splitting
the money in a different way or finding a different way to spiit the money fairly.

5. **Seek help from a mediator**: If the disagreement is too difficult to resolve
on their own, they can seek help from a mediator, such as a family member,
friend, or counselor, to help them find a solution that s fair to both parties.

6. **Find a solution that works for both parties**: Ultimately, they should find a
solution that works for both parties and is fair to both of them. This may
involve compromising on certain points o finding a different way to split the
money fairly.

World

If two people disagree on how to split $10 fairly, they should consider the.
following options:

1. Mediation: One person can mediate the disagreement by suggesting a
compromise or a fair split. This can help both parties reach an agreement
without further conflict.

2. Negotiation: Both parties can negotiate a fair split by discussing the
benefits and drawbacks of different splits. They can try to find a solution that
both parties can agree on.

3. Arbitration: If the disagreement is significant and cannot be resolved
through mediation or negotiation, both parties can seek the help of a neutral
third party, such as a mediator or arbitrator, to help them reach an
agreement.

4. Legal action: f the disagreement is not resolved through mediation or
negotiation, both parties can consider seeking legal advice or taking legal
action to enforce their rights.

5. Consultation: Both parties can consult with a neutral third party, such as a
financial advisor or mediator, to help them reach a fair split. This can provide
aneutral perspective and help both parties reach an agreement.

Ultimately, the best course of action depends on the specific circumstances
of the disagreement and the preferences of the parties involved.

Figure 20: Example for Steering Model Behavior by Expert Ablation. Responses to the given
prompt when only the target expert and the language expert are retained. The differences illustrate
the causal role of each expert and demonstrate how ablations can steer the model’s behavior.
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Prompt

If your friend asks whether you like their new haircut, but you don't, what should you say?

No Ablation

When your friend asks if you like their new haircut, but you don't,
it's important to be honest and respectful. Here's a suggestion on
how to respond:

You can say something like, "l appreciate your creativity, but |
don't think this is the style for me." 1. **Be Honest**: You can say something like, "l really appreciate
your style, but this particular haircut isn't for me. | think it's a great
choice for you, though."

2. **Compliment**: If you do like something about their new look,
make sure to compliment it. For example, "l love your hair color.
This new cut just isn't for me."

Log
3. **Express Your Feelings**: If you're not a fan of the haircut, you
o | . ) can say something like, "l just don't think this particular style works
You can =y something like, "I'm glad you're happy with it, but I'm for me. I'm sure it's going to be a hit with you."
not a fan of it myself."
4. *Offer Support™: If your friend is disappointed, offer your
support. "l know you're disappointed, but I'm sure you'll find
something you love."

Remember, it's important to be kind and understanding, even if
you don't like the haircut. It's also okay to be honest about your
‘You can say something like, "I'm sorry, but | don't really like it." feelings.

Figure 21: Example for Steering Model Behavior by Expert Ablation. Responses to the given
prompt when only the target expert and the language expert are retained. The differences illustrate
the causal role of each expert and demonstrate how ablations can steer the model’s behavior.
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