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ABSTRACT

Human beings can make adaptive decisions in a preparatory manner, i.e., by making
preparations in advance, which offers significant advantages in scenarios where
both online and offline experiences are expensive and limited. Meanwhile, current
reinforcement learning methods commonly rely on numerous environment interac-
tions but hardly obtain generalizable policies. In this paper, we introduce the idea of
rehearsal into policy optimization, where the agent plans for all possible outcomes
in mind and acts adaptively according to actual responses from the environment. To
effectively rehearse, we propose ReDM, an algorithm that generates a diverse and
eligible set of dynamics models and then rehearse the policy via adaptive training
on the generated model set. Rehearsal enables the policy to make decision plans
for various hypothetical dynamics and to naturally generalize to previously unseen
environments. Our experimental results demonstrate that ReDM is capable of
learning a valid policy solely through rehearsal, even with zero interaction data. We
further extend ReDM to scenarios where limited or mismatched interaction data is
available, and our experimental results reveal that ReDM produces high-performing
policies compared to other offline RL baselines.

1 INTRODUCTION

In Reinforcement Learning (RL), policies are typically optimized through intensive interactions either
with the target environment (Sutton & Barto, 2018) or with simulators as a proxy environment (Tobin
et al., 2017; Rao et al., 2020). However, it is challenging for real-world applications since online
real-world interactions are costly and sometimes dangerous, and building high-fidelity simulators
requires a huge amount of labor work and expertise. Offline RL (Levine et al., 2020) optimizes the
policy with pre-collected datasets rather than online interactions (Fujimoto et al., 2019; Kumar et al.,
2019; 2020; Kostrikov et al., 2022) and has made remarkable progress recently (Prudencio et al.,
2022). However, obtaining a comprehensive dataset, which is essential for developing a reliable
offline policy, can be costly in real-world applications (Kiran et al., 2021). This leads to the question:
Can the agent effectively make decisions without online interaction or abundant offline data?

To adapt to unfamiliar or intricate situations, humans employ a cognitive mechanism known as
rehearsal (Cowan & Vergauwe, 2015; Ignacio et al., 2016; Oberauer, 2019) that involves mentally
practicing actions and envisioning potential outcomes. When all conceivable outcomes have been
rehearsed in minds, human could make adaptive decisions based on real-world situations (Zhou,
2022). Prior works have involved the concept of rehearsal in machine learning, such as continual
learning (Yoon et al., 2022), causality (Churamani et al., 2023) and neuro-symbolic (Marconato et al.,
2023). In this work, we consider whether a policy, by incorporating rehearsal similar to humans
before taking actions, can effectively make decisions under limited real-world data.
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†Yang Yu is the corresponding author.
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For the mentioned consideration, we incorporate rehearsal into the reinforcement learning process
to better emulate human-like learning, which we refer to as policy rehearsing, and propose Policy
Rehearsing via Dynamics Model Generation (ReDM) to develop a policy that can achieve satisfactory
performance in environments without interaction or rich offline data. The framework of policy
rehearsing iterates between two procedures. The first is to generate various tasks. Similar to human
rehearsal, these tasks may not directly reflect the real environment but each model represents a
unique and plausible hypothesis about it. Since reward functions are often designed according to
the task goals, we mainly focus on the hypothesis on dynamics model space. The second trains a
meta-policy that can adapt to generated dynamics models. Through the ongoing generation of new
dynamics models and simultaneous meta-policy learning, the policy could make rehearsals for more
situations and its ability to adapt to the potential target environment gradually strengthens, despite not
interacting with the target environment. However, implementing the mechanism of policy rehearsing
is challenging, as the whole hypothesis space of dynamics model is large. Therefore, the core of
policy rehearsing lies in how to reduce the hypothesis space of candidate dynamics models. To
achieve this goal, we propose that dynamics model generation should adhere to the principles of
diversity and eligibility. More specifically, we enforce diversity among the candidates by iteratively
generating new candidates to minimize the worst-case performance of the current policy. While
eligibility, which measures the validity of dynamics, is optimized by constraining the model to
produce viable paths towards high returns. By incorporating diversity and eligibility, we effectively
shrink the hypothesis space for generating candidate dynamics models and subsequently employ the
meta-policy for learning.

As our model generation process is not based on directly mimicking the target, it does not necessarily
require interactive data. Instead, it relies on some task knowledge that can be readily obtained in
practice, such as the reward function and the terminal function. Our experiments on low-dimension
control tasks demonstrate that even with NO interaction data, ReDM is capable of producing a valid
policy that significantly outperforms the random policy. In order to extend its applicability to more
complex tasks, where hypothesis space is far too large, the framework of ReDM is also compatible
with offline datasets or demonstrations by using the data as a regularizer for generating models.
However, it is important to note that the interaction data is only used to narrow down the hypothesis
space, and thus even if the provided data is limited in quantity and coverage or slightly inconsistent
in dynamics, the adaptive policy produced by ReDM remains competitive. This sets ReDM apart
from traditional offline RL methods where the unbiasedness of data is of vital importance for policy
optimization. To validate this, we test ReDM with limited or misspecified data from D4RL, a widely
used benchmark for offline RL, and it turns out that ReDM outperforms other baseline methods
including state-of-the-art model-free and model-based offline RL algorithms. The results support that
policy rehearsing is a effective approach to achieve highly generalizable policies.

2 BACKGROUND AND RELATED WORK

2.1 REINFORCEMENT LEARNING AND OFFLINE REINFORCEMENT LEARNING

The objective of RL is to learn a policy that maximizes the expected cumulative discounted reward
in a Markov Decision Process (MDP) (Sutton & Barto, 2018). An MDP M can be defined by a
six-arity tuple (S,A, T, r, γ, d0) where S and A represent the state and action spaces respectively,
T (s′|s, a) and r(s, a) represent the transition function and reward function of the dynamics, γ ∈ [0, 1]
denotes the discount factor, and d0 denotes the distribution over initial states. In this paper, we let
Rmax = maxs,a r(s, a) be the highest reward and assume Rmax ≥ 0.

For a given policy π, its value function V πM (s) = Eπ,T [
∑∞
t=0 γ

tr(st, at)|s0 = s] represents the
expected cumulative discounted reward for the trajectories collected by policy π starting from s0
under MDP M . We define dπM (s) to be the discounted occupancy measure of states for policy π and
MDP M , satisfying dπM (s) = (1− γ)

∑∞
t=0 γ

tdπt,M where the occupancy of time step t satisfying
dπt,M (s) =

∑
s′,a′ d

π
t−1,M (s′)π(a′|s′)T (s|s′, a′) and dπ0,M (s) = d0(s). Based on the definition of

state occupancy measure (Ho & Ermon, 2016), we further define the state-action distribution as
dπM (s, a) = dπM (s)π(a|s). The performance of policy π, which is the cumulative discounted reward
under M , can be decomposed as the inner product of the state-action distribution and reward function:
ηM (π) = E(s,a)∼dπM [r(s, a)]. The goal of policy optimization, or RL, is to maximize its performance
ηM (π) in the given MDP M . The goal of offline RL, however, is to optimize the policy with a static
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offline dataset D and with no additional online interactions. This line of research often seeks the
optimal policy within the support constraint of the offline dataset, rather than searching for the global
optimal policy. The effectiveness of this approach depends highly on whether the offline dataset
provides sufficient coverage of the state-action space in interest, which in turn limits its practical
application since a substantially large amount of dataset can still be hard to collect.

2.2 MODEL-BASED REINFORCEMENT LEARNING

To reduce the demand for interaction data, model-based RL algorithms extract dynamics models
from interaction data to generate synthetic trajectories. However, the learned dynamics can be
inaccurate at places where no interaction is available, and such error can accumulate over long-
term planning (Asadi et al., 2019), thus negatively affecting subsequent policy optimization (Janner
et al., 2019). In offline setting, various methods are proposed to mitigate this issue, such as reward
penalty (Yu et al., 2020; Sun et al., 2023), modification to MDP (Kidambi et al., 2020; Yu et al.,
2021), or adversarial training (Rigter et al., 2022), all of which align with the spirit of conservatism
in light of uncertainty. Alternatively, MAPLE (Chen et al., 2021) proposes to learn a dynamics-aware
policy on a bunch of model ensembles, which can identify and adapt to the real environment during
test time. However, the model ensemble in MAPLE is generated via supervised training on the offline
dataset, while in ReDM we are considering an extreme case where no or limited interaction data is
available. Such a scenario issues a demand for the efficiency of the model learning process as we
demonstrate in the next section.

2.3 ENVIRONMENT GENERATION

Environment generation is a commonly used technique that targets generating multiple MDPs which
share similar components or structures to the target environments, to improve the generalization
ability and robustness when deploying a policy. Several methods that have effectively improved
zero-shot generalization can be classified as instances of environment generation. Among them,
domain randomization (DR) (Peng et al., 2018; Tobin et al., 2017; Zhou et al., 2023; Kadokawa
et al., 2023) perturbs the parameters of a simulator designed by domain experts. Another example
is procedural content generation (PCG) (Cobbe et al., 2020; Küttler et al., 2020; Dutra et al., 2022;
Agarwal & Shridevi, 2023), which assumes an overall generation structure of the environment and
creates a range of MDPs by varying some pre-defined features according to random seeds.

In this paper, we are considering a more general scenario where neither such parameter ranges nor a
high-fidelity and adjustable simulator is available. Recent research (Khirodkar et al., 2018; Rigter
et al., 2022; Rigaki & Garcia, 2023) introduces adversarial training in environment generation, but
this may result in over-pessimistic and unsolvable dynamics (Dennis et al., 2020; Kirk et al., 2023;
Mediratta et al., 2023). While in ReDM, we also motivated to design our candidate tasks to effectively
facilitate the optimization. However, both DR and PCG require the pre-defined parameters range of
the environment or designed simulator to ensure that the generated environment is solvable.

3 METHOD

In this section, we introduce the ingredients of ReDM, which for the first time incorporates the
idea of rehearsal into the RL process. In Section 3.1, we present the overall framework of policy
rehearsing. In Section 3.2, we outline two principles of model generation, which we identify as keys
to efficient candidate dynamics generation. In Section 3.3, we propose an iterative algorithm as a
practical implementation. Lastly in Section 3.4, we explore ways to incorporate offline data to extend
ReDM towards application in such scenarios.

3.1 FRAMEWORK OF POLICY REHEARSING

In RL, the ultimate goal is to obtain a policy that performs well on a target MDP M∗ =
{S,A, T ∗, r, γ, d0)}. However, the target MDP is typically unavailable during the training pro-
cess, and optimizing the policy in one inaccurate environment may lead to potential risk of mismatch.
In policy rehearsing, we shift the focus to meta-optimizing the policy over a set of candidate dynamics
models. Specifically, we assume the dynamics differ only in their transition function, and let the
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Algorithm 1 Framework of Policy Rehearsing

1: Input: Initial context-based policy πθ, context extractor ϕψ, and knowledge K about the envi-
ronment (can be in any form).

2: Obtain the candidate model setMc via knowledge K.
3: Learn policy πθ and context extractor ϕψ overMc via Algorithm 3 in Appendix B.

spaceM = {(S,A, Ti, r, γ, d0)}i contains all possible dynamics. The target MDP, M∗, is the actual
MDP of interest and lies somewhere in the spaceM. Although M∗ is not available directly for policy
optimization, we can generate candidate models fromM to serve as proxies for optimization.

Unlike previous works that rely on a generative structure or simulator, we consider generating
dynamics models only based on simple underlying knowledge about the target environment, such as
the reward function, terminal function, or a rough estimation of transition. Such knowledge helps
to narrow down the whole hypothesis spaceM to a reasonable candidate setMc. For example,
reward functions aid in distinguishing good trajectories from bad ones, terminal functions early-
stop unrealistic trajectories, while the range of the state space prevents transitioning to unreachable
states, thus effectively eliminating unrealistic trajectories. In our setting, we consider generating the
transition models with such knowledge of reward and termination.

An adaptive policy πa is later trained on the set Mc to optimize the objective πa =
argmaxπ

∑
M∈Mc ηM (π). In order to adapt to various dynamics models, we adopt a context-based

policy to serve as the adaptive policy πa, which consists of two components: a context extractor ϕ and
context-dependent policy π, and a meta-training style pipeline to optimize the policy under different
dynamics in the training stage. Then we obtain the formulation for adaptive policy optimization:

Lrl =
∑∞

t=0
γtEst∼dπt,M ,at∼π(·|st,zt)[r(st, at) +H(·|st)], (1)

where zt = ϕ(ct) is context embedding of history ct = {s1, at, s2, · · · , at−1, st}. With a highly
expressive adaptive policy formulation, we can achieve near-optimal control in all dynamicsM ∈Mc

simultaneously. Thus, as long as the target M∗ could be roughly included in the setMc, the optimal
control can be achieved in the target environment. We summarize the framework of policy rehearsing
in Algorithm 1.

Random exhaustion of all models seems a way to construct M c. However, naively constructing
Mc can be inefficient as the space for qualified dynamics searching is still too large. It is almost
impossible to obtain all the models. Therefore, we turn to a more effective way by limited selection of
models from the whole set, where the selected models, called candidate models, aim to significantly
enhance the generalization of adaptive policy on the potential target environments. We discuss how
to select representative candidate models in Section 3.2.

3.2 PRINCIPLES OF MODEL GENERATION

To efficiently generate candidate dynamics, we first analyze how to improve the performance of the
learned adaptive policy. To begin with, we first characterize the gap between the candidate model set
Mc and the target MDP M∗.
Definition 3.1. (Optimal Policy Gap). Let all candidate dynamics inMc be identical to the target
MDP M∗ except for the transition function. The optimal policy gap ϵe is defined as the worst-case
performance gap between the optimal performance in each M ∈Mc and M∗:

max
M∈Mc

|ηM∗(π∗
M∗)− ηM (π∗

M )| ≤ ϵe,

where π∗
M∗ is the optimal policy in M∗ and π∗

M is the optimal policy in M .

This discrepancy highlights the candidate model set’s capability to derive a proficient policy in the
learned model itself. It can be optimized if the ad-hoc optimal policy π∗

M in each candidate M is
performant measured by the reward function. Instead of maintaining separate optimal policies for
each candidate dynamics, ReDM employs a single adaptive policy πa to achieve near-optimal control
in all dynamics. Consequently, it is necessary to consider the performance cost accompanying the
adaptation. We here make a simplified and mild assumption about the cost during the adaptation
process like (Chen et al., 2021),:
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Assumption 3.2. For any candidate MDP model M from Mc, the adaptive policy πa =
argmaxπ

∑
M ηM (π) satisfies

ηM (πa) ≥ ηM (π∗
M )− ϵa,

where π∗
M is the optimal policy in M and ϵa is the adaptive cost which takes a positive value.

Then we come to the following theorem, which describes the performance bound of policy rehearsing:
Theorem 3.3. Given an MDP model set {Mi} and its optimal adaptive policy πa =
argmaxπa

∑
Mi∈{Mi} ηMi

(πa), if the target MDP M∗ satisfies miniDTV(d
πa

Mi
, dπ

a

M∗) ≤ ϵm, where
ϵm > 0, then we have:

ηM∗(πa) ≥ ηM∗(π∗)− ϵe − 2Rmaxϵm − ϵa,

where π∗ is the optimal policy in M∗ and DTV(d
π
Mi
, dπM∗) = 1

2

∑
s,a |dπMi

(s, a) − dπM∗(s, a)|
denotes the total variance divergence.

The proof can be found in Appendix A.3. This theorem highlights the factors which bound the
performance loss when deploying the adaptive policy, namely ϵe and ϵm. Here, ϵe is determined by
the performance of the ad-hoc optimal policy on each dynamics. To control ϵe, we need to ensure
that the candidate model is capable of deriving a performant policy, i.e., to make sure that each
candidate is eligible for policy optimization. Secondly, the term ϵm measures the minimum distance
between the candidate model setMc and the target MDP M∗. A practical strategy to control this
term is to diversify the candidate set within our reach so that the target will fall into the vicinity of
the candidates with higher probabilities. Finally, the term ϵa describes the cost of the meta-policy in
identifying the dynamics characteristics. It is not solely dependent on the model generation process.
To sum up the intuitions from Theorem 3.3, we propose two principles that should be taken into
consideration when generating candidate dynamics: diversity and eligibility.

3.3 IMPLEMENTATIONS OF MODEL GENERATION

In this section we elaborate on how ReDM practically implements the aforementioned principles of
model generation, including diversity and eligibility, where:

(a) Diversity. Quantifying the divergence between models can be challenging since environment
dynamics is complex and high-dimensional in nature and we don’t assume the generative structures or
available probing data in ReDM. Inspired by recent advances in applying adversarial training (Good-
fellow et al., 2016), ReDM leverages the performance gap of current policy to measure the divergence
between models. Specifically, suppose at k-th iteration we have a candidate model setMc

k and an
adaptive policy πak which has been optimized overMc

k such that πak = argmaxπ′
∑
M∈Mc

k
ηM (π′).

If we manage to generate a new candidate dynamicsM ′ where πak performs poorly, thenM ′ should be
distinct from previous candidate modelsMc

k in both trajectory and single step level. The relationship
between model divergence and policy performance can be characterized with Lemma 3.4.

Lemma 3.4. Given a set of MDP modelsM = {Mi}ki=1, policy π = argmaxπ′
∑k
i=1 ηMi

(π′), and
an MDP modelMk+1 satisfying mini∈{1,··· ,k} ηMi

(π)−ηMk+1
(π) ≥ δ, then we have the occupancy

discrepancy between Mk+1 andM that satisfies mini∈{1,··· ,k}DTV(d
π
Mi
, dπMk+1

) ≥ δ
2Rmax

, and

single-step discrepancy satisfies mini∈{1,··· ,k} Es,a[DTV(Ti(·|s, a), Tk+1(·|s, a))] ≥ δ(1−γ)
2Rmax

,, where
Ti is the transition of the MDP model Mi.

The derivation is provided in Appendix A.2. This motivates us to iterate between adaptive policy
optimization and candidate dynamics generation, and for the k-th generation, our goal is to find a
new dynamics model Mt+1 that satisfies: Mk+1 = argminM ηM (πak). Note that when πak is fixed,
this objective can be deemed as a standard RL objective where M is the agent and πak serves as the
environment. The objective can further be rewritten as

Mk+1 = argmin
M

E
(s,a)∼d

πa
k

M ,s′∼M
[rc(s′)], (2)

where rc(s′) = Ea′∼πa
k(·|s′)[r(s

′, a′)]. The derivation is given in Appendix A.1. In principle, any RL
algorithm can be employed to optimize this objective, with the dynamics model being treated as a
distinct agent that needs to be learned.
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(b) Eligibility. If a dynamics model is eligible, it should be able to produce viable paths toward high
returns with a given reward function. To enhance eligibility, we encourage the generated candidate
dynamics to transit to states from which a planning-based algorithm can obtain high returns, by
adding state-dependent intrinsic reward defined as re(s′) = maxτi(s′)R(τi(s

′)), where {τi(s′)}Ni=1

are random trajectories starting from s′ and R(τi(s′)) =
∑
t γ

trt denotes the discounted cumulative
reward of the trajectory. The reward is computed on-the-fly and utilized to optimize the generated
dynamics models by an RL method. To sum up, our final objective for model generation is an RL
objective involving both rc and re:

M c
k+1 = argmax

M
E
(s,a)∼d

πa
k

M ,s′∼M
[−rc(s′) + λre(s′)], (3)

where λ balances diversity and eligibility. In our implementation, we employ Proximal Policy
Optimization (PPO) (Schulman et al., 2017) to optimize this objective, and the pseudo-code of model
generation in ReDM is presented in Algorithm 2 (see Appendix B).

3.4 MODEL GENERATION WITH OFFLINE DATA

As tasks become increasingly complex, the hypothesis space of dynamics models can catastrophically
explode such that the generated candidate models cannot effectively approximate the target environ-
ment. In such circumstances, generating dynamics with the guidance of reward function solely can
no longer suffice policy rehearsing. One relaxed assumption is the availability of pre-collected offline
interaction data from the target or a misspecified but similar environment. Such data can help narrow
down the hypothesis space of dynamics model since it provides knowledge about the ground truth
transition of the target environment on state-action pairs covered by the offline dataset. In light of
this, we extend the framework of ReDM by augmenting it with a regularization term to incorporate
the offline dataset, leading to the following objective:

M c
k+1 = argmax

M
E
(s,a)∼d

πa
k

M ,s′∼M
[−rc(s′) + λre(s′)] + αE(s,a,s′)∼Dβ

[log T (s′|s, a)], (4)

where Dβ is the given offline dataset and α is the coefficient balancing RL and regularization. The
regularization term resembles previous offline model-based RL algorithms, which extract an accurate
model from the offline dataset. However in ReDM, we don’t impose strict demands on the dataset,
and the dataset can be small in amount or slightly mismatched in dynamics. Another remark is
that we used a pre-trained policy as the planner to calculate the eligibility reward re. The extended
algorithm is termed ReDM-o, and the pseudo-code is provided in Appendix B.

4 EXPERIMENTS

In this section, we aim to investigate the following questions: (1) Can policy rehearsing and ReDM
facilitate policy optimization when no interaction data is available? (See Section 4.1). (2) As an
environment generation method, can ReDM efficiently approximate the target environment? Are the
building blocks of ReDM really necessary? (See Section 4.2). (3) Does ReDM-o, the ReDM extension
with limited or mismatched data, aid policy optimization in complex tasks? (See Section 4.3).

4.1 REDM WITH NO INTERACTION DATA

To answer question (1), we conduct experiments on three representative Gym (Brockman et al., 2016)
environments with continuous action spaces, namely InvertedPendulum, MountainCar (Continuous)
and Acrobot. To validate ReDM, we instantiate each environment with five tasks by varying specific
parameters of its simulator. For InvertedPendulum, the five tasks are created by setting the gravity
coefficient to 0.5, 0.8, 1.0, 1.2 and 1.5 times the standard value of −9.81. For MountainCar, the
five tasks differ in the angle of the mountain which is controlled by a parameter named coef . We
set coef = 2.0, 2.5, 3.0, 3.5 and 4.0, respectively, with the original value being 3.0. For Acorbot,
we change the frequency time of the 4th-order Runge-Kuta method to 0.15, 0.2, 0.25, 0.3 and 0.4,
respectively. In the model generation process, we only utilize the true reward function, the terminal
function, and we sample the initial states for rollouts from a Gaussian distribution N (0, I). We test
ReDM with 5 independent runs for each task and record the means and standard deviations. Figure 1
illustrates the relative performance of ReDM against a random policy, and it can be observed that
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Figure 1: Relative performance between ReDM and the random policy on different environments
with different hyper-parameters.
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Figure 2: Model loss of ReDM on different environments. All results are averaged across 5 seeds.

ReDM significantly outperforms the random policy when no interaction data is available, indicating
the effectiveness of policy rehearsing and ReDM. We also provide the learning curves in Appendix F.
To illustrate the adaptation ability of the final learned policy, we fine-tune it with a few online
trajectories and compare its performance to learning from scratch with the same policy architecture
and the same amount of data The learning curves are plotted in Figure 3. Within a few trajectories,
our learned adaptive policy could make a quicker adaptation than directly learning.

4.2 A CLOSER LOOK AT THE MODEL GENERATION IN REDM
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Figure 3: Learning curves of ReDM tuning
and direct online learning on InvertedPendu-
lum. All results are averaged across 5 seeds.

In this section we will check each building block
of ReDM to verify where improvements stem
from. We start with introducing minimal model
error ∆M

s,a, which is defined as the minimal er-
ror achieved by a set of models M, i.e., ∆M

s,a :=

minM∈Mc ∥M(s, a)− s′∥2 where s′ is the ground-
truth transition of the target environment and M(s, a)
is the predicted next state by MDP model M . To
track minimal model error, at the end of each iter-
ation, we collect data by the learned policy in the
target environment and report the average minimal
model error ∆̄M

s,a over the collected data. As shown
in Figure 2, with more candidate models generated
and included into the setMc, the average error ∆̄Mc

s,a gradually decreases, indicating that the set of
candidate dynamics more closely approximates the target environment. This decrease in minimal
model error in turn results in improved performance. Take MountainCar (Continuous) as an example,
the minimal model error (orange line) reaches its lowest with approximately 20 models, which
corresponds to roughly 200 gradient steps at which the performance of the adaptive policy begins to
improve. To provide a comparison, we generate another candidate model setMrandom by iteratively
adding random dynamics models. However, we found that the minimum model error of this set (red
line in the figure) is larger than that of ReDM with a non-negligible gap.

Then we visualize the information of trajectories generated by learned models. For the InvertedPendu-
lum task, since we have generated dynamics models and learned the policy correspondingly, we use
the learned policy to rollout in the real environment (1.0 times gravity) and the generated candidate
models respectively. We select three models, including the most accurate one and two randomly
selected models. We plot the angles and positions in the states changed over time steps in Figure 4(a)
and 4(b). The results indicate that although the other generated models are quite distinguished from
the real environment, there exists one model that is similar to the target environment.
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Figure 4: The data rollout by timesteps from distinguished generated models and target environments
in InvertedPendulum. (a) is the position information of the data. (b) is the angle information of the
data. There exists a model (red line) that could generate similar data as real environment (blue line).
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Figure 5: The t-SNE results of the data rollout from distinguished generated models. We use the final
checkpoint of the adaptive policy to roll out on ten candidate models in the candidate set and collect
the interaction data. The data are then reduced into two-dimension via t-SNE. (a) is the projected
data from our generated models, and (b) is the projected data from random parameterized models.
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Figure 6: The sorted relative performance
between the first 10 generated models and
target environment in each policy, where the
red column is the model of ReDM, the green
is that without diversity, and the blue is ReDM
without eligibility.

To illustrate the diversity of the candidate model set
generated by ReDM, we employ t-SNE (Van der
Maaten & Hinton, 2008) to visualize the distribution
of the interaction data produced by each candidate
model in Figure 5(a). Similarly we present the t-SNE
ofMrandom in Figure 5(b). It is evident from the plots
that the data manifolds of each candidate generated
by ReDM are clearly grouped into different clusters,
which means ReDM generates more distinct dynam-
ics and provides more benefits for policy rehearsing
compared to the baseline.

Lastly, we ablate the design of diversity and eligi-
bility. As a preliminary check, we run ReDM on
InvertedPendulum without the diversity reward or the
eligibility reward. We found that neither of them
yields a valid policy. To identify the root cause of the
degeneration, we calculate the accumulated return of
the meta-policy given by (1) ReDM, (2) ReDM without diversity, and (3) ReDM without eligibility
in their generated models. Specifically, upon the generation of the 10th candidate model, we use the
policy at that iteration to interact with each candidate model to obtain the performances of the i-th
candidate, i ∈ [10]. Later we rollout the same policy in the ground truth environment to obtain the
reference performance. The relative performance is calculated as the i-th performance minus the
reference performance and reported in Figure 6. We sort the indices of candidate models according
to their relative performance. The result reveals that (1) without eligibility, candidate models tend to
be overly pessimistic, resulting in a significantly lower accumulated return than the ground truth; (2)
without diversity, the candidate models can be overly optimistic, as the policy achieves much higher
performance in all candidate models; (3) by incorporating both diversity and eligibility constraints,
the evaluations of the policy are diversified and there even exists one model (e.g., model 3 in Figure 6)
whose evaluation is similar to that in the target environment.
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4.3 REDM-O WITH INTERACTION DATA

Table 1: Performance of ReDM-o and baselines on D4RL with
limited data. All scores presented are averaged over 5 seeds and
normalized by the way proposed by (Fu et al., 2020). We bold the
highest mean. Hyper-parameters can be found in Appendix 3.

Type Data Size ReDM-o MB-best MF-best

HalfCheetah-Random 200 2.5± 0.9 2.2 0.6
HalfCheetah-Random 5000 19.0± 1.5 9.3 9.5

Hopper-Random 200 23.8± 8.0 14.3 1.1
Hopper-Random 5000 31.4± 0.3 13.8 2.5

In this section, we aim to
test ReDM-o, which incorpo-
rates external offline data or
demonstrations in more com-
plex tasks to answer the ques-
tion (3). Our evaluations in
this section differ from stan-
dard offline RL in that we test
on offline data limited in both
quantity and quality, or data
collected from mismatched en-
vironments. Standard offline
RL methods may be compromised in these settings, as the coverage, quality and un-
biasedness of the data are vital for policy optimization. However, we expect ReDM-
o to have a better performance as ReDM-o does not rely solely on the provided data.
We compare ReDM-o with several offline RL methods, such as model-free methods including CQL
(Kumar et al., 2020), TD3BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2022), and model-based
methods including MOPO (Yu et al., 2020) and MAPLE (Chen et al., 2021). Here MAPLE is a
model-based method that generates an ensemble of dynamics models via supervised learning and also
employs an adaptive policy to meta-train on the generated dynamics. As it only involves supervised
learning, it can be a direct ablation of the model generation designs in ReDM-o. We report the best
results among the model-free baselines (MF-best) and model-based baselines (MB-best).

ReDM-oMAPLE MOPO IQL TD3BC CQL0
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Figure 7: Averaged performance of ReDM-o
and baselines, which are evaluated on all the
dataset of D4RL. For each dataset, methods
are evaluated on environment, where the grav-
ity changed by multiplying 0.5, 1.0, 1.5. All
scores presented are averaged over 5 seeds
and normalized as (Fu et al., 2020). Hyper-
parameters can be found in Appendix 3.

For the first experiment, we sample a subset of data,
which is only 200 or 5000 transitions, from random
datasets in D4RL and feed the samples to each al-
gorithm. Results are presented in Table 1. The per-
formance of standard offline RL algorithms signifi-
cantly deteriorates when data is scarce and of poor
quality, while ReDM-o achieves higher performance
compared to the baselines, including MAPLE, which
validates the effectiveness of our model generation
process. To comprehensively evaluate the generaliza-
tion ability, we test ReDM-o with full datasets from
D4RL, including domains like HalfCheetah, Hopper,
Walker2D and dataset qualities like random, medium,
medium-replay and medium-expert. We further eval-
uate the optimized meta-policies in mismatched dy-
namics, by multiplying the coefficient of gravity by
0.5, 1.0, and 1.5. We report the scores averaged over
all tasks and all gravity factors in Figure 7. ReDM-o
is still performant compared to other baselines. For
more detailed information, such as the performance
of the ReDM-o and baselines on each task and gravity coefficient, please refer to Appendix E.

5 CONCLUSION AND FUTURE WORK

In this paper, we aim to optimize policies in scenarios where interactions or rich offline data are not
available. Our method, Policy Rehearsing via Dynamics Model Generation (ReDM), incorporates
the idea of rehearsal into reinforcement learning and generates candidate dynamics models for
policy rehearsing. To scale to practical tasks, we establish principles of diversity and eligibility for
model generation and also discuss how to leverage offline demonstrations to further narrow down the
hypothesis space of models. We tested ReDM with three different settings: learning with no data, with
a limited amount of data, and with mismatched data, and ReDM demonstrates consistent improvement
in these scenarios. This work offers a fresh perspective on reevaluating reinforcement learning and
dynamics model generation. While our method primarily concentrates on generating candidate
models, the exploration of adaptive policy is still an avenue that requires further investigation.
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A PROOF

Lemma A.1. For the objective M = argminM ′ ηM ′(π), where ηM (π) = E(s,a)[r(s, a)], and T is
the transition of M , the objective is equal to

M = argmin
M

E(s,a)∼dπM ,s′∼T [r
c(s′)],

where rc(s′) = Ea′∼π(·|s′)[r(s′, a′)].

Proof. For the objective ηM (π), we have

ηM (π) = E(s,a)∼dπM [r(s, a)]

= (1− γ)
∞∑
t=0

γtE(s,a)∼dπt,M [r(s, a)]

= (1− γ)E(s,a)∼d0 [r(s, a)] + (1− γ)
∞∑
t=1

γtE(s′,a′)∼dπt−1,M ,s∼T (·|s,a),a∼π(·|s)[r(s, a)]

= (1− γ)E(s,a)∼d0 [r(s, a)] + (1− γ)
∞∑
t=1

γtE(s′,a′)∼dπt−1,M ,s∼T (·|s,a)[Ea∼π(·|s)[r(s, a)]]

= (1− γ)E(s,a)∼d0 [r(s, a)] + (1− γ)
∞∑
t=1

γtE(s′,a′)∼dπt−1,M ,s∼T (·|s,a)[r
c(s′)]

= (1− γ)E(s,a)∼d0 [r(s, a)] + γ(1− γ)
∞∑
t=0

γtE(s′,a′)∼dπt,M ,s∼T (·|s,a)[r
c(s′)]

= (1− γ)E(s,a)∼d0 [r(s, a)]︸ ︷︷ ︸
a

+ γE(s,a)∼dπM ,s′∼T [r
c(s′)]︸ ︷︷ ︸

b

,

where only the part (b) is related with the transition model as the part (a) is only with the initial
distribution. Thus, minimizing ηM (π) is equal to minimizing part (b).

Lemma A.2 (Lemma 3.4). Given a set of MDP models M = {Mi}ki=1, policy π =

argmaxπ′
∑k
i=1 ηMi

(π′), an MDP model Mk+1 satisfying mini∈{1,··· ,k} ηMi
(π)− ηMk+1

(π) ≥ δ,
where δ is the performance gap, we have the cumulative discrepancy between the new model and the
model set satisfying

min
i∈{1,··· ,k}

DTV(d
π
Mi
, dπMk+1

) ≥
δ

2Rmax

and single step discrepancy satisfying

min
i∈{1,··· ,k}

Es,a[DTV(Ti(·|s, a), Tk+1(·|s, a))] ≥
δ(1− γ)
2Rmax

,

where Ti is the transition of MDP modelMi andDTV(d
π
M1
, dπM2

) = 1
2

∑
s,a |dπM1

(s, a)−dπM2
(s, a)|

is the total variance divergence.

Proof. First, we have

min
i
ηMi

(π)− ηMk+1(π) = min
i

∑
s,a

r(s, a)|dπMi
− dπMk+1

|,

≤ min
i

∑
s,a

Rmax|dπMi
− dπMk+1

|,
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then as mini ηMi
(π)− ηMk+1(π) ≥ δ, we have

min
i

∑
s,a

Rmax|dπMi
− dπMk+1

| ≥ δ

min
i

1

2

∑
s,a

Rmax|dπMi
− dπMk+1

| ≥ δ

2

min
i

1

2

∑
s,a

|dπMi
− dπMk+1

| ≥ δ

2Rmax

min
i
DTV(d

π
Mi
, dπMk+1

) ≥
δ

2Rmax
.

For the single step transition, from the theoretical results in (Xu et al., 2020b), the relationship
between the TV divergence of two transitions of model M1 and M2 and their occupancy measure
under model M̂ is

DTV(d
π
M1
, dπM2

) ≤ Es,a[DTV[T1(·|s, a), T2(·|s, a)]]
(1− γ)

,

where T1 and T2 are the transitions of M1 and M2. Finally we have

min
i

Es,a[DTV(Ti(·|s, a), Tk+1(·|s, a))] ≥
δ(1− γ)
2Rmax

.

The proof is completed.

Lemma A.3 (Theorem 3.3). Given a set of MDP model {Mi} and its optimal adaptive policy πa =
argmaxπa

∑
Mi∈{Mi} ηMi

(πa), if the target MDP model M∗ satisfies miniDTV(d
πa

Mi
, dπ

a

M∗) ≤ ϵm,
where ϵm is a positive value, we have

ηM∗(πa) ≥ ηM∗(π∗)− ϵe − 2Rmaxϵm − ϵa,
where π∗ is the optimal policy in M∗.

Proof. For the distance condition miniDTV(d
πa

Mi
, dπ

a

M∗) ≤ ϵm, we have

min
i
ηMi

(πa)− ηM∗(πa) = min
i

∑
s,a

r(s, a)|dπMi
− dπM∗ |

≤ min
i

∑
s,a

Rmax|dπMi
− dπM∗ |

= min
i

2RmaxDTV(d
π
Mi
, dπM∗)

= 2Rmaxϵm.

Then by the assumption, we have
ηMi

(πa) ≥ η∗Mi
− ϵ

≥ ηM∗(π∗)− ϵe − ϵa,
where π∗ is the optimal policy in the model M .

Then ∀i that ηMi
(πa) ≥ ηM∗(π∗)− ϵe − ϵa and ∃i that ηMi

(πa) ≤ ηM∗(πa) + 2Rmaxϵm, finally
we have

ηM∗(πa) ≥ ηM∗(π∗)− ϵe − 2Rmaxϵm − ϵa.
The proof is completed.

Then we provide a simple analysis for convergence:
Lemma A.4. Given a set of MDP models Mc

k = {Mi}ki=1 ⊂ M, policy πk =

argmaxπ′
∑k
i=1 ηMi(π

′), and an MDP model Mk+1 ∈ M satisfying mini∈{1,··· ,k} ηMi(πk) −
ηMk+1

(πk) = δk and Mk+1 = argminM∈M ηM (πk), if we assume that ηM (πk+1) − ηM (πk) =
0,∀k, ∀M ∈ M \Mc

k+1 and mini∈{1,··· ,k} ηMi
(πk) − mini∈{1,··· ,k+1} ηMi

(πk+1) ≥ 0, which
implies an increasing adaptive cost by k, then for any ϵ > 0, there must exists a certain K, for any
k > K we have δk < ϵ.
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Algorithm 2 Candidate Model Generation

1: Input: Context-based policy πθ parameterized by θ and context extractor ϕψ parameterized by
ψ.

2: Initialize a new candidate model M , with its transition function Tµ parameterized by µ.
3: Initialize an empty data buffer Dmodel = ∅.
4: for i = 1 to Emodel do
5: Sample initial state s0.
6: for t = 0 to H do
7: Sample action at ∼ πθ(·|st, ϕψ(ct)), where ct is the context containing history transitions.
8: Sample next state st+1 ∼ Tµ(·|st, at) and calculate the reward rct .
9: Sample N trajectories from st+1 with random policy to compute eligible reward ret (st+1)

by Eq. 2.
10: Mix reward −rct with ret by Eq. 3.
11: Add data to model buffer Dmodel.
12: end for
13: Update µ with model buffer by PPO.
14: Reset the data buffer Dmodel = ∅.
15: end for
16: Return candidate model M .

Proof. First, we have

min
i∈{1,··· ,k}

ηMi
(πk)− ηMk+1

(πk) ≥ min
i∈{1,··· ,k}

ηMi
(πk)− ηMk+2

(πk)

≥ min
i∈{1,··· ,k}

ηMi
(πk)− ηMk+2

(πk+1)

≥ min
i∈{1,··· ,k}

ηMi(πk)− min
i∈{1,··· ,k+1}

ηMi(πk+1)

+ min
i∈{1,··· ,k+1}

ηMi(πk+1)− ηMk+2
(πk+1)

≥ min
i∈{1,··· ,k+1}

ηMi
(πk+1)− ηMk+2

(πk+1)

Thus, we have δk ≥ δk+1. And when we have all the models in our candidate set, δk should be zero.
δk will converge to zero by the increasing of k.

The theorem demonstrates that as the number of generated models increases, it becomes increasingly
difficult to find models that perform poorly within the hypothesis space. This implies that our policy
gradually adapts to the entire hypothesis space.

B ALGORITHMS

Algorithms 2∼5 are the pseudo-codes of candidate model generation, policy optimization, candidate
model generation with offline data, ReDM and ReDM-o, respectively.

Algorithm 2 describes the process of generating one candidate model. First, we initialize a parameter-
ized dynamics model Tµ as the candidate model M . In lines 2-10, we rollout the current meta-policy
πθ on the candidate model M . At each timestep, the meta-policy selects actions based on the state st
and the context feature zt = ϕψ(st), and the model predicts the next state st+1 and the immediate
reward rct . In line 7, we use a random shooting planner to compute the eligibility reward ret . After the
data collection, we employ Proximal Policy Optimization (PPO) to optimize the candidate model
(line 11). This process will repeat for Emodel epochs, after which the new candidate will be returned.

Algorithm 3 summarizes the optimization of the meta-policy. The algorithm takes up-to-date meta
policy πθ, the associated context encoder ϕψ, and the current candidate model set Mc as input.
During each update epoch, we randomly select a candidate model from the set and rollout the
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Algorithm 3 Policy Optimization

1: Input: Context-based policy πθ and context extractor ϕψ , candidate model setMc.
2: Initialize the data buffer Dpolicy = ∅.
3: for i = 1 to Epolicy do
4: Randomly sample a modelM c fromMc as current model. Denote T c as its dynamics function,

and sample initial state s0.
5: for t = 0 to H do
6: Sample action at ∼ πθ(·|st, ϕψ(ct)), where ct is the context containing history transitions.
7: Sample next state st+1 ∼ T c(·|st, at) and calculate the reward rt.
8: Add reward penalty to rt based on the uncertainty of models.
9: Add (st, at, st+1, rt) to dataset Dpolicy.

10: end for
11: Update θ and ψ with Dpolicy using SAC.
12: end for
13: Return context-based policy πθ and context extractor ϕψ

Algorithm 4 ReDM

1: Initialize the context-based policy πθ and the context encoder ϕψ .
2: Initialize the candidate model setMc = ∅.
3: for k = 1 to Etotal do
4: Generate a new candidate dynamics model M via Algorithm 2.
5: LetMc ←Mc ∪ {M}.
6: Update policy πθ and context extractor ϕψ via Algorithm 3.
7: end for

meta-policy to collect data (line 3-8), with which we update the meta-policy and the encoder using
SAC (line 9). The optimization continues for Epolicy epochs.

The pseudo-code for ReDM is outlined in Algorithm 4. ReDM iteratively performs policy optimiza-
tion and candidate model generation. In each iteration, it will call Algorithm 2 to generate a new
candidate dynamics model, followed by meta-policy optimization by Algorithm 3.

For ReDM-o, it differs slightly from ReDM only in the model generation process due to incorporating
the offline data. We list the pseudo-code for candidate model generation in Algorithm 5. Major
differences are (1) the model is pre-trained to fit the offline data after initialization, and further
updated via Eq. 4 in the loop; (2) we used a pre-trained policy πb in replace of the random planner
for efficiency. The policy πb is trained via SAC with the offline data, plus an additional BC regularize
similar to TD3+BC (Fujimoto & Gu, 2021); (3) the initial states are sampled from offline data.
Apart from these, the offline dataset is also involved in policy optimization, as we follow existing
practices (Yu et al., 2020) to train the meta-policy with a mixture of offline data and synthetic rollouts.

C DETAILS OF EXPERIMENTS

In this section, we introduce the baselines and provide details for how we obtained the results in
Section 4.

C.1 BASELINE METHODS

IQL (Kostrikov et al., 2022). Implicit Q-Learning aims to mitigate errors caused by out-of-distribution
data by focusing on estimating the Q-value and improving the policy solely within the in-distribution
data. The algorithm achieves this through two main steps: value iteration using expectile regression
and policy learning using advantage-weighted regression. During value iteration, IQL employs
expectile regression to approximate the in-sample optimal state value, by assigning higher weights to
samples with positive advantages. The policy optimization behavior clones offline data with a weight
of exponent of the advantage. The whole process eliminates the risk of incorporating out-of-dataset
actions, thus providing a more safe and robust improvement.

17



Published as a conference paper at ICLR 2024

Algorithm 5 Candidate Model Generation with Offline Data

1: Input: Context-based policy πθ parameterized by θ and context extractor ϕψ parameterized by
ψ. Offline data buffer Doffline and a pre-trained policy πb for planning.

2: Initialize a new candidate model M , with its transition function Tµ parameterized by µ. Fit Tµ
with the offline data for several epochs.

3: Initialize an empty data buffer Dmodel = ∅.
4: for i = 1 to Emodel do
5: Sample initial state s0 from Doffline.
6: for t = 0 to H do
7: Sample action at ∼ πθ(·|st, ϕψ(ct)), where ct is the context containing history transitions.
8: Sample next state st+1 ∼ Tµ(·|st, at) and calculate the reward rct .
9: Sample N trajectories from st+1 with πb to compute eligible reward ret (st+1) by Eq. 2.

10: Mix reward −rct with ret by Eq. 3.
11: Add data to model buffer Dmodel.
12: end for
13: Update µ with Dmodel and Doffline by Equation 4.
14: Reset the data buffer Dmodel = ∅.
15: end for
16: Return candidate model M .

TD3BC (Fujimoto & Gu, 2021). Twin Delayed Deep Deterministic Policy Gradient with Behavior
Cloning combines the TD3 (Twin Delayed Deep Deterministic Policy Gradient) and behavior cloning
techniques. TD3BC incorporates delayed updates for the target Q-networks, which further stabilizes
the learning process. For policy improvement, TD3BC additionally incorporates a regularization
term which forces the policy to imitate actions in offline data.

CQL (Kumar et al., 2020). Conservative Q-Learning addresses the problem of overestimation in
Q-learning methods and provides a conservative estimate of the Q-values to ensure cautious policy
updates. It achieves this by adding a regularization term to the standard Q-learning objective. This
term penalizes OOD actions with high Q-values. By doing so, CQL encourages the agent to be more
conservative and avoids overly optimistic estimates.

MOPO (Yu et al., 2020). Model-Based Offline Policy Optimization is an algorithm that utilize
the dynamics model to learn a more generalizable policy than model-free methods. The algorithm
consists of two main steps: model learning and policy optimization. In the model learning phase,
MOPO trains a dynamics model using the offline dataset, which is used to generate synthetic rollouts.
Later, MOPO combines the offline data and the synthetic rollouts for policy optimization. To account
for model bias or model error, MOPO penalizes the reward of the synthetic rollouts based on the
uncertainty of the models.

MAPLE (Chen et al., 2021). Model-Based Adaptive Policy Learning is a reinforcement learning
algorithm that combines dynamics models and context-based policies to learn adaptive policies in
complex tasks. In MAPLE, the model learning process is the same as that in other model-based
methods like MOPO, but it introduces an RNN policy to fit different dynamics of ensemble models.
With the RNN policy, MAPLE can adaptively handle the OOD area in the target environment.

Code Sources. For model-free offline algorithms including TD3BC, CQL and IQL, we use imple-
mentations from CORL (Tarasov et al., 2022), and keep the hyperparameter identical to the original
papers. For MOPO and MAPLE, we used the implementation from the OfflineRL codebase 1. All
parameters are kept the same as their original papers.

C.2 REDM

The hyperparameters we used are listed in Table 2 (for ReDM) and Table 3 (for ReDM-o). The
hyper-parameters of concern include:

• λ, which balances between the diversity reward and eligibility reward in Eq. 3.

1https://github.com/polixir/OfflineRL
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Table 2: Hyper-parameters used in experiments without interaction data.

Model Generation Policy Optimization Others

Environment λ N Penalty H Emodel Epolicy Etotal

InvertedPendulum 0.2 50 - 20 200 20 25
MountainCarContinous 0.2 50 - 20 200 20 25

AcRobot 0.2 50 - 20 200 20 25

Table 3: Hyperparameters used in ReDM-o experiments with D4RL datasets.

Model Generation Policy Optimization Others

Environment Type λ α∗ N Penalty H Emodel Epolicy Etotal

HalfCheetah random 0.1 0.01 50 0.25 20 5 50 40
HalfCheetah medium 0.1 0.01 50 0.25 20 5 50 40
HalfCheetah medium-replay 0.1 0.01 50 0.25 20 5 50 40
HalfCheetah medium-expert 0.1 0.01 50 0.5 20 5 50 40

Hopper random 0.1 0.01 50 0.25 20 5 50 20
Hopper medium 0.1 0.01 50 0.25 20 5 50 20
Hopper medium-replay 0.1 0.01 50 0.25 20 5 50 20
Hopper medium-expert 0.1 0.01 50 0.25 20 5 50 20

Walker2d random 0.1 0.01 50 0.25 10 5 50 20
Walker2d medium 0.1 0.01 50 0.25 20 5 50 20
Walker2d medium-replay 0.1 0.01 50 0.25 10 5 50 20
Walker2d medium-expert 0.1 0.01 50 0.25 20 5 50 20

Pen cloned 0.1 0.01 50 0.1 10 5 50 10
Pen human 0.1 0.01 50 0.1 10 5 50 10

Hammer cloned 0.1 0.01 50 0.1 10 5 50 10
Hammer human 0.1 0.01 50 0.1 10 5 50 10

• N , which is the number of trajectories that the planner collects to compute the eligibility
reward.

• Penalty, which is the coefficient of reward penalty calculated the same as that in MOPO (Yu
et al., 2020) and MAPLE (Chen et al., 2021).

• H , which is the policy rollout horizon.

• Emodel, Epolicy, Etotal, which are the training epochs for model optimization, policy opti-
mization, and outer loop respectively.

For ReDM-o experiments, there is an additional hyper-parameter α in Eq. 4. In the implementation,
we actually multiply the coefficient on the loss terms defined by diversity and eligibility constraints,
rather than the regularization term. Thus, we use α∗ to denote the coefficient, and its value is listed in
Table 3. For those parameters that are not involved in the tables, we kept them identical to MAPLE
for a fair comparison.

C.3 ENVIRONMENTS

InvertedPendulum. It is based on the CartPole enrironment. In this environment, there is a cart that
can move linearly along a track. Attached to one end of the cart is a pole, which has another end that
is free to move. The objective is to balance the pole on top of the cart by applying forces to the cart.
The available actions in this environment involve pushing the cart either to the left or right.

MountainCarContinuous. The Mountain Car is a deterministic MDP that involves a car positioned
stochastically at the bottom of a sinusoidal valley. In this version of the problem, the car can take
continuous actions by applying accelerations in either direction. The objective of the MDP is to
skillfully accelerate the car to reach the goal state situated on top of the right hill.

Acrobot. The Acrobot is a dynamic system comprised of two links connected linearly to form a
chain, with one end of the chain fixed. The joint between the two links is actuated, allowing for
the application of torques. The objective of the Acrobot task is to strategically apply torques to the
actuated joint in order to swing the free end of the chain above a specified height, starting from an
initial state where the chain hangs downwards.
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Table 4: Performance of ReDM-o and other baselines on D4RL benchmark with limited data. All
scores presented are averaged over 5 seeds and normalized by the way proposed by (Fu et al., 2020).
We bold the highest mean. Hyper-parameters for each task can be found in Table 3.

Env Type Size ReDM-o MAPLE MOPO CQL IQL TD3BC

HalfCheetah Random 200 2.5± 0.9 1.0 2.2 −1.5 0.6 −1.5
HalfCheetah Random 5000 19.0± 1.5 9.3 2.4 1.7 2.2 9.5

Hopper Random 200 23.8± 8.0 14.3 0.6 0.8 1.1 0.9
Hopper Random 5000 31.4± 0.3 13.8 0.7 0.8 2.5 1.6
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Figure 8: Learning curves of ReDM-o on D4RL halfcheetah-random dataset with different hyper-
parameters. All results are averaged acroos 5 seeds.

Hopper. The Hopper environment in MuJoCo features a 2D one-legged robot, resembling a grasshop-
per or a pogo stick. The goal is to control the robot’s actions to make it hop and maintain balance
while moving forward. The agent must learn to apply appropriate forces to the leg joints to generate
hopping motions and effectively navigate the environment.

Walker2d. The Walker2d environment simulates a 2D bipedal robot with two legs. The objective is
to control the robot’s movements to make it walk and maintain stability. The agent needs to learn
how to generate coordinated leg movements and adjust joint angles to ensure smooth and balanced
walking gaits.

HalfCheetah. The HalfCheetah environment represents a 2D model of a cheetah-like quadruped
robot. The task is to control the robot’s actions to achieve fast and efficient running. The agent
must learn to generate coordinated leg movements and apply appropriate forces to the leg joints to
maximize speed and maintain stability during locomotion.

D ADDITIONAL RESULTS OF EXPERIMENTS WITH LIMITED DATA

The detailed results of all the methods are shown in Table 4.

E ADDITIONAL RESULTS OF EXPERIMENTS WITH MISMATCHED DATA

We chose 12 tasks of D4RL, including 3 domains (HalfCheetah, Hopper and Walker2D) and 4 dataset
qualities (random, medium, medium-replay and medium-expert). To create a mismatch setting, the
test environment is modified by scaling its gravity by 0.5, 1.0 and 1.5, and 1.0 means the unbiased
case. All results are listed in Table 5. ReDM-o outperforms other methods on the majority of the tasks

0.0 0.5 1.0 1.5 2.0
Epochs 1e3

20

40

60

Ep
is

od
ic

 R
et

ur
n

halfcheetah-medium gravity=0.5

0.0 0.5 1.0 1.5 2.0
Epochs 1e3

0

20

40

60

Ep
is

od
ic

 R
et

ur
n

halfcheetah-medium gravity=1.0

0.0 0.5 1.0 1.5 2.0
Epochs 1e3

0

20

40

Ep
is

od
ic

 R
et

ur
n

halfcheetah-medium gravity=1.5

Figure 9: Learning curves of ReDM-o on D4RL halfcheetah-medium dataset with different hyper-
parameters. All results are averaged acroos 5 seeds.
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Table 5: Performance of ReDM-o and other baselines on D4RL benchmark. All scores presented are
averaged over 5 seeds and normalized by the way proposed by (Fu et al., 2020). We bold the highest
mean. Hyper-parameters for each task can be found in Table 3.

Environment Type Parameter ReDM-o MAPLE MOPO IQL TD3BC CQL

HalfCheetah random Gravity-0.5 33.9± 3.9 32.2 32.2 11.0 11.0 12.0
HalfCheetah random Gravity-1.0 39.7± 2.4 33.4 37.0 12.0 10.9 15.8
HalfCheetah random Gravity-1.5 32.7± 1.5 29.7 32.4 11.6 8.2 10.2
HalfCheetah medium Gravity-0.5 58.9± 2.7 58.1 60.1 39.5 43.7 41.3
HalfCheetah medium Gravity-1.0 69.3± 0.2 70.1 73.5 48.3 48.1 47.0
HalfCheetah medium Gravity-1.5 56.3± 1.8 53.2 54.2 40.0 38.4 37.8
HalfCheetah medium-replay Gravity-0.5 56.2± 4.6 65.4 51.9 27.8 33.1 34.1
HalfCheetah medium-replay Gravity-1.0 63.8± 1.7 65.6 47.0 43.9 44.7 45.2
HalfCheetah medium-replay Gravity-1.5 52.1± 3.3 46.6 35.2 35.2 34.9 33.6
HalfCheetah medium-expert Gravity-0.5 65.7± 2.6 63.4 42.1 39.1 47.6 50.5
HalfCheetah medium-expert Gravity-1.0 96.1± 1.0 95.7 70.3 91.5 89.0 90.1
HalfCheetah medium-expert Gravity-1.5 54.6± 1.6 52.7 47.4 32.2 36.3 50.1
Walker2d random Gravity-0.5 21.6± 0.3 17.7 5.8 6.2 1.0 3.7
Walker2d random Gravity-1.0 21.8± 0.2 21.8 5.1 4.3 1.0 3.6
Walker2d random Gravity-1.5 21.7± 0.2 17.6 4.9 3.9 0.8 3.6
Walker2d medium Gravity-0.5 37.2± 24.1 48.5 53.8 42.6 49.6 33.9
Walker2d medium Gravity-1.0 78.4± 1.6 56.4 68.4 81.7 82.6 80.4
Walker2d medium Gravity-1.5 52.4± 22.5 41.1 15.5 11.7 18.3 13.9
Walker2d medium-replay Gravity-0.5 56.1± 2.8 67.4 56.2 52.8 49.3 37.7
Walker2d medium-replay Gravity-1.0 70.1± 3.8 75.2 84.1 81.7 76.3 81.0
Walker2d medium-replay Gravity-1.5 74.3± 2.8 42.4 34.6 32.0 14.7 18.0
Walker2d medium-expert Gravity-0.5 74.1± 6.7 87.5 51.2 64.4 56.3 46.3
Walker2d medium-expert Gravity-1.0 101.2± 2.3 109.1 43.6 112.5 110.3 107.1
Walker2d medium-expert Gravity-1.5 82.6± 15.4 43.1 14.7 10.5 10.0 31.1
Hopper random Gravity-0.5 31.5± 0.2 29.8 11.6 8.1 9.3 6.4
Hopper random Gravity-1.0 31.6± 0.2 31.8 10.0 7.5 8.2 7.0
Hopper random Gravity-1.5 31.5± 0.2 31.6 9.5 7.5 7.7 6.9
Hopper medium Gravity-0.5 39.8± 28.6 36.7 11.0 13.4 13.0 26.6
Hopper medium Gravity-1.0 104.7± 1.2 41.4 54.3 63.2 58.6 57.6
Hopper medium Gravity-1.5 61.4± 38.2 38.9 33.8 25.0 15.6 18.1
Hopper medium-replay Gravity-0.5 46.7± 26.4 55.3 33.1 12.5 21.3 93.0
Hopper medium-replay Gravity-1.0 102.5± 0.8 58.4 100.9 90.6 58.4 55.0
Hopper medium-replay Gravity-1.5 77.7± 31.9 23.5 22.3 21.5 14.6 18.0
Hopper medium-expert Gravity-0.5 48.4± 31.0 59.6 12.8 21.6 17.1 46.3
Hopper medium-expert Gravity-1.0 111.5± 0.8 64.2 34.0 87.9 103.0 109.7
Hopper medium-expert Gravity-1.5 41.4± 34.7 56.3 10.7 14.5 23.7 31.1

Average - Mismatched 50.4 45.8 30.7 24.4 24.0 29.3
Average - Matched 74.2 60.3 52.4 60.4 57.6 58.3

(22/36), especially on mismatched tasks (17/24), which validates the generalization capability of
ReDM-o. Additionally, we provide a demonstration of the average performance in different scenarios,
specifically the matched scenario, which averages performances over all tasks with Gravity-1.0,
and the mismatched scenario, which averages performances over all tasks with Gravity-0.5 and
Gravity-1.5. These results highlight that our method performs well on both matched and mismatched
tasks.

We also provide the learning curves of ReDM-o to illustrate the stability of our method. We take
halfcheetah-random in Figure 8 and halfcheetah-medium in Figure 9 dataset as an example. The
stable improvement in our method is evident from the curves obtained under three different values of
gravity. We also find that in halfcheetah-random, since we choose 50 as the interval of generating
new candidate dynamics models, an apparent improvement in the performance can be witnessed
nearly every 50 epochs.

We conducted additional experiments on the standard D4RL Adroit tasks, which feature higher
dimensions compared to previous tasks. For instance, the state dimension in the hammer tasks is 46,
while in the pen tasks it is 45. The results, as presented in Table 6, demonstrate the effectiveness of
our method in handling more complex tasks.

F ADDITIONAL RESULTS OF EXPERIMENTS WITHOUT INTERACTION DATA

We additionally provide the expert policy performance on InvertedPendulum, MountainCar and
Acrobot, to demonstrate the extent of improvement ReDM achieved over random policies. We also
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Table 6: Performance of ReDM-o and other baselines on D4RL Adroit benchmark with full dataset.
All scores presented are averaged over 5 seeds and normalized by the way proposed by (Fu et al.,
2020). We bold the highest mean. Hyper-parameters for each task can be found in Table 3.

Environment Type ReDM-o MAPLE MOPO CQL TD3BC IQL

Pen Cloned 57.3± 16.5 45.7 54.6 27.2 −2.1 54.8
Pen Human 35.7± 17.2 27.5 10.7 35.2 −1.0 65.4

Hammer Cloned 1.5± 0.5 0.9 0.5 1.4 −0.1 1.1
Hammer Human 0.3± 0.1 0.2 0.3 0.6 0.2 1.3
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Figure 10: Relative performance between expert policy and the random policy on different environ-
ments with different hyper-parameters.

organize the results in the relative performance of the expert policy versus the random policy, and the
results are illustrated in Figure 10. It is worthwhile to note that, although the expert policy can do
better, ReDM managed to achieve about 30% and 70% of the expert performance in MountainCar
and Acrobot respectively.

We also plot the learning curve of the meta-policy w.r.t. the number of generated candidate dynamics
models, as shown in Figure 11. As the number of gradient steps increases, candidate dynamics are
generated and included in the candidate set, resulting in gradual performance improvement of ReDM
over the random policy in most of the tasks.

Finally, we provide the t-SNE results of the model rollouts with a total of 3 and 5 models respectively.
We collect the model rollouts with the same procedure as described in the main text. Results in
Figures 12∼13 validate that models generated by ReDM are more diversified.

G DETAILED RELATED WORK

Model-Based Reinforcement Learning. In complex tasks, traditional RL methods often require
millions of interactions with the environment to fully optimize the policy (Haarnoja et al., 2018).
In order to mitigate the issue of optimization, model-based reinforcement learning provides a
promising approach by extracting a dynamics model from the interaction data to serve as the proxy
environment (Janner et al., 2019; Luo et al., 2019) or provide extra generalization ability (Young et al.,
2023; Ying et al., 2023; Lee et al., 2020). The most frequently used formulation of dynamics model
learning is to maximize the one-step log-likelihood of the observed state transition (Janner et al.,
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Figure 11: Learning curves of ReDM on different environments with different hyper-parameters. All
results are averaged across 5 seeds.
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Figure 12: The t-SNE results of the data rollout from distinguished 3 generated models. (a) is the data
from our generated models with no interaction data, and (b) is the data from random parameterized
models.
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Figure 13: The t-SNE results of the data rollout from distinguished 5 generated models. (a) is the data
from our generated models with no interaction data, and (b) is the data from random parameterized
models.

23



Published as a conference paper at ICLR 2024

2019; Luo et al., 2019; Clavera et al., 2018). However, such MLE-estimated dynamics models are
known to suffer from compound error, which means the error in predicted states grows quadratically
with the rollout horizon H . To control the compound error, MBPO (Janner et al., 2019) introduces
branch rollout, which rollouts the policy for a short planning horizon starting from states chosen from
the off-policy buffer uniformly. An alternative for model learning is to imitate the environments with
GAIL (Ho & Ermon, 2016), whose error is proved to grow linearly with the horizon H (Xu et al.,
2020a).

Learning dynamics models can also benefit offline reinforcement learning in that they can augment
the offline dataset with synthetic rollouts. Nevertheless, the inaccuracy of the learned models bears
a more serious effect on policy optimization in the offline setting, as no more interaction data is
available to provide the corrective feedback. To remedy this, a wide range of literature focuses on how
to prevent the policy from accessing the uncertain area by modifying the learned MDP. For example,
MOPO (Yu et al., 2020) and MOReL (Kidambi et al., 2020) learn an ensemble of models and utilize
their disagreement to modify the model. RAMBO (Rigter et al., 2022), on the other hand, formulates
the model learning as a zero-sum game with the policy and thus adversarially encourages the model
to transition to low-value states. However, the above-mentioned methods all employ the principle of
pessimism in the face of uncertainty, often leading to an over-conservative policy. A recent approach,
MAPLE (Chen et al., 2021), learns a large set of models through supervised learning on the offline
dataset and then learns a dynamics-aware policy that is capable of adapting to the real dynamics by
identifying the most consistent dynamics model from the training ensemble. Although MAPLE is
similar to our proposed method, the ensemble set of dynamics lacks diversity and eligibility, which
hinders the overall performance of the final policy.

Adaptive Policy Learning. In order to adapt to different tasks or dynamics models, it is common
to augment RL policies with a context encoder so that the policy can identify the environment
during execution and make corresponding adjustments to its decision. The context encoder can be
implemented with various architectures. A common approach is to use RNN-based networks to
encode the up-to-date history and take RNN’s final state as the context, as demonstrated by RL2 and
MAPLE (Chen et al., 2021). PEARL (Rakelly et al., 2019) extracts the context information via the
multiplication of Gaussian distributions, each of which encodes the information carried by a single
transition tuple obtained from the environment. On the other hand, recent studies have shown that
the attention mechanism has an unparalleled ability in terms of feature extraction, as witnessed in
natural language processing (Vaswani et al., 2017). Thus, some recent studies (Yang et al., 2020;
Parisotto et al., 2020; Melo, 2022; Lin et al., 2022) adopted Transformer-like structures to encode
features of transition tuples or trajectories. In this paper, we employ standard architectures of context
encoders (RNN networks or Transformer encoders) to ensure a fair comparison against other baseline
methods as our main focus is on how to efficiently generate a dynamics model.

Unsupervised Reinforcement Learning. Through the lens of unsupervised reinforcement learning,
ReDM can be categorized as learning an effect policy without knowledge about the task dynamics.
Previous works in unsupervised RL typically assume that the agent can interact with the online
environment without the reward signal, or that it can access offline datasets without reward anno-
tations. One line of research in unsupervised RL focuses on extracting meaningful skills that can
later be utilized or composed to establish an effective policy when a task reward is given in the
future. To realize this, they often seek to enhance the diversity among the policy population or the
extracted skills (Eysenbach et al., 2018; Laskin et al., 2022; Parker-Holder et al., 2020; Sharma
et al., 2019). Another strategy involves pre-training the agent to encapsulate environmental dynamics
in representations, thereby enabling rapid adaptation to tasks upon the availability of rewards, as
investigated by (Ghosh et al., 2023; Touati & Ollivier, 2021). In this paper, we examine a unique
scenario where the reward function is known, but the model of dynamics remains undiscovered. Our
method, ReDM, aligns with the broader unsupervised RL literature in its emphasis on diversifying
the candidate dynamics set.

Rehearsal Learning. The concept of rehearsal is widely used in many areas of machine learning. In
the context of causality (Zhou, 2022), the concept of rehearsal involves taking proactive measures to
control actionable factors that can influence the occurrence or non-occurrence of desired or undesired
events. By manipulating these factors, the goal is to increase the probability of the desired event and
decrease the probability of the undesired event. In the context of continual learning (Liu et al., 2023;
Yoon et al., 2022; Pelosin & Torsello, 2022), rehearsal is a technique used to mitigate catastrophic
forgetting, which refers to the phenomenon where a model’s performance on previously learned
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(a) Policy rehearsing (b) Act in the target environment

① ② ❌ Eligibility❌ Diversity

Model generation iterations

①

I have learned ….

Figure 14: An illustrative example of policy rehearsing when a robot try to find the treasure. During
(a) policy rehearsing, the agent is trained through cycles of generating diverse and eligible candidate
dynamics models. When (b) acting in the target environment, the agent subsequently adapts to the
target environment by matching it to similar candidate models it have learned.

tasks degrades significantly when learning new tasks. The goal of rehearsal is to retain knowledge
of previous tasks while learning new ones, allowing the model to maintain its performance across
multiple tasks over time. Rehearsal involves storing and periodically revisiting a subset of previously
encountered data samples (Jiang et al., 2023) or knowledge (Churamani et al., 2023) during the
learning process. When training on new tasks, these stored samples are mixed with the current task’s
data to create a combined training set. By including past data, the model is exposed to a mixture of
old and new information, which helps in preserving the knowledge acquired from previous tasks.
There are also some other areas that involve rehearsal, such as nature language process (Araujo et al.,
2023) and incremental learning (Jiang et al., 2023).

H AN ILLUSTRATION OF POLICY REHEARSING

In Figure 14, we demonstrate the idea of policy rehearsing and how it helps decision-making in the
target environment. Supposing a task where a robot try to find treasures in the environment, the
robot may envision possible routes and outcomes of accomplishing the task. This process reflects the
dynamics model generation of ReDM. During the iterations, dynamics similar to previous outcomes
or unable to complete the task will be masked out according to designed diversified and eligible
metrics. A meta-policy is trained to adapt to those generated dynamics models and make decisions.
When deployed to the target environment, the policy can identify it and build connections with
previously generated dynamics. As a result, the agent can successfully adapt to the target environment
with the assistance of policy rehearsing.
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