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ABSTRACT

Self-training (ST), or pseudo-labeling has sparked significant interest in the au-
tomatic speech recognition (ASR) community recently because of its success in
harnessing unlabeled data. Unlike prior semi-supervised learning approaches that
relied on iteratively regenerating pseudo-labels (PLs) from a trained model and us-
ing them to train a new model, recent state-of-the-art methods perform ‘continuous
training’ where PLs are generated using a very recent version of the model being
trained. Nevertheless, these approaches still rely on bootstrapping the ST using
an initial supervised learning phase where the model is trained on labeled data
alone. We believe this has the potential for over-fitting to the labeled dataset in low
resource settings and that ST from the start of training should reduce over-fitting.
In this paper we show how we can do this by dynamically controlling the evolution
of PLs during the training process in ASR. To the best of our knowledge, this is the
first study that shows the feasibility of generating PLs from the very start of the
training. We are able to achieve this using two techniques that avoid instabilities
which lead to degenerate models that do not generalize. Firstly, we control the
evolution of PLs through a curriculum that uses the online changes in PLs to control
the membership of the cache of PLs and improve generalization. Secondly, we find
that by sampling transcriptions from the predictive distribution, rather than only
using the best transcription, we can stabilize training further. With these techniques,
our ST models match prior works without an external language model.

1 INTRODUCTION

The past few years have witnessed a growth in methods that leverage large amount of unlabeled
data in domains such as speech, vision and language to produce state-of-the-art results, e.g. Baevski
et al. (2020; 2022); Chen et al. (2020a); Caron et al. (2021); He et al. (2022); Cai et al. (2022);
Brown et al. (2020); Ramesh et al. (2021). Amongst the techniques that have made this possible
are self-supervised learning (SSL) and self-training (ST) (Scudder, 1965; Lee, 2013). While SSL is
typically used in unsupervised settings, ST is applied in supervised settings where labeled data can be
extended with unlabeled data that is labeled using a prior model, a process known as pseudo-labeling
(PL). These techniques can reduce the burden of expensive labeling processes while successfully
train data hungry models such as transformers using large quantities of unlabeled data.

Current state-of-the-art SSL methods in speech (Baevski et al., 2020; Hsu et al., 2021; Baevski et al.,
2022; Chung et al., 2021) are typically trained in two phases. First, the models are pre-trained on
thousands of hours of unlabeled speech, and then they are further adapted by fine-tuning on the actual
task of automatic speech recognition (ASR) using a smaller supervised set. However, because the
pre-training (PT) phase is task agnostic, self-supervision can under-perform on a specific downstream
task (Talnikar et al., 2021; Dery et al., 2022). Further, SSL pre-training leads to a more complicated
pipeline involving multiple phases. By contrast, ST algorithms also use unlabeled data but do not
require phases of training with different objectives that makes the training pipeline simpler.

In this paper, we focus on recent ST algorithms that perform ‘continuous training’ of a single model.
In contrast to earlier ST training methods that iterate between generating PLs over the entire unlabeled
dataset and training a model (teacher-student) (Synnaeve et al., 2020; Kahn et al., 2020a; Zhang

∗Work done during internship at Apple.

1



Published as a conference paper at ICLR 2023

Table 1: Continuous ST (using slimIPL) with different pre-training steps (M ) using a 10h dataset
reveals that more pre-training can lead to worse results (we show word error rate, WER, on dev-clean).

M 10k 20k 40k
WER 14.3 17.1 22.9

et al., 2020; Park et al., 2020), here pseudo-labels (PLs) are generated online with a very recent
version of the model (Xu et al., 2020; Likhomanenko et al., 2021a; Manohar et al., 2021; Higuchi
et al., 2021; 2022a;b) and training is faster and more resource-efficient. One of the main challenges
for continuous ST is training stability (Likhomanenko et al., 2021a; Higuchi et al., 2021; 2022b;
Cai et al., 2022). While these prior works use various techniques for stabilization, one common
ingredient is that models are initially trained on labeled data for M steps. slimIPL (Likhomanenko
et al., 2021a) showed robustness to M in some settings, but a well-established recipe does not seem
to exist for the case of small labeled datasets (aka. the low resource setting). Indeed, we find that
more pre-training steps, compared to what was shown previously in Likhomanenko et al. (2021a),
can lead to worse results (see Table 1). We hypothesize that this is due to over-fitting to the labeled
set early in training in low resource settings and in this paper we try to improve results by doing ST
without any pre-training (i.e. M = 0). However, in our experiments, off-the-shelf slimIPL diverges
early in training in low resource settings, so we developed methods to address this problem which we
summarize here:

• We show that sampling transcriptions from the output distribution instead of using the best tran-
scription makes ST robust and stable, especially when no pre-training is performed.

• We propose a new curriculum for controlling the PL distribution during training. The curriculum
uses the Levenshtein distance between PLs at different time steps to control how PLs are updated,
and how unsupervised examples are chosen for training.

For the first time, with these strategies we show that continuous PL can be done from the very start of
the training matching prior works without an external language model.

2 EXPERIMENTAL SETUP AND RELATED METHODS

Data All our experiments are performed using the LibriSpeech dataset (Panayotov et al., 2015). We
use the train-clean-360 and train-other-500 regular subsets as unlabeled data, and consider either a
subset of 10h randomly drawn from train-clean-100, or the full 100h set (train-clean-100) as labeled
data. Comparisons with existing works are also provided using the 10h subset from Libri-Light (Kahn
et al., 2020b)1. In addition, we evaluate the final configuration of our methods on the Common Voice
dataset Ardila et al. (2020) for French language where we sample 10h and 100h from the train set to
use as labeled data and the rest as unlabeled data (see Appendix A.3).

Acoustic model Following Likhomanenko et al. (2021a), models are trained with English letters
token set2, the Connectionist Temporal Classification Graves et al. (2006) (CTC) loss, identical
SpecAugment (Park et al., 2019) parameters, and Adagrad optimizer (Duchi et al., 2011). The acoustic
model is the same transformer architecture that was introduced in slimIPL, except that we encode
positions with either absolute sinusoidal positional embedding (Vaswani et al., 2017) or the recently
proposed CAPE (Likhomanenko et al., 2021b) instead of relative positional embedding (Shaw et al.,
2018). This allows us to speed up training (by 2-3x) and decrease the memory footprint significantly.
All models are trained on 8 GPUs for a maximum of 500k updates. We use either a static batch of 8
examples or a dynamic batch that packs ∼ 290s of audio per GPU.

Continuous pseudo-labeling (PL) in ASR Let L = {xi,yi} and U = {xj} be the labeled and
unlabeled datasets, respectively. We consider a semi-supervised PL approach where an acoustic model

1Libri-Light 10h subset contains only 24 speakers drawn from the whole LibriSpeech (from both clean
and noisy subsets). To keep our experiments consistent, and also to assess domain transfer to the unlabeled
noisy subsets, we reconstructed the 10h set from the train-clean-100, sampling randomly from the speakers and
retaining the original 250 speakers from this subset.

226 letters augmented with the apostrophe and a word boundary token.
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Algorithm 1: slimIPL algorithm and our proposed changes (red → deletion and green → addition)
Inputs: labeled L = {xi,yi} and unlabeled U = {xj} data, x̃ = augmentation(x), initialization θ0,

cache C = {}, learning rate ηk, losses LL and LU , parameters M , NL, NU , pout and C
PL function PL(x;θ, τ) = PL(x;θ) defined via Eq. (2)
PL function PL(x;θ, τ) defined via sampling with temperature τ (see Section 4.2)

Result: Acoustic model A(x;θ)
1 // Initial pre-training (PT) phase : train only on labeled samples
2 Train A on (x,y) ∈ L for M steps:
3 θk+1 = θk − ηk∇LL(A(x̃;θk),y), k = 1,M
4 Decrease model’s A(x;θ) dropout
5 // Train on labeled data while filling the cache

6 for k = M + 1,M + C do
7 For random x ∈ U generate ŷ = PL(Ainference(x;θ

k), τ) and C ← C
⋃
{(x, ŷ)}

8 θk+1 = θk − ηk∇LL(A(x̃;θk),y), (x,y) ∈ L
9 τ = max(0, 1− k/K)

10 // Continuous pseudo-labeling training with the cache
11 repeat
12 if rand(0, 1) < NL/(NL +NU ) then
13 Draw (x,y) ∈ L and θk+1 = θk − ηk∇LL(A(x̃;θk),y)
14 else
15 Draw b = (x,y) ∈ C and θk+1 = θk − ηk∇LU (A(x̃;θk),y)

16 ŷ = PL(Ainference(x;θ
k, τ)) // Compute current model state PL

17 pout = TER(y, ŷ) if k < K else pout = 1 // Compute dynamic pout
18 if rand(0, 1) < pout then
19 For random x′ ∈ U generate ŷ′ = PL(Ainference(x

′;θk, τ)) and C ← C \ b
⋃
{(x′, ŷ′)}

20 else
21 C ← C \ b

⋃
{(x,y)} // Same sample and PLs back into the cache

22 C ← C \ b
⋃
{(x, ŷ)} // Same sample but new PLs back into the cache

23 k ← k + 1
24 τ = max(0, 1− k/K)
25 until convergence or maximum iterations are reached

A(x;θ) with model parameters θ is continuously trained on a combination of L and a pseudo-labelled
set derived from U . The model is trained by minimizing a loss

L(θ) = LL(θ) + λLU (θ) , (1)

where λ ∈ R+ is a tunable hyper-parameter controlling the importance of unlabeled data. The loss for
labeled data is defined as LL(θ) = −E(x,y)∼L log pθ(y|x), where pθ(y|x) is the conditional distri-
bution defined by A(x;θ). The loss for unlabeled data is defined as LU (θ) = −Ex∼U log pθ(ŷ|x),
where ŷ is the PL transcription for a data point generated using the model being trained. Specifically,

ŷ = argmax
y

log pθ(y|x). (2)

Continuous PL keeps updating the pseudo-labels via Eq. (2), as the model trains. This procedure is
prone to divergence, as without any constraint PLs can self-reinforce rapidly to a trivial distribution.

Methods to stabilize training Several approaches have been proposed to stabilize continuous PL.
A pre-training phase (PT) on the supervised data only (optimizing the loss LL(θ) for M updates)
is always a key component. For e.g. in Chen et al. (2020b) PT is performed until full convergence.
Another technique is the use of an exponential moving average (EMA) of the acoustic model to
generate the pseudo-labels in Eq. (2) (Likhomanenko et al., 2021a; Manohar et al., 2021; Higuchi
et al., 2021; 2022b; Zhang et al., 2022).

slimIPL To avoid the significant memory footprint of EMA Likhomanenko et al. (2021a) introduced
slimIPL, which uses a dynamic cache instead of the EMA to stabilize the training. The cache maintains
a set of unlabeled samples UC (with fixed size |UC | = C) and their associated PLs, generated by
previous model states. After the pre-training phase, slimIPL minimizes the loss in Eq. (1), using the
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Figure 1: Comparison between slimIPL (left) and how we control the cache by using PL evolution
(right). The constant pout from slimIPL now is dynamic and computed based on the PL evolution.

unlabeled subset UC , which is itself updated as training goes: at each iteration, slimIPL removes
a sample from the cache with probability pout, replacing it with a new one x ∈ U along with its
generated PL. More details about slimIPL can be found in Algorithm 1 and in Figure 1.

PLs selection Pseudo-labels selection can help to achieve better convergence by filtering out
noisy PLs that prevent model from faster training. There are also a lot of efforts on the curriculum
pseudo-labeled data selection: e.g. confidence filtering (Zhang et al., 2021) or assigning weights
to pseudo-labeled data based on the model uncertainty estimation (Huang et al., 2022). One of the
recent works (Zhang et al., 2022) in ASR proposes to use PLs curriculum filtering based on the
Levenshtein distance between PLs generated for original and weakly augmented inputs. Later we
will see that our idea is based solely on the PL evolution rather than on input augmentation.

Relation to consistency regularization Popular consistency regularization methods (Sajjadi et al.,
2016; Laine & Aila, 2016; Sohn et al., 2020; Berthelot et al., 2019) leverage the idea that a model
should output the same distribution for an unlabeled example even after it has been augmented. In
this paper we take inspiration from these works but we focus on an orthogonal view: we consider
distances between model outputs at different time steps. Also, contrary to consistency regularization,
we do not use this distance as an objective function to train a model but as a data selection criterion.

Hyper-parameter selection All hyper-parameters and model selections are performed using dev-
clean and dev-other sets. We report final token (TER) or word (WER) error rates on test-clean and
test-other sets. In all experiments, we only tune (C, pout, M , λ) from the training procedure while
everything else is kept as in the slimIPL paper. By default we use C = 1000, λ = 1, M = 0. In most
experiments we try 3 different random seeds and report metric mean and standard deviation.

3 MOTIVATION

Existing continuous PL approaches rely on a two-step process: first pre-training (PT) on labeled data
only, then continue the model training with both labeled and unlabeled data. While PT is known to
be critical for the stability of continuous PL, we are interested in this work to find ways to remove the
PT phase to simplify the whole procedure, and possibly improve the overall performance, both in
terms of convergence speed and final WER.

PT improves the final WER Initial experiments with slimIPL, Table 2, show that with even its
simple cache strategy used to stabilize training, PT helps improving the final WER. It is not surprising,
as without PT, PLs are of poor quality (> 90% WER) at the beginning of training as the model mostly
produces random outputs. Careful tuning of the number of PT steps is however important, especially
in low-resource supervised settings, as shown in Table 1.

Caching as a replacement for PT Vanilla continuous PL is very similar to slimIPL with pout = 1
(see Section 2). With the caching strategy, slimIPL picks unlabeled samples (and their associated PLs)
from a cache when needed, and immediately replaces these examples with new unlabeled samples
(and their new PLs). This allows to always use PLs generated from a previous version of the trained
model, while efficiently computing these PLs. While being simple, we observe in Table 2 that this
approach is enough to stabilize continuous PL, assuming a large enough cache.
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Table 2: Continuous PL w/ and w/o pre-training (PT) phase for slimIPL. ‘DV’ states for divergence.

Data pout
dev-clean WER dev-other WER

w/o PT w/ PT w/o PT w/ PT
10h 1 23.31.7 13.8 32.11.3 17.5
10h 0.1 DV 11.4 DV 14.0

100h 1 4.50.1 3.1 10.60.3 8.1
100h 0.1 DV 3.6 DV 7.5

When to update the PLs from the cached samples is critical In slimIPL (Algorithm 1), each
sample (x, ŷ) in the cache C at step k′ has a PL ŷ= PL(A(x;θk)) that was generated with the model
θk at step k < k′ when it was added to the cache. After using the sample (x, ŷ) for training, slimIPL
adds it back into the cache with probability 1− pout, leaving its corresponding PLs unchanged. We
found however that updating PLs with the current model state ŷ = PL(A(x;θk′

)) improves final
WER performance. See Table 3, which compares the original slimIPL strategy (‘old’), with the one
where the PLs are updated when a sample has been selected in the cache (‘new’). For that reason, in
the following experiments, we will be using ŷ = PL(A(x;θk′

)) as a PL strategy, when keeping a
sample back into the cache.

Controlling cache contents dynamically can improve WER When the cache is updated less
often (pout < 1), we see in Table 2 that one may improve the WER, but then PT is essential to avoid
any divergence. In Likhomanenko et al. (2021a), the authors of slimIPL have reported robustness (in
terms of test WER) with respect to pout. However, our experiments reported in Table 3 and Figure 3b
in Appendix C reveal different learning dynamics for different values of pout: our ablations with
specific schedules on the probability pout suggest that models without a PT phase would benefit more
from low pout at the beginning of training, which would make training easier initially by letting the
model focus on the same examples. In addition, later in training, the training procedure might benefit
from high pout, as seeing a wider range of examples may lead to more stability. While we observe
significant changes in dynamics with 10h of supervision, with larger labeled set (100h) the different
strategies do not make such a huge difference.

The above observations suggest that by dynamically controlling how the cache evolves we can
improve results in limited data settings. One possible way of doing this is by using a strategy that
depends on the rate of evolution of PLs in the cache. In the next section we present such a method.

Table 3: Strategies of PLs and cache renewing (w/o PT phase). When pout < 1 and sample goes
back into the cache, we compare models using the same PL as it was ŷ = PL(A(x;θk)) (old) or the
newly re-generated PL ŷ = PL(A(x;θk′

)) (new). For cache renewing, we compare static pout and
simple scheduling with pout being different before and after 130k steps.

pout PLs 10h, WER 100h, WER

dev-clean dev-other dev-clean dev-other
1 - 23.31.7 32.11.3 4.50.1 10.60.3

0.1 old DV DV DV DV
0.1 new 15.30.6 25.40.4 4.50.1 10.40.1

1 → 0.1 old 23.01.1 32.10.4 4.50.1 11.00.0
1 → 0.1 new 24.81.4 36.10.5 4.40.0 10.20.1
0.1 → 1 old DV DV DV DV
0.1 → 1 new 13.70.8 20.70.8 4.80.1 11.30.1

4 METHODS OF STABLE TRAINING

4.1 CONTROLLING CACHE BY USING PL EVOLUTION

Let’s consider an example x ∈ U to be put into the cache at training step k, see Figure 1. Its PL
is defined as ŷ = PL(A(x;θk) = PL(x; k). At step k′ > k, this example (x, ŷ) is selected
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from the cache and the model is updated to θk′+1 using the gradient of the loss. Unlike slimIPL,
the probability of removing the example from the cache is not constant anymore. Instead, pout is
dynamically computed at step k′ for sample x that is selected from the cache as follows:

pout(x; k) = f [ρ(PL(x; k), PL(x; k′))] (3)

where ρ is the Levenshtein edit-distance, and f the function that encapsulates how evolution in PLs
should determine the rate at which examples are removed from the cache. Using different choices of
f we can consider different ways of actively controlling the cache (and hence the model training)
using the evolution of the PLs. We consider simple functions f : x 7→ x and f : x 7→ 1 − x. The
first function encourages the cache to maintain examples whose PLs are stable, which might lead to
slower learning. The second function maintains examples whose PLs are changing fast which might
lead to faster learning but less stable behavior.

Note that while we explained the method using a single example x from the unlabelled set, in practice
we operate the algorithm on a batch level, and the statistics are computed over a full batch of examples,
which are all put back in the cache or removed together.

4.2 ALIGNMENT SAMPLING

As discussed in Section 3 training instability shows up as the acoustic model distribution A(x;θk)
collapses to a degenerate distribution, e.g. empty transcriptions. While a cache and/or an exponential
moving average model can stabilize training, they do not resolve the issue entirely, especially in the
low data regime, with no pre-training, and the model often collapses to a degenerate solution. Even
our proposed method above (see Section 4.1) is susceptible to this collapse on the 10h dataset.

In order to overcome the collapse issue and still make use of unlabeled data as early as possible,
we propose to sample targets from the token distribution for every frame (Likhomanenko et al.,
2022). We believe that sampling PLs around the most probable hard labels is an effective stabilization
technique which works by adding appropriate noise to the targets: it is a way to enforce a lower bound
on the entropy of the label distribution which mitigates the collapse issue3. As the model is learnt
with CTC, every per frame predicted distribution ptθ(w|x), w ∈ w for token set w and time frame t
is considered to be independent. Thus, for every audio frame, we sample a token label wt ∼ ptθ(w|x).
A temperature τ is introduced to smooth the distribution obtained from the model. After the frame
level labels are sampled, they are transformed into the transcription by deduplicating consecutive
repetitions of the same output token, and removing the left over auxiliary blank tokens4.

Sampling Temperature Schedule As τ → ∞ the distribution over tokens ptθ(w|x, τ) approaches
the uniform one, the PL sequence of tokens becomes purely random. On the other hand, as τ → 0
the distribution approaches the argmax function which is equivalent to the hard labels in slimIPL. We
find that τ > 1 performs poorly. With τ = 1 a model avoids divergence at the beginning of training
but end up with worse final performance than hard PLs (τ = 0): this happens mostly because of
larger noise presence due to sampling (quality of PLs is observed being worse). Lower temperatures,
e.g. τ = 0.1, give indistinguishable results from hard PLs (τ = 0). These observations suggest that
decreasing temperature as training proceeds can stabilize training at the beginning and benefit from
less noisy PLs in the end. We found that simple linear schedule for τ from 1 to 0.1 works well.

The summary of our proposed methods on top of slimIPL is given in Algorithm 1.

5 RESULTS

5.1 DYNAMIC SELECTION FOR PSEUDO-LABELED SAMPLES

In Table 4 we show results from using only the method introduced in Section 4.1. We experiment
with token error rate (TER) distance computed between PLs on an entire batch and the two functions
as discussed above. For both settings of 100h and 10h of supervised data the proposed dynamic

3With no regularization (cache, and/or alignment sampling), the PL procedure often collapses to generating
just blanks very quickly (Likhomanenko et al., 2021a) – it is biased, has 100% WER, but has no variance.
Alignment sampling avoids this by generating noisy targets that have variance.

4E.g. alignment ‘cc###aatttt#’ will be transformed into ‘cat’, where # is a CTC blank token.
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Table 4: WER on dev-clean and dev-other for different cache selection methods (p). We use either
pout = p or a strategy where pout = p for the first 130K steps, switching to pout = 1 afterwards, as
shown in Section 3. Alignment sampling from Section 4.2 is not used.

10h 100h

p
pout = p pout : p → 1 pout = p pout : p → 1

clean other clean other clean other clean other
0.1 15.30.6 25.40.4 13.70.8 20.70.8 4.50.1 10.60.3 4.80.1 11.30.1

TER[PL(k), PL(k′)] 14.70.5 24.60.3 13.21.6 19.11.6 4.60.1 10.50.2 4.40.1 10.10.2
1− TER[PL(k), PL(k′)] 16.00.4 26.50.8 17.81.2 30.42.3 4.40.1 11.10.5 4.50.0 10.50.5

(a) pout=WER[PL(x; k),PL(x; k′)] per batch
along the training.

(b) Correlation between WER[PL(x; k),golden] and
WER[PL(x; k),PL(x; k′)].

Figure 2: Analysis of our curriculum PLs selection criteria. WER is given in scale of (0, 1).

selection decreases WER over the baseline with constant pout. This behavior also holds when we
switch from the dynamic strategy of Eq. (3) to a constant pout = 1 after 130K steps of training. For
a 10h of labeled data setting the improvement over the baseline is larger and reaches around 1%
absolute. The function f : x 7→ 1− x performs worse than f : x 7→ x and hence we use this setting
for subsequent experiments.

Our analysis of dynamic probabilities pout from Table 4 shows: (i) TER[PL(x; k), PL(x; k′)] is
close to 100% at the beginning of training (the model changes very fast), and quickly decreases
(less than 10% after 30k steps); (ii) over training different batches get different values of pout, see
Figure 2a; (iii) proposed distance correlates with the oracle WER computed between PLs and ground
truth labels for x ∈ U , see Figure 2b. The latter demonstrates that our choice of dynamic selection
encapsulates knowledge about actual PLs quality.

5.2 ALIGNMENT SAMPLING

In Table 5 we compare results for models trained with hard PLs (τ = 0), models trained with
alignment sampling and constant τ > 0, and models trained with a linear schedule of τ from 1 to
0.1 (1 → 0.1), as described in Section 4.2. For this section we do not use dynamic control of the
cache as introduced in Section 4.1. Here we highlight some observations. Firstly, alignment sampling
with high τ reduces the number of diverged models (either τ = 1 or τ = 1 → 0.1). Secondly,
constant temperature over the training does not provide best results: τ = 0.1 is similar to the baseline
while τ = 1 is even worse; the difference is more pronounced for the 10h of supervision with
pout = 0.1 → 1. Besides, WER we also report TER to highlight that sampling with τ = 1 leads
to a notable CER degradation. However, scheduled τ = 1 → 0.1 provides both stable training (no
divergence is observed in experiments) and similar or significantly better TER/WER (1.3%-2.7%)
over the baseline. The best results are obtained with pout = 0.1 → 1 showing compatibility of
sampling and dynamic probability.
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Table 5: TER and WER on dev-other for sampling PLs with different temperature τ , including linear
schedule of τ in case of constant pout (left parts) or alternated one (right parts), see Section 3. ‘DV’
denotes the number of diverged models over 3 runs with random seeds. PL evolution via dynamic
cache probability from Section 4.1 is not used.

10h 100h

τ
pout = 0.1 pout : 0.1 → 1 pout = 0.1 pout : 0.1 → 1

TER WER #DV TER WER #DV TER WER #DV TER WER #DV
0 (argmax) 10.10.2 25.40.4 0 7.80.7 21.40.3 1 3.90.1 10.40.1 1 3.70.1 10.20.1 1

0.1 10.91.0 26.12.0 0 8.40.1 21.21.9 0 3.90.1 10.30.1 1 3.60.1 10.30.1 2
1 11.41.9 26.54.8 0 12.10.6 31.21.9 0 4.20.2 10.40.3 0 3.70.1 10.40.2 0

1 → 0.1 9.71.2 22.71.4 0 7.50.6 20.11.2 0 3.80.1 10.20.1 0 3.70.1 10.10.1 0

Table 6: Combination of our methods (Sections 4.1 and 4.2) for hard labels (left part) and for
sampling (right part) with a linear schedule on the temperature. ‘DV’ states for models divergence,
‘old’ denotes usage of PL(x; k), while ‘new’ denotes the use of PL(x; k′). We compare different
pout (all with using ‘new’): scheduled pout = 0.1 → 1 (switching at 130K steps), ρ = TER and
scheduled ρ = TER → 1 (switching at 130K steps). The WER on dev-other is reported. All results
are reported across 3 runs with different seeds.

Data λ
Argmax Sampling

old new 0.1 → 1 ρ ρ → 1 old new 0.1 → 1 ρ ρ → 1

10h 1 DV 25.40.4 21.40.3 24.60.3 19.11.6 DV 22.71.4 20.11.2 21.21.8 20.71.9
10h 5 DV DV DV DV DV DV DV DV 14.70.4 13.30.2

100h 1 DV 10.60.3 11.30.1 10.50.2 10.10.2 13.50.3 10.20.1 10.10.1 10.50.2 10.20.2
100h 5 DV DV DV DV DV DV DV DV 10.70.3 10.00.3

5.3 COMBINING METHODS FOR BEST RESULTS

In this section we highlight the results that can be achieved by combining together all the methods
reported above in Sections 4.1 and 4.2. In Table 6 we give a detailed comparison for both 10h and
100h of supervision. As we have now stable training pipeline from the start (no PT), we also play
with a ratio λ (see Eq. (1)) searching it in range [1, 5]. This raises training instability risk while larger
proportion of unlabeled data may improve the model according to Likhomanenko et al. (2021a).

For 10 hours of supervised data the models benefit a lot from the higher λ and become competitive
with models trained with PT phase as well as with prior works (Baevski et al., 2020; Likhomanenko
et al., 2021a)). Note that combining sampling with dynamic pout based on PLs evolution is necessary
to have stable training for λ > 1.

To have a proper comparison with aforementioned prior works we increase the batch size and use
dynamic batching for the best configuration. First, we confirm that both sampling and dynamically
controlling the cache give stable training (see e.g. Appendix C Table 13). Second, in Table 75 for
10h/100h setup (λ = 5/λ = 3) our models achieve similar or better results with no PT compared to
PT-based models (which are reproductions of slimIPL using the same settings that we use for our
method) while matching the prior works.

To ensure our methods are general enough we probe the final configuration (found for LibriSpeech)
on Common Voice, French language data. We use exactly the same models with sinusoidal positional
embedding and the same hyper-parameters. The only thing we tune is slimIPL parameter M . Results
in Table 8 show that our methods work out of the box: without PT we are able to match slimIPL
baseline for 100h of supervision, while we improve results upon slimIPL for low supervision setting
of 10h with an average relative WER reduction of 18%.

5As we use different 10h split in this work we also report results for 10h set with 24 speakers from Libri-Light
used in prior works. We found that training with no PT is more prone to unstable training for this set, while our
method is able to stabilize it and get comparable performance with its baseline counterpart which lags behind
the prior works.
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Table 7: Comparison of our best models with prior works for 10h and 100h of supervision. Results
are reported across 3 random seeds. For wav2vec 2.0 and slimIPL we report the prior work results and
our reproduction following official open-sourced recipes. ‘Posemb’ denotes type of used positional
embedding. The 10h set from Libri-Light is marked with ‘*’.

Model Data Posemb dev WER test WER

clean other clean other

w2v 2.0, Large (Baevski et al., 2020)

10h∗

conv 8.1 12.0 8.0 12.1
w2v 2.0, Large, reproduction conv 8.10.3 12.90.2 8.10.3 13.30.3
slimIPL (Likhomanenko et al., 2021a) relpos 11.4 14.0 11.4 14.7

slimIPL CAPE 14.40.3 18.80.4 15.10.4 19.30.3
Ours CAPE 15.81.8 20.41.6 15.91.5 20.41.3
slimIPL sinpos 32.70.6 36.80.3 33.70.7 37.60.4
Ours sinpos 20.72.0 24.42.0 21.42.1 24.91.9
w2v 2.0, Large

10h

conv 7.40.3 12.70.3 7.70.3 13.00.4
slimIPL CAPE 10.00.4 15.10.5 9.90.4 15.70.5
Ours CAPE 8.20.2 13.11.4 8.50.2 13.62.1
slimIPL sinpos 22.51.3 28.11.3 22.91.2 29.41.4
Ours sinpos 8.60.2 13.30.2 8.70.3 13.40.2
w2v 2.0, Large (Baevski et al., 2020)

100h

conv 4.6 9.3 4.7 9.0
slimIPL (Likhomanenko et al., 2021a) relpos 3.7 7.3 3.8 7.5

slimIPL CAPE 3.70.1 8.00.1 3.90.1 8.20.1
Ours CAPE 4.10.1 8.40.1 4.00.1 8.60.2
slimIPL sinpos 3.70.1 7.80.1 3.80.1 8.00.1
Ours sinpos 4.00.1 8.10.2 4.10.1 8.40.2
Lower bound, fully supervised 960h CAPE 2.60.1 6.90.1 2.70.1 6.90.1

Table 8: Comparison of fully supervised, slimIPL and our methods on Common Voice French.
Results are reported across 6 random seeds. Sinusoidal positional embedding is used for all models.

Model Data WER

valid test

Fully supervised
10h

59.90.5 62.60.6
slimIPL 29.92.0 31.12.1
Ours 24.61.8 26.01.9

Fully supervised
100h

17.30.1 19.30.1
slimIPL 12.80.2 14.10.2
Ours 13.00.2 14.30.2

Fully supervised 540h 10.90.4 12.30.3

6 CONCLUSION

In this paper we show that we can perform continuous pseudo-labeling from the very start of training
and get improved results in low supervision settings. We were able to achieve these results by using
alignment sampling and a dynamic cache selection strategy that is based on the evolution of the
pseudo-labels during training. Being able to perform pseudo-labeling from the very start further
simplifies training, avoiding complicated multi-step pipelines and allows us to focus on a simpler one.
Our work also provides avenues for explorations into curriculum strategies for pseudo-labeling and
we hope to build upon the ideas and results presented in this paper. In the future we wish to explore
the effectiveness of these methods to other settings for ASR such as sequence-to-sequence/transducer
models6, out-of-domain unsupervised data, and neural models not based on transformers.

6The proposed dynamic control of the cache does not rely on anything specific to CTC. Alignment sampling
should be transferable to Transducer directly, while for sequence-to-sequence we would sample transcription
directly from the model.
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7 REPRODUCIBILITY STATEMENT

We report detailed settings of our experiments which are based on the previously open-sourced recipes
for Likhomanenko et al. (2021a) through the paper and also in Appendix A.2 and B. We aim to open
source the code of our method and experiments soon.

8 ETHICS

For this paper we used publicly available datasets. Our goal is to build models that work for low
supervision settings and hope this is a positive contribution towards under-represented data sources
for ASR. While one can imagine ASR being used for negative purposes, it is our hope that the
advantages generated by improving ASR for low-resource settings outweigh its possible negative
uses.
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A DETAILS ON EXPERIMENTAL SETUP

A.1 SPEAKERS IN LIBRISPEECH

There is no intersection between speakers in different LibriSpeech train sets as well as in validation /
test sets – all speakers are unique and are present in only one of the LibriSpeech sets. To prepare the
10h set we randomly sampled audio per speaker to gather a total 10h of audio.

A.2 ACOUSTIC MODEL TRAINING

We keep the original 16kHz sampling rate and compute log-mel filterbanks with 80 coefficients for
a 25ms sliding window, strided by 10ms which are normalized to zero mean and unit variance per
input sequence before feeding into a model.

Throughout the paper we consider transformer-based models with a convolutional frontend to perform
the proper striding. The encoder is composed of a 1-D convolution with kernel size 7 and stride 3
followed by 36 4-head Transformer blocks (Vaswani et al., 2017). The self-attention dimension is
768 and the feed-forward network (FFN) dimension is 3072 (with 4 heads) in each transformer block.
The output of the encoder is followed by a linear layer to the output classes. We use dropout after
the convolution, dropout on the self-attention and on the FFN for all transformer layers, and layer
drop (Fan et al., 2020), dropping entire layers at the FFN level.

We get rid of relative positional embedding (Shaw et al., 2018) and use either sinusoidal one (Vaswani
et al., 2017) or recently proposed CAPE embedding (Likhomanenko et al., 2021b) (only global shift
of 30s is used): this speeds up training by 2-3x and decreases memory usage.

For SpecAugment Park et al. (2019) we follow parameters from Likhomanenko et al. (2021a): two
frequency masks with frequency mask parameter F = 30, ten time masks with maximum time-mask
ratio p = 0.1 and time mask parameter T = 50; time warping is not used.

All models are trained with CTC loss and Adagrad optimizer with linear warmup period of 64k steps,
constant learning rate of 0.03 and step-wise (by 2) learning rate decay at the end of training. All
models are trained on tf32 tensor cores of 8 Ampere A100 40GB GPUs for a maximum of 500k
updates.

For slimIPL parameters we use always cache size of 1k. Throughout the paper we vary the proportion
λ (by default we use λ = 1 if not stated otherwise) as well as pout. From experiments we observe
that it is important to activate SpecAugment later in training (e.g. after 5k training steps) otherwise
slimIPL baseline is even more prone to divergence.

A.3 COMMON VOICE EXPERIMENTS

We use Common Voice data release from 21 July 20217 with French language. In total, there are
543 hours in train, 25.1h in validation and 25.8 in test sets. We randomly sample speakers from the
train and take all audio belonging to the same speaker to form a 100h train subset. We end up with
982 speakers and 102h. We further sample speakers from this 100h subset to form a 10h subset: it
contains 171 speakers with 11.5h. These 10h and 100h subsets are used as labeled data while the
remaining 443h are used as unlabeled data. We normalize transcriptions by lower casing, removing
any punctuation tokens except apostrophe, changing all diacritical marks to their corresponding
English characters and removing any other non-English characters. Later, we use the same token set
as for LibriSpeech.

We use the same acoustic model as for LibriSpeech experiments with sinusoidal positional embedding
as all audios in Common Voice are very short (5.2s±1.5s). For fully supervised models we use
dropout 0.5, 0.3 and 0.1 for 10h, 100h and 540h sets correspondingly. For slimIPL we change dropout
and layer drop from 0.5 to 0.1 for 10h and from 0.3 to 0.1 for 100h, while for our methods we use
dropout and layer drop of 0.1 from the beginning of training. For slimIPL we tune only parameter M
for the 10h setting. The rest of parameters are the same as in original slimIPL work (Likhomanenko
et al., 2021a): C is 1000 (100), cache probability pout is 0.1, data proportion λ is 10 (3), M is 40k

7https://github.com/common-voice/cv-dataset/blob/main/datasets/
cv-corpus-7.0-2021-07-21.json
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(20k) for 10h (100h) setting. All models are trained with dynamic batch, same as for LibriSpeech.
For our methods we use exactly the same parameters as for LibriSpeech experiments with dynamic
batch.

A.4 FULLY SUPERVISED MODELS

Table 9: Fully supervised models for 10h and 100h of LibriSpeech. Results are reported across 3
random seeds. Sinusoidal, CAPE and relative positional embeddings are denoted as ‘sinpos’, ‘CAPE’
and ‘relpos’ correspondingly. The 10h set from Libri-Light is marked with ‘*’.

Model Sup. set WER

dev-clean dev-other test-clean test-other

relpos (Likhomanenko et al., 2021a)
10h∗

31.9 52.3 32.6 52.4
CAPE 37.10.1 58.40.1 37.70.3 58.40.2
sinpos 76.00.8 87.10.5 77.10.7 87.20.6
relpos

10h
27.70.4 48.40.4 28.20.3 48.80.3

CAPE 28.20.1 48.50.3 28.90.1 48.90.2
sinpos 63.41.1 78.50.9 64.50.9 78.91.1
relpos (Likhomanenko et al., 2021a)

100h
6.2 16.8 6.2 16.8

CAPE 5.90.1 17.90.1 6.20.1 18.10.1
sinpos 6.50.3 19.10.2 7.10.3 19.30.2

A.5 SUMMARY OF HYPER-PARAMETERS

Hyper-parameter values for both experiments on LibriSpeech and Common Voice are summarized in
Tables 11, 12 and 10.

Table 10: Detailed hyper-parameters for the final experiments on Common Voice from Table 8.

Parameter slimIPL (10h) Our (10h) slimIPL (100h) Our (100h)

M 40k 0k 20k 0k
C 1000 1000 100 1000
pout 0.1 TER (1 after 130k) 0.1 TER (1 after 130k)
λ 10 5 3 3
dropout/layer drop 0.5→0.1 0.1 0.3→0.1 0.1
embedding sinpos sinpos sinpos sinpos
τ 0 τk = max(0.1, 1− 0.1 ∗ k/130, 000) 0 τk = max(0.1, 1− 0.1 ∗ k/130, 000)
total batch dynamic 290s×8 dynamic 290s×8 dynamic 290s×8 dynamic 290s×8

Table 11: Detailed hyper-parameters for the final experiments on LibriSpeech from Table 7.

Parameter slimIPL (10h) Our (10h) slimIPL (100h) Our (100h)

C 1000 1000 100 1000
λ 10 5 3 3
dropout/layerdrop 0.5→0.1 0.1 0.3→0.1 0.1
τ 0 τk = max(0.1, 1− 0.1 ∗ k/130, 000) 0 τk = max(0.1, 1− 0.1 ∗ k/130, 000)
embedding sinpos sinpos sinpos sinpos
M 30k 0k 20k 0k
pout 0.1 TER (1 after 130k) 0.1 TER (1 after 130k)
total batch dynamic 290s×8 8x8 dynamic 290s×8 dynamic 290s×8

embedding CAPE CAPE CAPE CAPE
M 50k 0k 20k 0k
CAPE is used after 0k 25k 0k 5k
pout 0.1 TER (1 after 40k) 0.1 TER (1 after 130k)
total batch dynamic 290s×8 dynamic 290s×8 dynamic 290s×8 dynamic 290s×8

B WAV2VEC AND SLIMIPL REPRODUCTION

To reproduce baselines in Table 7 for slimIPL we follow Likhomanenko et al. (2021a) and its
published recipe. The only change we do is positional embedding as discussed above and batch size.
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Table 12: Detailed hyper-parameters for the final experiments on LibriSpeech from Table 7 for 10h∗
setting.

Parameter slimIPL (10h∗) Our (10h∗)

C 1000 1000
τ 0 τk = max(0.1, 1− 0.1 ∗ k/130, 000)
SpecAugment T = 25, 20 time masks T = 50, 10 time masks

embedding sinpos sinpos
M 20k 0k
dropout/layer drop 0.5→0.1 0.5 (0.1 after 35k)
λ 10 1 (5 after 70k)
pout 0.1 TER (1 after 70k)
total batch dynamic 290s×8 8×8

embedding CAPE CAPE
M 40k 0k
CAPE is used after 0k 70k
λ 10 1 (5 after 130k)
dropout/layerdrop 0.5→0.1 0.5 (0.1 after 70k)
pout 0.1 TER (1 after 130k)
total batch dynamic 290s×8 8×8

The rest of the training remains the same. To reproduce wav2vec 2.0 (Baevski et al., 2020) we take
open-sourced Large model pre-trained on the full LibriSpeech8 and then perform fine-tuning on our
10h set and the 10h set from Libri-Light. For fine-tuning we use open-sourced configurations for
10h9. We fine-tune models on 24 GPUs as specified in Baevski et al. (2020) for 3 different seeds.

C ABLATIONS: SAMPLING FOR LARGER BATCHES

Table 13: Comparison (in WER) between different temperatures τ for sampling when large batch and
longer training (600k) are used.

τ dev-clean dev-other test-clean test-other

0 (argmax) 19.1 26.7 19.3 27.8
1 → 0.1 13.9 17.5 13.8 18.0

(a) Evolution of pout for the different curriculum
selection strategies.

(b) Comparison between models trained with dif-
ferent pout: constant 1 (blue) or 0.1 (orange), or
scheduled 0.1→ 1 (green).

Figure 3: Analysis of the probability pout.

8Released at https://dl.fbaipublicfiles.com/fairseq/wav2vec/libri960_big.pt.
9They are availble at https://github.com/facebookresearch/fairseq/blob/main/

examples/wav2vec/config/finetuning/vox_10h.yaml.
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