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Figure 1: We show a challenging case from the DyCheck dataset (Gao et al., 2022), where a person casually
rotates a backpack while being captured by a moving monocular camera. The goal is to reconstruct the dynamic
object for arbitrary viewpoints and timestamps. The state-of-the-art dynamic Gaussian Splatting methods, e.g.,
Shape-of-Motion (SoM) (Wang et al., 2025a), struggle on extreme novel views far from the input trajectory, such
as opposite-side views (view 1) or large angle offsets (view 2). We propose USPLAT4D, an Uncertainty-aware
dynamic Gaussian Splatting model that produces more accurate and consistent 4D reconstruction. Left: rendered
dynamic scene from our model for illustration alongside four sampled RGB inputs. Right: novel view synthesis
at two extreme novel viewpoints. Please refer to supplementary video for clearer visual comparison.

ABSTRACT

Reconstructing dynamic 3D scenes from monocular input is fundamentally under-
constrained, with ambiguities arising from occlusion and extreme novel views.
While dynamic Gaussian Splatting offers an efficient representation, vanilla mod-
els optimize all Gaussian primitives uniformly, ignoring whether they are well
or poorly observed. This limitation leads to motion drifts under occlusion and
degraded synthesis when extrapolating to unseen views. We argue that uncertainty
matters: Gaussians with recurring observations across views and time act as reli-
able anchors to guide motion, whereas those with limited visibility are treated as
less reliable. To this end, we introduce USPLAT4D, a novel Uncertainty-aware
dynamic Gaussian Splatting framework that propagates reliable motion cues to
enhance 4D reconstruction. Our approach estimates time-varying per-Gaussian
uncertainty and leverages it to construct a spatio-temporal graph for uncertainty-
aware optimization. Experiments on diverse real and synthetic datasets show that
explicitly modeling uncertainty consistently improves dynamic Gaussian Splatting
models, yielding more stable geometry under occlusion and high-quality synthesis
at extreme viewpoints. Our code, dataset, and model will be released publicly.
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1 INTRODUCTION

Reconstructing dynamic 3D scenes from monocular input is a fundamental problem across a variety
of tasks, including augmented reality, robotics, and human motion analysis (Slavcheva et al., 2017;
Li et al., 2023; Newcombe et al., 2015; Joo et al., 2014; Gao et al., 2022). However, despite its wide
applicability, monocular dynamic reconstruction remains highly challenging (Liang et al., 2025c),
particularly under occlusion and extreme viewpoint changes. Recently, the advent of 3D Gaussian
Splatting (Kerbl et al., 2023) has enabled real-time photorealistic rendering and sparked a series of
dynamic extensions (Luiten et al., 2024; Lei et al., 2025; Stearns et al., 2024; Liu et al., 2024; Duan
et al., 2024; Huang et al., 2024a; Yang et al., 2024b; 2023; Li et al., 2024; Sun et al., 2024b; Duisterhof
et al., 2023; Das et al., 2024; Lin et al., 2024; Wu et al., 2025). These methods parameterize motion
with shared canonical fields (Wu et al., 2024; Yang et al., 2024b; Liang et al., 2025b; Guo et al., 2024;
Lu et al., 2024; Liu et al., 2024; Wan et al., 2024), deformation bases (Wang et al., 2025a; Das et al.,
2024; Lin et al., 2024; Li et al., 2024), or direct 4D modeling (Duan et al., 2024; Yang et al., 2023).

Despite their differences in formulation, existing dynamic Gaussian splatting methods often share a
common assumption: motion is optimized uniformly across all Gaussians using 2D supervision such
as depth (Yang et al., 2024a), optical flow (Teed & Deng, 2020), and photometric consistency (Doersch
et al., 2023). This uniform treatment overlooks that some Gaussians are strongly constrained by
recurring observations, while others are only weakly constrained. As a result, motion estimates drift
under occlusion and synthesized views degrade at novel viewpoints.

To maintain spatio-temporal consistency, we argue that confidently observed Gaussians should be
prioritized and used to guide the optimization of less reliable ones. Consider the example in Figure 1,
where a rotating backpack is captured by a moving monocular camera. At any moment, a portion of
the surface is self-occluded and invisible. Yet, humans can readily infer their appearance and motion
by recalling previously observed surfaces and extrapolating with temporal continuity. Such ability
anchors on the most reliable parts of the backpack, i.e., those clearly observed from other viewpoints
and timestamps. This suggests a key principle: when observations are partial, reconstruction should
be guided by confident cues and propagated structurally to uncertain regions.

Building on this insight, we propose USPLAT4D, a novel Uncertainty-aware dynamic Gaussian
Splatting framework for monocular 4D reconstruction. We first introduce a principled method to
estimate time-varying uncertainty for each Gaussian, capturing how reliably it is constrained by
recurring observations. This uncertainty then guides the selection of anchor Gaussians and propagate
motion across space and time. To realize this principle, we organize Gaussians into a spatio-temporal
graph, where uncertainty determines node importance, edge construction, and adaptive loss weighting.
The goal of the uncertainty-aware graph optimization is to ensure that confident parts of the scene
dynamically guide the reconstruction of the rest, even in occluded or unseen views.

We validate our approach on various real and synthetic datasets on monocular 4D reconstruction. We
show that explicitly leveraging uncertainty significantly enhances both motion tracking and novel
view synthesis, with particularly strong gains under extreme viewpoints. Our framework, including
uncertainty estimation, graph construction, and adaptive training, is model-agnostic and can be
integrated into existing dynamic Gaussian splatting pipelines that parameterize per-Gaussian motion.
Overall, USPLAT4D introduces a principled way to model uncertainty in dynamic Gaussian Splatting,
yielding more stable motion estimates under occlusion and high-quality extreme view synthesis.

2 RELATED WORK

Dynamic Gaussian splatting. Recent advances in dynamic Gaussian Splatting have enabled monoc-
ular 4D reconstruction via per-Gaussian deformation or canonical motion modeling (Liang et al.,
2025c; Yang et al., 2024b; 2023; Wu et al., 2024; Li et al., 2024) or high-fidelity dynamic scene
reconstruction from multi-view inputs (Luiten et al., 2024; Wang et al., 2025b). To reconstruct 4D GS
from the monocular video, methods such as SoM (Wang et al., 2025a), MoSca (Lei et al., 2025), Mar-
bles (Stearns et al., 2024), and 4D-Rotor (Duan et al., 2024) use low-rank motion bases to regularize
deformation, while others model canonical flows (Liang et al., 2025b; Liu et al., 2024). Although
they demonstrate high-fidelity rendering on near-input validation views, they do not explicitly model
the motion behind occluders or identify reliable Gaussians for motion guidance. MoSca (Lei et al.,
2025) introduces a soft motion score but lacks structured propagation. In contrast, USPLAT4D
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selects high-confidence Gaussians and constructs an uncertainty-aware motion graph to propagate
motion through spatio-temporally coherent connections, improving robustness in occluded regions
and enabling localized refinement beyond low-rank modeling (Kim et al., 2024; Huang et al., 2024a).

Uncertainty estimation in scene reconstruction. Uncertainty modeling has been widely explored in
neural rendering (Li et al., 2022; Pan et al., 2022; Shen et al., 2021; 2022; Kim et al., 2022; Zhan et al.,
2022; Yan et al., 2023; Lee et al., 2022; Sünderhauf et al., 2023), particularly to improve robustness
under occlusion, sparse views, and ambiguity. To avoid overfitting on reconstructing the static scene,
SE-GS (Zhao et al., 2024a) designs an uncertainty-aware perturbing strategy by estimating the self-
ensembling uncertainty. In dynamic settings, uncertainty has been used to smooth motion or reweight
gradients (Kim et al., 2024), but typically as an auxiliary signal decoupled from the underlying
motion representation. In contrast, USPLAT4D treats uncertainty as a central modeling component.
We estimate confidence of each Gaussian and use it to guide key node selection, edge construction,
and loss weighting in a spatio-temporal graph. This allows high-confidence Gaussians to guide
motion propagation while reducing the influence of uncertain regions. To the best of our knowledge,
this is among the first attempts and analyses to model the uncertainty and directly integrate it into
graph-based motion modeling for dynamic reconstruction.

3 PRELIMINARY

We first review dynamic Gaussian Splatting and its learning objective to establish the notation for
Section 4. Our method is model-agnostic, building on this standard formulation and applicable to a
wide range of dynamic Gaussian Splatting variants (Lei et al., 2025; Wang et al., 2025a).

Dynamic 3D Gaussians. Vanilla dynamic Gaussian Splatting (Luiten et al., 2024) represents a scene
with a set of time-varying 3D Gaussians. Formally, the state of a Gaussian at time t is defined as

Gt = (pt,qt, s, α, c), (1)

where pt ∈ R3 denotes the position at time t, qt ∈ R4 the quaternion rotation, s ∈ R3 the scale,
α ∈ R the opacity, and c ∈ RNc the color coefficients (e.g., spherical harmonics or RGB), Nc the
color dimension. The trajectory of a Gaussian is then given by the sequence {Gt}Tt=1, where T is
the number of frames. While early extensions introduce time-varying color (Yang et al., 2023), this
hinders 3D motion tracking. Recent methods, such as SoM (Wang et al., 2025a) and MoSca (Lei
et al., 2025), restrict the color space to stabilize motion estimation and enable reliable tracking.

Learning objectives. To optimize the 4D Gaussian field, existing methods minimize a combination
of losses. A photometric reconstruction loss enforces consistency between rendered and ground-truth
images, while motion-locality losses regularize the temporal evolution of Gaussians. These locality
terms include isometry, rigidity, relative rotation, velocity, and acceleration constraints (Lei et al.,
2025; Huang et al., 2024b), which shrink the large motion search space and stabilize optimization.

Limitations. Although effective near input views, these objectives remain fragile under occlusion
and extreme novel viewpoints, as they rely heavily on unstable 2D priors such as depth, optical flow,
or photometric consistency. As a result, reconstructions often drift over time and lose geometric
consistency across different views. To overcome this challenge, we introduce a dynamic uncertainty
model that explicitly encodes the reliability of each Gaussian over time and forms the foundation of
our framework. In particular, Gaussians are partitioned into key and non-key nodes and connected
through an uncertainty-weighted graph, which enforces spatio–temporal consistency.

4 UNCERTAINTY-AWARE DYNAMIC GAUSSIAN SPLATTING

Overview. Given a monocular video, we begin by building on vanilla dynamic Gaussian Splatting
models to estimate a time-varying uncertainty score for each Gaussian, explicitly capturing its
reliability across frames (Section 4.1). These uncertainty scores then guide the construction of an
uncertainty-weighted graph that systematically organizes Gaussians into key and non-key nodes
(Section 4.2). The resulting graph subsequently drives an optimization process that propagates reliable
motion cues to uncertain regions, thereby refining both motion estimation and rendering quality of
the dynamic scene (Section 4.3). An overview of the entire pipeline is illustrated in Figure 2.
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Figure 2: Overview of the proposed USPLAT4D. We first estimate time-varying uncertainty for each Gaussian
(Section 4.1). We then leverage these uncertainties to select reliable Gaussians as key nodes, while others are
treated as non-key nodes for graph construction (Section 4.2). Finally, we optimize the spatio-temporal graph
with uncertainty-weighted losses, yielding consistent 4D Gaussians (Section 4.3). The right column shows that
our approach significantly improves novel view renderings compared to vanilla optimization.

4.1 DYNAMIC UNCERTAINTY ESTIMATION

Vanilla dynamic Gaussian Splatting optimizes all primitives uniformly, even though some are well
observed across time while others remain ambiguous. This causes drift under occlusion and instability
at extreme viewpoints. We therefore assign each Gaussian Gi a time-varying uncertainty to estimate
its reliability per frame and use it to guide optimization in a model-agnostic way.

Per-Gaussian scalar uncertainty. A straightforward way to capture reliability is to assign each
Gaussian i a scalar uncertainty ui,t at every frame t. Intuitively, if a primitive is frequently and clearly
observed, its uncertainty should be small; if it is rarely visible or weakly constrained, its uncertainty
should be large. The photometric loss is defined as

L2,t =
∑

h∈Ω
∥C̄h

t − Ch
t ∥22, where Ch

t =
∑Ng

i=1
Th
i,tαi ci. (2)

Here, Ω is the pixel index set, C̄h
t and Ch

t denote the ground-truth and rendered colors at pixel h, and
ci is the color parameter of Gaussian i at frame t. The rendered pixel color is obtained by α-blending,
where the blending weight is given by Th

i,tαi, with Th
i,t the transmittance of Gaussian i at pixel h,

αi its opacity, and Ng is the number of Gaussians. By differentiating L2,t with respect to ci and
applying the local minimum assumption, we obtain the closed-form variance estimate (please see
appendix for detailed derivation):

σ2
i,t =

(∑
h∈Ωi,t

(Th
i,tαi)

2

)−1

, (3)

where Ωi,t ⊆ Ωt is the set of pixels contributed to by that Gaussian. We thus take this variance
as the scalar uncertainty, i.e., ui,t := σ2

i,t. However, the local minimum assumption may not hold
everywhere. To account for unconverged pixels, we introduce an indicator function to test per-pixel
convergence:

I(h) =
{

1 if ∥C̄h
t − Ch

t ∥1 < ηc,
0 otherwise, (4)

where ηc > 0 is a color-error threshold. For Gaussian i at frame t, we define the aggregate indicator
Ii,t =

∏
h∈Ωi,t

It(h), which equals 1 only if all covered pixels are convergent. If Ii,t = 0, we assign
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a large constant ϕ to indicate high uncertainty. Therefore, the final scalar uncertainty is:

ui,t = Ii,t σ2
i,t + (1− Ii,t)ϕ. (5)

This design jointly constraint strength with convergence status: Gaussians that are well supported
by observations receive low ui,t, reflecting high reliability, while unreliable ones are assigned high
values, which enables trustworthy primitives to guide ambiguous ones during optimization.

From scalar to depth-aware uncertainty. While the scalar definition is intuitive, it implicitly
assumes that uncertainty is isotropic in 3D space. This is problematic in monocular settings, where
depth is much less reliable than image-plane coordinates. A uniform scalar tends to be over-confident
along the camera axis, leading to geometric distortion. To address this, we propagate image-space
errors into 3D and represent each Gaussian by an anisotropic uncertainty matrix:

Ui,t = Rwc Uc R
T
wc, where Uc = diag(rxui,t, ryui,t, rzui,t). (6)

Here, Rwc is the camera-to-world rotation and rx, ry, rz are axis-aligned scaling factors. Note that
only rotation is required to propagate uncertainty, since translation does not affect covariance. This
transforms 2D uncertainty into axis-aligned 3D uncertainty, incorporating both the camera pose and
the directional sensitivity of depth. A typical example is the “Camel” sequence in Figure 2 (also see
the supplementary video): without depth-aware uncertainty, the camel’s body shrinks unnaturally,
whereas our formulation preserves its correct shape.

4.2 UNCERTAINTY-ENCODED GRAPH CONSTRUCTION

Per-Gaussian uncertainty in Equation 6 provides a local measure of reliability, but treating Gaussians
independently cannot guarantee spatio–temporal consistency. Neighboring primitives often share
correlated motion, and reliable ones should anchor the optimization of uncertain ones. Prior graph-
based methods (Huang et al., 2024b; Lei et al., 2025) attempt to capture this correlation, e.g.,
MoSca (Lei et al., 2025) introduces a 3D lifting graph. In contrast, we build the graph directly
on uncertainty: Gaussians are ranked by reliability and partitioned into key and non-key nodes, so
that stable primitives drive motion propagation while ambiguous ones are regularized. To realize
this, we design an uncertainty-aware graph that encodes reliability in both node selection and edge
connectivity, providing the foundation for the optimization described in the following sections.

Graph definition. We represent the scene with a directed graph G = (V, E), where each node i ∈ V
corresponds to a Gaussian Gi and edges (i, j) ∈ E encode spatial affinity and motion similarity.
Crucially, nodes are partitioned into a small key set Vk and a large non-key set Vn according to their
uncertainties {ui,t} from Section 4.1. We define key nodes as stable Gaussians that carry strong
motion cues across time and views, while non-key nodes inherit motion from their key neighbors.

Key node selection. Our key node selection operates in 3D space. We employ the following two-stage
strategy that balances spatial coverage and temporal stability:

1. Candidate sampling via 3D gridization. At each frame, we partition the scene into a 3D voxel grid.
Voxels containing only high-uncertain Gaussians1 are discarded. In the remaining grids, which
may contain multiple low-uncertainty Gaussians, we randomly select one per grid. This per-voxel
“uniform selection” ensures spatial coverage and reduces redundancy, unlike random selection
without voxel uniformity2. This is based on the assumption that each meaningful motion will
occupy a unique voxel in at least one frame; motions indistinguishable at this resolution are minor
and handled by non-key interpolation (see below). Intuitively, distinct motions leave separable
footprints, while small differences are smoothed out.

2. Thresholding by significant period. For each Gaussian candidate, we compute its significant
period, defined as the number of frames where its uncertainty stays below a threshold. We retain
only those with a significant period of at lease 5 frames, ensuring that key nodes have sufficient
temporal support to contribute reliably to motion estimation. Candidates with insufficient temporal
coverage tend to destabilize graph optimization and yield under-constrained solutions.
1We maintain a typical 1:49 key/non-key ratio by selecting the top 2% (around 1000-th) most confident

Gaussians. Ablations with ratios from 0.5%∼4% (please see appendix) show consistent performance across
different scenes and models, with 2% lying on a stable plateau balancing coverage and reliability.

2We test random selection with the same per-frame count but without per-grid uniformity. This produces
non-uniform spatial distributions (i.e., some voxels oversampled, others missed). See appendix for analysis.
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Edge construction. We construct edges separately for key and non-key nodes, as their roles differ: key
nodes provide structural anchors for motion propagation, while non-key nodes interpolate appearance
locally. The key graph captures long-range geometric and motion dependencies (e.g., both ends of a
limb moving coherently), which existing distance-based heuristics such as local kNN (Huang et al.,
2024b) or global min–max distances (Lei et al., 2025) cannot robustly handle.

To address this, we adopt an Uncertainty-Aware kNN (UA-kNN). For a key node i, we select
neighbors only among other low-uncertainty key nodes, evaluated at its most reliable frame t̂ =
argmint{ui,t}, and measure distances with uncertainty weighting to favor trustworthy connections:

Ei = kNNj∈Vk\{i}

(
∥pi,t̂ − pj,t̂∥(Uw,t̂,i+Uw,t̂,j)

)
. (7)

Here, the Mahalanobis metric up-weights directions of high uncertainty, so edges are formed between
nodes that are both spatially close and reliable. As will be shown in Section 4.3, these edges are
further pruned by the key graph loss for additional robustness and to prevent spurious long-range
connections. For a non-key node i, we assign it to its closest key node across the sequence:

j = argminl∈Vk

∑T−1

t=0
∥pi,t − pl,t∥(Uw,t,i+Uw,t,l) (8)

and connect Ei = Ej ∪ {j} and j is the closet key nodes. Intuitively, each uncertain non-key node is
attached to the most reliable key node that stays close to it over time, so its motion can be regularized
by stable anchors for consistency. In both cases, uncertainty-aware kNN ensures edges are anchored
by reliable nodes, promoting stable motion propagation and preventing drift from uncertain regions.

4.3 UNCERTAINTY-AWARE OPTIMIZATION

Vanilla optimization (Section 3) of dynamic Gaussians often fail under occlusion or extreme view-
points. This leads unreliable primitives to drift, since they are optimized as strongly as reliable ones.
To address this, we incorporate uncertainty into the objective: key nodes with stable observations
serve as anchors, while non-key nodes are regularized more softly through interpolation. We design
separate objectives for key and non-key nodes, then unify them in a total loss.

Key node loss. Key nodes are low-uncertainty Gaussians that anchor motion. We encourage them to
stay close to their pre-optimized positions:

Lkey =
∑T−1

t=0

∑
i∈Vk

∥pi,t − po
i,t∥U−1

w,t,i
+ Lmotion,key, (9)

where Uw,t,i down-weights directions of high uncertainty, ensuring motion is corrected mainly along
reliable axes. Superscript o denotes the parameters from the pretrained Gaussian Splatting model,
which serves as initialization before our uncertainty-aware optimization. The key node motion loss
Lmotion,key regularizes the temporal evolution of Gaussians by isometry, rigidity, rotation, velocity,
and acceleration constraints, which is discussed in the appendix in detail.

Non-key node loss. Non-key nodes are interpolated from nearby key nodes using Dual Quaternion
Blending (DQB) (Kavan et al., 2007), which provides smooth motion by blending their neighbors:(

pDQB
i,t ,qDQB

i,t

)
= DQB

(
{(wij ,Tj,t)}j∈Ei

)
, (10)

where wij are normalized edge weights for blending, Tj,t ∈ SE(3) is the transform of key node j, and
pDQB
i,t and qDQB

i,t are the position and rotation of Gaussian i at time t acquired by DQB, respectively.
We then regularize non-key nodes to both their initialization and interpolated trajectory:

Lnon-key =
∑T−1

i=0

∑
i∈Vn

∥pi,t − po
i,t∥U−1

w,i
+

∑T−1

i=0

∑
i∈Vn

∥pi,t − pDQB
i,t ∥

U−1
w,i

+ Lmotion,non-key. (11)

Here, Lmotion,non-key is the non-key node motion loss, which will also be discussed in appendix. This
non-key loss keeps non-key nodes close to their pretrained states while aligning them with motions
propagated from reliable key nodes, preventing drift while ensuring coherence.

Total loss. The final objective combines the key and non-key node losses with the photometric loss:
Ltotal = Lrgb + Lkey + Lnon-key. (12)

Overall, the uncertainty in our framework serves three purposes: (1) re-weighting deviations of key
nodes, (2) guiding the interpolation of non-key nodes, and (3) balancing their influence in the total
loss. Our design mitigates drift under occlusion and maintains geometric consistency at novel views.

6
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Figure 3: Qualitative results on validation views of the DyCheck dataset (Gao et al., 2022). We show
comparisons with two strong baselines, SoM (Wang et al., 2025a) and MoSca (Lei et al., 2025). USPLAT4D
improves visual quality and better preserves geometry (e.g., arms in “Spin”, hands in “Space-out”) and pose
(e.g., “Windmill”). Please zoom in for details. See supplementary for more examples and other baselines.
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Figure 4: Qualitative results on extreme novel views from DyCheck. Unlike Figure 3, these manually
sampled extreme views (red cameras) lack ground-truth. USPLAT4D better preserves fine structures (e.g., the
dog’s head in “haru-sit”) and occluded regions (e.g., the hand in “spin”) under large viewpoint shifts.

5 EXPERIMENTS

5.1 SETUP

Datasets. (1) DyCheck (Gao et al., 2022): We follow prior works (Wang et al., 2025a; Lei et al.,
2025; Stearns et al., 2024) to evaluate on 7 scenes with validation views. Since these validation
views are near the input views, we additionally sample extreme novel views for qualitative analysis.
(2) DAVIS (Perazzi et al., 2016): To test generalization across different scenarios, we qualitatively
evaluate on challenging monocular videos using DAVIS dataset, which cover non-rigid motion,
occlusions, and complex dynamics. (3) Objaverse (dei, 2023): We construct a synthetic benchmark3

from Objaverse by selecting 6 challenging articulated objects with diverse textures and motions.
Specifically, we set cameras to follow a circular trajectory of 121 frames (3◦ per step) around each
object, always facing toward it. For validation, we render views at horizontal angular offsets of 30°
increments from 30° to 330°, each with a fixed elevation of 35°, in order to capture the object’s 3D
structure from diverse viewpoints. Please see appendix for addtional details.

3Existing benchmarks lack ground-truth for extreme novel views, making systematic evaluation difficult. We
therefore build a synthetic benchmark, where strong results support our generalization claims (see experiments).
Note that such synthetic setups are widely used to stress-test models (Yao et al., 2025; Liang et al., 2024).
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Table 1: Quantitative results on DyCheck. We report results on 5 scenes at 1× resolution and 7 scenes at
2× resolution, following existing protocols. USPLAT4D consistently outperforms state-of-the-art Gaussian
Splatting based methods. See Figure 3 for qualitative results on validation views and Figure 4 for extreme views.

Setting Method mPSNR↑ mSSIM↑ mLPIPS↓

5 scenes
1 × resolution

SC-GS (Huang et al., 2024b) 14.13 0.477 0.49
Deformable 3DGS (Yang et al., 2024b) 11.92 0.490 0.66
4DGS (Wu et al., 2024) 13.42 0.490 0.56
MoDec-GS (Kwak et al., 2025) 15.01 0.493 0.44
MoBlender (Zhang et al., 2025) 16.79 0.650 0.37

SoM (Wang et al., 2025a) 16.72 0.630 0.45
USPLAT4D (ours) 16.85 0.650 0.38

7 scenes
2 × resolution

Dynamic Gaussians (Luiten et al., 2024) 7.29 – 0.69
4DGS (Wu et al., 2024) 13.64 – 0.43
Gaussian Marbles (Stearns et al., 2024) 16.72 – 0.41

MoSca (Lei et al., 2025) 19.32 0.706 0.26
USPLAT4D (ours) 19.63 0.716 0.25

USplat4D (ours)SoM3D Rendering
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Figure 5: Qualitative results on extreme novel views from DAVIS. For each case, we show an input-view
rendering and compare the baseline (SoM (Wang et al., 2025a) or MoSca (Lei et al., 2025)) with our USPLAT4D
on an extreme novel view (red). USPLAT4D yields clearer reconstructions under challenging conditions.

Baselines. We compare USPLAT4D with state-of-the-art dynamic Gaussian Splatting methods, using
SoM (Wang et al., 2025a) and MoSca (Lei et al., 2025) as base models. SoM is widely adopted, while
MoSca represents the current state of the art. Our framework is compatible with any method that
estimates per-Gaussian motion. Please see appendix for additional details.

5.2 MAIN RESULTS

Results on DyCheck. Table 1 reports results on DyCheck validation views, which are close to the
input trajectories. USPLAT4D consistently outperforms baselines across all metrics; corresponding
qualitative examples are shown in Figure 3. However, these validation views remain relatively easy.
The more significant improvements emerge under extreme novel viewpoints (Figure 4), which are not
included in Table 1 but are essential for assessing robustness under severe viewpoint shifts.

Qualitative results of extreme novel view synthesis on DAVIS. We evaluate on selected monocular
videos from the DAVIS dataset, which include fast motion, deformation, and self-occlusion. As
ground-truth geometry is unavailable, we focus on qualitative comparisons. As shown in Figure 5,
USPLAT4D yields more plausible geometry and coherent reconstructions under extreme viewpoint
shifts, where the baseline often exhibits distortion, blur, or artifacts.

Results on Objaverse. Table 2 shows that USPLAT4D consistently surpasses SoM (Wang et al.,
2025a) and MoSca (Lei et al., 2025), with gains most pronounced under large viewpoint shifts
(120◦–180◦). Figure 6 confirms these improvements qualitatively: our method preserves geometry
and textures under extreme novel views, where baselines often blur or collapse.
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Table 2: Results on the Objaverse dataset. We evaluate novel view synthesis across increasing horizontal
angular ranges: (0◦, 60◦], (60◦, 120◦], and (120◦, 180◦]. USPLAT4D consistently improves over SoM (Wang
et al., 2025a) and MoSca (Lei et al., 2025), with gains most pronounced at larger viewpoint shifts.

Method
View Range (0◦, 60◦] View Range (60◦, 120◦] View Range (120◦, 180◦]

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SoM 16.09 0.860 0.31 15.58 0.854 0.32 16.45 0.858 0.31
USPLAT4D 16.63.55 0.866.007 0.27.03 16.57.09 0.868.014 0.27.05 17.03.58 0.872.014 0.26.05

MoSca 16.18 0.881 0.24 15.74 0.875 0.25 15.89 0.876 0.25
USPLAT4D 16.22.04 0.885.004 0.22.02 15.98.24 0.884.009 0.23.02 16.31.42 0.886.011 0.21.03

USplat4D (ours)SoM3D Rendering

D
oc
to
r

R
at

A
ng
ry
B
ird

GTUSplat4D (ours)MoSca

Figure 6: Qualitative results on Objaverse. Each case shows a 3D rendering from an input view and a
comparison between the baseline (SoM (Wang et al., 2025a) or MoSca (Lei et al., 2025)) and our USPLAT4D at
an extreme novel view (red). Please see the supplementary video for clearer visualization.

5.3 ABLATION AND ANALYSIS

We conduct ablation studies to assess key design choices in USPLAT4D, using MoSca (Lei et al.,
2025) as the base model and evaluating on the DyCheck validation set (Gao et al., 2022).

Table 3: Ablation study on uncertainty usage. We
assess the impact of uncertainty estimation by removing
it from key components in USPLAT4D individually.

Ablation Setting PSNR↑ SSIM↑ LPIPS↓
USPLAT4D (full model) 19.63 0.716 0.25

(a) w/o key node uncertainty 18.86 0.688 0.28
(b) w/o UA-kNN 19.50 0.711 0.26
(c) w/o loss weighting 19.08 0.681 0.25

Table 3 shows that uncertainty is essential across
key components of our framework. (a) When
removed from key node selection and replaced
with uniform 2D sampling, the graph fails to
emphasize well-constrained Gaussians, leading
to unstable anchors and degraded propagation.
(b) Replacing UA-kNN with distance-only kNN
weakens graph connectivity, as edges disregard
node reliability and mistakenly connect unstable
primitives. (c) Excluding uncertainty weighting from the training loss (i.e., applying the DQB loss
without U) reduces PSNR/SSIM, since unreliable Gaussians are updated as aggressively as reliable
ones, causing drift across frames. Please see appendix for additional ablation study (on key node
selection, and hyperparameter choices of ηc and significant period threshold) and discussion on time
complexity, Gaussian segmentation, and challenging cases.

6 DISCUSSION AND CONCLUSION

We introduce a novel dynamic Gaussian Splatting framework USPLAT4D, showing that uncertainty
matters in dynamic Gaussian splatting. We propose time-varying uncertainty estimation method and
built an uncertainty-guided graph, systematically demonstrating improved geometric consistency and
rendering quality under extreme views. While our method still inherits errors from the underlying
Gaussian splatting model, we hope that our findings could encourage further work on leveraging
uncertainty to advance robust 4D reconstruction. Please see appendix for more discussion.
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APPENDIX

A ADDITIONAL DETAILS ON USPLAT4D

A.1 DERIVATION OF UNCERTAINTY (SECTION 4.1 OF THE MAIN PAPER)

To derive our uncertainty model, we begin by analyzing the color blending function used in volumetric
rendering. To simplify the notation, we omit time t. The rendered pixel color C along a ray is
computed as a weighted sum of the color contributions from all Gaussians:

Ch =

Ng∑
i=1

Th
i αici :=

Ng∑
i=1

vhi ci, (S1)

where i is the index of Gaussians, Ti is the accumulated transmittance up to the i-th Gaussian, αi

is the opacity, ci is the color, and vi := Tiαi denotes the blending weight. To estimate the color
uncertainty, we derive a closed-form expression for each Gaussian’s color via maximum likelihood
estimation (MLE) under an RGB ℓ2 loss:

L2 =
∑
h∈Ω

∥C̄h − Ch∥22 (S2)

Here, h ∈ Ω indexes the set of all pixels, C̄h is the ground-truth color, and Ch is the color rendered
using the blending model in Eq. S1. To find the optimal color ck for the k-th Gaussian, we compute
the gradient of the loss with respect to ck and obtain:

∂L(D;θ)

∂ck

∣∣∣∣
θMLE

= −
∑
h∈Ω

2(C̄h − Ch)vhk

= −
∑
h∈Ω

2(bhk − vhkck)v
h
k ,

(S3)

where D is the training dataset, θ is the learnable model parameter vector, and we define bhk :=
C̄h −

∑
j ̸=k v

h
j cj to isolate the contribution of the k-th Gaussian to the rendered color at pixel h.

Assuming a local minimum, the MLE estimate satisfies:

∂L(D;θ)

∂ck

∣∣∣∣
θMLE

= 0 (S4)

Solving this closed-form yields the optimal color for Gaussian k:

ck =

∑
h∈Ω bhk(v

h
k )

2∑
h∈Ω(v

h
k )

2
(S5)

Finally, the corresponding closed-form uncertainty is given by:

σ2
k =

(∑
h∈Ω

(vhk )
2

)−1

(S6)

A.2 DETAILS OF TRAINING LOSSES (SECTION 3 AND SECTION 4.3 OF THE MAIN PAPER)

As described in Section 4.3 and Eq. 12 of the main paper, our total loss is:

Ltotal = Lrgb + Lkey + Lnon-key (S7)

where Lrgb is the perception loss and Lmotion,key and Lmotion,non-key are the motion loss used in Lkey

and Lnon-key, which covers the motion locality of key and non-key nodes, respectively. In this section,
we provide additional details.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2.1 MOTION LOSS

The vanilla Gaussian splatting approach (e.g., (Luiten et al., 2024)) represents a dynamic scene using
3D Gaussians with time-varying motion and define motion loss. The recent paper also follow up on
the motion loss and modifies it based on their tasks. Here, we give the general form of these motion
losses. The isometry loss describing the distance constraint between Gaussians is defined as

Liso =
1

k|V|

T−1∑
t=0

∑
i∈V

∑
j∈knni;k

wi,j(∥pj,o − pi,o∥2 − ∥pj,t − pi,t∥2) (S8)

where subscript o means canonical space, t is the Gaussian’s 3D position vector, and wi,j represent
the edge weight between i-th and j-th Gaussians. Since isometry does not take coordinates into
consideration, we use rigidity loss to unify the coordinates and constrain the relative motion between
Gaussians. The rigidity loss is defined by

Lrigid,∆ =
1

k|V|

T−1∑
t=∆

∑
i∈V

∑
j∈knni;k

wi,j

∥∥(pj,t−∆ −Ti,t−∆T
−1
i,t pj,t

)∥∥
2

(S9)

where Ti,t is the i-th Gaussian transformation matrix at t-th time index and ∆ is the time interval.
With a larger weight wi,j , the Gaussian pair is more rigid. Beyond that, we also constrain the relative
rotation explicitly for finer control on the rotation penalty. The relative rotation loss is defined by

Lrot,∆ =
1

k|V|

T−1∑
t=∆

∑
i∈V

∑
j∈knni;k

wi,j

∥∥∥qj,tq
−1
j,t−∆ − qi,tq

−1
i,t−∆

∥∥∥
2

(S10)

where q is the quaternion representation of the rotation matrix. All there three loss define the
deformation of the Gaussians. Besides, the object motion in the world space tends to be smooth, so
we define the velocity and acceleration to regularize the Gaussian model to avoid overfitting on the
training views. The velocity loss is defined as

Lvel =

T−1∑
t=1

∑
i∈V

∥pi,t−∆ − pi,t∥1 + ∥qi,t−1q
−1
i,t ∥1 (S11)

The acceleration loss is defined as

Lacc =

T−1∑
t=2

∑
i∈V

∥pi,t−2 − 2pi,t−1 + pi,t∥1 + ∥qi,t−2q
−1
i,t−1(qi,t−1q

−1
i,t )

−1∥1 (S12)

The motion loss used in the recent works (Lei et al., 2025; Stearns et al., 2024; Huang et al., 2024b;
Luiten et al., 2024) can be obtained by the different combinations of these losses. Then, the motion
locality loss is defined as

Lmotion = λisoLiso + λrigidLrigid + λrotLrot + λvelLvel + λaccLacc, (S13)

where λ is the hyperparameter. Specifically, we set λiso and λrigid to 1 to ensure the geometry
preservation and assign λrot, λvel, and λacc to 0.01 for rigid orientation and motion smoothness.

A.2.2 PERCEPTION LOSS

The perception loss Lrgb includes a standard combination of RGB ℓ1 loss and SSIM loss. Following
the base models (SoM and MoSca), we also incorporate 2D prior losses, i.e., mask loss, depth loss,
depth gradient loss, and tracking loss, into Lrgb. We emphasize that these additional terms are not
part of our proposed method, but are standard components inherited from the respective base models
to ensure consistent training behavior.

B IMPLEMENTATION DETAILS

USPLAT4D is compatible with dynamic Gaussian splatting methods that provide initial motion
parameters. In this section, we describe implementation details for integrating USPLAT4D with two
strong base models (i.e., SoM (Wang et al., 2025a) and MoSca (Lei et al., 2025)) along with our
training and evaluation protocols.
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B.1 ADAPTATION OF SOM AND MOSCA

Both SoM (Wang et al., 2025a) and MoSca (Lei et al., 2025) adopt low-rank motion parameterizations
to achieve compact, smooth, and rigid 4D representations. We first convert the outputs of SoM or
MoSca into the data structure required by USPLAT4D. Specifically, we extract the 4D Gaussian
primitives {Gi}

Ng

i=1 from each method and reformat them into a unified representation that supports
our graph construction and uncertainty modeling pipeline. To mitigate inconsistencies in Gaussian
scale and distribution, we unify the spatial volume when selecting key Gaussians and normalize
the uncertainty threshold used in both key node selection and edge construction. This ensures
that our method behaves consistently across different base models. Since our method introduces
additional optimization on top of the pretrained SoM and MoSca models, we ensure fair comparison
by continuing to train the original SoM and MoSca with the same number of additional iterations as
our baselines.

B.2 TRAINING USPLAT4D MODEL

During preprocessing of USPLAT4D, we sequentially initialize the key and non-key graphs. To train
the USPLAT4D model, we build on pretrained base models and allocate additional training iterations
for fair comparison. Specifically, we train SoM for 400 extra epochs and MoSca for 1600 extra
steps, using a consistent batch size of 8. These schedules are empirically chosen to ensure good
convergence while aligning with the respective optimization routines of the base models. For the
first 10% and the last 20% of the training duration, we disable both density control and opacity reset
to maintain stability. For the remaining iterations, we enable density control and opacity reset to
improve rendering quality. The per-epoch and per-step training time is similar to that of SoM and
MoSca, respectively.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPARISON WITH ADDITIONAL NERF-BASED METHODS ON DYCHECK DATASET

In Table 1 of the main paper, we primarily compare with Gaussian splatting based methods that use
explicit 3D representations. Here, we extend the comparison by including additional NeRF-based
methods (Miao et al., 2024; Park et al., 2021; Gao et al., 2022; Li et al., 2023; Sun et al., 2024a;
Kappel et al.; Zhao et al., 2024b) that adopt implicit neural radiance fields. While these methods are
effective for static or mildly dynamic scenes, our experiments show that Gaussian splatting based
approaches consistently outperform NeRF-based methods on the DyCheck dataset (Gao et al., 2022).
This comparison serves as an extension of Table 1 and the results are summarized in Table S1.

C.2 TRACKING RESULTS ON THE DYCHECK DATASET

We report 3D keypoint tracking results in Table S2, following the evaluation protocols of MoSca and
SoM. Our method achieves consistent improvements in all tracking metrics, including Percentage
of Correct Keypoints (PCK) @ (5%, 5cm, 10cm) and End-Point Error (EPE). When applied to
MoSca (Lei et al., 2025), our method yields higher PCK@5% (+2.1). Integrated with SoM (Wang
et al., 2025a), USPLAT4D achieves notable gains in EPE and PCK at both 5cm and 10cm thresholds,
especially improving PCK@5cm by over 11.4%. These results show that our uncertainty-aware
graph construction not only enhances visual quality but also improves spatio-temporal consistency
for dynamic object tracking.

C.3 PER-SCENE RESULTS ON THE DYCHECK DATASET

We further present a per-scene breakdown of the DyCheck results reported in Table 1 of the main
paper. Results are shown in Table S3. Our method consistently improves per-scene performance
across most scenes across PSNR, SSIM, and LPIPS.
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Table S1: Quantitative results on the DyCheck dataset (Gao et al., 2022). We compare our method
applied to two dynamic Gaussian baselines (SoM and MoSca) with NeRF-based and Gaussian-based
methods. We report results on 5 scenes at 1× resolution and 7 scenes at 2× resolution, following
existing protocols. Our approach consistently improves the base models across all metrics and
outperforms other baselines in both settings. Best results are in bold, second-best are underlined.

Setting Method mPSNR↑ mSSIM↑ mLPIPS↓

5 scenes
1 × resolution

DynIBaR (Li et al., 2023) 13.41 0.48 0.55
HyperNeRF (Park et al., 2021) 15.99 0.59 0.51
T-NeRF (Gao et al., 2022) 15.6 0.55 0.55
SC-GS (Huang et al., 2024b) 14.13 0.477 0.49
Deformable 3DGS (Yang et al., 2024b) 11.92 0.490 0.66
4DGS (Wu et al., 2024) 13.42 0.490 0.56
MoDec-GS (Kwak et al., 2025) 15.01 0.493 0.44
MoBlender (Zhang et al., 2025) 16.79 0.650 0.37
HiMoR (Liang et al., 2025a) – – 0.46

SoM (Wang et al., 2025a) 16.72 0.630 0.45
USPLAT4D (ours) 16.85 0.650 0.38

7 scenes
2 × resolution

D-NPC (Kappel et al.) 16.41 0.582 0.319
CTNeRF (Miao et al., 2024) 17.69 0.531 –
DyBluRF (Sun et al., 2024a) 17.37 0.591 0.373
HyperNeRF (Park et al., 2021) 16.81 0.569 0.332
T-NeRF (Gao et al., 2022) 16.96 0.577 0.379
PGDVS (Zhao et al., 2024b) 15.88 0.548 0.34
Dynamic Gaussians (Luiten et al., 2024) 7.29 – 0.69
4DGS (Wu et al., 2024) 13.64 – 0.43
Gaussian Marbles (Stearns et al., 2024) 16.72 – 0.41

MoSca (Lei et al., 2025) 19.32 0.706 0.26
USPLAT4D (ours) 19.63 0.716 0.25

Table S2: Tracking results on the DyCheck dataset (Gao et al., 2022). We follow the evaluation protocols
of MoSca and SoM to report 3D keypoint tracking metrics. USPLAT4D outperforms both baselines by a large
margin. Please refer to our supplementary video demo for qualitative results.

Method PCK (5%)↑ Method EPE↓ PCK (5cm)↑ PCK (10cm)↑
MoSca (Lei et al., 2025) 82.4 SoM (Wang et al., 2025a) 0.082 43.0 73.3
USPLAT4D (ours) 84.5 USPLAT4D (ours) 0.072 54.4 75.8

C.4 RESULTS ON NVIDIA DATASET

Our main quantitative analysis focuses on the DyCheck-iPhone dataset (Gao et al., 2022) in the main
paper, which aligns well with our goal of synthesizing dynamic objects captured by a moving camera
(see Section 1 of the main paper). Here we also evaluate our method on the NVIDIA dataset (Yoon
et al., 2020) for broader comparison. The results are shown in Table S4. We note that USPLAT4D
also improves performance when applied to state-of-the-art MoSca (Lei et al., 2025) on the NVIDIA
dataset, although the gains are marginal. This is expected, as the NVIDIA dataset (or other datasets
such as HyperNeRF (Park et al., 2021) dataset) differs from DyCheck to feature input views with more
limited motion. In contrast, datasets with larger camera movement or more challenging dynamics
(DyCheck and Objaverse) benefit more from our design, leading to more substantial improvements.

D ADDITIONAL ABLATION AND ANALYSIS

D.1 ABLATION STUDY ON KEY / NON-KEY RATIO

We select the uncertainty threshold by keeping the top 2% (1000-th) of all Gaussians. This strategy
ensures broad spatial coverage while filtering unreliable nodes. We find this setting to be robust across
scenes and base models. To further evaluate the impact of the threshold, we conduct an ablation study
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Table S3: Per-scene results on the DyCheck dataset (Gao et al., 2022). We provide a detailed breakdown
of the results summarized in Table 1 of the main paper. ⋆: results reproduced by us, as the original numbers
in Table 1 were directly reported from the SoM and MoSca papers. Minor discrepancies may exist due to
differences in training. We note that the validation views are near the training views in the DyCheck dataset.
Therefore, the observed improvements do not fully reflect the advantages of USPLAT4D in extreme novel view
synthesis. Results are formatted as PSNR (↑) / SSIM (↑) / LPIPS (↓).

(a) 7 Scenes, 2 × Resolution

Method Apple Block Spin Paper Windmill

4DGS (Wu et al., 2024) 15.41 / 0.450 / – 11.28 / 0.633 / – 14.42 / 0.339 / – 15.60 / 0.297 / –
Gaussian Marbles 17.70 / 0.492 / – 17.42 / 0.384 / – 18.88 / 0.428 / – 17.04 / 0.394 / –
MoSca⋆ (Lei et al., 2025) 19.46 / 0.809 / 0.34 18.17 / 0.678 / 0.32 21.26 / 0.752 / 0.19 22.36 / 0.743 / 0.16
USPLAT4D (ours) 19.53 / 0.813 / 0.32 18.49 / 0.681 / 0.31 21.77 / 0.772 / 0.16 22.55 / 0.753 / 0.14

Method Space-Out Teddy Wheel Mean

4DGS (Wu et al., 2024) 14.60 / 0.372 / – 12.36 / 0.466 / – 11.79 / 0.436 / – 13.64 / 0.428 / –
Gaussian Marbles 15.94 / 0.435 / – 13.95 / 0.442 / – 16.14 / 0.351 / – 16.72 / 0.418 / –
MoSca⋆ (Lei et al., 2025) 20.50 / 0.664 / 0.26 15.54 / 0.626 / 0.35 18.16 / 0.684 / 0.23 19.35 / 0.706 / 0.26
USPLAT4D (ours) 20.81 / 0.668 / 0.24 15.78 / 0.625 / 0.36 18.46 / 0.696 / 0.22 19.63 / 0.716 / 0.25

(b) 5 Scenes, 1 × Resolution

Method Apple Block Spin

SC-GS (Huang et al., 2024a) 14.96 / 0.692 / 0.51 13.98 / 0.548 / 0.48 14.32 / 0.407 / 0.45
MoDec-GS (Kwak et al., 2025) 16.48 / 0.699 / 0.40 15.57 / 0.590 / 0.48 15.53 / 0.433 / 0.37
SoM⋆ (Wang et al., 2025a) 16.56 / 0.749 / 0.54 16.27 / 0.652 / 0.43 17.32 / 0.710 / 0.29
USPLAT4D (ours) 16.94 / 0.754 / 0.49 16.12 / 0.653 / 0.45 17.75 / 0.711 / 0.27

Method Paper Windmill Teddy Mean

SC-GS (Huang et al., 2024a) 14.87 / 0.221 / 0.43 12.51 / 0.516 / 0.56 14.13 / 0.477 / 0.49
MoDec-GS (Kwak et al., 2025) 14.92 / 0.220 / 0.38 12.56 / 0.521 / 0.60 15.01 / 0.493 / 0.44
SoM⋆ (Wang et al., 2025a) 19.46 / 0.557 / 0.20 13.88 / 0.556 / 0.52 16.70 / 0.645 / 0.39
USPLAT4D (ours) 19.69 / 0.555 / 0.19 13.77 / 0.551 / 0.50 16.85 / 0.645 / 0.38

Table S4: Results on the NVIDIA dataset (Yoon et al., 2020).

Method PSNR↑ SSIM↑ LPIPS↓
MoSca (Lei et al., 2025) 26.77 0.854 0.07
USPLAT4D 26.93 0.855 0.07

with different thresholds. As shown in Table S5, the results remain stable, and our method is not
sensitive to this parameter. We vary the ratio from 0.005 to 0.04 and observed consistent performance,
including our chosen value of 0.02, which demonstrates that using this well-justified parameter is
reasonable and effective.

D.2 ANALYSIS ON KEY NODE SELECTION

In Section 4.2, we design the key node selection strategy by sampling key node candidates via 3D
gridization to ensures spatial coverage and reduces redundancy. To test its functionality, we replace it
by a random sampling strategy. Specifically, we keep the number of selected Gaussians per frame the
same, but sample them randomly from all remaining grids without enforcing per-grid constraints.
Table S6 demonstrates the performance drops on the DyCheck validation set, which causes by a
non-uniform spatial distribution (i.e., some grids may contain multiple selected nodes, while some
are missed entirely).

D.3 ANALYSIS ON COLOR THRESHOLD ηc

The color threshold ηc (see Equation 4 of the main paper) is introduced to prevent incorrect uncertainty
estimation from Equation 3 when the prior Gaussians have not yet converged on certain pixels in
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Table S5: Ablation study on the uncertainty thresholds. Results are reported relative to our chosen
ratio threshold (0.02).

% of Key Gaussians Relative PSNR↑ Relative SSIM↑ Relative LPIPS↓
MoSca (baseline) 0.994 0.995 1.024
0.005 1.000 1.000 1.000
0.01 1.001 1.001 0.999
0.02 (ours, reference) 1.000 1.000 1.000
0.03 1.001 1.001 0.998
0.04 1.001 1.000 1.000

Table S6: Ablation study on key node selection strategy. We assess the impact of the key node
sampling strategy by randomly sampling without considering spatial distribution.

Ablation Setting PSNR↑ SSIM↑ LPIPS↓
USPLAT4D (full model) 19.63 0.716 0.249

w/o spatial-random key node selection 19.50 0.712 0.251

the input images. We further study the influence of ηc on the Objaverse dataset. As reported in
Table S7, performance degrades when ηc is set to 1.0, which corresponds to disabling the threshold
entirely. In this case, the model incorrectly trusts Gaussians with large color errors and assigns
them falsely low uncertainty. On the other hand, when ηc is reduced below 0.1, many genuinely
low-uncertainty Gaussians are mistakenly treated as unreliable, which again harms reconstruction
quality. Although these two extremes lead to worse performance, we find a broad performance
plateau between [0.4, 0.8], showing that the hyperparameter is easy to select and not sensitive in
practice. Across all tested values of ηc, our approach consistently outperforms MoSca.

Table S7: Ablation study on the color threshold ηc using Objaverse dataset. Results are reported
relative to our chosen threshold (ηc = 0.50).

ηc or Baseline Relative PSNR↑ Relative SSIM↑ Relative LPIPS↓
MoSca (baseline) 0.980 0.992 1.115
0.01 0.993 0.999 1.023
0.10 0.996 1.000 1.011
0.20 0.994 1.000 1.014
0.40 0.998 1.000 1.008
0.50 (reference) 1.000 1.000 1.000
0.80 1.001 1.000 1.001
1.00 (i.e., no thresholding) 0.997 1.000 1.010

D.4 ANALYSIS ON THE SIGNIFICANT PERIOD

As discussed in Section 4.2 of the main paper, we use a hyper-parameter (namely, Significant Period
or SP) to filter out Gaussians that are well observed for only a short duration (no more than four
frames). Such transient Gaussians contribute little to motion propagation and often lead to weak or
unreliable graph connections. In our experiments, we uniformly set the SP to 5 for all datasets. To
further assess its influence, we evaluate several values of SP, as shown in Table S8. We observe a
broad performance plateau when SP ≥ 3, indicating that the model is stable across a reasonable range
of choices. Performance drops when the threshold is set to 1 (i.e., disabling the filtering by SP) which
introduces short-lived Gaussians into the key graph, which matches the intuition described above.
For all choices of SP, our method consistently achieves higher performance than MoSca across all
tested values.
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Table S8: Ablation study on the Significant Period (SP). Results are reported relative to our chosen
significant period threshold (SP = 5).

SP or Baseline Relative PSNR↑ Relative SSIM↑ Relative LPIPS↓
MoSca (baseline) 0.980 0.992 1.109
1 (i.e., no thresholding) 0.994 0.999 1.016
3 0.998 1.000 1.006
5 1.000 1.000 1.000
7 0.996 1.000 1.007
10 0.996 1.000 1.004

Table S9: Ablation study on the depth uncertainty scale ratio rz . Results are reported relative to
our chosen ratio threshold (1.00).

rz or Baseline Relative PSNR↑ Relative SSIM↑ Relative LPIPS↓
MoSca (baseline) 0.989 0.992 1.100
0.01 1.001 0.999 1.005
1.00 (ours, reference) 1.001 1.000 1.000

D.5 ANALYSIS ON THE SCALING FACTOR

The scaling factor [rx, ry, rz] controls the relative weight when transforming 2D uncertainty into
axis-aligned 3D uncertainty. The key insight is that the reliability of depth varies with camera motion.
In scenarios where the camera undergoes large translation in the x-y plane, the depth becomes better
constrained. In such cases, down-weighting the depth component (using a smaller rz) reduces noise in
the uncertainty estimate. This intuition aligns with geometric models such as Direct Sparse Odometry
(Engel et al., 2017), which models depth estimates with a variance term that is inversely proportional
to the baseline, i.e., ∆Z ∝ 1

b , where ∆Z is depth standard deviation and b is camera baseline or
translation.

Our design principle is that the default setting [1, 1, 1] is valid, and once the camera motion is
unbalanced across directions, adjusting the weights can improve robustness. For all experiments,
we set [rx, ry, rz] = [1, 1, 0.01]. We also evaluated other values of rz and did not observe notable
differences (a small value works consistently). For datasets such as DyCheck, DAVIS, and NVIDIA,
which have limited camera movement along the depth axis and often emphasize rotation or small
shifts, using a smaller rz improves the stability of the uncertainty estimation. For objaverse, where
the camera moves across all three spatial directions, adjusting rz from 1.0 to 0.01 has minimal side
effect, as shown Table S9.

Table S10: Ablation for comparable time on DyCheck dataset.

Setup PSNR↑ SSIM↑ LPIPS↓
MoSca (baseline) 19.32 0.706 0.264
Ours (same time with MoSca) 19.41 0.710 0.254
Ours (full time) 19.63 0.715 0.249

D.6 ANALYSIS ON RUNTIME

We provide a detailed runtime analysis (all measured on a single NVIDIA H100 GPU): (1) Uncertainty
estimation: since the rendering speed is fast (> 60 FPS), this step is efficient and introduces negligible
overhead. (2) Graph construction: ~3 sec/image. For a typical input sequence of 200 images
in DyCheck (for DAVIS, it ranges 50∼90 frames), this totals around 10 minutes. (3) Training
time: ~4 sec/image, leading to 13 minutes for 200 input images. Importantly, our method does not
require a fully optimized base model, which. To assess cost-effectiveness, we run USPLAT4D on an
under-trained base model for the same total time as a fully trained baseline and observe comparable
performance as shown in Table S10. Although the performance drops compared with our full model,
it still have better performance than MoSca training with the same time.
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Figure S1: Time usage. MoSca involves a preprocessing stage followed by a reconstruction stage. Our method
includes a graph initialization stage (which covers uncertainty estimation and graph construction) and an overall
training stage.

t = 0 t = 32

Input SoM USplat4D (Ours)

Input at t = 32

Groundtruth at t = 32

Figure S2: Failure of tracking on textureless surface. The input camera moves in a circular trajectory around
a chick that remains quasi-static. We show the tracking and reconstruction results at frame 32 for both SoM and
USPLAT4D (ours). Because the chick’s surface lacks texture, the tracks sampled at the initial frame (t = 0) drift
and accumulate incorrect motion under SoM, eventually causing the reconstruction to collapse. In contrast, our
method is able to partially recover the geometry and produce more stable tracking.

To better understand how the time usage increases with video length, we further curate training scenes
with different sequence lengths from the Objaverse dataset. Figure S1 shows the runtime of MoSca
and our method relative to the input video length. The runtime of our method exhibits a smaller slope
in both stages compared with MoSca.

D.7 ANALYSES OF CHALLENGING CASES

Although our model partially relies on the tracking quality of the initial 4D Gaussians and the
geometric cues available during their observation period, both the quantitative and qualitative results
demonstrate strong robustness in restoring or preserving shape under partial visibility and imperfect
tracking. The uncertainty-guided graph allows the model to downweight unreliable motion and
propagate stable cues across space and time. However, the framework still inherits the fundamental
limitations of the underlying 4D prior. When the prior does not contain any reliable motion or
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Figure S3: Comparison of reconstruction results on fast-motion objects. For each scene, the top row shows
the overall view rendered from input views and novel views, and the three rows below highlight the fast-motion
regions across ten successive time frames.

geometric information, the uncertainty model has no meaningful signal to propagate, and therefore
cannot fully recover the missing structures. Here, we further examine the impact of most common
challenging cases: textureless regions, fast motion, deformable objects, and multiple objects.

D.7.1 TEXTURELESS REGION

In textureless areas, the vision foundation model produces unreliable tracks, which in turn causes
SoM and MoSca to generate incorrect dynamic Gaussian priors. When our model receives these
flawed priors, the uncertainty-guided graph attempts to propagate geometric information under the
guidance of uncertainty across time and space. However, when the underlying correct information
is rare, the propagated motion inevitably suffers from the poor initial tracking and reconstruction.
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Input MoSca USplat4D (Ours) Input MoSca USplat4D (Ours)

Figure S4: Qualitative on deforming objects. First row (Davis dancing scene): The subject’s arms exhibit
strong non-rigid motion throughout the dance. Second row (DyCheck handwavy scene): The hand undergoes
continuous pose changes with significant articulation. Third row (DyCheck mochi-high-five scene): The cat’s
head rotates substantially. MoSca often produces drifting geometry where the ears or back of the neck separate
from the head, while our method preserves consistent structure across time and viewpoints.

Figure S5: Key node weight matrix and Gaussian segmentation. The weight matrix visualizes edge
connections among key nodes. Nodes belonging to different diagonal blocks do not share weights, indicating
the no connections across those blocks. The images further illustrate the corresponding Gaussian segmentation,
where colors represent the block assignment of each key and non-key node.

In the Objaverse experiments, such textureless regions noticeably reduce quantitative performance
compared to real-world datasets with richer appearance cues. Under our circling-camera setup, a
typical failure case is shown in Figure S2. The Gaussians from SoM drift with the camera instead
of representing stable geometric structures, while our method stabilizes the overall motion but still
inherits errors in local regions where tracking is fundamentally unreliable.

D.7.2 FAST MOTION

Monocular 4D reconstruction under fast motion is a well-known challenge. Rapid movement
introduces strong rolling-shutter distortions and destabilizes 2D tracking, which already pushes the
limits of vision foundation models. Existing monocular 4D Gaussian splatting approaches, including
SoM and MoSca, rely heavily on motion regularizers that encourage smooth and temporally coherent
trajectories. These regularizers impose an implicit inductive bias that favors slow or moderate motion
and suppresses rapid local changes. In addition, the motion models used in these methods inherently
assume non-fast dynamics. For example, SoM restricts motion to a small set of bases (typically
around ten), which limits the upper bound of allowable local motion. Increasing the number of bases
often leads to unstable optimization and degraded tracking. MoSca, on the other hand, interpolates
Gaussian trajectories strictly through DQB applied to the scaffolds. DQB produces smooth and
stable motion because it blends transformations in a nearly rigid manner and interpolates rotations
in a geometrically meaningful way. However, once a scaffold is missing in a high-motion region,
the same DQB interpolation becomes a hard constraint that prevents Gaussians from following the
fast, input-aligned deformation. In contrast, our method uses an uncertainty-weighted DQB loss
together with trainable parameters pi,t to represent the final motion. This design allows the model
to deviate from the scaffold-based interpolation in regions where uncertainty indicates unreliable
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priors, enabling recovery of local fast motion. Figure S3 illustrates these behaviors: MoSca fails
to track the rapid deformation when scaffolds are missing, while our method is still able to recover
the approximate motion even when initialized with incorrect priors. Nonetheless, we observe that
our reconstructions in fast-motion regions still inherit rolling-shutter distortions present in the input
video. This question is out of the scope of this paper and it is still an open question in monocular 4D
reconstruction.

D.7.3 DEFORMING OBJECTS

Considering that deformable objects pose greater challenges than near-rigid ones, we further conduct
a qualitative evaluation on monocular 4D reconstruction in highly deforming scenarios. Figure
S4 compares the novel-view synthesis of MoSca and our approach on several deforming subjects.
Overall, our reconstructions align more faithfully with the underlying geometry, particularly in
regions undergoing large non-rigid motion. This difference is closely tied to the model design. MoSca
represents motion using time-aware scaffolds and interpolates all Gaussians using the associated
skinning weights. This design is effective when the scaffolds sufficiently cover the geometry. However,
it becomes brittle once scaffold placement fails to capture corners, extremities, or thin structures. Such
issues often arise from hyperparameter sensitivity or inaccurate 2D priors. In these cases, Gaussians
in the affected regions are overly constrained by the remaining scaffolds, which prevents them from
adjusting their motion to reduce photometric error. As shown in Figure S4, highly deformable parts
such as human arms and hands or the cat’s ear tend to be distorted, missing, or inconsistent in
MoSca’s results. In contrast, our method incorporates an uncertainty-guided spatio-temporal graph
that captures and propagates deforming geometry. Instead of enforcing strict DQB interpolation on
all Gaussians, which often locks them to unrelated anchors, we introduce an uncertainty-weighted
DQB loss that softly regularizes the motion of non-key nodes. This allows their trajectories to deviate
appropriately from the interpolated motion whenever high uncertainty indicates unreliable priors. As a
result, even when initialized with imperfect Gaussian priors from MoSca, our framework successfully
recovers fine-scale deforming geometry while maintaining strong spatial-temporal consistency.

D.7.4 MULTIPLE OBJECTS AND GAUSSIAN SEGMENTATION

Our model inherently handles multiple objects by segmenting Gaussians according to their motion,
leveraging both the key graph and the non-key graph to separate distinct motion patterns. Fun-
damentally, the weight matrix of the key graph, Wkey = [wi,j ]i,j∈Vk

(where wi,j is defined in
Appendix A.2.1), becomes approximately block-diagonal once the nodes are reordered using an
off-the-shelf graph community detection method such as spectral clustering (Von Luxburg, 2007).
After the key nodes are grouped in this way, the non-key nodes can be assigned to the same motion
groups through their connections in the non-key graph. With these groupings, our framework yields
motion-based segmentation of the Gaussians, as illustrated in Figure S5. Each Gaussian receives a
segmentation label, and when multiple objects undergo distinct motions, the resulting segmentation
closely aligns with instance segmentation with dynamic tracking.

D.8 COMPARISON ON HYPERNERF DATASET

We further provide a qualitative comparison among 4DGS (Wu et al., 2024), and USPLAT4D (ours)
on the HyperNeRF (Park et al., 2021) dataset, as shown in Figure S6. By focusing on the dynamic,
detail-rice regions, we observe that USPLAT4D restores noticeably finer details and sharper high-
frequency structures. While 4DGS tends to oversmooth or lose small geometric components, our
uncertainty-guided graph model consistently preserves these structures, leading to more stable and
detailed 4D reconstructions.

E SOCIAL AND BROADER IMPACT

Our work advances dynamic 3D scene reconstruction and novel view synthesis from monocular
videos, with potential applications in AR/VR, physical scene understanding, digital content creation,
and human-computer interaction. By modeling uncertainty and improving synthesis under extreme
viewpoints, our method contributes to more robust and accessible 4D modeling. While the method

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Groundtruth USplat4D (Ours)4DGS Groundtruth 4DGS USplat4D

26.59
0.998
0.101

28.34
0.999
0.042

23.61
0.997
0.153

25.67
0.998
0.058

22.43
0.996
0.282

24.13
0.997
0.137

23.66
0.996
0.236

26.24
0.998
0.045

23.03
0.987
0.448

24.17
0.992
0.247

33.92
0.997
0.036

35.40
0.998
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Figure S6: Comparison on HyperNeRF dataset. The groundtruth, 4DGS, and USPLAT4D (ours) are arranged
from left to right. The red and green boxes highlights regions with fine-grained details. The values displayed in
the top-right corner represent PSNR, SSIM, and LPIPS, arranged from top to bottom. Our method reconstructs
high-frequency structures more faithfully and preserves finer geometry compared with both 4DGS.

has positive use cases, it could be misused for synthetic content manipulation. Our method does not
involve sensitive data, and care should be taken in downstream applications to ensure responsible use.
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