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ABSTRACT

One of the major challenges in estimating conditional potential outcomes and con-
ditional average treatment effects (CATE) is the presence of hidden confounders.
Since testing for hidden confounders cannot be accomplished only with observa-
tional data, conditional unconfoundedness is commonly assumed in the literature
of CATE estimation. Nevertheless, under this assumption, CATE estimation can
be significantly biased due to the effects of unobserved confounders. In this work,
we consider the case where in addition to a potentially large observational dataset,
a small dataset from a randomized controlled trial (RCT) is available. Notably,
we make no assumptions on the existence of any covariate information for the
RCT dataset, we only require the outcomes to be observed. We propose a CATE
estimation method based on a pseudo-confounder generator and a CATE model
that aligns the learned potential outcomes from the observational data with those
observed from the RCT. Our method is applicable to many practical scenarios of
interest, particularly those where privacy is a concern (e.g., medical applications).
Extensive numerical experiments are provided demonstrating the effectiveness of
our approach for both synthetic and real-world datasets.

1 INTRODUCTION

Estimating treatment effects is of significant interest to various scientific communities, such as
in medicine (Glass et al., 2013; Feuerriegel et al., 2024) and social sciences (Imbens & Rubin,
2015; Imbens, 2024) for assessing the efficacy of a policy. Recently, various methods have been
developed using machine learning to estimate individual-level treatment effects, also known as
the conditional average treatment effects (CATE) (Shalit et al., 2017; Alaa & Van Der Schaar,
2017; Wager & Athey, 2018; Shi et al., 2019; Guo et al., 2023; Schweisthal et al., 2024; Fang
& Liang, 2024). While these methods have proven successful, their effectiveness in estimating
treatment effects can be significantly compromised in real-world applications due to the confounding
problem(Kallus et al., 2019; Chor et al., 2024). Confounders are variables that influence both the
treatment and the outcome. If not properly controlled for, they can severely bias the potential outcome
and treatment effect estimations (Rosenbaum & Rubin, 1983). While it is well-established that
treatment effects are identifiable under the assumption of conditional unconfoundedness (that is, no
hidden confounders), estimating conditional treatment effects becomes much more challenging under
unobserved confounders (Imbens & Rubin, 2015; Kallus & Zhou, 2018). In some ideal scenarios
like Randomized Controlled Trials (RCTs), conditional unconfoundedness might be achieved by
design. However, these experiments often require an expensive data collection process. Furthermore,
the conditional unconfoundedness assumption is inherently not falsifiable from observational data
alone (Popper, 2005). For instance, passively collected healthcare databases often lack essential
clinical details that can influence treatment decisions made by both doctors and patients, such as
subjective evaluations of the severity of a condition or personal lifestyle factors. Consequently,
when applying causal inference models to observational data, it is common to assume conditional
unconfoundedness, which may fail to hold in practice and cannot be tested. This can cause significant
bias in potential outcome estimation.

Problem Setting. In this work, we propose a novel approach to mitigate the bias in estimating CATE
under hidden confounders. Our analysis begins by considering a scenario in which both observational
data and RCT data are present – a common situation in many fields, such as in healthcare, where large
observational datasets with rich features (e.g., electronic health records) are readily available, but
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(i) Training procedure. (ii) Inference procedure.

Figure 1: Schematic of the proposed training and inference procedures. (i): (a) generates pseudo
confounders that are used within the CATE estimator using the observational data. Potential outcomes
are then matched to the unconfounded RCT dataset in (c). (ii): inference is performed by (a) sampling
from the pseudo-confounder generator and (b) using the CATE model with the individual’s features.

RCTs are expensive and often too small to support complex models for learning CATE. In particular,
we consider scenarios where only the outcomes from a small batch of RCTs are available alongside
observational datasets, circumventing the requirements for individual covariates from RCTs. These
scenarios include multiple important cases in real-world applications where:

• Full access to the detailed features is unavailable due to privacy concerns;

• Collection of detailed features may be expensive and impractical;

• Requirements of detailed features may introduce selection bias in the RCT design by limiting
participation to individuals for whom complete feature information is available.

Therefore, we assume that only the outcomes are accessible in the RCT data.

Method. Our proposed method consists of two regularization modules, based on the given outcomes
from RCT data, to regularize the search space of hypothesis to prevent bias due to hidden confounders.
We note that the proposed regularization modules are CATE model-agnostic, that is, they can be
added to any Neural Net-based CATE estimation model.

Marginals Balancing (MB): The first regularization
builds on the key fact that the RCT outcomes can be
considered as samples from the true potential outcomes.
Motivated by this, we use a pseudo-confounder genera-
tor to emulate the hidden confounders, based on which
the CATE models’ predicted potential outcomes should
equal in distribution to the observed outcomes from
RCT data.

Projections Balancing (PB): The second approach is
based on the observation that the projection of the
learned potential outcomes onto any transformation of
the features should correspond to that of the true poten-
tial outcomes on the same transformation.

Figure 2: Comparison of CATE esti-
mates using the baseline factual learner,
the MB and PB models, and the com-
bined MB+PB model.

Our final model (MB+PB) combines both approaches, as we numerically observe that doing so
restricts the search space for the factual optimization problem and achieves the best performance. We
illustrate the performance of these different models on a simple Gaussian linear model in Figure 2.
See Section 3.1 for a full description of this example.
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Related Works Several recent works address the challenge of estimating treatment effects under
unobserved confounding by combining randomized controlled trials (RCTs) with observational data.
Some approaches leverage the internal validity of RCTs and how representative observational data is
using techniques such as weighting and doubly robust estimators (Colnet et al., 2024). Other methods
propose a linear correction term to adjust for confounding bias (Kallus et al., 2018). Methods have
also been developed for estimating heterogeneous treatment effects, requiring covariate-level data
for improved accuracy and balancing the representation of different observed features (Hatt et al.,
2022a). Kallus et al. (2019) introduce interval estimation for CATE under unobserved confounders
and the marginal sensitivity model (Rosenbaum, 2002). It is important to note that all of these
methods assume that both individual covariates and outcomes from the RCTs are accessible, which
differs from the assumptions of our approach, as we assume that only the outcomes of the RCT
are observed. Other methods have explored specific scenarios for estimating CATE from multiple
datasets, such as in recommendation systems (Li et al., 2024) or sequential observational data (Hatt &
Feuerriegel, 2024). Moreover, recent works have addressed the confounding introduced by applying
representation learning approaches to CATE estimation (Melnychuk et al., 2024).

2 PROBLEM SETUP

Let (Ω,F ,P) be a probability space. Consider random vari-
ables (X,U, T, Y1, Y0) defined on (Ω,F ,P), where T is a
binary random variable denoting treatment assignment, X ∈
X ⊂ Rd represents the observed features and U ∈ U ⊂ Rm

represents unobserved confounders. The potential outcomes
Y1, Y0 ∈ R correspond to the outcomes under treatment and
control, respectively. Let Y represent the observed outcome
defined as (Hernán & Robins, 2020)1:

Y = TY1 + (1− T )Y0.

Figure 3 illustrates the causal graph of these variables.

Figure 3: Causal graph for CATE
estimation with unobserved con-
founders (U).

Observational Data. In real scenarios we do not have access to U, Y1, or Y0 — which gives rise to
one of the most fundamental challenges in causal inference. Instead, we only have access to samples
of the random triplet (X,T, Y ). Thus, we assume an observational dataset Do = {(xi, ti, yi)}no

i=1,
consisting of no independent observations.

CATE Estimation. The objective is to estimate the conditional potential outcomes E [Yt | X] for
t ∈ {0, 1} and CATE τ(X), defined as:

τ(X) = E [Y1 | X]− E [Y0 | X] .

To this end, we make the standard assumption of positivity, that is, P (T = 1 | X) > 0 almost surely.
We also assume that X ⊥⊥ U , which is verified by the causal graph in Figure 3. Moreover, to identify
CATE, it is common to assume conditional unconfoundedness, that is, Yt ⊥⊥ T | X . While it is
well established in the causal inference literature that CATE is identifiable under the assumption of
conditional unconfoundedness, this assumption does not hold in the presence of hidden confounders.
Without conditional unconfoundedness, CATE is generally not identifiable (Rosenbaum & Rubin,
1983; Imbens & Rubin, 2015). Hidden confounders, which are common in practice, always lead to a
violation of the conditional unconfoundedness assumption. Therefore, we focus on scenarios where
the conditional unconfoundedness assumption is violated. Specifically, for t ∈ {0, 1}, we assume
Yt ̸⊥⊥ T | X , i.e., the treatment assignment is not independent of the potential outcomes given the
observed features due to the presence of unobserved confounders U .

Performance Metric. Let τ̂(x) = h(x, 1) − h(x, 0) denote an estimator for CATE where h is a
hypothesis h : X × {0, 1} → Y that estimates the conditional potential outcomes E [Yt|X = x].

1Some references take an alternative approach by first defining the factual outcome and then using the
consistency assumption to define the potential outcomes.
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Definition 2.1 (PEHE). The Expected Precision in Estimating Heterogeneous Treatment Effect
(PEHE) (Hill, 2011) is defined as:

εPEHE(h) =

∫
X
(τ̂(x)− τ(x))2p(x)dx (1)

where p(x) is the marginal density of the covariates X .

The εPEHE is widely used as the performance metric for CATE estimation, especially in scenarios
where heterogeneous effects are present across different individuals.

RCT Data. Given that the bias of hidden confounders cannot even be tested with observational data,
we assume access to a small batch of RCT data. In particular, we assume access to only the outcomes
of RCT data, instead of the stronger requirement of observing covariates. Let the outcome-only RCT
data be denoted as (Tr, Yr) and let u = P(Tr = 1). The data generating process of the RCT data is
equivalent to the following process: Consider two random variables Y ′

1 and Y ′
0 which are equal in

distribution to the true potential outcomes Y1 and Y0, respectively. Then with probability u, we have
one sample of Y ′

1 ; with probability 1− u, we have one sample of Y ′
0 .

We denote the RCT dataset as Dr = {D0
r , D

1
r} where Dt

r = {ytj}
nt
r

j=1 for t ∈ {0, 1}. In particular,
D0

r and D1
r contain n1r and n0r samples from Y ′

1 and Y ′
0 .

The central question we explore in this work is how to apply knowledge about the marginal dis-
tributions of the true potential outcomes to help reduce the estimation error of the conditional
potential outcomes and CATE under hidden confounders.

We note that to simplify the mathematical analysis we assume that the RCT potential outcomes and
the observational data potential outcomes are sampled from the same distribution. However, we will
relax this assumption in our empirical setting.

Confounding Degree. Additionally, we explore how the confounding degree—that is the influence
of the unobserved confounder on the treatment assignment—affects the estimation performance. To
quantify the degree of unobserved confounding, we employ the commonly used Marginal Sensitivity
Model(MSM) (Rosenbaum, 2002). MSM represents a general class of functions that satisfy the
Γ-selection bias condition defined as follows.
Definition 2.2 (Γ-selection bias condition). A probability measure P satisfies the Γ-selection bias
condition with 1 ≤ Γ < ∞ if, for P-almost all u, ũ ∈ U and x ∈ X , the following holds: let
π(x, u) = P(T=1|x,U=u)

P(T=0|x,U=u) and π(x, ũ) = P(T=1|x,U=ũ)
P(T=0|x,U=ũ) , then

1

Γ
≤ π(x, u)

π(x, ũ)
≤ Γ. (2)

The confounding degree is defined as the minimum value of Γ that satisfies the Γ-selection bias
condition. Specifically, the Γ-selection condition is satisfied when the odds ratio of receiving the
treatment can change by up to a factor of Γ as the unobserved confounder U varies, while the observed
features remain fixed. Note that when Γ = 1, this corresponds to the case where U has no effect on
the likelihood of treatment assignment given the observed features.

3 PROPOSED APPROACH

In this section, we present two models designed to address the challenge of estimating conditional
potential outcomes and the CATE in the presence of hidden confounders. To help understand
the challenge of hidden confounders, we first discuss in Section 3.1 with a case study about the
issue that arises on the baseline factual learner which relies solely on the observational data in the
presence of hidden confounders. Next, we introduce our two approaches: Marginals Balancing
(MB) in Section 3.2 and Projections Balancing (PB) in Section 3.3. Both approaches are designed
to mitigate bias, though they are based on distinct principles. Finally, in Section 3.4, we describe
our combined model, MB+PB, which integrates both approaches to improve CATE estimation under
hidden confounding.
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3.1 FACTUAL LEARNER

In the context of conditional potential outcome estimation with observational data, it is standard to
solve the following optimization problem based on the observed outcome:

min
Z1,Z0 σ(X)-measurable

E
[
(ZT − Y )

2
]
, (3)

where σ(X) denotes the σ-algebra generated by X . It is well-established ([Theorem 4.1.15] (Durrett,
2019)) that the unique optimal solution (up to a measure zero set) is

∀t ∈ {0, 1}, ZF
t = E [Y |X,T = t] ,

which we will refer to as the factual learner. On the other hand, the goal in causal inference is to
learn the conditional potential outcomes E [Yt|X] for t ∈ {0, 1}, from which CATE can be computed.
Note that under conditional unconfoundedness, we have ZF

t = E [Yt|X].

However, when conditional unconfoundedness is violated, the solution ZF
t to the standard optimiza-

tion problem in Equation (3) does not necessarily equal to E [Yt|X]. In other words, the equality
E [Yt|X] = E [Y |X,T = t] does not necessarily hold. In such cases, the observed data does not
provide an accurate estimate of the true treatment effect due to the influence of hidden confounders.

Case Study. To empirically illustrate the bias induced by the factual learner, consider the following
example. Let the covariate X and the hidden confounder U follow normal distributions where

X ∼ N (1.0, 0.04) and U ∼ N (0, 1).

The treatment assignment T is determined by a logistic model that depends on both X and the
unobserved confounder U :

P (T = 1|X,U) =
1

1 + exp(−0.5X − 2U)
,

The potential outcomes are modeled as linear functions of X and U :

Y1 = −3.5X + 3U, Y0 = 4.5X − 0.6U.

The observed outcome Y , given by Y = TY1 + (1− T )Y0, depends on the treatment assignment T .

We sample 1000 samples from (X,T, Y ), which is
more than sufficient for such a simple problem in a
low-dimensional setting, and fit two linear regres-
sion models separately on the treatment (T = 1)
and control (T = 0) groups, allowing us to es-
timate the factual learners E[Y |X,T = 0] and
E[Y |X,T = 1]. In Figure 4, we compare the
factual learner with the true potential outcomes
E[Yt|X]. This comparison reveals the bias inher-
ent in the factual learner due to the unobserved
confounder U . In the following sections, we pro-
pose two different approaches to alleviate the con-
founding effect when access to the outcomes of an
RCT dataset is available.

Figure 4: Comparison between the baseline fac-
tual learner and the true conditional potential
outcomes for a linear Gaussian model.

3.2 MARGINALS BALANCING

Motivation. To motivate our first model, we begin by observing that the true conditional potential
outcomes, E[Y1|X] and E[Y0|X], should ideally correspond to the projection of a random variable
sharing the same distribution as the true potential outcomes Y1 and Y0. Specifically, since the true
potential outcome Yt depends on both the covariates X and the hidden confounders U , we propose
models of the form:

Ỹt = ft(X, Ũ),

5
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where ft : Rd × R → R, and Ũ ∈ R is a random variable representing the pseudo-confounder.
As motivated in Section 2, given the knowledge of the marginal distribution of Yt (from the RCT
outcomes), it is natural to impose the following constraint:

Ỹt
d
= Yt, (4)

where d
= denotes equality in distribution. Thus, the model Ỹt should interpolate the observational

data under the constraint in Equation (4).

Method. Our first approach, which we refer to as the Marginals Balancing (MB), follows this
observation and can be formalized through the following optimization problem:
Definition 3.1 (Optimization Problem of MB). Let B(R) denote the set of real-valued continuous
and bounded functions. MB solves the following optimization problem:

min
Z1,Z0 σ(X)-measurable

E
[
(ZT − Y )

2
]
, (5)

where, for t ∈ {0, 1}, Zt = E
[
ft(X, Ũ)|X

]
for some function ft : Rd × R → R and a random

variable Ũ ∈ R that conform to the following constraint:

∀t ∈ {0, 1},∀g̃ ∈ B(R), E
[
g̃(ft(X, Ũ))

]
= E [g̃(Yt)] . (6)

Note that the constraint in Equation (6) implies the constraint in Equation (4) due to the Portmanteau
Lemma (Billingsley, 1995). It is important to also note that E [g̃(Yt)] can be estimated with the
outcomes in the RCT data because they can be considered as samples of a random variable Y ′

t that
equal in distribution to Yt.

Implementation. To solve the optimization problem of MB, we generate the pseudo-confounder Ũ
using a neural network ψ, and fit a CATE estimation model µt(X, Ũ), with the observed covariates
along with the generated pseudo-confounder as inputs, to predict the observed outcomes in the
observational dataset Do. Moreover, we enforce that the predicted potential outcomes match the true
potential outcomes in distribution. We achieve this by adversarial training, where we instantiate B(R)
with a neural net, and update its parameter to maximize the L2 distance between the right-hand side
and the left-hand side of the equality in Equation (6), estimated through the RCT data Dr.

Empirical Illustration. Figure 5 illustrates the perfor-
mance of MB model on the case study in Section 3.1. We
can observe that the gap between the true conditional po-
tential outcomes and the predicted potential outcomes is
indeed reduced compared to the factual learner.

Limitation. One notable limitation of the marginal bal-
ancing method is that the optimal solution to the MB op-
timization problem is not unique. Moreover, for certain
classes of functions, it is possible to construct an optimal
solution under the imposed constraint that does not recover
the true conditional potential outcomes, as demonstrated
by the example provided in Appendix A.1.

Figure 5: Comparison of the factual
learner and MB model with the true
conditional potential outcomes.

3.3 PROJECTIONS BALANCING

We now introduce our second approach, called Projections Balancing (PB).

To illustrate the benefits of this method, we begin by considering an idealized scenario with direct
access to the true potential outcomes Y1 and Y0, rather than relying on the RCT data containing
samples of Y ′

1 and Y ′
0 which are random variables equal in distribution to Y1 and Y0. In practice, this

is unattainable since the treatment assignment biases the distribution of the observed outcomes in
observational data. We will later relax this learner under the assumption that only a small subset of
RCT outcomes is available.
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We begin with the following result, which presents a constrained optimization problem whose unique
optimal solution is precisely the conditional potential outcome E[Yt|X], the quantity we aim to
identify in causal inference.

Proposition 3.2 (Ideal PB). Let G =
{
g : R → [−1, 1]

}
and consider the following optimization

problem:

min
Z1,Z0 σ(X)-measurable

E
[
(ZT − Y )

2
]

subject to the constraint

∀g ∈ G,∀t ∈ {0, 1}, E [Ztg(X)] = E [Ytg(X)] .

The unique solution for this problem is:

∀t ∈ {0, 1}, Zt = E [Yt | X] .

Proof of Proposition 3.2. See in Appendix A.1.

Method. We underscore that the most notable advantage of the ideal PB learner is that it provides a
unique solution corresponding to the true potential outcomes. Without access to the true potential
outcomes in practice, we now introduce a practical PB learner by relaxing the proposed ideal PB
learner to scenarios where only RCT outcomes are available.

Definition 3.3 (Optimization Problem of PB). Let C ∈ R+ be a positive constant and G =
{
g :

R → [−1, 1]
}

. PB has the following optimizing problem:

min
Z1,Z0 σ(X)-measurable

E
[
(ZT − Y )

2
]
;

s.t. max
t∈{0,1}

sup
g∈G

∣∣E [Ztg(X)]− E [Y ′
t g(X)]

∣∣ ≤ C,
(7)

where Y ′
t is a random variable equal in distribution to the true potential outcome Yt.

In this formulation, the true potential outcomes Yt are replaced by the RCT potential outcomes Y ′
t .

However, since this problem is challenging to optimize, in practice, we employ the optimization
duality and optimize the following optimization problem with a penalty term:

min
Z1,Z0 σ(X)-measurable

(
E
[
(ZT − Y )

2
]
+ α

1∑
t=0

sup
g∈G

∣∣E [Ztg(X)]− E [Y ′
t g(X)]

∣∣) (8)

where α ∈ R+ is a regularization parameter. We now provide a theoretical guarantee for the PB
learner in Equation (7), which characterizes the deviation of the predicted conditional potential
outcomes from the true conditional potential outcomes.

Proposition 3.4 (Practical Projections Balancing (PB)). Let t ∈ {0, 1} and define

Lp(Zt) = sup
g∈G

|E [Ztg(X)]− E [Y ′
t g(X)] |

with Y ′
t

d
= Yt and Y ′

t ⊥⊥ Yt. We have that,

E [|Zt − E[Yt|X]|] ≤ Lp(Zt) +
√

Var(Yt), (9)

where
√

Var(Yt) represents the standard deviation of the potential outcomes.

Proof of Proposition 3.4. See in Appendix A.1.

Empirical Illustration. Figure 6 illustrates the performance of this model on the synthetic linear
example in Section 3.1. We can observe that the gap between the true conditional potential outcomes
and the predicted potential outcomes is reduced compared to the factual learner.

7
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Remark 3.5. In particular, Equation( 9) provides an upper
bound on the error of potential outcome estimation of any
estimator Zt. It implies that an estimator with low value
of Lp(Zt) is a good estimator of the true conditional po-
tential outcomes. To this end, note that Lp(Zt) measures
how well the estimator Zt conforms the PB constraint in
Equation (7). Thus, a solution to the PB optimization has
guaranteed performance. Given that CATE under hidden
confounders is not identifiable under general conditions,
we conjecture that the standard deviation term in the er-
ror bound may not be further reduced due to the inherent
stochasticity of Yt and the confounding effects of hidden
confounders.

Figure 6: Comparison of the factual
learner and PB model with the true
conditional potential outcomes.

3.4 ALGORITHM: MARGINALS + PROJECTIONS BALANCING

In this section, we present our proposed approach to combine both the Marginals Balancing and
Projections Balancing, entitled MB+PB. The rationale behind the effectiveness of our approach is to
restrict the search space for the factual optimization objective and to push the solution to get as close
as possible to the true conditional potential outcomes.

Optimization Objective. The objective function for MB+PB is the following:

min
Z1,Z0 σ(X)-measurable

(
E
[
(ZT − Y )

2
]
+ α

1∑
t=0

Lt(ft)

)
,

where

Lt (ft) = sup
g∈G

∥∥∥E [ft (X, Ũ) g(X)
]
− E [Y ′

t g(X)]
∥∥∥+ sup

g̃∈B

∥∥∥E [g̃(ft(X, Ũ)
]
− E [g̃(Y ′

t )]
∥∥∥ (10)

and Zt = E
[
ft

(
X, Ũ

)
|X
]

for some function ft and a random variable Ũ .

Empirical Illustration. Figure 7 illustrates the perfor-
mance of this model on the case study in Section 3.1. We
observe that the gap between the true conditional potential
outcomes and the predicted potential outcomes is almost
entirely reduced. Comparing with the performance of ap-
plying MB and PB individually in Figure 5 and 6, MB+PB
demonstrates significantly superior performance. Moti-
vated by this, we opt for MB+PB as our final approach.
Training. We now present below the general procedure to
train the model MB+PB for a general class of functions.
For all pseudo-code details, check Algorithm 1.

Figure 7: Comparison of the factual
learner and MB+PB model with the
true conditional potential outcomes.

1. Pseudo-Confounder Generation. We generate Gaussian noise η ∈ Rl ∼ N (0, I),
where l is the dimension of the generated noise. The noise is passed through a
neural network generator ψ, and we set Ũ = ψ (η).

2. Potential Outcomes Estimation. Both the features X and the generated pseudo-
confounder Ũ are fed into a neural network-based conditional potential outcomes
learner ft to have the predicted potential outcome ft(X, Ũ).

3. Balancing. Meanwhile, the predicted potential outcomes f1(X, Ũ) and f0(X, Ũ)
are balanced with the RCT outcomes Y ′

1 and Y ′
0 , respectively, through the regular-

ization defined in Equation (10).
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4 EMPIRICAL RESULTS

4.1 SYNTHETIC EXPERIMENTS

Following Kallus et al. (2019), we begin our empirical evaluation with a synthetic example. This
example allows us to control the confounding degree based on a parameter Γ of MSM (defined in
Section 2.2) and explore the effect of varying levels of hidden confounding on the estimation of CATE.

Data Generating Process. We consider an one-dimensional example to illustrate the influence
of unobserved confounding on estimating CATE. In this example, we generate an unobserved
binary confounder U ∼ Bern(1/2), which is independent of other variables, and a covariate X ∼
Unif[−2, 2]. The nominal propensity score is defined as e(x) = σ(0.75x + 0.5), where σ(·) is
the logistic sigmoid function. To investigate the impact of confounding, we consider a sensitivity
parameter Γ and define the complete propensity score as:

e(x, u) = u · αt(x; Γ) + (1− u) · βt(x; Γ), (11)

with αt(x; Γ) =
(

1
Γ·e(x)

)
+ 1− 1

Γ , and, βt(x; Γ) =
(

Γ
e(x)

)
+ 1− Γ.

Moreover, the treatment assignment T is sampled as T ∼ Bern(e(X,U)). This structure ensures
that the complete propensity scores attain the extremal marginal sensitivity model (MSM) bounds
corresponding to Γ (see (Kallus et al., 2019) for more details). The outcome model is chosen to
exhibit a nonlinear CATE, incorporating both linear confounding terms and a noise component
ε ∼ N (0, 1). Specifically, the potential outcome Yt is defined as:

Yt = (2t− 1)X + 2(2t− 1)− 2 sin(2(2t− 1)X)− 2(2U − 1)(1 + 0.5X) + ε.

Figure 8:
√
εPEHE for different confounding de-

grees. Baseline: Factual Learner, MB: Marginals
Balancing, PB: Projections Balancing, MB+PB:
Combined Marginals and Projections Balancing,
RCT-Oracle: Using a large RCT dataset with co-
variates, and Obs-Oracle: Using the observational
dataset without hidden confounders.

Results. The results are illustrated in Figure 8.
In particular, with increasing confounding level
measured by log(Γ), methods such as MB, PB,
and the baseline show a marked increase in es-
timation error. However, MB+PB demonstrates
strong robustness and maintains lower errors
even at high confounding levels. This suggests
that our approach is better equipped to han-
dle the adverse effects of hidden confounders,
which is crucial when the confounding degree
is unknown. Notably, domain knowledge can
only provide very coarse estimations of the con-
founding degree.

Influence of RCT Data Size: In Figure 9, we
observe that after using only 50 RCT data points
in addition to more than 1000 observational data
points, the performance of MB+PB stabilizes.
This shows that our model requires only a small
number of RCT points to achieve enhanced per-
formance, without requiring the covariates in-
formation of RCT data. Even with as few as 25
data points (the sum of both control and treat-
ment units), we can see improved performance over the biased factual learner. It is important to note
that this improvement is not observed when RCT points are simply added to the observational data,
even when their features are included in training.

4.2 REAL DATA APPLICATION

Following the setting of Hatt et al. (2022a), we apply MB+PB to three real-world datasets. We briefly
describe them below, with more details deferred to Appendix A.2.1.

STAR: A randomized study from 1985 investigating the effect of class size (treatment) on students’
standardized test scores (outcome). Following (Kallus et al., 2018), we obtain a dataset with 8
covariates for 4, 139 students: 1, 774 in small classes and 2, 365 in regular classes.

9
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(i) (ii) (iii)

Figure 9: Comparison of
√
εPEHE across different RCT and observational data sample sizes. Baseline:

Factual Learner, MB+PB: Combined Marginals and Projections Balancing, and RCT-Oracle. The
size of the baseline and RCT-Oracle is equal to the sum of the RCT samples and the observational
data size.

ACTG: A clinical trial on the effects of different treatments for HIV-1 patients with CD4 counts of
200-500 cells/mm³. The outcome is the change in CD4 counts after 20± 5 weeks.

NSW: An RCT studying the effect of job training on income ((LaLonde, 1986). Following Smith &
Todd (2005), we combine 465 randomized subjects (297 treated, 425 control) with 2,490 observational
controls, including 8 covariates.

Following the setting in Hatt et al. (2022a), the original dataset is used to estimate pseudo-true
potential outcomes, which we treat as the ground truth. Confounding bias is introduced by dropping
instances based on outcome thresholds. Further details are in Appendix A.2.2. The RCT data points
are sampled from a distributionally different population from the observational population, increasing
selection bias. Despite this, our method remains robust.

Table 1: Comparison of
√
ϵPEHE across three real-world datasets. Results are presented for 10 runs.

√
ϵPEHE (Mean ± Std)

Estimator STAR ACTG NSW
2-step ridge 3.01 ± 0.01 1.51 ± 0.01 2.82 ± 0.02
2-step RF 3.14 ± 0.03 1.58 ± 0.07 3.10 ± 0.12
2-step NN 3.03 ± 0.02 1.60 ± 0.02 2.82 ± 0.02
Baseline 2.66 ± 0.01 1.08 ± 0.04 0.85 ± 0.04
CorNet 0.59 ± 0.01 0.42 ± 0.06 0.14 ± 0.07
CorNet+ 0.38 ± 0.07 0.27 ± 0.03 0.21 ± 0.08
MB+PB (Ours) 0.36 ± 0.04 0.52 ± 0.05 0.08 ± 0.02

Results. To assess the effectiveness of our approach in utilizing RCT data, we compare it with the
factual learner (Baseline) which trains only on observational data, and with methods that use covariate
information from RCT data, including 2-step ridge, 2-step RF, and 2-step NN from Kallus et al.
(2018), and CorNet models (CorNet and CorNet+), developed by Hatt et al. (2022a). Table 1 shows
that models such as 2-step ridge, 2-step RF, and 2-step NN underperform due to the high variance
introduced by inverse propensity score re-weighting, as noted in Hatt et al. (2022a). The CorNet
models perform significantly better and are comparable to our approach MB+PB. We emphasize
that our MB+PB model relies solely on RCT data outcomes yet still achieves competitive results,
outperforming CorNet in two of the three total tasks.

5 CONCLUSION

In this work, we introduced two approaches, Marginals Balancing (MB) and Projections Balancing
(PB), to address the challenge of CATE estimation under hidden confounders. By leveraging outcome-
only RCT data, we demonstrated how these models mitigate bias from unobserved confounders,
outperforming benchmark methods. The combination of MB and PB (MB+PB) leads to further
enhanced performance across synthetic and real-world datasets. While our methods show promising
empirical results, we aim to pursue a deeper theoretical understanding of the proposed methods in
future works.
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A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS

We begin by presenting an example demonstrating that the optimal solution for the Marginals
Balancing objective is not necessarily the true conditional potential outcomes. We then proceed to
provide propositions that support the use of the Projections Balancing method.

Example Consider the random variables T,X, Y0, Y1, where T is a binary treatment indicator,
X ∈ X , and Y0, Y1 are the potential outcomes. We aim to minimize the following MB objective:

E
[
(1− T )

(
E[Ỹ0 | X]− Y0

)2
+ T

(
E[Ỹ1 | X]− Y1

)2]
,

subject to the constraint that Ỹ0
d
= Y0 and Ỹ1

d
= Y1.

Suppose X ∼ Ber(1/2) and T ∼ Ber(1/2), with T and X being independent. Define the potential
outcomes as:

Y0 = Y1 = (1− T )X + T (1−X).

Now, consider the random variables Ỹ0 = X and Ỹ1 = 1 − X . We observe that both Ỹ0 and Ỹ1
satisfy the equality in distribution constraint: Ỹ0

d
= Y0 and Ỹ1

d
= Y1.

Furthermore, we have:

E[Ỹ0 | X](1− T ) = X(1− T ) = Y0(1− T ),

and
E[Ỹ1 | X]T = (1−X)T = Y1T.

Therefore, the MB objective is minimized, and the objective value is zero. While we have that for the
true conditional potential outcomes E [Y1|X] and E [Y0|X], we have that:

E [Y1|X] = E [(1− T )X | X] + E [T (1−X) |]
= E [1− T ]E [X | X] + E [T ]E [(1−X) | X]

=
1

2
X +

1

2
(1−X)

Therefore,

E [Y1|X] =
1

2
, E [Y0|X] =

1

2
Which does not achieve a zero loss for the objective.
Proposition 3.2 (Ideal Potential outcomes learner 2). Let (Ω,F ,P) be a probability space. Consider
the real random variables (X,U, T, Y0, Y1), where T is a binary random variable, and Y1, Y0 ⊥⊥
T | (X,U), Y is defined as Y = TY1 + (1− T )Y0. We also assume that X ⊥⊥ U . We aim to solve
the following optimization problem:

min
Z1,Z0 σ(X)-measurable

E
[
(ZT − Y )

2
]

subject to the constraint

∀g : R → [−1, 1],∀t ∈ {0, 1}, E [Ztg(X)] = E [Ytg(X)] .

The unique solution for this problem is

∀t ∈ {0, 1}, Zt = E [Yt | X] .

Proof of Proposition 3.2.
We begin with the following identities for the observed and predicted outcomes:

Y = TY1 + (1− T )Y0, ZT = TZ1 + (1− T )Z0.

13
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Thus, the objective function can be expanded as:

E
[
(ZT − Y )

2
]
= E

[
(T (Z1 − Y1) + (1− T )(Z0 − Y0))

2
]

= E
[
T (Z1 − Y1)

2 + (1− T )(Z0 − Y0)
2
]

+ 2E [T (1− T )(Z1 − Y1)(Z0 − Y0)] .

Since T ∈ {0, 1}, we have T (1− T ) = 0, so the cross term vanishes:

E [T (1− T )(Z1 − Y1)(Z0 − Y0)] = 0.

Thus, the objective simplifies to:

E
[
(ZT − Y )

2
]
= E

[
T (Z1 − Y1)

2
]
+ E

[
(1− T )(Z0 − Y0)

2
]
.

Next, we can analyze the optimization for Z1 and Z0 separately. Without loss of generality, we first
focus on Z1.

We expand the term for Z1:

E[T (Z1 − Y1)
2] = E[T (Z1 − E[Y1 | X] + E[Y1 | X]− Y1)

2]

= E
[
T (Z1 − E[Y1 | X])2

]︸ ︷︷ ︸
Minimized at zero when Z1=E[Y1|X]

+ E
[
T (E[Y1 | X]− Y1)

2
]︸ ︷︷ ︸

Independent of the optimization objective

+ 2E [T (Z1 − E[Y1 | X])(E[Y1 | X]− Y1)]︸ ︷︷ ︸
We prove this term is zero below

Since Y1 ⊥⊥ T | (X,U), we have:

E [T (Z1 − E[Y1 | X])(E[Y1 | X]− Y1)] = E [(Z1 − E[Y1 | X])π(X,U)Ψ(U)] ,

where π(X,U) = E[T | X,U ] ∈ (0, 1) and Ψ(U) = −E[Y1 | U ]. Let A = {ω | Z1 − E[Y1 | X] >
0} and B = {ω | Ψ(U) > 0}.

We decompose the expectation as follows:

E [π(X,U)Ψ(U)(Z1 − E[Y1 | X])] = E [π(X,U)Ψ(U)1A∩B(Z1 − E[Y1 | X])]

+ E [π(X,U)Ψ(U)1AC∩B(Z1 − E[Y1 | X])]

+ E [π(X,U)Ψ(U)1A∩BC (Z1 − E[Y1 | X])]

+ E [π(X,U)Ψ(U)1AC∩BC (Z1 − E[Y1 | X])]

We now handle each of these four terms separately:

Case 1 (A ∩B):

This term is positive, as both Z1 − E[Y1 | X] > 0 and Ψ(U) > 0, and since X ⊥⊥ U , we have that:

0 ≤ E [π(X,U)Ψ(U)1A∩B(Z1 − E[Y1 | X])] ≤ E [Ψ(U)1A∩B(Z1 − E[Y1 | X])] .

≤ E [Ψ(U)1B ]E [(Z1 − E[Y1 | X])1A]

≤ E [Ψ(U)1B ] (E [Z11A]− E [E[Y11A | X]])

≤ E [Ψ(U)1B ] (E [Z11A]− E[Y11A])

However, since 1A is σ(X)-measurable, we can write it as a function of X , more precisely we can
choose g to be, gA(X) = 1 (X ∈ A), therefore,

0 ≤ E [π(X,U)Ψ(U)1A∩B(Z1 − E[Y1 | X])]

≤ E [Ψ(U)1B ] (E [Z1gA(X)]− E[Y1gA(X)]) = 0

Case 2
(
AC ∩B

)
:

In this case, Z1 − E[Y1 | X] ≤ 0 and Ψ(U) > 0, making this term non-positive:

0 ≥ E [π(X,U)Ψ(U)1AC∩B(Z1 − E[Y1 | X])] ≥ E [Ψ(U)1AC∩B(Z1 − E[Y1 | X])] .
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Again, by the same reasoning as in Case 1, we have:

E [E [(Z11AC − Y11AC ) | X]] = 0,

so this term is also zero.

Case 3
(
A ∩BC

)
:

Here, Z1 − E[Y1 | X] > 0 but Ψ(U) ≤ 0, so this term is non-positive:

0 ≥ E [π(X,U)Ψ(U)1A∩BC (Z1 − E[Y1 | X])] ≥ E [Ψ(U)1A∩BC (Z1 − E[Y1 | X])] .

As in the previous cases, we factor out E [Z11A − Y11A | X] = 0, so this term is zero.

Case 4
(
AC ∩BC

)
:

Finally, in this case, both Z1 − E[Y1 | X] ≤ 0 and Ψ(U) ≤ 0, so the term is positive:

0 ≤ E [π(X,U)Ψ(U)1AC∩BC (Z1 − E[Y1 | X])] ≤ E [Ψ(U)1AC∩BC (Z1 − E[Y1 | X])] .

Once again, we apply the same reasoning, and the term equals zero:

E [E [(Z11AC − Y11AC ) | X]] = 0.

Thus, each of the four terms is equal to zero. Therefore, the entire expression simplifies to zero:

2E [T (Z1 − E[Y1 | X])(E[Y1 | X]− Y1)] = 0.

A symmetric argument holds for Z0. By expanding E
[
(1− T )(Z0 − Y0)

2
]
, we can use the same

reasoning to show that Z0 = E[Y0 | X] minimizes the objective function.

We now observe that E
[
(1− T )(Z0 − Y0)

2
]
, and Z0 = E[Y0 | X] verify the constraint as we have

for every g ∈ G:
E [E [Yt | X] g(X)] = E [E [Ytg(X) | X]]

= E [Ytg(X)]

Combining these results, we conclude the minimizer of the objective function must satisfy:

Z1 = E[Y1 | X] and Z0 = E[Y0 | X].

Proposition 3.4 (Relaxed potential outcomes learner (PB)). Let G = {g : Rd → [−1, 1]} and let,

Lp(Zt) = sup
g∈G

|E [Ztg(X)]− E [Y ′
t g(X)]|

with Y ′
t

d
= Yt and Y ′

t ⊥⊥ Yt. Then,

E [|Zt − E[Yt | X]|] ≤ Lp(Zt) +
√
V ar(Yt).

Proof of Proposition 3.4.
First define

LI(Zt) = sup
g∈G

|E [Ztg(X)]− E [Ytg(X)]| .

We will first prove that
E [|Zt − E[Yt | X]|] ≤ LI(Zt).

Since Zt − E[Yt | X] is σ(X)-measurable, let A = {ω ∈ Ω | Zt − E[Yt | X] > 0} and
B = {ω ∈ Ω | Zt − E[Yt | X] ≤ 0}. We can then define a function g̃ ∈ G such that g̃ = 1A − 1B .
We have:
|E [Ztg̃(X)]− E [Ytg̃(X)]| = |E [(Zt − Yt)g̃(X)]|

= |E [E [(Zt − Yt) g̃(X) | X]]|
= |E [E [(Zt − Yt) | X] g̃(X)]|
= E [|E [Zt − Yt | X]1A|] + E [|E [Zt − Yt | X]1B |] (A ∪B = Ω)

= E [|Zt − E[Yt | X]|] .
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Since we have

|E [Ztg̃(X)]− E [Ytg̃(X)]| ≤ sup
g∈G

|E [Ztg(X)]− E [Ytg(X)]| ,

it follows that
E [|Zt − E[Yt | X]|] ≤ LI(Zt).

Next, we observe:

LI(Zt) = sup
g∈G

|E [Ztg(X)]− E [Y ′
t g(X)] + E [Y ′

t g(X)]− E [Ytg(X)]|

≤ sup
g∈G

|E [Ztg(X)]− E [Y ′
t g(X)]|+ sup

g∈G
|E [Y ′

t g(X)]− E [Ytg(X)]|

≤ Lp(Zt) + sup
g∈G

|E [Y ′
t ]E [g(X)]− E [Ytg(X)]|

= Lp(Zt) + sup
g∈G

|E[Yt]E[g(X)]− E[Ytg(X)]|

= Lp(Zt) + sup
g∈G

|Cov(Yt, g(X))|

≤ Lp(Zt) +
√
Var(Yt) sup

g∈G

√
Var(g(X)) (Cauchy-Schwarz)

≤ Lp(Zt) +
√
Var(Yt) (Popoviciu’s inequality)

Thus, we conclude:
E [|Zt − E[Yt | X]|] ≤ Lp(Zt) +

√
V ar(Yt).

A.2 DATASETS DESCRIPTION

A.2.1 THE ORIGINAL DATASETS

Tennessee Student/Teacher Achievement Ratio (STAR) Experiment This experiment, initiated
in 1985, was designed as a randomized trial to investigate the impact of class size (i.e., the treatment)
on students’ standardized test performance (i.e., the outcome). At the beginning of the study, students
and teachers were randomly allocated to different class sizes, with efforts to maintain these class
sizes throughout the experiment. This dataset has been used previously by Kallus et al. (2018) to
address bias from unmeasured confounding in observational studies.

In line with Kallus et al. (2018), we focus on two treatment conditions: small classes (13-17 students)
and regular-sized classes (22-25 students). The treatment variable is the class size to which students
were assigned in the first grade, comprising a total of 4, 509 students. The outcome variable Y
is measured as the aggregate score from listening, reading, and mathematics standardized tests
administered at the end of the first grade. In addition to class size and test scores, the dataset includes
several covariates for each student: gender, race, birth month, birth date, birth year, eligibility for free
lunch, rural/urban status, and teacher identification number. After excluding students with incomplete
data, the resulting sample consists of 4, 139 students, with 1, 774 assigned to the treatment group
(small classes, T = 1) and 2, 365 to the control group (regular classes, T = 0). We sample

AIDS Clinical Trial Group (ACTG) Study 175 The AIDS Clinical Trial Group (ACTG) Study
175 was a randomized clinical trial conducted to compare four treatment regimens on 2, 139 HIV-1-
infected patients with CD4 counts between 200 and 500 cells/mm3 (Hammer et al., 1996). The trial
compared the effectiveness of zidovudine (ZDV) monotherapy, didanosine (ddI) monotherapy, ZDV
combined with ddI, and ZDV combined with zalcitabine (ZAL). This dataset was also used in Hatt
et al. (2022b) to study the problem of learning policies that generalize to target populations, making
it a challenging candidate for evaluating our method due to underrepresentation of certain subgroups,
such as HIV-positive females, in clinical trials (Gandhi et al., 2005; Greenblatt, 2011).

The outcome Y in this dataset is defined as the change in CD4 count from the start of the study to
20± 5 weeks later. The estimated average treatment effects for male and female subgroups are −8.97
and −1.39, respectively (Hatt et al., 2022b), indicating a notable difference in treatment response
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between genders. We focus on two treatment arms: the combined ZDV and ZAL treatment (T = 1)
and ZDV monotherapy (T = 0). The dataset comprises 1, 056 patients with 12 covariates, including
five continuous variables: age (years), weight (kg, denoted as wtkg), baseline CD4 count (cells/mm3),
Karnofsky score (0 − 100 scale, denoted as karnof), and baseline CD8 count (cells/mm3). All
continuous variables are centered and scaled prior to analysis. The dataset also includes seven binary
covariates: gender (1 = male, 0 = female), homosexual activity (homo, 1 = yes, 0 = no), race (1 =
nonwhite, 0 = white), intravenous drug use history (drug, 1 = yes, 0 = no), symptomatic status
(symptom, 1 = symptomatic, 0 = asymptomatic), antiretroviral experience (str2, 1 = experienced,
0 = naive), and hemophilia (hemo, 1 = yes, 0 = no).

National Supported Work (NSW) Demonstration The National Supported Work (NSW) Demon-
stration was a subsidized work program that ran for four years across 15 locations in the United
States, providing participants with transitional work experience and assistance in securing regular em-
ployment. From April 1975 to August 1977, the NSW program operated as a randomized experiment
in 10 locations, with some applicants randomly assigned to a control group that did not participate in
the program. Data for 6, 616 treatment and control observations were collected through retrospective
baseline interviews and four follow-up interviews, covering a two-year period before randomization
and up to 36 months afterward.

For our analysis, we use a randomized dataset from LaLonde (1986), following the setup of Smith &
Todd (2005). We combine randomized samples from 465 subjects (297 treated and 425 controls) with
2,490 control samples from the Panel Study of Income Dynamics (PSID) to create an observational
dataset. The resulting dataset consists of 297 treated observations (T = 1) and 2,915 control
observations (T = 0). This study includes 8 covariates: age, education level, ethnicity (represented
as two variables), marital status, and educational attainment.

A.2.2 GENERATING SMALL RANDOMIZED OUTCOMES AND LARGE OBSERVATIONAL
DATASETS

In line with the method used by Kallus et al. (2018); Hatt et al. (2022a) we generate a large
observational dataset with confounding and a smaller unconfounded randomized dataset consisting
solely of the outcomes, both derived from the real-world data described in Section A.2.1. Importantly,
the randomized dataset is drawn from a different population than the observational one, reflecting
the limitations of randomized controlled trials (RCTs) in generalizing to the broader population of
interest.

To do this, we follow the same procedure for the STAR, ACTG, and NSW datasets. First, we generate
a small, unconfounded randomized dataset by sampling a small fraction of the RCT data points
128, 50, 50. instances from the original dataset. We introduce a distributional discrepancy between the
randomized and observational datasets by selecting individuals for the randomized dataset based on a
covariate (“birthday” for STAR, “gender” for ACTG, and “age” for NSW), see (Hatt et al., 2022a) for
further details. Second, we create the observational dataset by introducing unobserved confounding,
ensuring that the treatment and control groups differ systematically in their potential outcomes.
Following Kallus et al. (2018), we select subjects from those who were not included in the randomized
dataset: controls (T = 0) with especially low outcomes (i.e., yi < E[Y | T = 0]− c · σY |T=0, where
σY |T=0 is the standard deviation of the outcomes in the control group) and treated subjects (T = 1)
with notably high outcomes (i.e., yi > E[Y | T = 1] + c · σY |T=1, where σY |T=1 is the standard
deviation of the outcomes in the treatment group).

The constant c is adjusted according to the size of the original dataset (with c = 1 for STAR, c = 0
for ACTG, and c = 0.25 for NSW) to control the number of subjects in the observational dataset,
ensuring that it remains large. This process introduces confounding by selectively including control
subjects with lower outcomes and treated subjects with higher outcomes into the observational
treatment and control groups. As a result, a naïve estimator relying solely on the observational
data will be biased. Moreover, because this selection is based on the outcome variable, it becomes
impossible to control for this confounding.
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Algorithm 1 Training Algorithm for Marginals and Projections Balancing (MB+PB)

1: Input: Do = {(xi, ti, yi)}no
i=1, Dr = {D0

r , D
1
r} where Dt

r = {ytj}
nt
r

j=1 for t ∈ {0, 1}, initial
and final weights (αs, αe), number of epochs N2, balancing iterations Nb, neural networks for:
potential outcomes (µ), marginals balancing (g̃), and projections balancing (g).

2: Output: Trained models µ and ψ.
3: Initialize noise η ∼ N (0l, Il) and generate no samples {ηi}no

i=1.
4: for epoch = 1 to N1 do
5: Increase α from αs to αe.
6: Generate noise ũi = ψ(ηi) and estimate outcomes ŷi = µti(xi, ũi) for all 1 ≤ i ≤ no.
7: Compute factual loss:

Lf =
1

no

no∑
i=1

(
ti (yi − ŷi)

2
+ (1− ti) (yi − ŷi)

2
)

8: Generate potential outcomes ŷ1i = µ1(xi, ũi) and ŷ0i = µ0(xi, ũi).
9: Compute marginals balancing loss:

Lm =

 1

n1r

n1
r∑

i=1

g̃(y1i )−
1

no

no∑
i=1

g̃(ŷ1i )

2

+

 1

n0r

n0
r∑

i=1

g̃(y0i )−
1

no

no∑
i=1

g̃(ŷ0i )

2

10: Compute projections balancing loss:

Lp =

 1

n1r

n1
r∑

i=1

g(xλ(i))y
1
i −

1

no

no∑
i=1

g(xi)ŷ
1
i

2

+

 1

n0r

n0
r∑

i=1

g(xλ(i))y
0
i −

1

no

no∑
i=1

g(xi)ŷ
0
i

2

where λ(i) selects a random number between 1 and no.
11: Compute total loss L = Lf + α(Lm + Lp)
12: Backpropagate to update µ and ψ using Adam.
13: for each balancing iteration n = 1 to Nbalancing do
14: Calculate the negative regularization loss: Lr = −(Lm + Lp)
15: Backpropagate to update g̃ and g using Adam.
16: end for
17: end for
18: Return trained models {µt}1t=0, and ψ.

A.3 IMPLEMENTATION DETAILS

In this section, we provide the implementation details of our proposed algorithm MB+PB. Specifi-
cally, we describe the neural network architectures used for the different modules in our algorithm.
Additionally, we present a detailed pseudo-code for the training procedure.

The Neural Networks Architectures. As detailed in Section 3.4, MB+PB consists of three
components: a generator ψ(η), a CATE learner µt(X, Ũ), a marginals balancing module g̃, and a
projections balancing module g.

• Pseudo-Confounder Generator: The generator ψ(η) is a neural network designed to
generate pseudo-confounders from the input variables, which consist of standard Gaussian
noise. The network architecture consists of two fully connected layers with 16 hidden units
and ELU activation functions.

• CATE Learner: The CATE learner is modeled as an S-Learner µt(X, Ũ) and is imple-
mented using a neural network with three fully connected layers. The first two layers have
32 hidden units, each followed by an ELU activation function. The final layer outputs a
scalar, representing the estimated potential outcome.

• MB Module: The marginals balancing module g̃ is modeled as a neural network with two
hidden layers, each containing 8 hidden units. ReLU activation functions are applied to the

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

hidden layers, and the output is constrained between −1 and 1 or 0 and 1, using either a
tanh or a sigmoid activation function, respectively.

• PB Module: The projections balancing module g is also modeled as a neural network with
two hidden layers, each containing 8 hidden units. ReLU activation functions are applied to
the hidden layers, and the output is constrained between −1 and 1 or 0 and 1, using either a
tanh or a sigmoid activation function, respectively.

We use the same neural network architectures for all of our results presented in the Experiments
Section 4.

The Algorithm. We present the full pseudo-code for MB+PB in Algorithm 1. The code consists of
the training loop of the proposed model and the loss functions computation.

Hyperparameters. For the regularization parameter α is set dynamically, following the heuristic
described below. We initially start with a small value for α, and as the observed factual loss
optimization stabilizes, we gradually increase the importance of the regularization term. In all of
our experiments, we train for 2000 epochs. Specifically, we set α = 0.01 for the first 1230 epochs,
then linearly increase α from 0.01 to 100 between epochs 1230 and 1430. From epoch 1430 to
2000, we train the model with the high regularization term α = 100. Additionally, as described
in Algorithm 1, there are multiple balancing steps involved in training the MB+PB constraint. To
increase the efficiency of our training process, we begin with a small number of balancing iterations
(5) when α is small, and increase this number to 50 as α becomes large. Note that we use the same
training strategy across all the datasets to avoid fine-tuning the hyperparameter and to have a better
assessment of the presented algorithm. For the learning rates of the different neural networks they are
all set at 0.001 and we use Adam as an optimizer. Finally, for the batch sizes, we use a batch size of
256, 200, and 200 for STAR, ACTG, and NSW respectively.

Computational Resources The experiments in this paper are not computationally expensive to
conduct and were performed on the following GPU: NVIDIA GeForce RTX 3090.

A.4 ADDITIONAL RESULTS

Here we include additional empirical results.

A.4.1 SYNTHETIC EXAMPLE

We begin by presenting additional results for the synthetic experiment discussed in the main text,
following the approach of Kallus et al. (2019). In Figure 10, we report the

√
εPEHE as a function of

training epochs. Additionally, the results for the factual loss across varying degrees of confounding
are provided in Figure 11.

(i) Training
√
εPEHE for log(Γ) =

1.0
(ii) Training

√
εPEHE for log(Γ) =

3.0
(iii) Training

√
εPEHE for log(Γ) =

5.0

Figure 10: Comparison of
√
εPEHE across training epochs for different levels of confounding (log(Γ)).

A.4.2 FACTUAL LOSS COMPARISON ACROSS REAL-WORLD DATASETS

Table 2 presents a comparison of the factual loss, ϵF, measured as the mean and standard deviation
over 10 runs for three real-world datasets: STAR, ACTG, and NSW. We note that while the baseline
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Figure 11: Factual loss comparison across different degrees of confounding.

Table 2: Comparison of the factual loss ϵF (Mean ± Std) across three real-world datasets. Results are
presented for 10 runs.

ϵF (Mean ± Std)
Estimator STAR ACTG NSW
Baseline 1.3± 0.02 1.26 ± 0.05 0.38± 0.02
MB+PB (Ours) 1.08 ± 0.13 0.72 ± 0.03 0.17 ± 0.01

model is designed to estimate the factual outcome, it may suffer from distributional shift as the
domain of the features of the test data is different from that of the train data. Hence, learning a
better causal model in that case yields better factual estimates. We conjecture that this enhanced
performance is explained by the fact that our model learns a better model which makes it more robust
to distributional shifts, as was formalized by (Richens & Everitt, 2024).

The baseline estimator is compared against our method, MB+PB. The results demonstrate the
superiority of MB+PB in terms of lower factual loss, particularly for the STAR and NSW datasets.
This reduction in factual loss indicates that our method is more effective at aligning the model
predictions with the observed outcomes, thereby mitigating the effects of confounding and improving
the estimation of potential outcomes.

For the STAR dataset, our method achieves a mean factual loss of 1.08± 0.13, outperforming the
baseline, which has a loss of 1.3± 0.02. Similarly, the NSW dataset shows a significant improvement
with MB+PB, resulting in a mean loss of 0.17± 0.01 compared to the baseline loss of 0.38± 0.02.
However, for the ACTG dataset, both methods exhibit relatively close performance, with MB+PB
slightly outperforming the baseline by reducing the mean loss from 1.26± 0.05 to 0.72± 0.03.

These results confirm that the MB+PB method is more robust across different datasets compared to
the naive factual learner, even in terms of factual loss when there is a distributional shift, which is
prevalent in real-world scenarios.
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