

UNCERTAINTY MATTERS IN DYNAMIC GAUSSIAN SPLATTING FOR MONOCULAR 4D RECONSTRUCTION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

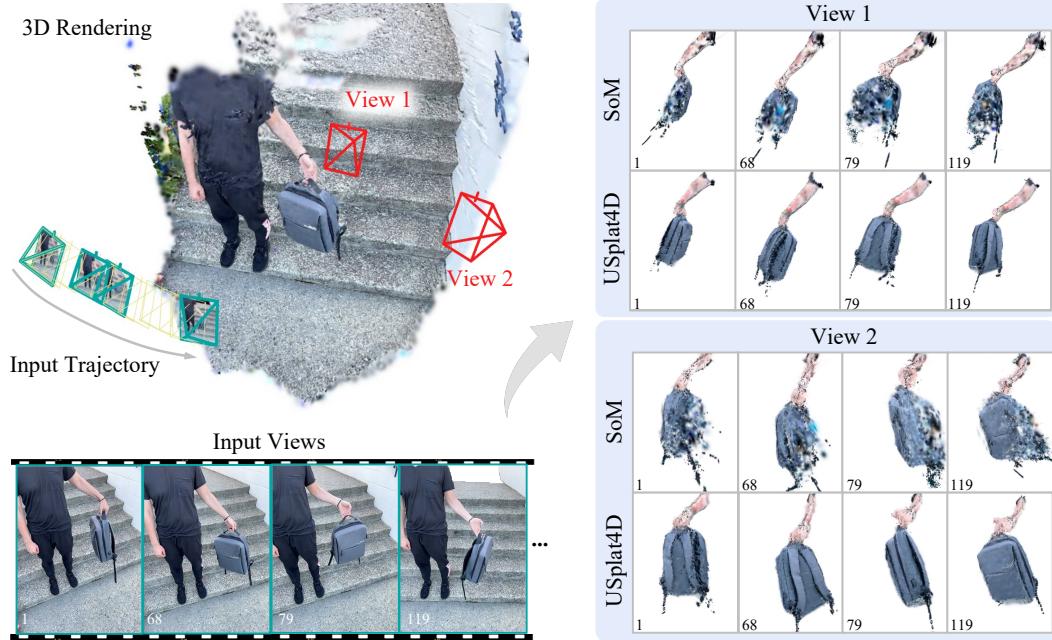


Figure 1: We show a challenging case from the DyCheck dataset (Gao et al., 2022), where a person casually rotates a backpack while being captured by a moving monocular camera. The goal is to reconstruct the dynamic object for arbitrary viewpoints and timestamps. The state-of-the-art dynamic Gaussian Splatting methods, e.g., Shape-of-Motion (SoM) (Wang et al., 2025a), struggle on extreme novel views far from the input trajectory, such as opposite-side views (view 1) or large angle offsets (view 2). We propose USPLAT4D, an Uncertainty-aware dynamic Gaussian Splatting model that produces more accurate and consistent 4D reconstruction. **Left:** rendered dynamic scene from our model for illustration alongside four sampled RGB inputs. **Right:** novel view synthesis at two extreme novel viewpoints. Please refer to supplementary video for clearer visual comparison.

ABSTRACT

Reconstructing dynamic 3D scenes from monocular input is fundamentally under-constrained, with ambiguities arising from occlusion and extreme novel views. While dynamic Gaussian Splatting offers an efficient representation, vanilla models optimize all Gaussian primitives uniformly, ignoring whether they are well or poorly observed. This limitation leads to motion drifts under occlusion and degraded synthesis when extrapolating to unseen views. We argue that uncertainty matters: Gaussians with recurring observations across views and time act as reliable anchors to guide motion, whereas those with limited visibility are treated as less reliable. To this end, we introduce USPLAT4D, a novel Uncertainty-aware dynamic Gaussian Splatting framework that propagates reliable motion cues to enhance 4D reconstruction. Our approach estimates time-varying per-Gaussian uncertainty and leverages it to construct a spatio-temporal graph for uncertainty-aware optimization. Experiments on diverse real and synthetic datasets show that explicitly modeling uncertainty consistently improves dynamic Gaussian Splatting models, yielding more stable geometry under occlusion and high-quality synthesis at extreme viewpoints. Our code, dataset, and model will be released publicly.

054

1 INTRODUCTION

056 Reconstructing dynamic 3D scenes from monocular input is a fundamental problem across a variety
 057 of tasks, including augmented reality, robotics, and human motion analysis (Slavcheva et al., 2017;
 058 Li et al., 2023; Newcombe et al., 2015; Joo et al., 2014; Gao et al., 2022). However, despite its wide
 059 applicability, monocular dynamic reconstruction remains highly challenging (Liang et al., 2025c),
 060 particularly under occlusion and extreme viewpoint changes. Recently, the advent of 3D Gaussian
 061 Splatting (Kerbl et al., 2023) has enabled real-time photorealistic rendering and sparked a series of
 062 dynamic extensions (Luiten et al., 2024; Lei et al., 2025; Stearns et al., 2024; Liu et al., 2024; Duan
 063 et al., 2024; Huang et al., 2024a; Yang et al., 2024b; 2023; Li et al., 2024; Sun et al., 2024b; Duisterhof
 064 et al., 2023; Das et al., 2024; Lin et al., 2024; Wu et al., 2025). These methods parameterize motion
 065 with shared canonical fields (Wu et al., 2024; Yang et al., 2024b; Liang et al., 2025b; Guo et al., 2024;
 066 Lu et al., 2024; Liu et al., 2024; Wan et al., 2024), deformation bases (Wang et al., 2025a; Das et al.,
 067 2024; Lin et al., 2024; Li et al., 2024), or direct 4D modeling (Duan et al., 2024; Yang et al., 2023).
 068

069 Despite their differences in formulation, existing dynamic Gaussian splatting methods often share a
 070 common assumption: motion is optimized uniformly across all Gaussians using 2D supervision such
 071 as depth (Yang et al., 2024a), optical flow (Teed & Deng, 2020), and photometric consistency (Doersch
 072 et al., 2023). This uniform treatment overlooks that some Gaussians are strongly constrained by
 073 recurring observations, while others are only weakly constrained. As a result, motion estimates drift
 074 under occlusion and synthesized views degrade at novel viewpoints.

075 To maintain spatio-temporal consistency, we argue that confidently observed Gaussians should be
 076 prioritized and used to guide the optimization of less reliable ones. Consider the example in Figure 1,
 077 where a rotating backpack is captured by a moving monocular camera. At any moment, a portion of
 078 the surface is self-occluded and invisible. Yet, humans can readily infer their appearance and motion
 079 by recalling previously observed surfaces and extrapolating with temporal continuity. Such ability
 080 anchors on the most reliable parts of the backpack, i.e., those clearly observed from other viewpoints
 081 and timestamps. This suggests a key principle: when observations are partial, reconstruction should
 082 be guided by confident cues and propagated structurally to uncertain regions.

083 Building on this insight, we propose USPLAT4D, a novel **U**ncertainty-aware dynamic Gaussian
 084 **Splatting** framework for monocular **4D** reconstruction. We first introduce a principled method to
 085 estimate time-varying uncertainty for each Gaussian, capturing how reliably it is constrained by
 086 recurring observations. This uncertainty then guides the selection of anchor Gaussians and propagate
 087 motion across space and time. To realize this principle, we organize Gaussians into a spatio-temporal
 088 graph, where uncertainty determines node importance, edge construction, and adaptive loss weighting.
 089 The goal of the uncertainty-aware graph optimization is to ensure that confident parts of the scene
 090 dynamically guide the reconstruction of the rest, even in occluded or unseen views.

091 We validate our approach on various real and synthetic datasets on monocular 4D reconstruction. We
 092 show that explicitly leveraging uncertainty significantly enhances both motion tracking and novel
 093 view synthesis, with particularly strong gains under extreme viewpoints. Our framework, including
 094 uncertainty estimation, graph construction, and adaptive training, is model-agnostic and can be
 095 integrated into existing dynamic Gaussian splatting pipelines that parameterize per-Gaussian motion.
 096 Overall, USPLAT4D introduces a principled way to model uncertainty in dynamic Gaussian Splatting,
 097 yielding more stable motion estimates under occlusion and high-quality extreme view synthesis.

098

2 RELATED WORK

099 **Dynamic Gaussian splatting.** Recent advances in dynamic Gaussian Splatting have enabled *monoc-100*
 101 *ular* 4D reconstruction via per-Gaussian deformation or canonical motion modeling (Liang et al.,
 102 2025c; Yang et al., 2024b; 2023; Wu et al., 2024; Li et al., 2024) or high-fidelity dynamic scene
 103 reconstruction from *multi-view* inputs (Luiten et al., 2024; Wang et al., 2025b). To reconstruct 4D GS
 104 from the monocular video, methods such as SoM (Wang et al., 2025a), MoSca (Lei et al., 2025), Mar-
 105 bles (Stearns et al., 2024), and 4D-Rotor (Duan et al., 2024) use low-rank motion bases to regularize
 106 deformation, while others model canonical flows (Liang et al., 2025b; Liu et al., 2024). Although
 107 they demonstrate high-fidelity rendering on near-input validation views, they do not explicitly model
 108 the motion behind occluders or identify reliable Gaussians for motion guidance. MoSca (Lei et al.,
 109 2025) introduces a soft motion score but lacks structured propagation. In contrast, USPLAT4D

108 selects high-confidence Gaussians and constructs an uncertainty-aware motion graph to propagate
 109 motion through spatio-temporally coherent connections, improving robustness in occluded regions
 110 and enabling localized refinement beyond low-rank modeling (Kim et al., 2024; Huang et al., 2024a).
 111

112 **Uncertainty estimation in scene reconstruction.** Uncertainty modeling has been widely explored in
 113 neural rendering (Li et al., 2022; Pan et al., 2022; Shen et al., 2021; 2022; Kim et al., 2022; Zhan et al.,
 114 2022; Yan et al., 2023; Lee et al., 2022; Sünderhauf et al., 2023), particularly to improve robustness
 115 under occlusion, sparse views, and ambiguity. To avoid overfitting on reconstructing the static scene,
 116 SE-GS (Zhao et al., 2024a) designs an uncertainty-aware perturbing strategy by estimating the self-
 117 ensembling uncertainty. In dynamic settings, uncertainty has been used to smooth motion or reweight
 118 gradients (Kim et al., 2024), but typically as an auxiliary signal decoupled from the underlying
 119 motion representation. In contrast, USPLAT4D treats uncertainty as a central modeling component.
 120 We estimate confidence of each Gaussian and use it to guide key node selection, edge construction,
 121 and loss weighting in a spatio-temporal graph. This allows high-confidence Gaussians to guide
 122 motion propagation while reducing the influence of uncertain regions. To the best of our knowledge,
 123 this is among the first attempts and analyses to model the uncertainty and directly integrate it into
 124 graph-based motion modeling for dynamic reconstruction.

125 3 PRELIMINARY

127 We first review dynamic Gaussian Splatting and its learning objective to establish the notation for
 128 Section 4. Our method is model-agnostic, building on this standard formulation and applicable to a
 129 wide range of dynamic Gaussian Splatting variants (Lei et al., 2025; Wang et al., 2025a).

130 **Dynamic 3D Gaussians.** Vanilla dynamic Gaussian Splatting (Luiten et al., 2024) represents a scene
 131 with a set of time-varying 3D Gaussians. Formally, the state of a Gaussian at time t is defined as

$$133 \quad \mathbf{G}_t = (\mathbf{p}_t, \mathbf{q}_t, \mathbf{s}, \alpha, \mathbf{c}), \quad (1)$$

135 where $\mathbf{p}_t \in \mathbb{R}^3$ denotes the position at time t , $\mathbf{q}_t \in \mathbb{R}^4$ the quaternion rotation, $\mathbf{s} \in \mathbb{R}^3$ the scale,
 136 $\alpha \in \mathbb{R}$ the opacity, and $\mathbf{c} \in \mathbb{R}^{N_c}$ the color coefficients (e.g., spherical harmonics or RGB), N_c the
 137 color dimension. The trajectory of a Gaussian is then given by the sequence $\{\mathbf{G}_t\}_{t=1}^T$, where T is
 138 the number of frames. While early extensions introduce time-varying color (Yang et al., 2023), this
 139 hinders 3D motion tracking. Recent methods, such as SoM (Wang et al., 2025a) and MoSca (Lei
 140 et al., 2025), restrict the color space to stabilize motion estimation and enable reliable tracking.

141 **Learning objectives.** To optimize the 4D Gaussian field, existing methods minimize a combination
 142 of losses. A photometric reconstruction loss enforces consistency between rendered and ground-truth
 143 images, while motion-locality losses regularize the temporal evolution of Gaussians. These locality
 144 terms include isometry, rigidity, relative rotation, velocity, and acceleration constraints (Lei et al.,
 145 2025; Huang et al., 2024b), which shrink the large motion search space and stabilize optimization.

146 **Limitations.** Although effective near input views, these objectives remain fragile under occlusion
 147 and extreme novel viewpoints, as they rely heavily on unstable 2D priors such as depth, optical flow,
 148 or photometric consistency. As a result, reconstructions often drift over time and lose geometric
 149 consistency across different views. To overcome this challenge, we introduce a dynamic uncertainty
 150 model that explicitly encodes the reliability of each Gaussian over time and forms the foundation of
 151 our framework. In particular, Gaussians are partitioned into key and non-key nodes and connected
 152 through an uncertainty-weighted graph, which enforces spatio-temporal consistency.

154 4 UNCERTAINTY-AWARE DYNAMIC GAUSSIAN SPLATTING

156 **Overview.** Given a monocular video, we begin by building on vanilla dynamic Gaussian Splatting
 157 models to estimate a time-varying uncertainty score for each Gaussian, explicitly capturing its
 158 reliability across frames (Section 4.1). These uncertainty scores then guide the construction of an
 159 uncertainty-weighted graph that systematically organizes Gaussians into key and non-key nodes
 160 (Section 4.2). The resulting graph subsequently drives an optimization process that propagates reliable
 161 motion cues to uncertain regions, thereby refining both motion estimation and rendering quality of
 the dynamic scene (Section 4.3). An overview of the entire pipeline is illustrated in Figure 2.

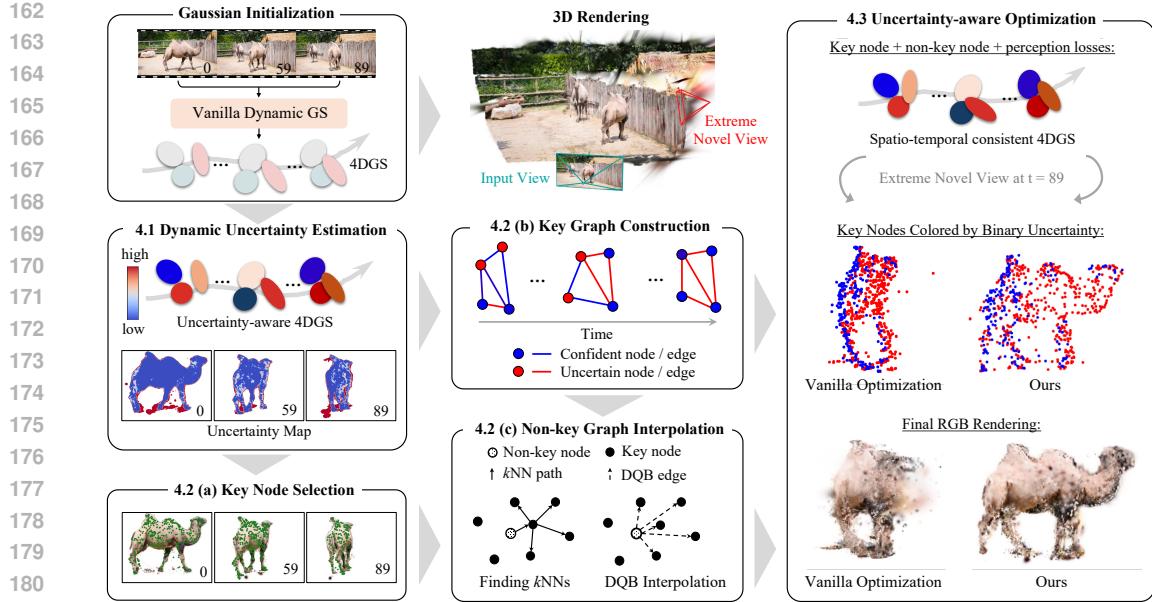


Figure 2: **Overview of the proposed USPLAT4D.** We first estimate time-varying uncertainty for each Gaussian (Section 4.1). We then leverage these uncertainties to select reliable Gaussians as key nodes, while others are treated as non-key nodes for graph construction (Section 4.2). Finally, we optimize the spatio-temporal graph with uncertainty-weighted losses, yielding consistent 4D Gaussians (Section 4.3). The right column shows that our approach significantly improves novel view renderings compared to vanilla optimization.

4.1 DYNAMIC UNCERTAINTY ESTIMATION

Vanilla dynamic Gaussian Splatting optimizes all primitives uniformly, even though some are well observed across time while others remain ambiguous. This causes drift under occlusion and instability at extreme viewpoints. We therefore assign each Gaussian \mathbf{G}_i a time-varying uncertainty to estimate its reliability per frame and use it to guide optimization in a model-agnostic way.

Per-Gaussian scalar uncertainty. A straightforward way to capture reliability is to assign each Gaussian i a scalar uncertainty $u_{i,t}$ at every frame t . Intuitively, if a primitive is frequently and clearly observed, its uncertainty should be small; if it is rarely visible or weakly constrained, its uncertainty should be large. The photometric loss is defined as

$$\mathcal{L}_{2,t} = \sum_{h \in \Omega} \|\bar{C}_t^h - C_t^h\|_2^2, \quad \text{where} \quad C_t^h = \sum_{i=1}^{N_g} T_{i,t}^h \alpha_i c_i. \quad (2)$$

Here, Ω is the pixel index set, \bar{C}_t^h and C_t^h denote the ground-truth and rendered colors at pixel h , and c_i is the color parameter of Gaussian i at frame t . The rendered pixel color is obtained by α -blending, where the blending weight is given by $T_{i,t}^h \alpha_i$, with $T_{i,t}^h$ the transmittance of Gaussian i at pixel h , α_i its opacity, and N_g is the number of Gaussians. By differentiating $\mathcal{L}_{2,t}$ with respect to c_i and applying the local minimum assumption, we obtain the closed-form variance estimate (please see appendix for detailed derivation):

$$\sigma_{i,t}^2 = \left(\sum_{h \in \Omega_{i,t}} (T_{i,t}^h \alpha_i)^2 \right)^{-1}, \quad (3)$$

where $\Omega_{i,t} \subseteq \Omega_t$ is the set of pixels contributed to by that Gaussian. We thus take this variance as the scalar uncertainty, i.e., $u_{i,t} := \sigma_{i,t}^2$. However, the local minimum assumption may not hold everywhere. To account for unconvolved pixels, we introduce an indicator function to test per-pixel convergence:

$$\mathcal{I}(h) = \begin{cases} 1 & \text{if } \|\bar{C}_t^h - C_t^h\|_1 < \eta_c, \\ 0 & \text{otherwise,} \end{cases} \quad (4)$$

where $\eta_c > 0$ is a color-error threshold. For Gaussian i at frame t , we define the aggregate indicator $\mathcal{I}_{i,t} = \prod_{h \in \Omega_{i,t}} \mathcal{I}_t(h)$, which equals 1 only if all covered pixels are convergent. If $\mathcal{I}_{i,t} = 0$, we assign

216 a large constant ϕ to indicate high uncertainty. Therefore, the final scalar uncertainty is:
 217
 218

$$u_{i,t} = \mathcal{I}_{i,t} \sigma_{i,t}^2 + (1 - \mathcal{I}_{i,t}) \phi. \quad (5)$$

219 This design jointly constraint strength with convergence status: Gaussians that are well supported
 220 by observations receive low $u_{i,t}$, reflecting high reliability, while unreliable ones are assigned high
 221 values, which enables trustworthy primitives to guide ambiguous ones during optimization.

222 **From scalar to depth-aware uncertainty.** While the scalar definition is intuitive, it implicitly
 223 assumes that uncertainty is isotropic in 3D space. This is problematic in monocular settings, where
 224 depth is much less reliable than image-plane coordinates. A uniform scalar tends to be over-confident
 225 along the camera axis, leading to geometric distortion. To address this, we propagate image-space
 226 errors into 3D and represent each Gaussian by an anisotropic uncertainty matrix:
 227

$$\mathbf{U}_{i,t} = \mathbf{R}_{wc} \mathbf{U}_c \mathbf{R}_{wc}^\top, \quad \text{where } \mathbf{U}_c = \text{diag}(r_x u_{i,t}, r_y u_{i,t}, r_z u_{i,t}). \quad (6)$$

228 Here, \mathbf{R}_{wc} is the camera-to-world rotation and r_x, r_y, r_z are axis-aligned scaling factors. Note that
 229 only rotation is required to propagate uncertainty, since translation does not affect covariance. This
 230 transforms 2D uncertainty into axis-aligned 3D uncertainty, incorporating both the camera pose and
 231 the directional sensitivity of depth. A typical example is the “Camel” sequence in Figure 2 (also see
 232 the supplementary video): without depth-aware uncertainty, the camel’s body shrinks unnaturally,
 233 whereas our formulation preserves its correct shape.
 234

235 4.2 UNCERTAINTY-ENCODED GRAPH CONSTRUCTION

236 Per-Gaussian uncertainty in Equation 6 provides a local measure of reliability, but treating Gaussians
 237 independently cannot guarantee spatio-temporal consistency. Neighboring primitives often share
 238 correlated motion, and reliable ones should anchor the optimization of uncertain ones. Prior graph-
 239 based methods (Huang et al., 2024b; Lei et al., 2025) attempt to capture this correlation, e.g.,
 240 MoSca (Lei et al., 2025) introduces a 3D lifting graph. In contrast, we build the graph directly
 241 on uncertainty: Gaussians are ranked by reliability and partitioned into key and non-key nodes, so
 242 that stable primitives drive motion propagation while ambiguous ones are regularized. To realize
 243 this, we design an uncertainty-aware graph that encodes reliability in both node selection and edge
 244 connectivity, providing the foundation for the optimization described in the following sections.
 245

246 **Graph definition.** We represent the scene with a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where each node $i \in \mathcal{V}$
 247 corresponds to a Gaussian \mathbf{G}_i and edges $(i, j) \in \mathcal{E}$ encode spatial affinity and motion similarity.
 248 Crucially, nodes are partitioned into a small key set \mathcal{V}_k and a large non-key set \mathcal{V}_n according to their
 249 uncertainties $\{u_{i,t}\}$ from Section 4.1. We define key nodes as stable Gaussians that carry strong
 250 motion cues across time and views, while non-key nodes inherit motion from their key neighbors.

251 **Key node selection.** Our key node selection operates in 3D space. We employ the following two-stage
 252 strategy that balances spatial coverage and temporal stability:
 253

- 254 *Candidate sampling via 3D gridization.* At each frame, we partition the scene into a 3D voxel grid.
 255 Voxels containing only high-uncertain Gaussians¹ are discarded. In the remaining grids, which
 256 may contain multiple low-uncertainty Gaussians, we randomly select one per grid. This per-voxel
 257 “uniform selection” ensures spatial coverage and reduces redundancy, unlike random selection
 258 without voxel uniformity². This is based on the assumption that each meaningful motion will
 259 occupy a unique voxel in at least one frame; motions indistinguishable at this resolution are minor
 260 and handled by non-key interpolation (see below). Intuitively, distinct motions leave separable
 261 footprints, while small differences are smoothed out.
- 262 *Thresholding by significant period.* For each Gaussian candidate, we compute its *significant*
 263 *period*, defined as the number of frames where its uncertainty stays below a threshold. We retain
 264 only those with a significant period of at least 5 frames, ensuring that key nodes have sufficient
 265 temporal support to contribute reliably to motion estimation. Candidates with insufficient temporal
 266 coverage tend to destabilize graph optimization and yield under-constrained solutions.

267 ¹We maintain a typical 1:49 key/non-key ratio by selecting the top 2% (around 1000-th) most confident
 268 Gaussians. Ablations with ratios from 0.5%~4% (please see appendix) show consistent performance across
 269 different scenes and models, with 2% lying on a stable plateau balancing coverage and reliability.

²We test random selection with the same per-frame count but without per-grid uniformity. This produces
 270 non-uniform spatial distributions (i.e., some voxels oversampled, others missed). See appendix for analysis.

270 **Edge construction.** We construct edges separately for *key* and *non-key* nodes, as their roles differ: key
 271 nodes provide structural anchors for motion propagation, while non-key nodes interpolate appearance
 272 locally. The key graph captures long-range geometric and motion dependencies (e.g., both ends of a
 273 limb moving coherently), which existing distance-based heuristics such as local k NN (Huang et al.,
 274 2024b) or global min–max distances (Lei et al., 2025) cannot robustly handle.

275 To address this, we adopt an Uncertainty-Aware k NN (UA- k NN). For a key node i , we select
 276 neighbors only among other low-uncertainty key nodes, evaluated at its most reliable frame $\hat{t} =$
 277 $\arg \min_t \{u_{i,t}\}$, and measure distances with uncertainty weighting to favor trustworthy connections:
 278

$$279 \quad \mathcal{E}_i = k\text{NN}_{j \in \mathcal{V}_k \setminus \{i\}} \left(\|\mathbf{p}_{i,\hat{t}} - \mathbf{p}_{j,\hat{t}}\|_{(\mathbf{U}_{w,\hat{t},i} + \mathbf{U}_{w,\hat{t},j})} \right). \quad (7)$$

280 Here, the Mahalanobis metric up-weights directions of high uncertainty, so edges are formed between
 281 nodes that are both spatially close and reliable. As will be shown in Section 4.3, these edges are
 282 further pruned by the key graph loss for additional robustness and to prevent spurious long-range
 283 connections. For a non-key node i , we assign it to its closest key node across the sequence:

$$284 \quad j = \arg \min_{l \in \mathcal{V}_k} \sum_{t=0}^{T-1} \|\mathbf{p}_{i,t} - \mathbf{p}_{l,t}\|_{(\mathbf{U}_{w,t,i} + \mathbf{U}_{w,t,l})} \quad (8)$$

285 and connect $\mathcal{E}_i = \mathcal{E}_j \cup \{j\}$ and j is the closest key nodes. Intuitively, each uncertain non-key node is
 286 attached to the most reliable key node that stays close to it over time, so its motion can be regularized
 287 by stable anchors for consistency. In both cases, uncertainty-aware k NN ensures edges are anchored
 288 by reliable nodes, promoting stable motion propagation and preventing drift from uncertain regions.
 289

290 4.3 UNCERTAINTY-AWARE OPTIMIZATION

292 Vanilla optimization (Section 3) of dynamic Gaussians often fail under occlusion or extreme view-
 293 points. This leads unreliable primitives to drift, since they are optimized as strongly as reliable ones.
 294 To address this, we incorporate uncertainty into the objective: key nodes with stable observations
 295 serve as anchors, while non-key nodes are regularized more softly through interpolation. We design
 296 separate objectives for key and non-key nodes, then unify them in a total loss.
 297

298 **Key node loss.** Key nodes are low-uncertainty Gaussians that anchor motion. We encourage them to
 299 stay close to their pre-optimized positions:

$$300 \quad \mathcal{L}^{\text{key}} = \sum_{t=0}^{T-1} \sum_{i \in \mathcal{V}_k} \|\mathbf{p}_{i,t} - \mathbf{p}_{i,t}^{\text{o}}\|_{\mathbf{U}_{w,t,i}^{-1}} + \mathcal{L}^{\text{motion, key}}, \quad (9)$$

302 where $\mathbf{U}_{w,t,i}$ down-weights directions of high uncertainty, ensuring motion is corrected mainly along
 303 reliable axes. Superscript o denotes the parameters from the pretrained Gaussian Splatting model,
 304 which serves as initialization before our uncertainty-aware optimization. The key node motion loss
 305 $\mathcal{L}^{\text{motion, key}}$ regularizes the temporal evolution of Gaussians by isometry, rigidity, rotation, velocity,
 306 and acceleration constraints, which is discussed in the appendix in detail.
 307

308 **Non-key node loss.** Non-key nodes are interpolated from nearby key nodes using Dual Quaternion
 309 Blending (DQB) (Kavan et al., 2007), which provides smooth motion by blending their neighbors:
 310

$$309 \quad \left(\mathbf{p}_{i,t}^{\text{DQB}}, \mathbf{q}_{i,t}^{\text{DQB}} \right) = \text{DQB} \left(\{(w_{ij}, \mathbf{T}_{j,t})\}_{j \in \mathcal{E}_i} \right), \quad (10)$$

311 where w_{ij} are normalized edge weights for blending, $\mathbf{T}_{j,t} \in \mathbb{SE}(3)$ is the transform of key node j , and
 312 $\mathbf{p}_{i,t}^{\text{DQB}}$ and $\mathbf{q}_{i,t}^{\text{DQB}}$ are the position and rotation of Gaussian i at time t acquired by DQB, respectively.
 313 We then regularize non-key nodes to both their initialization and interpolated trajectory:

$$314 \quad \mathcal{L}^{\text{non-key}} = \sum_{i=0}^{T-1} \sum_{i \in \mathcal{V}_n} \|\mathbf{p}_{i,t} - \mathbf{p}_{i,t}^{\text{o}}\|_{\mathbf{U}_{w,i}^{-1}} + \sum_{i=0}^{T-1} \sum_{i \in \mathcal{V}_n} \|\mathbf{p}_{i,t} - \mathbf{p}_{i,t}^{\text{DQB}}\|_{\mathbf{U}_{w,i}^{-1}} + \mathcal{L}^{\text{motion, non-key}}. \quad (11)$$

316 Here, $\mathcal{L}^{\text{motion, non-key}}$ is the non-key node motion loss, which will also be discussed in appendix. This
 317 non-key loss keeps non-key nodes close to their pretrained states while aligning them with motions
 318 propagated from reliable key nodes, preventing drift while ensuring coherence.
 319

320 **Total loss.** The final objective combines the key and non-key node losses with the photometric loss:
 321

$$321 \quad \mathcal{L}^{\text{total}} = \mathcal{L}^{\text{rgb}} + \mathcal{L}^{\text{key}} + \mathcal{L}^{\text{non-key}}. \quad (12)$$

322 Overall, the uncertainty in our framework serves three purposes: (1) re-weighting deviations of key
 323 nodes, (2) guiding the interpolation of non-key nodes, and (3) balancing their influence in the total
 loss. Our design mitigates drift under occlusion and maintains geometric consistency at novel views.
 324

Figure 3: **Qualitative results on validation views of the DyCheck dataset** (Gao et al., 2022). We show comparisons with two strong baselines, SoM (Wang et al., 2025a) and MoSca (Lei et al., 2025). USPLAT4D improves visual quality and better preserves geometry (e.g., arms in “Spin”, hands in “Space-out”) and pose (e.g., “Windmill”). Please zoom in for details. See supplementary for more examples and other baselines.

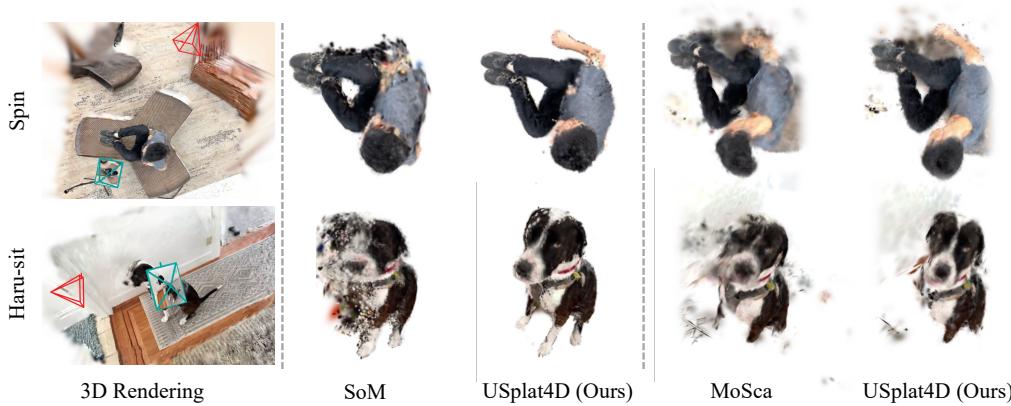


Figure 4: **Qualitative results on extreme novel views from DyCheck**. Unlike Figure 3, these manually sampled extreme views (red cameras) lack ground-truth. USPLAT4D better preserves fine structures (e.g., the dog’s head in “haru-sit”) and occluded regions (e.g., the hand in “spin”) under large viewpoint shifts.

5 EXPERIMENTS

5.1 SETUP

Datasets. **(1) DyCheck** (Gao et al., 2022): We follow prior works (Wang et al., 2025a; Lei et al., 2025; Stearns et al., 2024) to evaluate on 7 scenes with validation views. Since these validation views are near the input views, we additionally sample extreme novel views for qualitative analysis. **(2) DAVIS** (Perazzi et al., 2016): To test generalization across different scenarios, we qualitatively evaluate on challenging monocular videos using DAVIS dataset, which cover non-rigid motion, occlusions, and complex dynamics. **(3) Objaverse** (dei, 2023): We construct a synthetic benchmark³ from Objaverse by selecting 6 challenging articulated objects with diverse textures and motions. Specifically, we set cameras to follow a circular trajectory of 121 frames (3° per step) around each object, always facing toward it. For validation, we render views at horizontal angular offsets of 30° increments from 30° to 330° , each with a fixed elevation of 35° , in order to capture the object’s 3D structure from diverse viewpoints. Please see appendix for additional details.

³Existing benchmarks lack ground-truth for extreme novel views, making systematic evaluation difficult. We therefore build a synthetic benchmark, where strong results support our generalization claims (see experiments). Note that such synthetic setups are widely used to stress-test models (Yao et al., 2025; Liang et al., 2024).

378
 379
 380
Table 1: Quantitative results on DyCheck. We report results on 5 scenes at $1\times$ resolution and 7 scenes at
 2 \times resolution, following existing protocols. USPLAT4D consistently outperforms state-of-the-art Gaussian
 Splatting based methods. See Figure 3 for qualitative results on validation views and Figure 4 for extreme views.

381	Setting	Method	mPSNR \uparrow	mSSIM \uparrow	mLPIPS \downarrow
382	5 scenes 1 \times resolution	SC-GS (Huang et al., 2024b)	14.13	0.477	0.49
383		Deformable 3DGS (Yang et al., 2024b)	11.92	0.490	0.66
384		4DGS (Wu et al., 2024)	13.42	0.490	0.56
385		MoDec-GS (Kwak et al., 2025)	15.01	0.493	0.44
386		MoBlender (Zhang et al., 2025)	<u>16.79</u>	0.650	0.37
387		SoM (Wang et al., 2025a)	16.72	<u>0.630</u>	0.45
388		USPLAT4D (ours)	16.85	0.650	<u>0.38</u>
389	7 scenes 2 \times resolution	Dynamic Gaussians (Luiten et al., 2024)	7.29	–	0.69
390		4DGS (Wu et al., 2024)	13.64	–	0.43
391		Gaussian Marbles (Stearns et al., 2024)	16.72	–	0.41
392		MoSca (Lei et al., 2025)	<u>19.32</u>	<u>0.706</u>	<u>0.26</u>
393		USPLAT4D (ours)	19.63	0.716	0.25
394	Camel				
395	Train				
396	Car-turn				
397	Car-roundabout				
398	Breakdance-flare				
399	Helicopter				
400	3D Rendering				
401					
402					
403					
404					
405					
406					
407					
408					
409					

407
 408
 409
Figure 5: Qualitative results on extreme novel views from DAVIS. For each case, we show an input-view
 rendering and compare the baseline (SoM (Wang et al., 2025a) or MoSca (Lei et al., 2025)) with our USPLAT4D
 on an extreme novel view (red). USPLAT4D yields clearer reconstructions under challenging conditions.

410
 411
Baselines. We compare USPLAT4D with state-of-the-art dynamic Gaussian Splatting methods, using
 412 SoM (Wang et al., 2025a) and MoSca (Lei et al., 2025) as base models. SoM is widely adopted, while
 413 MoSca represents the current state of the art. Our framework is compatible with any method that
 414 estimates per-Gaussian motion. Please see appendix for additional details.

415 5.2 MAIN RESULTS

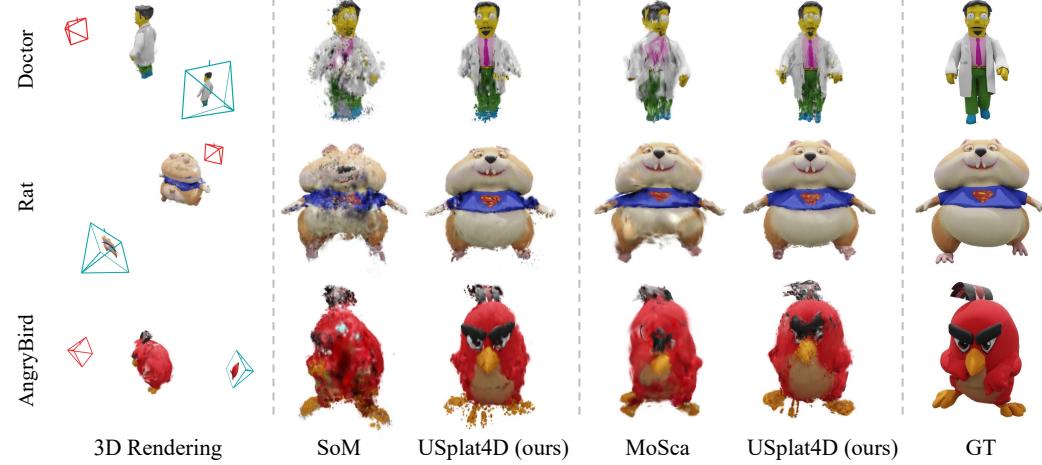
416
 417
Results on DyCheck. Table 1 reports results on DyCheck validation views, which are close to the
 418 input trajectories. USPLAT4D consistently outperforms baselines across all metrics; corresponding
 419 qualitative examples are shown in Figure 3. However, these validation views remain relatively easy.
 420 The more significant improvements emerge under extreme novel viewpoints (Figure 4), which are not
 421 included in Table 1 but are essential for assessing robustness under severe viewpoint shifts.

422
 423
Qualitative results of extreme novel view synthesis on DAVIS. We evaluate on selected monocular
 424 videos from the DAVIS dataset, which include fast motion, deformation, and self-occlusion. As
 425 ground-truth geometry is unavailable, we focus on qualitative comparisons. As shown in Figure 5,
 426 USPLAT4D yields more plausible geometry and coherent reconstructions under extreme viewpoint
 427 shifts, where the baseline often exhibits distortion, blur, or artifacts.

428
 429
Results on Objaverse. Table 2 shows that USPLAT4D consistently surpasses SoM (Wang et al.,
 430 2025a) and MoSca (Lei et al., 2025), with gains most pronounced under large viewpoint shifts
 431 (120 $^{\circ}$ –180 $^{\circ}$). Figure 6 confirms these improvements qualitatively: our method preserves geometry
 and textures under extreme novel views, where baselines often blur or collapse.

432
 433 **Table 2: Results on the Objaverse dataset.** We evaluate novel view synthesis across increasing horizontal
 434 angular ranges: $(0^\circ, 60^\circ]$, $(60^\circ, 120^\circ]$, and $(120^\circ, 180^\circ]$. USPLAT4D consistently improves over SoM (Wang
 et al., 2025a) and MoSca (Lei et al., 2025), with gains most pronounced at larger viewpoint shifts.

436 Method	437 View Range $(0^\circ, 60^\circ]$			438 View Range $(60^\circ, 120^\circ]$			439 View Range $(120^\circ, 180^\circ]$		
	440 PSNR↑	441 SSIM↑	442 LPIPS↓	443 PSNR↑	444 SSIM↑	445 LPIPS↓	446 PSNR↑	447 SSIM↑	448 LPIPS↓
449 SoM	450 16.09	451 0.860	452 0.31	453 15.58	454 0.854	455 0.32	456 16.45	457 0.858	458 0.31
459 USPLAT4D	460 16.63_{.55}	461 0.866_{.007}	462 0.27_{.03}	463 16.57_{.09}	464 0.868_{.014}	465 0.27_{.05}	466 17.03_{.58}	467 0.872_{.014}	468 0.26_{.05}
469 MoSca	470 16.18	471 0.881	472 0.24	473 15.74	474 0.875	475 0.25	476 15.89	477 0.876	478 0.25
479 USPLAT4D	480 16.22_{.04}	481 0.885_{.004}	482 0.22_{.02}	483 15.98_{.24}	484 0.884_{.009}	485 0.23_{.02}	486 16.31_{.42}	487 0.886_{.011}	488 0.21_{.03}



459 **Figure 6: Qualitative results on Objaverse.** Each case shows a 3D rendering from an input view and a
 460 comparison between the baseline (SoM (Wang et al., 2025a) or MoSca (Lei et al., 2025)) and our USPLAT4D at
 461 an extreme novel view (red). Please see the supplementary video for clearer visualization.

462 5.3 ABLATION AND ANALYSIS

463 We conduct ablation studies to assess key design choices in USPLAT4D, using MoSca (Lei et al.,
 464 2025) as the base model and evaluating on the DyCheck validation set (Gao et al., 2022).

465 Table 3 shows that uncertainty is essential across
 466 key components of our framework. **(a)** When
 467 removed from key node selection and replaced
 468 with uniform 2D sampling, the graph fails to
 469 emphasize well-constrained Gaussians, leading
 470 to unstable anchors and degraded propagation.
 471 **(b)** Replacing UA- k NN with distance-only k NN
 472 weakens graph connectivity, as edges disregard
 473 node reliability and mistakenly connect unstable
 474 primitives. **(c)** Excluding uncertainty weighting from the training loss (i.e., applying the DQB loss
 475 without U) reduces PSNR/SSIM, since unreliable Gaussians are updated as aggressively as reliable
 476 ones, causing drift across frames. Please see appendix for additional ablation study (on key node
 477 selection, and hyperparameter choices of η_c and significant period threshold) and discussion on time
 complexity, Gaussian segmentation, and challenging cases.

478 6 DISCUSSION AND CONCLUSION

481 We introduce a novel dynamic Gaussian Splatting framework USPLAT4D, showing that *uncertainty*
 482 *matters* in dynamic Gaussian splatting. We propose time-varying uncertainty estimation method and
 483 built an uncertainty-guided graph, systematically demonstrating improved geometric consistency and
 484 rendering quality under extreme views. While our method still inherits errors from the underlying
 485 Gaussian splatting model, we hope that our findings could encourage further work on leveraging
 486 uncertainty to advance robust 4D reconstruction. Please see appendix for more discussion.

486 REFERENCES
487488 Objaverse: A universe of annotated 3d objects. In *Proceedings of the IEEE/CVF conference on computer vision*
489 and pattern recognition, pp. 13142–13153, 2023.490 Devikalyan Das, Christopher Wewer, Raza Yunus, Eddy Ilg, and Jan Eric Lenssen. Neural parametric gaussians
491 for monocular non-rigid object reconstruction. In *Proceedings of the IEEE/CVF Conference on Computer*
492 *Vision and Pattern Recognition*, pp. 10715–10725, 2024.493 Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira, and Andrew
494 Zisserman. Tapir: Tracking any point with per-frame initialization and temporal refinement. In *Proceedings*
495 *of the IEEE/CVF International Conference on Computer Vision*, pp. 10061–10072, 2023.496 Yuxiang Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan Chen. 4d-rotor gaussian
497 splatting: Towards efficient novel view synthesis for dynamic scenes. In *Proc. SIGGRAPH*, 2024.498 Bardienus P Duisterhof, Zhao Mandi, Yunchao Yao, Jia-Wei Liu, Jenny Seidenschwarz, Mike Zheng Shou, Deva
500 Ramanan, Shuran Song, Stan Birchfield, Bowen Wen, et al. Deformgs: Scene flow in highly deformable
501 scenes for deformable object manipulation. *arXiv preprint arXiv:2312.00583*, 2023.502 Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. *IEEE transactions on pattern*
503 *analysis and machine intelligence*, 40(3):611–625, 2017.504 Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Monocular dynamic view
505 synthesis: A reality check. *Advances in Neural Information Processing Systems*, 35:33768–33780, 2022.506 Zhiyang Guo, Wengang Zhou, Li Li, Min Wang, and Houqiang Li. Motion-aware 3d gaussian splatting for
507 efficient dynamic scene reconstruction. *IEEE Transactions on Circuits and Systems for Video Technology*,
508 2024.509 Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-gs: Sparse-
510 controlled gaussian splatting for editable dynamic scenes. In *Proceedings of the IEEE/CVF Conference on*
511 *Computer Vision and Pattern Recognition (CVPR)*, pp. 4220–4230, June 2024a.512 Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-gs: Sparse-
513 controlled gaussian splatting for editable dynamic scenes. In *Proceedings of the IEEE/CVF conference on*
514 *computer vision and pattern recognition*, pp. 4220–4230, 2024b.515 Hanbyul Joo, Hyun Soo Park, and Yaser Sheikh. Map visibility estimation for large-scale dynamic 3d reconstruc-
516 tion. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1122–1129,
517 2014.518 Moritz Kappel, Florian Hahlbohm, Timon Scholz, Susana Castillo, Christian Theobalt, Martin Eisemann,
519 Vladislav Golyanik, and Marcus Magnor. D-npc: Dynamic neural point clouds for non-rigid view synthesis
520 from monocular video. In *Computer Graphics Forum*, pp. e70038. Wiley Online Library.521 Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. Skinning with dual quaternions. In *Proceedings*
522 *of the 2007 symposium on Interactive 3D graphics and games*, pp. 39–46, 2007.523 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
524 real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.525 Mijeong Kim, Seonguk Seo, and Bohyung Han. Infonerf: Ray entropy minimization for few-shot neural volume
526 rendering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
527 12912–12921, 2022.528 Mijeong Kim, Jongwoo Lim, and Bohyung Han. 4d gaussian splatting in the wild with uncertainty-aware
529 regularization. In *NeurIPS*, 2024.530 Sangwoon Kwak, Joonsoo Kim, Jun Young Jeong, Won-Sik Cheong, Jihyong Oh, and Munchurl Kim. Modec-gs:
531 Global-to-local motion decomposition and temporal interval adjustment for compact dynamic 3d gaussian
532 splatting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
533 pp. 11338–11348, June 2025.534 Soomin Lee, Le Chen, Jiahao Wang, Alexander Liniger, Suryansh Kumar, and Fisher Yu. Uncertainty guided
535 policy for active robotic 3d reconstruction using neural radiance fields. *IEEE Robotics and Automation*
536 *Letters*, 7(4):12070–12077, 2022.

540 Jiahui Lei, Yijia Weng, Adam W Harley, Leonidas Guibas, and Kostas Daniilidis. Mosca: Dynamic gaussian
 541 fusion from casual videos via 4d motion scaffolds. In *Proceedings of the Computer Vision and Pattern*
 542 *Recognition Conference*, pp. 6165–6177, 2025.

543 Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
 544 Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3d video synthesis from multi-
 545 view video. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 546 5521–5531, 2022.

547 Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time dynamic view
 548 synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 549 8508–8520, 2024.

550 Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar: Neural dynamic
 551 image-based rendering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 552 *Recognition*, pp. 4273–4284, 2023.

553 Hanwen Liang, Yuyang Yin, Dejia Xu, Hanxue Liang, Zhangyang Wang, Konstantinos N Plataniotis, Yao Zhao,
 554 and Yunchao Wei. Diffusion4d: Fast spatial-temporal consistent 4d generation via video diffusion models. In
 555 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

556 Yiming Liang, Tianhan Xu, and Yuta Kikuchi. Himor: Monocular deformable gaussian reconstruction with hier-
 557 archical motion representation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 558 pp. 886–895, 2025a.

559 Yiqing Liang, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc, Douglas Lanman, James Tompkin, and Lei Xiao.
 560 Gaufre: Gaussian deformation fields for real-time dynamic novel view synthesis. In *2025 IEEE/CVF Winter*
 561 *Conference on Applications of Computer Vision (WACV)*, pp. 2642–2652. IEEE, 2025b.

562 Yiqing Liang, Mikhail Okunev, Mikaela Angelina Uy, Runfeng Li, Leonidas Guibas, James Tompkin, and
 563 Adam W Harley. Monocular dynamic gaussian splatting: Fast, brittle, and scene complexity rules. *Transac-
 564 tions on Machine Learning Research*, 2025c. ISSN 2835-8856.

565 Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic 3d gaussian
 566 particle. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 567 21136–21145, 2024.

568 Qingming Liu, Yuan Liu, Jiepeng Wang, Xianqiang Lyv, Peng Wang, Wenping Wang, and Junhui Hou. Modgs:
 569 Dynamic gaussian splatting from casually-captured monocular videos. *arXiv preprint arXiv:2406.00434*,
 570 2024.

571 Zhicheng Lu, Xiang Guo, Le Hui, Tianrui Chen, Min Yang, Xiao Tang, Feng Zhu, and Yuchao Dai. 3d
 572 geometry-aware deformable gaussian splatting for dynamic view synthesis. In *Proceedings of the IEEE/CVF*
 573 *Conference on Computer Vision and Pattern Recognition*, pp. 8900–8910, 2024.

574 Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians: Tracking by
 575 persistent dynamic view synthesis. In *2024 International Conference on 3D Vision (3DV)*, pp. 800–809. IEEE,
 576 2024.

577 Xingyu Miao, Yang Bai, Haoran Duan, Yawen Huang, Fan Wan, Yang Long, and Yefeng Zheng. Ctnerf:
 578 Cross-time transformer for dynamic neural radiance field from monocular video. *CorR*, 2024.

579 Richard A Newcombe, Dieter Fox, and Steven M Seitz. Dynamicfusion: Reconstruction and tracking of non-
 580 rigid scenes in real-time. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 581 pp. 343–352, 2015.

582 Xuran Pan, Zihang Lai, Shiji Song, and Gao Huang. Activenerf: Learning where to see with uncertainty
 583 estimation. In *European Conference on Computer Vision*, pp. 230–246. Springer, 2022.

584 Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B. Goldman, Ricardo
 585 Martin-Brualla, and Steven M. Seitz. Hypernerf: A higher-dimensional representation for topologically
 586 varying neural radiance fields. *ACM Transactions on Graphics (TOG)*, 40(6):1–12, 2021.

587 Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander Sorkine-
 588 Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In *Proceedings of*
 589 *the IEEE conference on computer vision and pattern recognition*, pp. 724–732, 2016.

594 Jianxiong Shen, Adria Ruiz, Antonio Agudo, and Francesc Moreno-Noguer. Stochastic neural radiance fields:
 595 Quantifying uncertainty in implicit 3d representations. In *2021 International Conference on 3D Vision (3DV)*,
 596 pp. 972–981. IEEE, 2021.

597 Jianxiong Shen, Antonio Agudo, Francesc Moreno-Noguer, and Adria Ruiz. Conditional-flow nerf: Accurate 3d
 598 modelling with reliable uncertainty quantification. In *European Conference on Computer Vision*, pp. 540–557.
 599 Springer, 2022.

600 Miroslava Slavcheva, Maximilian Baust, Daniel Cremers, and Slobodan Ilic. Killingfusion: Non-rigid 3d
 601 reconstruction without correspondences. In *Proceedings of the IEEE conference on computer vision and*
 602 *pattern recognition*, pp. 1386–1395, 2017.

603 Colton Stearns, Adam W Harley, Mikaela Uy, Florian Dubost, Federico Tombari, Gordon Wetzstein, and
 604 Leonidas Guibas. Dynamic gaussian marbles for novel view synthesis of casual monocular videos. In
 605 *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024.

606 Huiqiang Sun, Xingyi Li, Liao Shen, Xinyi Ye, Ke Xian, and Zhiguo Cao. Dyblurf: Dynamic neural radiance
 607 fields from blurry monocular video. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 608 *Pattern Recognition (CVPR)*, pp. 7517–7527, June 2024a.

609 Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 3dgstream: On-the-fly training of
 610 3d gaussians for efficient streaming of photo-realistic free-viewpoint videos. In *Proceedings of the IEEE/CVF*
 611 *Conference on Computer Vision and Pattern Recognition*, pp. 20675–20685, 2024b.

612 Niko Sünderhauf, Jad Abou-Chakra, and Dimity Miller. Density-aware nerf ensembles: Quantifying predictive
 613 uncertainty in neural radiance fields. In *2023 IEEE International Conference on Robotics and Automation*
 614 (*ICRA*), pp. 9370–9376. IEEE, 2023.

615 Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *Computer Vision–ECCV*
 616 *2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16*, pp. 402–419.
 617 Springer, 2020.

618 Ulrike Von Luxburg. A tutorial on spectral clustering. *Statistics and computing*, 17(4):395–416, 2007.

619 Diwen Wan, Ruijie Lu, and Gang Zeng. Superpoint gaussian splatting for real-time high-fidelity dynamic scene
 620 reconstruction. *arXiv preprint arXiv:2406.03697*, 2024.

621 Qianqian Wang, Vickie Ye, Hang Gao, Weijia Zeng, Jake Austin, Zhengqi Li, and Angjoo Kanazawa. Shape of
 622 motion: 4d reconstruction from a single video. In *ICCV*, 2025a.

623 Yifan Wang, Peishan Yang, Zhen Xu, Jiaming Sun, Zhanhua Zhang, Yong Chen, Hujun Bao, Sida Peng, and
 624 Xiaowei Zhou. Freetimegs: Free gaussian primitives at anytime anywhere for dynamic scene reconstruction.
 625 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 21750–21760, 2025b.

626 Diankun Wu, Fangfu Liu, Yi-Hsin Hung, Yue Qian, Xiaohang Zhan, and Yueqi Duan. 4d-fly: Fast 4d
 627 reconstruction from a single monocular video. In *Proceedings of the Computer Vision and Pattern Recognition*
 628 *Conference (CVPR)*, pp. 16663–16673, June 2025.

629 Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and
 630 Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In *Proceedings of the*
 631 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 20310–20320, 2024.

632 Dongyu Yan, Jianheng Liu, Fengyu Quan, Haoyao Chen, and Mengmeng Fu. Active implicit object reconstruc-
 633 tion using uncertainty-guided next-best-view optimization. *IEEE Robotics and Automation Letters*, 8(10):
 634 6395–6402, 2023.

635 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything:
 636 Unleashing the power of large-scale unlabeled data. In *Proceedings of the IEEE/CVF Conference on Computer*
 637 *Vision and Pattern Recognition*, pp. 10371–10381, 2024a.

638 Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene representation and
 639 rendering with 4d gaussian splatting. *arXiv preprint arXiv:2310.10642*, 2023.

640 Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable 3d gaussians
 641 for high-fidelity monocular dynamic scene reconstruction. In *Proceedings of the IEEE/CVF conference on*
 642 *computer vision and pattern recognition*, pp. 20331–20341, 2024b.

643 Chun-Han Yao, Yiming Xie, Vikram Voleti, Huaizu Jiang, and Varun Jampani. SV4D2.0: Enhancing
 644 spatio-temporal consistency in multi-view video diffusion for high-quality 4d generation. *arXiv preprint*
 645 *arXiv:2503.16396*, 2025.

648 Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park, and Jan Kautz. Novel view synthesis of dynamic
649 scenes with globally coherent depths from a monocular camera. In *Proceedings of the IEEE/CVF Conference*
650 *on Computer Vision and Pattern Recognition*, pp. 5336–5345, 2020.

651 Huangying Zhan, Jiyang Zheng, Yi Xu, Ian Reid, and Hamid Rezatofighi. Activermap: Radiance field for active
652 mapping and planning. *arXiv preprint arXiv:2211.12656*, 2022.

653

654 Xinyu Zhang, Haonan Chang, Yuhang Liu, and Abdeslam Boularias. Motion blinder gaussian splatting for
655 dynamic reconstruction. *arXiv preprint arXiv:2503.09040*, 2025.

656 Chen Zhao, Xuan Wang, Tong Zhang, Saqib Javed, and Mathieu Salzmann. Self-ensembling gaussian splatting
657 for few-shot novel view synthesis. *arXiv preprint arXiv:2411.00144*, 2024a.

658

659 Xiaoming Zhao, Alex Colburn, Fangchang Ma, Miguel Ángel Bautista, Joshua M Susskind, and Alexander G
660 Schwing. Pseudo-generalized dynamic view synthesis from a video. In *ICLR*, 2024b.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A ADDITIONAL DETAILS ON USPLAT4D

A.1 DERIVATION OF UNCERTAINTY (SECTION 4.1 OF THE MAIN PAPER)

To derive our uncertainty model, we begin by analyzing the color blending function used in volumetric rendering. To simplify the notation, we omit time t . The rendered pixel color C along a ray is computed as a weighted sum of the color contributions from all Gaussians:

$$C^h = \sum_{i=1}^{N_g} T_i^h \alpha_i c_i := \sum_{i=1}^{N_g} v_i^h c_i, \quad (\text{S1})$$

where i is the index of Gaussians, T_i is the accumulated transmittance up to the i -th Gaussian, α_i is the opacity, c_i is the color, and $v_i := T_i \alpha_i$ denotes the blending weight. To estimate the color uncertainty, we derive a closed-form expression for each Gaussian's color via maximum likelihood estimation (MLE) under an RGB ℓ_2 loss:

$$\mathcal{L}_2 = \sum_{h \in \Omega} \|\bar{C}^h - C^h\|_2^2 \quad (\text{S2})$$

Here, $h \in \Omega$ indexes the set of all pixels, \bar{C}^h is the ground-truth color, and C^h is the color rendered using the blending model in Eq. S1. To find the optimal color c_k for the k -th Gaussian, we compute the gradient of the loss with respect to c_k and obtain:

$$\begin{aligned} \frac{\partial \mathcal{L}(\mathcal{D}; \theta)}{\partial c_k} \Big|_{\theta_{\text{MLE}}} &= - \sum_{h \in \Omega} 2(\bar{C}^h - C^h)v_k^h \\ &= - \sum_{h \in \Omega} 2(b_k^h - v_k^h c_k)v_k^h, \end{aligned} \quad (\text{S3})$$

where \mathcal{D} is the training dataset, θ is the learnable model parameter vector, and we define $b_k^h := \bar{C}^h - \sum_{j \neq k} v_j^h c_j$ to isolate the contribution of the k -th Gaussian to the rendered color at pixel h . Assuming a local minimum, the MLE estimate satisfies:

$$\frac{\partial \mathcal{L}(\mathcal{D}; \theta)}{\partial c_k} \Big|_{\theta_{\text{MLE}}} = 0 \quad (\text{S4})$$

Solving this closed-form yields the optimal color for Gaussian k :

$$c_k = \frac{\sum_{h \in \Omega} b_k^h (v_k^h)^2}{\sum_{h \in \Omega} (v_k^h)^2} \quad (\text{S5})$$

Finally, the corresponding closed-form uncertainty is given by:

$$\sigma_k^2 = \left(\sum_{h \in \Omega} (v_k^h)^2 \right)^{-1} \quad (\text{S6})$$

A.2 DETAILS OF TRAINING LOSSES (SECTION 3 AND SECTION 4.3 OF THE MAIN PAPER)

As described in Section 4.3 and Eq. 12 of the main paper, our total loss is:

$$\mathcal{L}^{\text{total}} = \mathcal{L}^{\text{rgb}} + \mathcal{L}^{\text{key}} + \mathcal{L}^{\text{non-key}} \quad (\text{S7})$$

where \mathcal{L}^{rgb} is the perception loss and $\mathcal{L}^{\text{motion, key}}$ and $\mathcal{L}^{\text{motion, non-key}}$ are the motion loss used in \mathcal{L}^{key} and $\mathcal{L}^{\text{non-key}}$, which covers the motion locality of key and non-key nodes, respectively. In this section, we provide additional details.

756 A.2.1 MOTION LOSS
757

758 The vanilla Gaussian splatting approach (e.g., (Luiten et al., 2024)) represents a dynamic scene using
759 3D Gaussians with time-varying motion and define motion loss. The recent paper also follow up on
760 the motion loss and modifies it based on their tasks. Here, we give the general form of these motion
761 losses. The isometry loss describing the distance constraint between Gaussians is defined as

$$762 \quad \mathcal{L}^{\text{iso}} = \frac{1}{k|\mathcal{V}|} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{V}} \sum_{j \in \text{knn}_{i,k}} w_{i,j} (\|\mathbf{p}_{j,o} - \mathbf{p}_{i,o}\|_2 - \|\mathbf{p}_{j,t} - \mathbf{p}_{i,t}\|_2) \quad (\text{S8})$$

765 where subscript o means canonical space, \mathbf{t} is the Gaussian's 3D position vector, and $w_{i,j}$ represent
766 the edge weight between i -th and j -th Gaussians. Since isometry does not take coordinates into
767 consideration, we use rigidity loss to unify the coordinates and constrain the relative motion between
768 Gaussians. The rigidity loss is defined by

$$769 \quad \mathcal{L}^{\text{rigid}, \Delta} = \frac{1}{k|\mathcal{V}|} \sum_{t=\Delta}^{T-1} \sum_{i \in \mathcal{V}} \sum_{j \in \text{knn}_{i,k}} w_{i,j} \left\| (\mathbf{p}_{j,t-\Delta} - \mathbf{T}_{i,t-\Delta} \mathbf{T}_{i,t}^{-1} \mathbf{p}_{j,t}) \right\|_2 \quad (\text{S9})$$

772 where $\mathbf{T}_{i,t}$ is the i -th Gaussian transformation matrix at t -th time index and Δ is the time interval.
773 With a larger weight $w_{i,j}$, the Gaussian pair is more rigid. Beyond that, we also constrain the relative
774 rotation explicitly for finer control on the rotation penalty. The relative rotation loss is defined by

$$776 \quad \mathcal{L}^{\text{rot}, \Delta} = \frac{1}{k|\mathcal{V}|} \sum_{t=\Delta}^{T-1} \sum_{i \in \mathcal{V}} \sum_{j \in \text{knn}_{i,k}} w_{i,j} \left\| \mathbf{q}_{j,t} \mathbf{q}_{j,t-\Delta}^{-1} - \mathbf{q}_{i,t} \mathbf{q}_{i,t-\Delta}^{-1} \right\|_2 \quad (\text{S10})$$

779 where \mathbf{q} is the quaternion representation of the rotation matrix. All there three loss define the
780 deformation of the Gaussians. Besides, the object motion in the world space tends to be smooth, so
781 we define the velocity and acceleration to regularize the Gaussian model to avoid overfitting on the
782 training views. The velocity loss is defined as

$$783 \quad \mathcal{L}^{\text{vel}} = \sum_{t=1}^{T-1} \sum_{i \in \mathcal{V}} \left\| \mathbf{p}_{i,t-\Delta} - \mathbf{p}_{i,t} \right\|_1 + \left\| \mathbf{q}_{i,t-1} \mathbf{q}_{i,t}^{-1} \right\|_1 \quad (\text{S11})$$

786 The acceleration loss is defined as

$$787 \quad \mathcal{L}^{\text{acc}} = \sum_{t=2}^{T-1} \sum_{i \in \mathcal{V}} \left\| \mathbf{p}_{i,t-2} - 2\mathbf{p}_{i,t-1} + \mathbf{p}_{i,t} \right\|_1 + \left\| \mathbf{q}_{i,t-2} \mathbf{q}_{i,t-1}^{-1} (\mathbf{q}_{i,t-1} \mathbf{q}_{i,t}^{-1})^{-1} \right\|_1 \quad (\text{S12})$$

790 The motion loss used in the recent works (Lei et al., 2025; Stearns et al., 2024; Huang et al., 2024b;
791 Luiten et al., 2024) can be obtained by the different combinations of these losses. Then, the motion
792 locality loss is defined as

$$793 \quad \mathcal{L}^{\text{motion}} = \lambda^{\text{iso}} \mathcal{L}^{\text{iso}} + \lambda^{\text{rigid}} \mathcal{L}^{\text{rigid}} + \lambda^{\text{rot}} \mathcal{L}^{\text{rot}} + \lambda^{\text{vel}} \mathcal{L}^{\text{vel}} + \lambda^{\text{acc}} \mathcal{L}^{\text{acc}}, \quad (\text{S13})$$

794 where λ is the hyperparameter. Specifically, we set λ^{iso} and λ^{rigid} to 1 to ensure the geometry
795 preservation and assign λ^{rot} , λ^{vel} , and λ^{acc} to 0.01 for rigid orientation and motion smoothness.

797 A.2.2 PERCEPTION LOSS
798

799 The perception loss \mathcal{L}^{rgb} includes a standard combination of RGB ℓ_1 loss and SSIM loss. Following
800 the base models (SoM and MoSca), we also incorporate 2D prior losses, i.e., mask loss, depth loss,
801 depth gradient loss, and tracking loss, into \mathcal{L}^{rgb} . We emphasize that these additional terms are not
802 part of our proposed method, but are standard components inherited from the respective base models
803 to ensure consistent training behavior.

804 B IMPLEMENTATION DETAILS
805

807 USPLAT4D is compatible with dynamic Gaussian splatting methods that provide initial motion
808 parameters. In this section, we describe implementation details for integrating USPLAT4D with two
809 strong base models (i.e., SoM (Wang et al., 2025a) and MoSca (Lei et al., 2025)) along with our
training and evaluation protocols.

810 B.1 ADAPTATION OF SOM AND MOSCA
811

812 Both SoM (Wang et al., 2025a) and MoSca (Lei et al., 2025) adopt low-rank motion parameterizations
813 to achieve compact, smooth, and rigid 4D representations. We first convert the outputs of SoM or
814 MoSca into the data structure required by USPLAT4D. Specifically, we extract the 4D Gaussian
815 primitives $\{\mathbf{G}_i\}_{i=1}^{N_g}$ from each method and reformat them into a unified representation that supports
816 our graph construction and uncertainty modeling pipeline. To mitigate inconsistencies in Gaussian
817 scale and distribution, we unify the spatial volume when selecting key Gaussians and normalize
818 the uncertainty threshold used in both key node selection and edge construction. This ensures
819 that our method behaves consistently across different base models. Since our method introduces
820 additional optimization on top of the pretrained SoM and MoSca models, we ensure fair comparison
821 by continuing to train the original SoM and MoSca with the *same number of additional iterations as*
822 *our baselines*.

823
824 B.2 TRAINING USPLAT4D MODEL
825

826 During preprocessing of USPLAT4D, we sequentially initialize the key and non-key graphs. To train
827 the USPLAT4D model, we build on pretrained base models and allocate additional training iterations
828 for fair comparison. Specifically, we train SoM for 400 extra epochs and MoSca for 1600 extra
829 steps, using a consistent batch size of 8. These schedules are empirically chosen to ensure good
830 convergence while aligning with the respective optimization routines of the base models. For the
831 first 10% and the last 20% of the training duration, we disable both density control and opacity reset
832 to maintain stability. For the remaining iterations, we enable density control and opacity reset to
833 improve rendering quality. The per-epoch and per-step training time is similar to that of SoM and
834 MoSca, respectively.

835
836 C ADDITIONAL EXPERIMENTAL RESULTS
837838 C.1 COMPARISON WITH ADDITIONAL NERF-BASED METHODS ON DYCHECK DATASET
839

840 In Table 1 of the main paper, we primarily compare with Gaussian splatting based methods that use
841 explicit 3D representations. Here, we extend the comparison by including additional NeRF-based
842 methods (Miao et al., 2024; Park et al., 2021; Gao et al., 2022; Li et al., 2023; Sun et al., 2024a;
843 Kappel et al.; Zhao et al., 2024b) that adopt implicit neural radiance fields. While these methods are
844 effective for static or mildly dynamic scenes, our experiments show that Gaussian splatting based
845 approaches consistently outperform NeRF-based methods on the DyCheck dataset (Gao et al., 2022).
846 This comparison serves as an extension of Table 1 and the results are summarized in Table S1.

847
848 C.2 TRACKING RESULTS ON THE DYCHECK DATASET
849

850 We report 3D keypoint tracking results in Table S2, following the evaluation protocols of MoSca and
851 SoM. Our method achieves consistent improvements in all tracking metrics, including Percentage
852 of Correct Keypoints (PCK) @ (5%, 5cm, 10cm) and End-Point Error (EPE). When applied to
853 MoSca (Lei et al., 2025), our method yields higher PCK@5% (+2.1). Integrated with SoM (Wang
854 et al., 2025a), USPLAT4D achieves notable gains in EPE and PCK at both 5cm and 10cm thresholds,
855 especially improving PCK@5cm by over 11.4%. These results show that our uncertainty-aware
856 graph construction not only enhances visual quality but also improves spatio-temporal consistency
857 for dynamic object tracking.

858
859 C.3 PER-SCENE RESULTS ON THE DYCHECK DATASET
860

861 We further present a per-scene breakdown of the DyCheck results reported in Table 1 of the main
862 paper. Results are shown in Table S3. Our method consistently improves per-scene performance
863 across most scenes across PSNR, SSIM, and LPIPS.

864
 865 Table S1: **Quantitative results on the DyCheck dataset (Gao et al., 2022)**. We compare our method
 866 applied to two dynamic Gaussian baselines (SoM and MoSca) with NeRF-based and Gaussian-based
 867 methods. We report results on 5 scenes at $1\times$ resolution and 7 scenes at $2\times$ resolution, following
 868 existing protocols. Our approach consistently improves the base models across all metrics and
 869 outperforms other baselines in both settings. Best results are in **bold**, second-best are underlined.
 870

Setting	Method	mPSNR \uparrow	mSSIM \uparrow	mLPIPS \downarrow
5 scenes 1 \times resolution	DynIBaR (Li et al., 2023)	13.41	0.48	0.55
	HyperNeRF (Park et al., 2021)	15.99	0.59	0.51
	T-NeRF (Gao et al., 2022)	15.6	0.55	0.55
	SC-GS (Huang et al., 2024b)	14.13	0.477	0.49
	Deformable 3DGS (Yang et al., 2024b)	11.92	0.490	0.66
	4DGS (Wu et al., 2024)	13.42	0.490	0.56
	MoDec-GS (Kwak et al., 2025)	15.01	0.493	0.44
	MoBlender (Zhang et al., 2025)	<u>16.79</u>	0.650	0.37
	HiMoR (Liang et al., 2025a)	—	—	0.46
	SoM (Wang et al., 2025a)	16.72	<u>0.630</u>	0.45
7 scenes 2 \times resolution	USPLAT4D (ours)	16.85	0.650	<u>0.38</u>
	D-NPC (Kappel et al.)	16.41	0.582	0.319
	CTNeRF (Miao et al., 2024)	17.69	0.531	—
	DyBluRF (Sun et al., 2024a)	17.37	0.591	0.373
	HyperNeRF (Park et al., 2021)	16.81	0.569	0.332
	T-NeRF (Gao et al., 2022)	16.96	0.577	0.379
	PGDVS (Zhao et al., 2024b)	15.88	0.548	0.34
	Dynamic Gaussians (Luiten et al., 2024)	7.29	—	0.69
	4DGS (Wu et al., 2024)	13.64	—	0.43
	Gaussian Marbles (Stearns et al., 2024)	16.72	—	0.41
MoSca (Lei et al., 2025)	19.32	<u>0.706</u>	<u>0.26</u>	
	USPLAT4D (ours)	19.63	0.716	0.25

891
 892 Table S2: **Tracking results on the DyCheck dataset (Gao et al., 2022)**. We follow the evaluation protocols
 893 of MoSca and SoM to report 3D keypoint tracking metrics. USPLAT4D outperforms both baselines by a large
 894 margin. Please refer to our supplementary video demo for qualitative results.
 895

Method	PCK (5%) \uparrow	Method	EPE \downarrow	PCK (5cm) \uparrow	PCK (10cm) \uparrow
MoSca (Lei et al., 2025)	82.4	SoM (Wang et al., 2025a)	0.082	43.0	73.3
USPLAT4D (ours)	84.5	USPLAT4D (ours)	0.072	54.4	75.8

900 C.4 RESULTS ON NVIDIA DATASET

902 Our main quantitative analysis focuses on the DyCheck-iPhone dataset (Gao et al., 2022) in the main
 903 paper, which aligns well with our goal of synthesizing dynamic objects captured by a moving camera
 904 (see Section 1 of the main paper). Here we also evaluate our method on the NVIDIA dataset (Yoon
 905 et al., 2020) for broader comparison. The results are shown in Table S4. We note that USPLAT4D
 906 also improves performance when applied to state-of-the-art MoSca (Lei et al., 2025) on the NVIDIA
 907 dataset, although the gains are marginal. This is expected, as the NVIDIA dataset (or other datasets
 908 such as HyperNeRF (Park et al., 2021) dataset) differs from DyCheck to feature input views with more
 909 limited motion. **In contrast, datasets with larger camera movement or more challenging dynamics**
 910 (**DyCheck and Objaverse**) **benefit more from our design, leading to more substantial improvements.**

912 D ADDITIONAL ABLATION AND ANALYSIS

914 D.1 ABLATION STUDY ON KEY / NON-KEY RATIO

916 We select the uncertainty threshold by keeping the top 2% (1000-th) of all Gaussians. This strategy
 917 ensures broad spatial coverage while filtering unreliable nodes. We find this setting to be robust across
 scenes and base models. To further evaluate the impact of the threshold, we conduct an ablation study

918
 919 **Table S3: Per-scene results on the DyCheck dataset** (Gao et al., 2022). We provide a detailed breakdown
 920 of the results summarized in Table 1 of the main paper. \star : results reproduced by us, as the original numbers
 921 in Table 1 were directly reported from the SoM and MoSca papers. Minor discrepancies may exist due to
 922 differences in training. We note that the validation views are near the training views in the DyCheck dataset.
 923 Therefore, the observed improvements do not fully reflect the advantages of USPLAT4D in extreme novel view
 924 synthesis. Results are formatted as PSNR (\uparrow) / SSIM (\uparrow) / LPIPS (\downarrow).
 925

(a) 7 Scenes, 2 \times Resolution				
Method	Apple	Block	Spin	Paper Windmill
4DGS (Wu et al., 2024)	15.41 / 0.450 / –	11.28 / 0.633 / –	14.42 / 0.339 / –	15.60 / 0.297 / –
Gaussian Marbles	17.70 / 0.492 / –	17.42 / 0.384 / –	18.88 / 0.428 / –	17.04 / 0.394 / –
MoSca \star (Lei et al., 2025)	19.46 / 0.809 / 0.34	18.17 / 0.678 / 0.32	21.26 / 0.752 / 0.19	22.36 / 0.743 / 0.16
USPLAT4D (ours)	19.53 / 0.813 / 0.32	18.49 / 0.681 / 0.31	21.77 / 0.772 / 0.16	22.55 / 0.753 / 0.14
(b) 5 Scenes, 1 \times Resolution				
Method	Apple	Block	Spin	
SC-GS (Huang et al., 2024a)	14.96 / 0.692 / 0.51	13.98 / 0.548 / 0.48	14.32 / 0.407 / 0.45	
MoDec-GS (Kwak et al., 2025)	16.48 / 0.699 / 0.40	15.57 / 0.590 / 0.48	15.53 / 0.433 / 0.37	
SoM \star (Wang et al., 2025a)	16.56 / 0.749 / 0.54	16.27 / 0.652 / 0.43	17.32 / 0.710 / 0.29	
USPLAT4D (ours)	16.94 / 0.754 / 0.49	16.12 / 0.653 / 0.45	17.75 / 0.711 / 0.27	
Method	Paper Windmill	Teddy	Mean	
SC-GS (Huang et al., 2024a)	14.87 / 0.221 / 0.43	12.51 / 0.516 / 0.56	14.13 / 0.477 / 0.49	
MoDec-GS (Kwak et al., 2025)	14.92 / 0.220 / 0.38	12.56 / 0.521 / 0.60	15.01 / 0.493 / 0.44	
SoM \star (Wang et al., 2025a)	19.46 / 0.557 / 0.20	13.88 / 0.556 / 0.52	16.70 / 0.645 / 0.39	
USPLAT4D (ours)	19.69 / 0.555 / 0.19	13.77 / 0.551 / 0.50	16.85 / 0.645 / 0.38	

948 **Table S4: Results on the NVIDIA dataset** (Yoon et al., 2020).

Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
MoSca (Lei et al., 2025)	26.77	0.854	0.07
USPLAT4D	26.93	0.855	0.07

955 with different thresholds. As shown in Table S5, the results remain stable, and our method is not
 956 sensitive to this parameter. We vary the ratio from 0.005 to 0.04 and observed consistent performance,
 957 including our chosen value of 0.02, which demonstrates that using this well-justified parameter is
 958 reasonable and effective.

959 D.2 ANALYSIS ON KEY NODE SELECTION

960 In Section 4.2, we design the key node selection strategy by sampling key node candidates via 3D
 961 gridization to ensure spatial coverage and reduces redundancy. To test its functionality, we replace it
 962 by a random sampling strategy. Specifically, we keep the number of selected Gaussians per frame the
 963 same, but sample them randomly from all remaining grids without enforcing per-grid constraints.
 964 Table S6 demonstrates the performance drops on the DyCheck validation set, which causes by a
 965 non-uniform spatial distribution (i.e., some grids may contain multiple selected nodes, while some
 966 are missed entirely).

967 D.3 ANALYSIS ON COLOR THRESHOLD η_c

968 The color threshold η_c (see Equation 4 of the main paper) is introduced to prevent incorrect uncertainty
 969 estimation from Equation 3 when the prior Gaussians have not yet converged on certain pixels in

972 Table S5: **Ablation study on the uncertainty thresholds.** Results are reported relative to our chosen
 973 ratio threshold (0.02).

% of Key Gaussians	Relative PSNR↑	Relative SSIM↑	Relative LPIPS↓
MoSea (baseline)	0.994	0.995	1.024
0.005	1.000	1.000	1.000
0.01	1.001	1.001	0.999
0.02 (ours, reference)	1.000	1.000	1.000
0.03	1.001	1.001	0.998
0.04	1.001	1.000	1.000

982
 983 Table S6: **Ablation study on key node selection strategy.** We assess the impact of the key node
 984 sampling strategy by randomly sampling without considering spatial distribution.

Ablation Setting	PSNR↑	SSIM↑	LPIPS↓
USPLAT4D (full model)	19.63	0.716	0.249
w/o spatial-random key node selection	19.50	0.712	0.251

992 the input images. We further study the influence of η_c on the Objaverse dataset. As reported in
 993 Table S7, performance degrades when η_c is set to 1.0, which corresponds to disabling the threshold
 994 entirely. In this case, the model incorrectly trusts Gaussians with large color errors and assigns
 995 them falsely low uncertainty. On the other hand, when η_c is reduced below 0.1, many genuinely
 996 low-uncertainty Gaussians are mistakenly treated as unreliable, which again harms reconstruction
 997 quality. Although these two extremes lead to worse performance, we find a broad performance
 998 plateau between [0.4, 0.8], showing that the hyperparameter is easy to select and not sensitive in
 999 practice. Across all tested values of η_c , our approach consistently outperforms MoSea.

1000
 1001 Table S7: **Ablation study on the color threshold η_c using Objaverse dataset.** Results are reported
 1002 relative to our chosen threshold ($\eta_c = 0.50$).

η_c or Baseline	Relative PSNR↑	Relative SSIM↑	Relative LPIPS↓
MoSea (baseline)	0.980	0.992	1.115
0.01	0.993	0.999	1.023
0.10	0.996	1.000	1.011
0.20	0.994	1.000	1.014
0.40	0.998	1.000	1.008
0.50 (reference)	1.000	1.000	1.000
0.80	1.001	1.000	1.001
1.00 (i.e., no thresholding)	0.997	1.000	1.010

1015 D.4 ANALYSIS ON THE SIGNIFICANT PERIOD

1017 As discussed in Section 4.2 of the main paper, we use a hyper-parameter (namely, Significant Period
 1018 or SP) to filter out Gaussians that are well observed for only a short duration (no more than four
 1019 frames). Such transient Gaussians contribute little to motion propagation and often lead to weak or
 1020 unreliable graph connections. In our experiments, we uniformly set the SP to 5 for all datasets. To
 1021 further assess its influence, we evaluate several values of SP, as shown in Table S8. We observe a
 1022 broad performance plateau when $SP \geq 3$, indicating that the model is stable across a reasonable range
 1023 of choices. Performance drops when the threshold is set to 1 (i.e., disabling the filtering by SP) which
 1024 introduces short-lived Gaussians into the key graph, which matches the intuition described above.
 1025 For all choices of SP, our method consistently achieves higher performance than MoSea across all
 1026 tested values.

1026 Table S8: **Ablation study on the Significant Period (SP).** Results are reported relative to our chosen
 1027 significant period threshold (SP = 5).

1029 SP or Baseline	1030 Relative PSNR↑	1031 Relative SSIM↑	1032 Relative LPIPS↓
1033 MoSca (baseline)	1034 0.980	1035 0.992	1.109
1036 1 (i.e., no thresholding)	1037 0.994	1038 0.999	1.016
3	0.998	1.000	1.006
5	1.000	1.000	1.000
7	0.996	1.000	1.007
10	0.996	1.000	1.004

1036 Table S9: **Ablation study on the depth uncertainty scale ratio r_z .** Results are reported relative to
 1037 our chosen ratio threshold (1.00).

1039 r_z or Baseline	1040 Relative PSNR↑	1041 Relative SSIM↑	1042 Relative LPIPS↓
1043 MoSca (baseline)	1044 0.989	1045 0.992	1.100
0.01	1.001	0.999	1.005
1.00 (ours, reference)	1.001	1.000	1.000

1045 D.5 ANALYSIS ON THE SCALING FACTOR

1047 The scaling factor $[r_x, r_y, r_z]$ controls the relative weight when transforming 2D uncertainty into
 1048 axis-aligned 3D uncertainty. The key insight is that the reliability of depth varies with camera motion.
 1049 In scenarios where the camera undergoes large translation in the x - y plane, the depth becomes better
 1050 constrained. In such cases, down-weighting the depth component (using a smaller r_z) reduces noise in
 1051 the uncertainty estimate. This intuition aligns with geometric models such as Direct Sparse Odometry
 1052 (Engel et al., 2017), which models depth estimates with a variance term that is inversely proportional
 1053 to the baseline, i.e., $\Delta Z \propto \frac{1}{b}$, where ΔZ is depth standard deviation and b is camera baseline or
 1054 translation.

1055 Our design principle is that the default setting $[1, 1, 1]$ is valid, and once the camera motion is
 1056 unbalanced across directions, adjusting the weights can improve robustness. For all experiments,
 1057 we set $[r_x, r_y, r_z] = [1, 1, 0.01]$. We also evaluated other values of r_z and did not observe notable
 1058 differences (a small value works consistently). For datasets such as DyCheck, DAVIS, and NVIDIA,
 1059 which have limited camera movement along the depth axis and often emphasize rotation or small
 1060 shifts, using a smaller r_z improves the stability of the uncertainty estimation. For objaverse, where
 1061 the camera moves across all three spatial directions, adjusting r_z from 1.0 to 0.01 has minimal side
 1062 effect, as shown Table S9.

1063 Table S10: **Ablation for comparable time on DyCheck dataset.**

1065 Setup	1066 PSNR↑	1067 SSIM↑	1068 LPIPS↓
1069 MoSca (baseline)	1070 19.32	0.706	0.264
1071 Ours (same time with MoSca)	1072 19.41	0.710	0.254
1073 Ours (full time)	1074 19.63	1075 0.715	1076 0.249

1070 D.6 ANALYSIS ON RUNTIME

1072 We provide a detailed runtime analysis (all measured on a single NVIDIA H100 GPU): (1) Uncertainty
 1073 estimation: since the rendering speed is fast (> 60 FPS), this step is efficient and introduces negligible
 1074 overhead. (2) Graph construction: ~ 3 sec/image. For a typical input sequence of 200 images
 1075 in DyCheck (for DAVIS, it ranges 50~90 frames), this totals around 10 minutes. (3) Training
 1076 time: ~ 4 sec/image, leading to 13 minutes for 200 input images. Importantly, our method does not
 1077 require a fully optimized base model, which. To assess cost-effectiveness, we run USPLAT4D on an
 1078 under-trained base model for the same total time as a fully trained baseline and observe comparable
 1079 performance as shown in Table S10. Although the performance drops compared with our full model,
 it still have better performance than MoSca training with the same time.

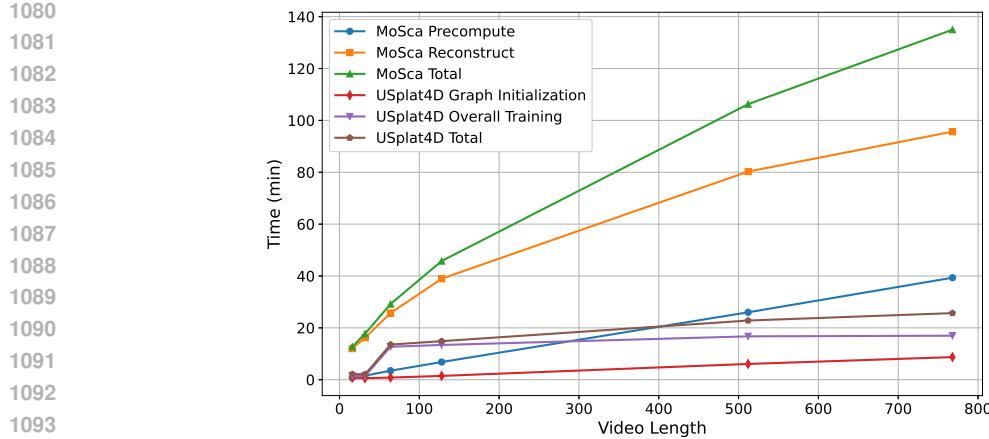


Figure S1: **Time usage.** MoSca involves a preprocessing stage followed by a reconstruction stage. Our method includes a graph initialization stage (which covers uncertainty estimation and graph construction) and an overall training stage.

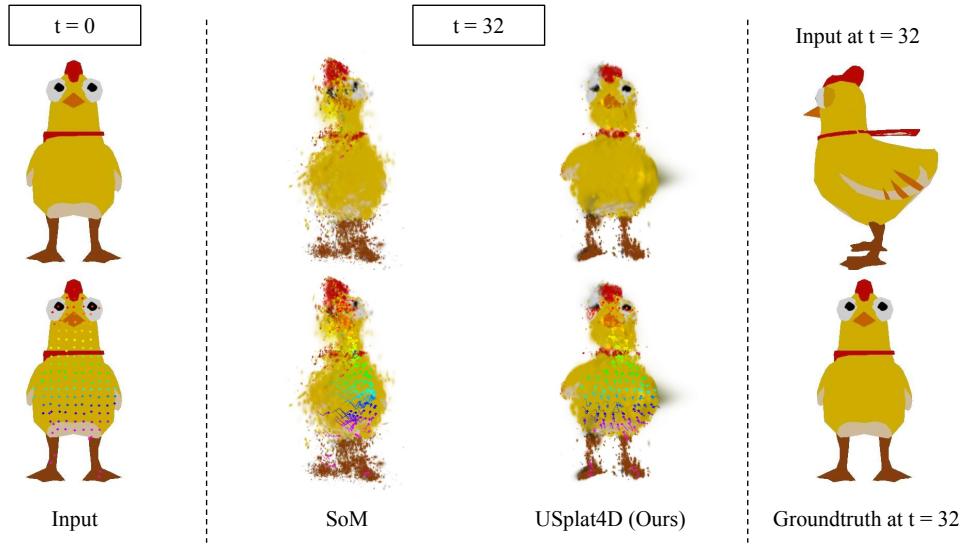


Figure S2: **Failure of tracking on textureless surface.** The input camera moves in a circular trajectory around a chick that remains quasi-static. We show the tracking and reconstruction results at frame 32 for both SoM and USPLAT4D (ours). Because the chick’s surface lacks texture, the tracks sampled at the initial frame ($t = 0$) drift and accumulate incorrect motion under SoM, eventually causing the reconstruction to collapse. In contrast, our method is able to partially recover the geometry and produce more stable tracking.

To better understand how the time usage increases with video length, we further curate training scenes with different sequence lengths from the Objaverse dataset. Figure S1 shows the runtime of MoSca and our method relative to the input video length. The runtime of our method exhibits a smaller slope in both stages compared with MoSca.

D.7 ANALYSES OF CHALLENGING CASES

Although our model partially relies on the tracking quality of the initial 4D Gaussians and the geometric cues available during their observation period, both the quantitative and qualitative results demonstrate strong robustness in restoring or preserving shape under partial visibility and imperfect tracking. The uncertainty-guided graph allows the model to downweight unreliable motion and propagate stable cues across space and time. However, the framework still inherits the fundamental limitations of the underlying 4D prior. When the prior does not contain any reliable motion or

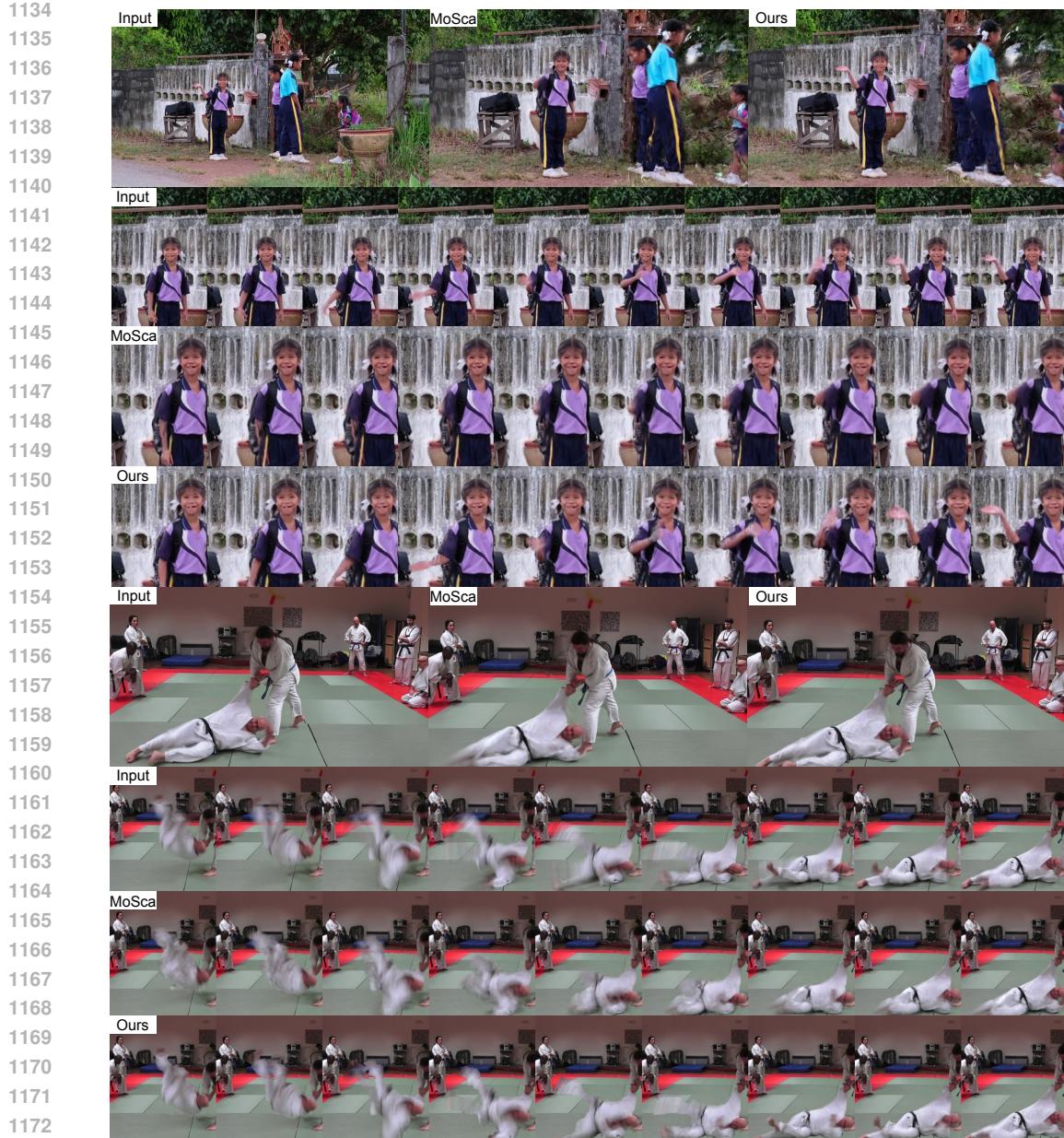


Figure S3: **Comparison of reconstruction results on fast-motion objects.** For each scene, the top row shows the overall view rendered from input views and novel views, and the three rows below highlight the fast-motion regions across ten successive time frames.

geometric information, the uncertainty model has no meaningful signal to propagate, and therefore cannot fully recover the missing structures. Here, we further examine the impact of most common challenging cases: textureless regions, fast motion, deformable objects, and multiple objects.

D.7.1 TEXTURELESS REGION

In textureless areas, the vision foundation model produces unreliable tracks, which in turn causes SoM and MoSca to generate incorrect dynamic Gaussian priors. When our model receives these flawed priors, the uncertainty-guided graph attempts to propagate geometric information under the guidance of uncertainty across time and space. However, when the underlying correct information is rare, the propagated motion inevitably suffers from the poor initial tracking and reconstruction.

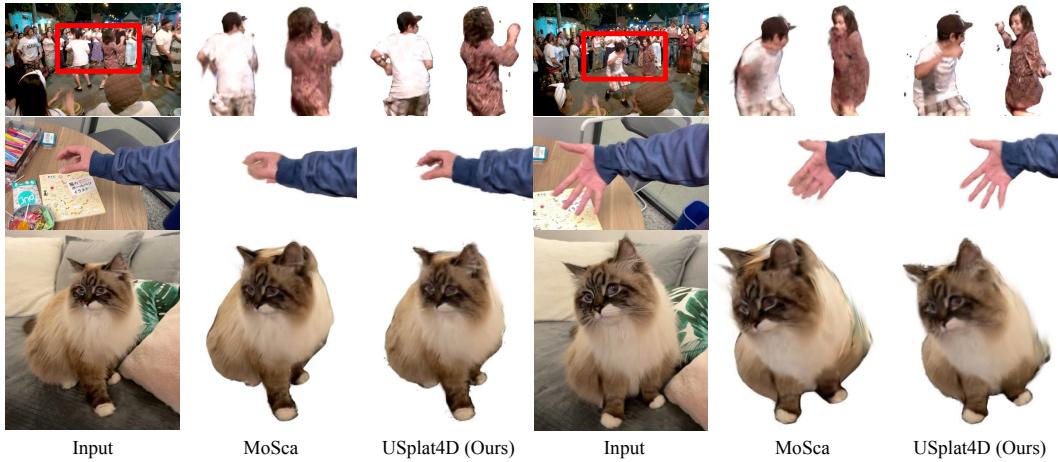


Figure S4: **Qualitative on deforming objects.** First row (Davis dancing scene): The subject’s arms exhibit strong non-rigid motion throughout the dance. Second row (DyCheck handwavy scene): The hand undergoes continuous pose changes with significant articulation. Third row (DyCheck mochi-high-five scene): The cat’s head rotates substantially. MoSca often produces drifting geometry where the ears or back of the neck separate from the head, while our method preserves consistent structure across time and viewpoints.

Figure S5: **Key node weight matrix and Gaussian segmentation.** The weight matrix visualizes edge connections among key nodes. Nodes belonging to different diagonal blocks do not share weights, indicating the no connections across those blocks. The images further illustrate the corresponding Gaussian segmentation, where colors represent the block assignment of each key and non-key node.

In the Objaverse experiments, such textureless regions noticeably reduce quantitative performance compared to real-world datasets with richer appearance cues. Under our circling-camera setup, a typical failure case is shown in Figure S2. The Gaussians from SoM drift with the camera instead of representing stable geometric structures, while our method stabilizes the overall motion but still inherits errors in local regions where tracking is fundamentally unreliable.

D.7.2 FAST MOTION

Monocular 4D reconstruction under fast motion is a well-known challenge. Rapid movement introduces strong rolling-shutter distortions and destabilizes 2D tracking, which already pushes the limits of vision foundation models. Existing monocular 4D Gaussian splatting approaches, including SoM and MoSca, rely heavily on motion regularizers that encourage smooth and temporally coherent trajectories. These regularizers impose an implicit inductive bias that favors slow or moderate motion and suppresses rapid local changes. In addition, the motion models used in these methods inherently assume non-fast dynamics. For example, SoM restricts motion to a small set of bases (typically around ten), which limits the upper bound of allowable local motion. Increasing the number of bases often leads to unstable optimization and degraded tracking. MoSca, on the other hand, interpolates Gaussian trajectories strictly through DQB applied to the scaffolds. DQB produces smooth and stable motion because it blends transformations in a nearly rigid manner and interpolates rotations in a geometrically meaningful way. However, once a scaffold is missing in a high-motion region, the same DQB interpolation becomes a hard constraint that prevents Gaussians from following the fast, input-aligned deformation. In contrast, our method uses an uncertainty-weighted DQB loss together with trainable parameters $p_{i,t}$ to represent the final motion. This design allows the model to deviate from the scaffold-based interpolation in regions where uncertainty indicates unreliable

priors, enabling recovery of local fast motion. Figure S3 illustrates these behaviors: MoSca fails to track the rapid deformation when scaffolds are missing, while our method is still able to recover the approximate motion even when initialized with incorrect priors. Nonetheless, we observe that our reconstructions in fast-motion regions still inherit rolling-shutter distortions present in the input video. This question is out of the scope of this paper and it is still an open question in monocular 4D reconstruction.

D.7.3 DEFORMING OBJECTS

Considering that deformable objects pose greater challenges than near-rigid ones, we further conduct a qualitative evaluation on monocular 4D reconstruction in highly deforming scenarios. Figure S4 compares the novel-view synthesis of MoSca and our approach on several deforming subjects. Overall, our reconstructions align more faithfully with the underlying geometry, particularly in regions undergoing large non-rigid motion. This difference is closely tied to the model design. MoSca represents motion using time-aware scaffolds and interpolates all Gaussians using the associated skinning weights. This design is effective when the scaffolds sufficiently cover the geometry. However, it becomes brittle once scaffold placement fails to capture corners, extremities, or thin structures. Such issues often arise from hyperparameter sensitivity or inaccurate 2D priors. In these cases, Gaussians in the affected regions are overly constrained by the remaining scaffolds, which prevents them from adjusting their motion to reduce photometric error. As shown in Figure S4, highly deformable parts such as human arms and hands or the cat’s ear tend to be distorted, missing, or inconsistent in MoSca’s results. In contrast, our method incorporates an uncertainty-guided spatio-temporal graph that captures and propagates deforming geometry. Instead of enforcing strict DQB interpolation on all Gaussians, which often locks them to unrelated anchors, we introduce an uncertainty-weighted DQB loss that softly regularizes the motion of non-key nodes. This allows their trajectories to deviate appropriately from the interpolated motion whenever high uncertainty indicates unreliable priors. As a result, even when initialized with imperfect Gaussian priors from MoSca, our framework successfully recovers fine-scale deforming geometry while maintaining strong spatial-temporal consistency.

D.7.4 MULTIPLE OBJECTS AND GAUSSIAN SEGMENTATION

Our model inherently handles multiple objects by segmenting Gaussians according to their motion, leveraging both the key graph and the non-key graph to separate distinct motion patterns. Fundamentally, the weight matrix of the key graph, $\mathbf{W}^{\text{key}} = [w_{i,j}]_{i,j \in \mathcal{V}_k}$ (where $w_{i,j}$ is defined in Appendix A.2.1), becomes approximately block-diagonal once the nodes are reordered using an off-the-shelf graph community detection method such as spectral clustering (Von Luxburg, 2007). After the key nodes are grouped in this way, the non-key nodes can be assigned to the same motion groups through their connections in the non-key graph. With these groupings, our framework yields motion-based segmentation of the Gaussians, as illustrated in Figure S5. Each Gaussian receives a segmentation label, and when multiple objects undergo distinct motions, the resulting segmentation closely aligns with instance segmentation with dynamic tracking.

D.8 COMPARISON ON HYPERNERF DATASET

We further provide a qualitative comparison among 4DGS (Wu et al., 2024), and USPLAT4D (ours) on the HyperNeRF (Park et al., 2021) dataset, as shown in Figure S6. By focusing on the dynamic, detail-rich regions, we observe that USPLAT4D restores noticeably finer details and sharper high-frequency structures. While 4DGS tends to oversmooth or lose small geometric components, our uncertainty-guided graph model consistently preserves these structures, leading to more stable and detailed 4D reconstructions.

E SOCIAL AND BROADER IMPACT

Our work advances dynamic 3D scene reconstruction and novel view synthesis from monocular videos, with potential applications in AR/VR, physical scene understanding, digital content creation, and human-computer interaction. By modeling uncertainty and improving synthesis under extreme viewpoints, our method contributes to more robust and accessible 4D modeling. While the method

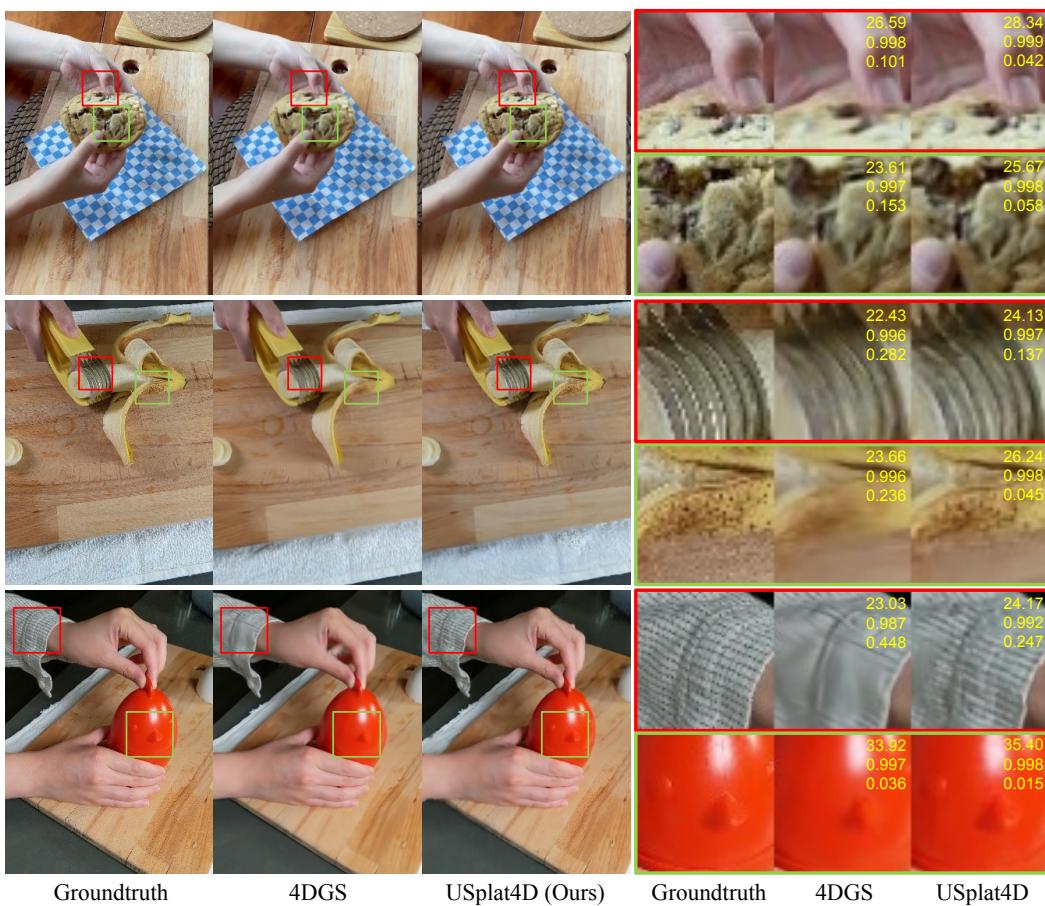


Figure S6: **Comparison on HyperNeRF dataset.** The groundtruth, 4DGS, and USPLAT4D (ours) are arranged from left to right. The red and green boxes highlights regions with fine-grained details. The values displayed in the top-right corner represent PSNR, SSIM, and LPIPS, arranged from top to bottom. Our method reconstructs high-frequency structures more faithfully and preserves finer geometry compared with both 4DGS.

has positive use cases, it could be misused for synthetic content manipulation. Our method does not involve sensitive data, and care should be taken in downstream applications to ensure responsible use.