
Journal of Data-centric Machine Learning Research 2024

Lifelong Benchmarks: Efficient Model Evaluation in an Era of
Rapid ProgressAmeya Prabhu∗ ameya@prabhu.be

University of Oxford

Vishaal Udandarao∗ vu214@cam.ac.uk
University of Tuebingen

Philip H.S. Torr philip.torr@eng.ox.ac.uk
University of Oxford

Matthias Bethge† matthias.bethge@uni-tuebingen.de
University of Tuebingen

Adel Bibi† adel.bibi@eng.ox.ac.uk
University of Oxford

Samuel Albanie† samuel.albanie@gmail.com

Google Deepmind

Abstract

Standardized benchmarks drive progress in machine learning. However, with repeated
testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies.
In our work, we seek to mitigate this challenge by compiling ever-expanding large-scale
benchmarks called Lifelong Benchmarks. As exemplars of our approach, we create Lifelong-
CIFAR10 and Lifelong-ImageNet, containing (for now) 1.69M and 1.98M test samples,
respectively. While reducing overfitting, lifelong benchmarks introduce a key challenge:
the high cost of evaluating a growing number of models across an ever-expanding sample
set. To address this challenge, we also introduce an efficient evaluation framework: Sort &
Search (S&S), which reuses previously evaluated models by leveraging dynamic programming
algorithms to selectively rank and sub-select test samples, enabling cost-effective lifelong
benchmarking. Extensive empirical evaluations across ∼31,000 models demonstrate that
S&S achieves highly-efficient approximate accuracy measurement, reducing compute cost
from 180 GPU days to 5 GPU hours (∼1000x reduction) on a single A100 GPU, with low
approximation error. As such, lifelong benchmarks offer a robust, practical solution to the
“benchmark exhaustion” problem.

Keywords: benchmarking, efficient model evaluation, dynamic benchmarks

1 Introduction

We are in the midst of a benchmark revolution. Datasets like ImageNet (Deng et al.,
2009), MS-COCO (Lin et al., 2014), GLUE (Wang et al., 2018) and BigBench (Srivastava
et al., 2022) have been instrumental in advancing machine learning research by providing
standardised scenarios for comparing models.

However, over time, these static benchmarks have been exposed to many evaluations,
each leaking cues about their test data and weakening their statistical power as tools of
generalisation measurement (Ott et al., 2022; Mazumder et al., 2023; Kiela et al., 2021).

∗. equal contribution, ordering decided by coin flip.
†. equal advising
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Fresh approaches must compete with a body of methods that have been highly tuned to
such benchmarks, incentivising further overfitting if they are to compete (Bender et al., 2021;
Beyer et al., 2021). This raises a critical question: What function should such benchmarks
serve?

Towards Lifelong Benchmarks. The primary goal of the vision benchmarks considered
in this work is to assess model performance on some task using data that is representative of
the visual world (Torralba and Efros, 2011). For instance, the CIFAR10 (Krizhevsky et al.,
2009) benchmark tested whether classifiers can distinguish between 10 categories, such as
dogs and cats. Subsequent versions like CIFAR10.1 (Lu et al., 2020), CIFAR10.2 (Lu et al.,
2020), CINIC10 (Darlow et al., 2018), and CIFAR10-W (Sun et al., 2023) introduced more
challenging and diverse samples to evaluate the same objective of classifying 10 categories.
Over time, however, thanks to repeated evaluation exposure from competing approaches,
each individual benchmark diminishes in representativeness as overfitting occurs at both
the individual method and research community level (Fang et al., 2023; Vishniakov et al.,
2023). In this work, we aim to tackle this challenge by introducing two Lifelong Benchmarks :
Lifelong-CIFAR10 and Lifelong-ImageNet. These are ever-expanding pools of test samples
that aim to restore the representativeness of benchmarks to the visual world (see Fig. 3) by
preventing models from overfitting specifically to the biases of any subset benchmark.

Evaluation Cost. Our Lifelong-CIFAR10 and Lifelong-ImageNet benchmarks contain 1.69
million and 1.98 million test samples, respectively. A challenge we face with this expanding
dataset is the increasing cost of evaluation—it takes roughly 140 and 40 days to evaluate
our current model set on Lifelong-CIFAR10 and Lifelong-ImageNet respectively. Similar
issues occur across various domains, especially in large-scale foundation model (Bommasani
et al., 2021) evaluation. For instance, evaluating a single large language model (LLM)
on the MMLU benchmark (Hendrycks et al., 2021b) (standard benchmark for evaluating
LLMs) takes 24 hours on a consumer-grade GPU (Ilyas Moutawwakil, 2023). As models
grow in complexity, lifelong testing will inevitably lead to a surge in evaluation costs when
benchmarking a large set of increasingly expensive models against an ever-growing collection
of test samples (Sardana and Frankle, 2023; Dehghani et al., 2021). Can we reduce this
evaluation cost while minimising the prediction error?

Efficient Model Evaluation. We develop algorithms for efficient evaluation in lifelong
benchmarks by drawing inspiration from computerized adaptive testing (CAT) (Van der
Linden and Glas, 2000), which can generate exams like the GRE and SAT from an ever-
expanding pool of questions. Unlike traditional tests where all questions must be answered,
CAT adaptively sub-samples questions based on examinee responses. This approach efficiently
gauges proficiency with far fewer questions, while maintaining assessment accuracy.

Similarly, in our lifelong benchmarking framework, we aim to evaluate the classification
ability of new models without testing them on all samples, instead selecting a subset of
samples to evaluate models. We propose a method named Sort & Search (S&S), which reuses
past evaluated models on a sample set through dynamic programming to enable efficient
evaluation of new, incoming models. S&S operates by first ranking test samples by their
difficulty, done efficiently by leveraging data from previous tests. It then uses these updated
rankings to evaluate new models, streamlining the benchmarking process. This strategy
enables efficient lifelong benchmarking, reducing the cost dramatically from a collective of
180 GPU days to 5 GPU hours on a single A100 GPU. This signifies a dramatic 1000x
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reduction in inference costs compared to static evaluation on all samples, having the potential
for large downstream impact. To summarize, our key contributions are: (1) we introduce and
formalise lifelong benchmarking as a novel framework for robust, efficient model evaluation,
(2) we curate two lifelong benchmarks: Lifelong-CIFAR10 and Lifelong-ImageNet, consisting
of 1.69M and 1.98M samples respectively, and (3) we propose a novel framework, Sort &
Search for efficient model evaluation, reducing over 99.9% of computation costs on our
lifelong benchmarks while accurately predicting sample-wise performance.

2 Lifelong Benchmarks: Curation

Considerations. We aim to establish lifelong benchmarking as a standard evaluation
protocol in computer vision. To demonstrate this, we considered two popular datasets
as our basis: CIFAR10 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009). We
chose them due to (1) their widespread adoption in prior art, (2) the diverse set of models
trained on them, and (3) the presence of numerous dataset variants with the same set of
labels, encompassing distribution shifts (Barbu et al., 2019), temporal variations (Shirali and
Hardt, 2023), and adversarial samples (Hendrycks et al., 2021c). We describe the precise
construction of our datasets below. See Table 1 for key statistics and a detailed breakdown.

Lifelong-CIFAR10. We combine 22 domains of different CIFAR10-like datasets comprising
samples applied with synthetic distribution shifts, synthetic samples generated by diffusion
models, and samples queried from different search engines using different colors and domains.
We deduplicate our dataset and downsample all images to the standard CIFAR10 resolution
of 32× 32. Our final dataset consists of 1.69 million samples.

Lifelong-ImageNet. We source our test samples from ImageNet and its corresponding
variants. Similar to Lifelong-CIFAR10, our benchmark is designed for increased sample
diversity (43 unique domains) We include samples sourced from different web-engines and
generated using diffusion models. Our final Lifelong-ImageNet contains 1.98 million samples.

3 Lifelong Benchmarks: Formulation, Challenges and Approach

We start by formalizing the objective of lifelong benchmarking. Assume we have an evaluation
benchmark Dn containing n samples, Dn={(x1, y1), . . . , (xn, yn)}1. Also assume we have
evaluated a set of m models, M={f1, f2, . . . , fm} on Dn. Using these evaluations2, we note
two key problems in the lifelong benchmarking paradigm (illustrated in Fig. 4):

• for ∆m new models, how can we efficiently evaluate them on the n current samples in
the benchmark?

• for ∆n new samples, how can we efficiently insert them into our current lifelong
benchmark in a way which facilitates efficient evaluation?

Efficient Evaluation of ∆m Models. Our first challenge is to efficiently estimate the
accuracy of the ∆m new models on the n samples. Since n can be prohibitively large, we aim
to estimate accuracy by querying only a subset Dn′ containing n′ ≪ n samples. The goal is

1. xis are the data samples and yis are the ground-truth labels.
2. one is allowed to use features, logits, predictions or other aspects from the already evaluated models for

sample-efficient accuracy prediction.
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to evaluate new ∆m models only on n′ samples and estimate the sample-wise accuracy on
all the other remaining samples with minimal cost. Formally, given ∆m, we want to predict
whether each sample is classified correctly, i.e., generate predictions Apred ∈ {0, 1}∆m×n.

Insertion of ∆n Samples. Our second challenge arises when we get new samples—here
our goal is to insert the new samples into our lifelong benchmark in a way that enables efficient
future evaluations. For this, we have to estimate the difficulty of the ∆n samples relative to
current samples in the benchmark3. A simple way would be by estimating performance of
all m models on the ∆n samples. As before, our goal is to minimise prediction error while
also minimising evaluation cost—we can do this by only querying a subset Mm′ containing
m′ ≪ m models to estimate the sample-wise accuracy.

Given this formalism of the lifelong benchmarking problem, a natural question arises:
How can we reduce the evaluation cost while minimising the error in predictions?

4 Efficient Benchmarking with Sort & Search

Taking inspiration from computerized adaptive testing (Van der Linden and Glas, 2000),
we propose an efficient evaluation framework, Sort & Search (S&S), consisting of two
components: (1) Ranking test samples from the entire dataset pool according to their
difficulty, i.e., Sort and (2) Sampling a subset from the pool to predict performance on,
i.e., Search. We aim to solve the two key challenges that we noted in Section 3 with our
framework. We now describe the objective and algorithms used in S&S.

4.1 Ranking by Sort

Setup. We recall that our lifelong benchmark pool consists of evaluations of m models on
n samples. For our method, given each model fi, i ∈ {1, ..,m}, we use the binary accuracy
prediction per sample, across all n samples obtaining ai = [pi1, pi2 . . . , pin]. Here, pij ∈ {0, 1}
represents whether the model fi classified the sample xj correctly. Thus for m models and
n evaluation samples, we construct a binary matrix A ∈ {0, 1}m×n by row-wise stacking all
the accuracy predictions ai (see Fig. 4 left).

Goal. The goal of sort is to find the best global permutation matrix P ∈ {0, 1}n×n such
that AP permutes the columns of A so that we can rank samples from easy (all 1s) to hard
(all 0s). We say this has a minimum distance from the optimal ranked accuracy prediction
matrix Y ∈ {0, 1}m×n, formally defined as:

P∗,Y∗ = argminP,Y∥AP−Y∥,
s.t. P ∈ {0, 1}n×n,P1n = 1n,1

⊤
nP = 1m,

if Yij = 1, then Yij′ = 1 ∀j′ ≤ j,

if Yij = 0, then Yij′ = 0 ∀j′ ≥ j.

(1)

The ranked accuracy prediction matrix Y applies a thresholding operator for every row in
Y. If the threshold for the ith row is k, then the ith row is of the form [1⊤k ,0

⊤
n−k] where 1k

is a vector of all ones of size k and 0n−k is a zero vector of size n− k.

3. Here, there exists a notion of “difficult” which satisfies the property that if a sample xi is easier than a
sample xj then at least equal number of models predict xi correctly as the number of models predicting
xj correctly (Baldock et al., 2021).
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Sorting by Sum. Considering elements column-wise, the difficulty of each sample (a
column) is proportional to the number of 1s in that column, which indicates most models
classify this sample correctly. Sorting by sum is detailed in Listing 1— intuitively, this
algorithm sorts samples from easy (more 1s) to hard (less 1s) by sorting the sum array across
rows per column. We call this method Sorting by Sum, which optimizes P.

Optimizing P given Y. An intuitive question is: How does one order samples which have
equal difficulty, defined by having equal number of 1s? We recursively order samples for each
bucket of points ñ where the sum is the same by considering thresholds obtained from Y
which lie within this region. Let m̃ having their thresholds in this region. We can optimize
the ranking by applying Sorting by sum algorithm only on the matrix Ã ∈ {0, 1}m̃×ñ. This
does not change the Y for other samples whose thresholds do not lie in this area, thereby
strictly improving the solution at each iteration. We provide the algorithm for two iterations
for an illustration in Listing 1.

Optimizing Y given a P. We use the DP search algorithm (see Listing 1) for optimizing
Y given a P here. We see in Equation 1 that P is binary. This makes finding the optimal
P∗ a NP-Hard problem (Yuan and Ghanem, 2016). We optimize Equation 1 by alternating
between minimizing P and Y, with the goal of finding the best solution P∗. However, we
show stationarity, that is with each alternating step, the Recursive sum algorithm further
improves the solution, until it reaches a stationary point.

Theorem 1. Stationarity. Recursive Sum eventually converges to a stable solution.

Sorting by Confidence Sum. One can additional relax the constraint on ai = [pi1, pi2 . . . , pin]
from pij ∈ {0, 1} to pij ∈ [0, 1], and use confidence of the ground truth class. This modifica-
tion allows Sorting by Sum to be the best solution without needing re-ranking and could
enable more sample efficient ranking.

4.2 Efficient Selection by Search

Given that we have found the best P∗ in the sorting phase, we assume this ordering of
difficulty of samples generalizes to new incoming models ∆m. Hence, when we get ∆m new
models, we want to predict samplewise accuracies for each new model on each datapoint.
Formally,

Goal: Search. Given the permutation matrix P∗ and ∆m new models, we want to
generate a ranked accuracy prediction matrix Ypred ∈ {0, 1}∆m×n with a query budget
n′ ≪ n.

We first restate that the constraints on Y in equation 1 imply a thresholding operator of
index from {1, . . . , n} for every row in Y, i.e. every model in ∆m independently. Hence, we
consider the problem of optimizing the rows ypred ∈ {0, 1}1×n separately here.

We now detail: (i) How do we quantify how good a ranked accuracy prediction vector
ypred is? and (ii) How to find the best ranked accuracy prediction vector ypred?

(i) How good are my predictions? Given a prediction vector ypred, we can compute
the mean-absolute error E(agt,ypred) given by the Hamming distance to the ground truth
vector agt ∈ {0, 1}1×n, defined as:

E(agt,ypred) = ∥agtP∗ − ypred∥1 (2)
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However, we want to further take into account the fact that predictions on models with, for
example, high accuracies, will necessarily agree with the ground truth often by chance alone
(Geirhos et al., 2020). The agreement by chance is given by:

Erand(agt,ypred) =
∥agt∥1

n

∥ ypred∥1
n

+

(
1− ∥agt∥1

n

)(
1−

∥ ypred∥1
n

) (3)

The normalized agreement between any two vectors a and y is defined by the Cohen’s Kappa
(Cohen, 1960) given as:

κ(a,y) =
1− E(a,y)− Erand(a,y)

1− Erand(a,y)
(4)

We measure both E and κ as sample-wise metrics in this work. Note that smaller E is better
but higher κ is better.

(ii) How to get the optimal ypred? Our goal here is to generate the sample-wise
prediction array y ∈ {0, 1}1×n. The selection task is to select the best n′ observations. The
optimization task is, given a′ ∈ {0, 1}1×n′

, to first generate y′ ∈ {0, 1}1×n′
. Subsequently,

we project the threshold found in y′ by index to obtain the full vector y.

4.2.1 Selection Subtask

The selection task involves finding the best n′ observations such that when we project the
threshold found in y′ by index to obtain the full vector y, we minimize the error. We use
the best one shot solution, which is to uniformly sample n′ points across n, providing the
algorithm in Listing 2.

While we note that there could be better iterative algorithms which could quickly find
intervals (such as binary search), uniform sampling achieves surprisingly good results, with
limited need for further improvement.

4.2.2 Optimization Subtask

We propose an algorithm based on dynamic programming, called DP Search, detailed in
Listing 1. It computes the difference between number of 1s and number of 0s for each
index based on previous index across the row. The optimal threshold is the maximum
value in this array. For an input of size n′, the dynamic programming approach reduces the
time complexity from O(n′2) to O(n′). Furthermore, it is guaranteed to return the globally
optimal solution, defined as:

Theorem 2. Optimality. For any given a′ and P∗, the DP Search algorithm returns a
y′ ∈ {0, 1}1×n′

which is a global minimum of E(a′,y′).

Until now, we discussed efficiently evaluating new models ∆m. How do we approach the
problem when we want to efficiently extend the benchmark, adding ∆n new samples?
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4.3 Efficient Insertion of New Samples

To add new samples into our lifelong benchmark efficiently, we have to estimate their
“difficulty” with respect to the other samples in the benchmark. To efficiently determinine
difficulty by only evaluating m′ ≪ m models, a ranking over models is required to enable
optimally sub-sampling a subset of m′ models. Hence, the reader can notice that we
can perform efficient insertion by following the same procedure, recast with the the same
optimisation objectives as described in Eq. (1) by replacing A with AT , and correspondingly
changing dimensions of other vectors/matrices from 1× n to 1×m.

5 Experiments

We first describe our experimental setup, then demonstrate empirical results on our two
tasks: (1) efficient evaluation of new models and (2) efficient estimation of new sample
difficulties. We next provide a comprehensive analysis over various design choices.

5.1 Experimental Details

Model Space. For Lifelong-CIFAR10, we use a total of 31,250 CIFAR-10 pretrained
models sampled from the NATS-Bench-Topology-search space (Dong et al., 2021). For
Lifelong-ImageNet, we use a set of 167 ImageNet-1K and ImageNet-21K pre-trained models,
sourced primarily from timm (Wightman, 2019) and Imagenet-Testbed (Taori et al., 2020).

Model Evaluation Split. To study efficient evaluation of new models, we use all the
samples but split the model set for the Lifelong-CIFAR10 benchmark into a randomly
selected subset of 6, 000 models for ordering the samples (i.e., Sort) and evaluate metrics on
the rest 25, 250 models (i.e., Search). Similarly, for the Lifelong-Imagenet benchmark, we
use 50 models for ordering the samples (i.e., Sort) and evaluate on 117 models (i.e., Search).

Sample Addition Split. To study efficient estimation of new sample difficulties on
Lifelong-CIFAR10, we use all the models but hold-out the CIFAR-10W dataset for evaluation
(∼500, 000 samples) and use the rest of the samples for ranking (∼1.2 million samples).

Metrics. We measure errors between estimated predictions Ypred and ground-truth predic-
tions Agt in a sample-wise fashion and over aggregate samples. For sample-wise predictions,
we measure the mean-average error E(agt,ypred) using Equation 2 along with normalized
agreement κ using Equation 3. Additionally, we measure aggregate performance by the
difference between estimated and ground truth accuracies by Eagg = |(|ypred|−|agt|)|/n.

Design choices. We first provide an overview of alternatives possible for the sorting and
searching stages in Table 2. For sorting, we benchmark three algorithms: (i) Sorting by
Sum, (ii) Sorting by Recursive Sum, and (iii) Sorting by Confidence Sum. For sampling in
the search process, we benchmark (i) uniform, and (ii) random sampling.

Unless otherwise specified, our main results in Sections 5.2 and 5.3 use the simple Sorting
by Sum algorithm for obtaining P ∗, and uniform sampling for the sample budget n′. We
analyse the other design choices in Section 11.
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Lifelong-ImageNet

Lifelong-CIFAR10

Figure 1: Estimated v/s Ground-Truth accuracies.
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(a) Lifelong-ImageNet
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(b) Lifelong-CIFAR10

AADE = 15.6 * (n')-0.23

Power-law fit:

(c) Lifelong-ImageNet

AADE = 15.9 * (n')-0.18

Power-law fit:

(d) Lifelong-CIFAR10

Figure 2: Main Results.

5.2 Model Performance Estimation

In this set of experiments, we evaluate the predictive power of S&S when subjected to
different sampling budgets n′ i.e., we run S&S over 13 different sampling budgets: {8, 16,
32, 64, 128, 256, ..., 32768} on both Lifelong-ImageNet and Lifelong-CIFAR10.

Key Result 1: Extreme cost-efficiency. From Figs. 2(a) and 2(b), we observe that
our approach converges to a very low mean-absolute error and high normalized agreement
for upto 1000x smaller total number of evaluation samples, leading to extreme cost savings
at inference time. This consistently holds true across both datasets on all three metrics:
Normalized Agreement, Mean Absolute Error and Absolute-accuracy difference.

Key Result 2: Prediction error scales as a power-law. We further analyse the
observed Eagg v/s sampling budget relationship by fitting power-laws in Figs. 2(c) and 2(d):
We discover that the power-laws have large exponential coefficients, further demonstrating
the surprisingly high sample-efficiency obtained by Sort & Search.

Key Result 3: Highly accurate performance estimation. We note from Fig. 1 that
our S & S method is able to very accurately predict the ground-truth accuracies of models.
Note that this performance prediction ability is especially surprising given these results are
aggregated over 25,250 models for Lifelong-CIFAR10 and 117 models for Lifelong-ImageNet,
spanning a wide range of architectures, model sizes and accuracies.

5.3 Sample Difficulty Estimation

Here, we showcase results with the transpose task where for new samples, the goal is to
sub-sample the number of models to evaluate on the new samples, for accurately determining

8



Lifelong Benchmarks: Efficient Model Evaluation in an Era of Rapid Progress

sample difficulty. Section 5.3 showcases our results on this task on the Lifelong-CIFAR10
benchmark with two different methods for ranking models4, Sum and Confidence Sum. We
evaluate over different model budgets (the number of models we use to evaluate our samples
over): {8, 16, 32, 64, 128, 256, 512, 1024, 2048}. Both methods converge very quickly–the Sum
method reaches an MAE of less than 0.15 by only evaluating on 64 models (104 times
compute savings). This demonstrates our method’s ability to efficiently determine sample
difficulty, enabling efficient insertion back into the benchmark pool.

6 Conclusion

In this work, we introduced Lifelong-Benchmarks: a dynamically expanding pool of test
samples designed to enhance the robustness of current benchmarks by mitigating the issue
of overfitting to specific dataset biases. As two instances of this paradigm, we curated
Lifelong-CIFAR-10 and Lifelong-ImageNet containing over a million evaluation samples
each. To counter the challenge of increasing evaluation costs on such large-scale benchmarks,
we proposed an efficient framework called Sort & Search that leverages previous model pre-
dictions to rank and selectively evaluate test samples. Our extensive experiments, involving
over 30,000 models, demonstrate that our method reduces over 99% of evaluation costs. We
hope our Lifelong Benchmarking strategy spurs more robust and efficient evaluations.
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Dunnmon, James Zou, and Christopher Ré. Domino: Discovering systematic errors with cross-
modal embeddings. International Conference on Learning Representations (ICLR), 2022.

Alex Fang, Simon Kornblith, and Ludwig Schmidt. Does progress on imagenet transfer to real-world
datasets? In Conference on Neural Information Processing Systems (NeurIPS), 2023.

Wanyong Feng, Aritra Ghosh, Stephen Sireci, and Andrew S Lan. Balancing test accuracy and
security in computerized adaptive testing. International Conference on Artificial Intelligence in
Education (AIED), 2023.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the
next generation of multimodal datasets. In Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858,
2022.

Irena Gao, Gabriel Ilharco, Scott Lundberg, and Marco Tulio Ribeiro. Adaptive testing of computer
vision models. In International Conference on Computer Vision (ICCV), 2023.

Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep
Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, et al. Evaluating models’ local decision
boundaries via contrast sets. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020.

Quentin Garrido, Randall Balestriero, Laurent Najman, and Yann Lecun. Rankme: Assessing
the downstream performance of pretrained self-supervised representations by their rank. In
International Conference on Machine Learning (ICML), 2023.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. In International Conference on Learning Representations (ICLR), 2018.

Robert Geirhos, Kristof Meding, and Felix A Wichmann. Beyond accuracy: quantifying trial-by-trial
behaviour of cnns and humans by measuring error consistency. Conference on Neural Information
Processing Systems (NeurIPS), 2020.

Aritra Ghosh and Andrew Lan. Bobcat: Bilevel optimization-based computerized adaptive testing.
International Joint Conference on Artificial Intelligence (IJCAI), 2021.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. International Conference on Learning Representations (ICLR),
2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In International Conference on Computer Vision
(ICCV), 2021a.

11



Lifelong Benchmarks

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. International Conference on
Learning Representations (ICLR), 2021b.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021c.

Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcrepe:
Fixing hackable benchmarks for vision-language compositionality. arXiv preprint arXiv:2306.14610,
2023.

Zhenya Huang, Qi Liu, Chengxiang Zhai, Yu Yin, Enhong Chen, Weibo Gao, and Guoping Hu.
Exploring multi-objective exercise recommendations in online education systems. In International
Conference on Information and Knowledge Management (CIKM), 2019.

Ben Hutchinson, Negar Rostamzadeh, Christina Greer, Katherine Heller, and Vinodkumar Prab-
hakaran. Evaluation gaps in machine learning practice. In Conference on Fairness, Accountability,
and Transparency (FAccT), 2022.

Régis Pierrard Ilyas Moutawwakil. Llm-perf leaderboard. https://huggingface.co/spaces/

optimum/llm-perf-leaderboard, 2023.

Neel Jain, Khalid Saifullah, Yuxin Wen, John Kirchenbauer, Manli Shu, Aniruddha Saha, Micah
Goldblum, Jonas Geiping, and Tom Goldstein. Bring your own data! self-supervised evaluation
for large language models. arXiv preprint arXiv:2306.13651, 2023.

Amita Kamath, Jack Hessel, and Kai-Wei Chang. Text encoders are performance bottlenecks in
contrastive vision-language models. arXiv preprint arXiv:2305.14897, 2023.

Gal Kaplun, Nikhil Ghosh, Saurabh Garg, Boaz Barak, and Preetum Nakkiran. Deconstructing distri-
butions: A pointwise framework of learning. International Conference on Learning Representations
(ICLR), 2023.

Faisal Khan, Bilge Mutlu, and Jerry Zhu. How do humans teach: On curriculum learning and
teaching dimension. Advances in neural information processing systems, 24, 2011.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking
benchmarking in nlp. North American Chapter of the Association for Computational Linguistics
(NAACL), 2021.

Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. Active testing: Sample-efficient
model evaluation. In International Conference on Machine Learning (ICML), 2021.

Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Thomas Rainforth. Active surrogate estimators:
An active learning approach to label-efficient model evaluation. Conference on Neural Information
Processing Systems (NeurIPS), 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, et al. The open images dataset
v4: Unified image classification, object detection, and visual relationship detection at scale.
International Journal of Computer Vision (IJCV), 128(7):1956–1981, 2020.

12

https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard


Lifelong Benchmarks: Efficient Model Evaluation in an Era of Rapid Progress

Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai, Joon Sung Park, Agrim Gupta, Yunzhi
Zhang, Deepak Narayanan, Hannah Benita Teufel, Marco Bellagente, et al. Holistic evaluation of
text-to-image models. Conference on Neural Information Processing Systems (NeurIPS), 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Thomas Liao, Rohan Taori, Inioluwa Deborah Raji, and Ludwig Schmidt. Are we learning yet? a
meta review of evaluation failures across machine learning. In Conference on Neural Information
Processing Systems (NeurIPS), 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision (ECCV), 2014.

Shangyun Lu, Bradley Nott, Aaron Olson, Alberto Todeschini, Hossein Vahabi, Yair Carmon, and
Ludwig Schmidt. Harder or different? a closer look at distribution shift in dataset reproduction.
In International Conference on Machine Learning Workshops (ICML-W), 2020.

Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. arXiv
preprint arXiv:2203.08242, 2022.

Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, and Benjamin Recht. Model similarity
mitigates test set overuse. Conference on Neural Information Processing Systems (NeurIPS), 32,
2019.

Mark Mazumder, Colby Banbury, Xiaozhe Yao, Bojan Karlaš, William Gaviria Rojas, Sudnya
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7 Depiction of Lifelong Benchmarking
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Figure 3: Static vs Lifelong Benchmarking. (Top) Static benchmarks incentivise ma-
chine learning practitioners to overfit models to specific datasets, weakening their
ability to assess generalisation. (Bottom) We introduce Lifelong Benchmarks as an
alternative paradigm—ever-expanding pools of test samples that resist overfitting
while retaining computational tractability.
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8 Lifelong Benchmarks: Overview

Table 1: Overview of our Lifelong Benchmarks. We list the constituent source datasets
(deduplicated) and their statistics for constructing our lifelong benchmarks here.
Our benchmarks encompass a wide-range of natural and synthetic domains, sources
and distribution shifts, making for a comprehensive lifelong testbed.

Dataset #Test Samples #Domains #Unique Sources Synthetic/Natural Corrupted/Clean

Lifelong-CIFAR10 1,697,682 22 9 Both Both
CIFAR10.1 Recht et al. (2018) 2,000 1 1 Natural Clean
CIFAR10 Krizhevsky et al. (2009) 10,000 1 1 Natural Clean
CIFAR10.2 Lu et al. (2020) 12,000 1 1 Natural Clean
CINIC10 Darlow et al. (2018) 210,000 1 1 Natural Clean
CIFAR10-W Sun et al. (2023) 513,682 3 8 Both Clean
CIFAR10-C Hendrycks et al. (2021b) 950,000 19 1 Natural Corrupted

Lifelong-ImageNet 1,986,310 43 9 Both Both
ImageNet-A Hendrycks et al. (2021c) 7,500 1 3 Natural Clean
ObjectNet Barbu et al. (2019) 18,514 1 1 Natural Clean
OpenImagesNet Kuznetsova et al. (2020) 23,104 1 1 Natural Clean
ImageNet-V2 Recht et al. (2019) 30,000 1 1 Natural Clean
ImageNet-R Hendrycks et al. (2021a) 30,000 13 1 Natural Clean
ImageNet Deng et al. (2009) 50,000 1 1 Natural Clean
Greyscale-ImageNet Taori et al. (2020) 50,000 1 1 Natural Clean
StylizedImageNet Geirhos et al. (2018) 50,000 1 1 Synthetic Corrupted
ImageNet-Sketch Wang et al. (2019b) 50,889 1 1 Natural Clean
SDNet Bansal and Grover (2023) 98,706 19 1 Synthetic Clean
LaionNet Shirali and Hardt (2023) 677,597 1 1 Natural Clean
ImageNet-C Hendrycks and Dietterich (2019) 900,000 19 1 Natural Corrupted
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9 Algorithms in Sort & Search

def sort_by_sum(A):

sum_ranking = A.sum(axis=0)

order = np.flip(np.argsort(sum_ranking))

return order

def two_stage_sort_by_sum(A, idx):

#Step 1: Sum

order = sort_by_sum(A)

#Step 1: Search

thresh = dp_search(A[:, order])

#Iterate over bins

bins_ordered = sum_bins[order]

uniq_bins = np.unique(bins_ordered)

for bin in uniq_bins:

idx = np.nonzero(bins_ordered==bin)[0]

bin_thresh = np.nonzero(np.all([[bins_ordered >= idx.min()], [bins_ordered <= idx.max()]],

axis=0))[1]↪→
At = A[thresh][:, order[idx]]

#Step 2: Sum

new_order = sort_by_sum(At)

# Replace current ordering within new in bin

order[idx] = order[idx[new_order]]

return order

Listing 1: Sort Algorithms

def uniform_sampling(query, num_p):

# idx -> num_p uniformly sampled points

idx = np.arange(0, len(query),

len(query)//num_p)[1:]

return idx

def dp_search(query):

# query is 1 x k (from a row of PA)

# (k can be assigned := n, n', m, m')

query[query==0] = -1

cumsum = np.cumsum(query)

idx = np.argmax(cumsum)

return idx

Listing 2: Search Algorithms
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10 Design choices for experiments

Table 2: Design Choices. Alternatives for Sorting & Searching.

Sorting Searching

Sum Uniform
Confidence Sum Random
Recursive Sum

4
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11 Breaking down Sort & Search
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Figure 5: Additional Analyses. (a) We achieve accurate sample difficulty estimates
(<0.15 MAE) at a fraction of the total number of models to be evaluated, thereny
enabling an efficient insertion of new samples into the ordered set of samples in
the benchmark.(b,c,d) We analyse three of the design choice axes for gaining a
better understanding of the S&S method.

Here, we analyse the different design choices used in our S&S framework, and compare
their induced efficiency gains and accuracies.

Effect of number of models used for ranking. In Fig. 5(b), we analyse the effect of the
number of models used for computing the initial ranking (i.e., m) on the final performance
prediction on Lifelong-ImageNet. Having access to more models seems to be a key factor
in improving accuracy prediction power, since the S & S method using lower number of
models for ranking (m=10) converges to a smaller normalised agreement. Interestingly, the
m used for ranking does not have any effect on speed of convergence itself, but rather only
on the predictive power.

Different ranking methods. On comparing the three different ranking methods used
in our framework on Lifelong-ImageNet Fig. 5(c), we note no substantial benefits to using

5
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the continual relaxation of the accuracy prediction values as confidence values, in fact,
this degrades the predictive power of our method. However, using the multi-step recursive
correction of rankings provides significant boosts due to its ability to locally correct ranking
errors that the global sum method is unable to.
Different sampling methods. Finally, we compare the method used for sub-selecting
the samples to evaluate on in Fig. 5(d), comparing between uniform and random sampling.
Both methods converge very quickly and at similar budgets to their optimal values and
start plateauing. Worth noting however is that uniform sampling provides large boosts
over random sampling when the sampling budget is miniscule—this can be attributed to its
“diversity-seeking” behaviour which helps cover samples from all difficulty ranges and hence
better represent the entire benchmark evaluation samples than an unrepresentative random
set.
Other Evaluations. We present additional evaluations such as decomposition of the mean
absolute error into reducible and irreducible components, in the Appendix. Most of the
error is induced due to generalization issues of the optimal ranking matrix P∗ rather than
sampling small subsets.
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12 Decomposing the errors of S&S

The total mean absolute error E(agt,ypred) can be decomposed into a component irreducible
by further sampling, referred to as the Aleatoric Sampling Error (Ealeatoric), and a component
which can be improved by querying larger fraction of samples n′, referred to as the Epistemic
Sampling Error (Eepistemic).

Let y∗ = y′ when n′ = n, i.e. it is the global minima of errors across all subsampled
thresholds. However, some error still remains between y∗ and agt. This error, caused by
imperfect generalization of the permutation matrix P∗ cannot be reduced by increasing the
sample budget n′. More formally,

Ealeatoric(agt,y) = min
y

∥agtP− y∥

= ∥agtP− y∗∥
(5)

Aleotoric Error

- - - - Error E

—— Epistemic Sample Error Eepistemic

Figure 6: Error Decomposition on Lifelong-ImageNet

On the contrary, the gap between the optimal ranking prediction y∗ and ypred is reducible
by increasing sample size n′. This gap, referred to as Epistemic Sampling Error is formally
defined as:

Ealeatoric(y
∗,ypred) = ∥y∗ − ypred∥ (6)

Now, we can analyse the effectiveness of sampling in Lifelong CIFAR-10 and Lifelong-
ImageNet by studying the Epistemic Sampling Error and Aleatoric Sampling Error (see Fig. 6).
Note that this decomposition can be similarly defined for normalized agreement metric (κ)
simply by κaleatoric(agt,y

∗) and κepistemic(y
∗,ypred)
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13 Correlation plots between estimated and ground-truth accuracies

In this section, we expand the Figure 3 from the main paper with more datapoints.

0

50

100

E
st

-A
cc

ur
ac

ie
s

n'=32

Corr: 0.87

y=x

n'=64

Corr: 0.91

n'=128

Corr: 0.93

n'=256

Corr: 0.95

0 50 100
GT-Accuracies

0

50

100

E
st

-A
cc

ur
ac

ie
s

n'=512

Corr: 0.96

0 50 100
GT-Accuracies

n'=1024

Corr: 0.97

0 50 100
GT-Accuracies

n'=2048

Corr: 0.98

0 50 100
GT-Accuracies

n'=4096

Corr: 0.99

Lifelong-ImageNet: Estimated vs GT-accuracies for different sampling budgets

Figure 7: Estimated v/s Ground-Truth accuracies on Lifelong-ImageNet. For
different sampling budgets(n′ = 32 − 4096), our estimated accuracies for 117
models are surprisingly close to the true ground-truth accuracies (ρ = 0.94− 1.0).

Figure 8: Estimated v/s Ground-Truth accuracies on Lifelong-CIFAR10. For
different sampling budgets (n′ = 32− 4096), our estimated accuracies for 25,250
models are surprisingly close to the true ground-truth accuracies (ρ = 0.81− 0.98).
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14 Related Work

14.1 Closest relevant literature

While the lifelong benchmarking setup introduced here is quite unique, the sub-challenge
of efficiently evaluating models has received limited attention. We comprehensively draw
connections across different directions in the Appendix and briefly present the most similar
works here. Model Spider (Zhang et al., 2023) efficiently ranks models from a pre-trained
model zoo. LOVM (Zohar et al., 2023) and Flash-HELM (Perlitz et al., 2023) similarly
rank foundation models efficiently on unseen datasets. However, these approaches only
solve an easier task of predicting dataset-level accuracy and not predicting sample-level
accuracies. Predicting sample-level accuracies is far harder as it involves not only calculating
the average number of correct predictions but also accurately assigning the predictions to
the full set of evaluation samples. Concurrent to our work, APS (Vivek et al., 2023) proposes
an efficient sample-level evaluation by creating a core-set from the test data. However,
their proposed method requires memory and time complexity of O(n2) with the number of
samples, preventing comparisons on datasets bigger than a few thousand samples. This is a
far cry from our lifelong benchmarks having over 1.5 million test samples each. Our Sort &
Search approach, in contrast, requires memory and time complexity of O(n · logn) with the
number of samples, and can scale up to billion-sized test sets.

14.2 Extended related works

Here, we expand on the brief literature review from above for a more expansive coverage of
related topics.

Comprehensive Benchmarks. Benchmarking has become ubiquitous in the machine
learning world in the last few years (Raji et al., 2021). It has gained further traction in
the recent past with the release of foundation models like GPT-4 (Bubeck et al., 2023)
and CLIP (Radford et al., 2021). A popular direction taken by efforts like GLUE (Wang
et al., 2018), BigBench (Srivastava et al., 2022), HELM (Liang et al., 2022) etc. is to
have a benchmark of benchmarks, reporting the average accuracy over the constituent
datasets. This approach now spans across several domains including fact-based question-
answering (Hendrycks et al., 2021b), language understanding (Wang et al., 2019a), zero-
shot classification of vision-language models (Gadre et al., 2023), large-scale vision model
evaluation (Zhai et al., 2019), multi-modal model evaluation (Yue et al., 2023; Zhou et al.,
2022), and text-to-image generation (Bakr et al., 2023; Lee et al., 2023). Despite these
benchmarks having vast coverage of testing concepts, the obvious downsides are two-fold: (1)
they are static in nature and hence can always be susceptible to test-set contamination (Magar
and Schwartz, 2022), and (2) their large sizes renders them very expensive resources to run
full model evaluations on.

Adversarial Dynamic Benchmarks. One necessary aspect essential for lifelong
benchmarks is collecting harder samples, which has been pursued by two strands of works.
Adversarial methods to augment benchmarks (Wallace et al., 2022; Nie et al., 2020; Kiela et al.,
2021; Potts et al., 2021; Shirali et al., 2022) aim to automatically curate samples that all tested
models reliably fail on. These methods usually involve an iterative optimisation procedure
to find such adversarial samples. The second strand of work in curating adversarial samples
are efforts revolving around red-teaming (Ganguli et al., 2022; Perez et al., 2022) that aim to
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explicitly elicit certain sets of behaviours from foundation models; primarily these approaches
look at the problem of adversarial benchmarking from a safety perspective. Further, a host
of benchmarks that aim to stress-test models are making their way on the horizon—their
primary goal is to create test sets for manually discovered failure modes (Yuksekgonul et al.,
2022; Parcalabescu et al., 2021; Thrush et al., 2022; Udandarao et al., 2023; Hsieh et al.,
2023; Kamath et al., 2023; Bitton-Guetta et al., 2023; Bordes et al., 2023). However, while
they are sample efficient, they are criticized as unfair. To mitigate this, a strand of automatic
error discovery (Chen et al., 2023; Eyuboglu et al., 2022; Wiles et al., 2022; Peychev et al.,
2023) or their human-in-the-loop variants (Wang et al., 2021; d’Eon et al., 2022; Gao et al.,
2023) have been developed. This is complementary to our work, as we primarily explore
model testing.

Active Testing. Efforts such as (Kossen et al., 2021, 2022) aim to identify “high-
quality”, representative test instances from a large amount of unlabeled data, which can
reveal more model failures with less labeling effort. The key assumption underlying these
works is that they assume access to a host of unlabeled data at a relatively cheap cost.
However, they assume that the cost of label acquisition is a bottleneck. However, these
assumptions can break down when doing multiple forward passes on a single batch of data
with a large-scale foundation model is necessitated. Albeit similar in spirit to the task of
actively acquiring a subset of samples for testing models, an important distinction of our
method is that we want to minimise the number of forward-passes through a model—we
believe that the cost of running a model on several test samples is substantial, and hence
needs to be reduced for efficient evaluation in terms of time, resources and capital.

Ideas for Replacing Benchmarks. Recently, there have been a surge of methods
introducing creative ways of benchmarking models (Liao et al., 2021; Roelofs et al., 2019;
Kaplun et al., 2023; Gardner et al., 2020; Rodriguez et al., 2021; Rofin et al., 2022; Mania
et al., 2019; Hutchinson et al., 2022; Bowman and Dahl, 2021; Tian et al., 2023; Ott et al.,
2022; Garrido et al., 2023; Roelofs et al., 2019; Rodriguez et al., 2021) including hosted
competitions (Blum and Hardt, 2015), self-supervised evaluation (Jain et al., 2023) and newer
metrics (Geirhos et al., 2020). Further, recently ELO style methods have been gaining a lot
of attention (Bitton et al., 2023; Zheng et al., 2023) due to their scalability of deployment to
millions of users in a peer-to-peer manner. The ELO algorithm is used to compute ranks
for different models based on human-in-the-loop preferences. However, despite its utility
ELO is heavily dependent on the choice of user inputs and can be a very biased estimator of
model rankings (Shi et al., 2023). Another interesting idea proposed by (Corneanu et al.,
2020) is to assume access to the pre-training data of models and compute topological maps
to give predictions of test error; this however requires running expensive forward passes over
the training data or modifying the training protocol, which might be not be scalable to
pre-trained models.

Computerized Adaptive Testing. Computerized Adaptive Testing (CAT) is a
framework that allows for efficient testing of human examinees. The idea is to lower the
burden of students taking tests by only asking them a subset of questions from the entire pool.
There have been few main directions of solutions: model-agnostic strategies for selection
(Bi et al., 2020), bi-level optimization (Ghosh and Lan, 2021; Zhuang et al., 2022; Feng
et al., 2023), multi-objective optimization (Mujtaba and Mahapatra, 2021; Huang et al.,
2019; Wang et al., 2023), retrieval-augmented adaptive search (Yu et al., 2023). One key
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challenge in CAT is the lack of a stable ground-truth. Since the goal in CAT is to estimate
the proficiency of an examinee, and the examinee’s true ground-truth proficiency is not
provided, how would one evaluate the true proficiency of an examinee? Thereby, existing
CAT methods cannot explicitly optimise for predicting ability directly i.e. they cannot do
exact ability estimation. Hence, CAT methods are not usually guaranteed to converge to
the true examinee abilities under certain conditions. The biggest distinction of our work
from CAT is the access to the ground-truth targets for the tasks we consider. In both
Lifelong-ImageNet and Lifelong-CIFAR10, we have access to the ground-truth and hence
can compute grounded metrics that can be optimised towards, unlike in CAT, where every
method has to inherently be label-free.

Curriculum Learning. This refers to the problem of finding a curriculum of input
samples such that the optimisation objective of an algorithm becomes easier. The most
intuitive explanation from curriculum learning comes from how humans learn (Khan et al.,
2011). In the context of machine learning, the idea behind curriculum learning is to find the
“difficulty” of samples, where difficulty is usually defined in terms of the ease of classifying
that sample correctly. Some recent works in this direction utilise estimating variance of
gradients (Agarwal et al., 2022) and other information theoretic properties (Ethayarajh
et al., 2022) to estimate sample difficulty. These approaches are complementary to our Sum
component in S&S since these can be easily integrated into our framework directly.

15 Proof of Theorem 4.1

Proof Let us restate the problem. We first say minimizing

min
P,Y

∥AP−Y∥,

s.t. P is a permutation matrix,

Yij is such that if Yij = 1 then Yij′ = 1∀j ≤ j

and if Yij = 0 then Yij′ = 1∀j ≥ j

(7)

is equivalent to the following problem:

min
P,X

∥AP−XΨ∥,

s.t. P ∈ {0, 1}m×m,P1m = 1m,1⊤mP = 1m

X1 = 1m,X ∈ {0, 1}m×n,

(8)

where Ψ ∈ 0, 1n×n such that it Ψi: = [1⊤i ,0
⊤
n−i].

Note that 1⊤
i and 0⊤

n−i are a row vectors of ones and zeros with sizes i and n − i,
respectively. Moreover, note that the constraints on P that it has to be binary and that the
rows and the columns independently sum to 1 enforces P to be doubly stochastic and hence
a permutation matrix. At last observe that for any choice of indexing for Y, we have that
there ∃ X such that XΨ = Y.

To solve Equation (1), one can iterate between updating the permutation matrix for the
data A for a given thresholding operator X, and then iterating back on the thresholding
function X for a given permutation matrix. The general solver f(X,P ) has the following
form :
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Xk+1 =argminX∥APk −XΨ∥,
s.t. X1 = 1m,X ∈ {0, 1}m×n

Pk+1 =argminP∥AP−Xk+1Ψ∥,
s.t. P ∈ {0, 1}m×m,P1m = 1m,1⊤mP = 1m

We notice that for any k,

f(Xk+1, P k) ≤ f(Xk, P k)

f(Xk+1, P k+1) ≤ f(Xk+1, P k)
(9)

Hence, f(Xk+1, P k+1) ≤ f(Xk, P k), ∀k i.e. the general solver f(X,P ) forms a monoton-
ically non-increasing function and therefore the sequence has a limit f∗ at k = ∞. Hence,
this function converges.

16 Proof of Theorem 4.2

Proof First, using the same decomposition as Equation 6, we reduce the theorem problem
to the following:

y′∗ =argminy′∥a′P∗ − y′|| (10)

Note that y′ essentially constructs a vector of all ones up to some index with the rest where
x is nonzero with the rest being zero. Therefore, y′

i is a vector of all ones up to index i
with the rest being zero. Let b = a′P∗ be the sorted vector according to the permutation
matrix. Thus, the objective function has the following error:

e(y′
i) =

(
i−

i∑
k=1

bk

)
+

n∑
k=i+1

bk. (11)

Observe that the first term is the number of zeros to the left of index i (inclusive) in b,
while the second term is the number of 1s in b to the right of index i.

Proposition 3. If y′
i is a minimizer to Theorem 4.2, then, the following holds:

n∑
k=i+1

bk ≤ (n− i)−
n∑

k=i+1

bj .

Proof Let j < i and that y′
i and y′

j are feasible solutions for Theorem 4.2. However, let
that y′

i be such that the inequality in Proposition 3 while it is not the case for y′
j . Then,

we compare the differences in the objective functions e(y′
i) and e(y′

j). We have that:

e(y′
j)− e(y′

i) =

(j − j∑
k=1

bj

)
+

n∑
k=j+1

bk

−

[(
i−

i∑
k=1

bk

)
+

n∑
k=i+1

bk

]

= 2
i∑

k=j+1

bk − (i− j).
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However, we know from the assumptions that 2
∑n

i+1 bk ≤ n− i and that 2
∑n

j+1 bk ≥
n − j. Subtracting the two inequalities we have 2

∑n
k=j+1 bk ≥ i − j which implies that

y′(sj) ≥ e(y′
i) which implies that y′

i is a better solution to any other y′
j not satisfying the

inequality in Proposition 3.

The inequality condition in proposition 3, implies that for the choice of index i, the
number of zeros in a to the right of index i is more than the number of 1s to the right of
of index i. Since any solution, i.e. y′

i or in general thresholding index i, either statisfies
property in proposition 3 or not, and since proposition demonstrated that the set of indices
that satisfy this property are better, in objective value (lower), than all those that do not
satisfy it, then this condition achieves optimality.

17 167 Models used for Lifelong-ImageNet experiments

We use the following models (as named in the timm (Wightman, 2019) and ImageNet-
Testbed (Taori et al., 2020) repositories):

1. BiT-M-R101x3-ILSVRC2012

2. BiT-M-R50x1-ILSVRC2012

3. BiT-M-R50x3-ILSVRC2012

4. FixPNASNet

5. FixResNet50

6. FixResNet50CutMix

7. FixResNet50CutMix v2

8. FixResNet50 no adaptation

9. FixResNet50 v2

10. alexnet

11. alexnet lpf2

12. alexnet lpf3

13. alexnet lpf5

14. bninception

15. bninception-imagenet21k

16. cafferesnet101

17. densenet121

18. densenet121 lpf2

19. densenet121 lpf3

20. densenet121 lpf5

21. densenet161

22. densenet169

23. densenet201

24. dpn107

25. dpn131

26. dpn68

27. dpn68b

28. dpn92

29. dpn98

30. efficientnet-b0

31. efficientnet-b0-autoaug

32. efficientnet-b1

33. efficientnet-b1-advprop-autoaug

34. efficientnet-b1-autoaug

35. efficientnet-b2

36. efficientnet-b2-advprop-autoaug

37. efficientnet-b2-autoaug

38. efficientnet-b3

39. efficientnet-b3-advprop-autoaug

40. efficientnet-b3-autoaug

41. efficientnet-b4

42. efficientnet-b4-advprop-autoaug

43. efficientnet-b4-autoaug

44. efficientnet-b5

45. efficientnet-b5-advprop-autoaug

46. efficientnet-b5-autoaug

47. efficientnet-b5-randaug

48. efficientnet-b6-advprop-autoaug

49. efficientnet-b6-autoaug

50. efficientnet-b7-advprop-autoaug

51. efficientnet-b7-autoaug

52. efficientnet-b7-randaug

53. efficientnet-b8-advprop-autoaug

54. fbresnet152

55. inceptionresnetv2

56. inceptionv3

57. inceptionv4

58. instagram-resnext101 32x16d

59. instagram-resnext101 32x32d

60. instagram-resnext101 32x8d
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61. mnasnet0 5

62. mnasnet1 0

63. mobilenet v2

64. mobilenet v2 lpf3

65. mobilenet v2 lpf5

66. nasnetalarge

67. nasnetamobile

68. polynet

69. resnet101

70. resnet101 cutmix

71. resnet101 lpf2

72. resnet101 lpf3

73. resnet101 lpf5

74. resnet152

75. resnet18

76. resnet18-rotation-nocrop 40

77. resnet18-rotation-random 30

78. resnet18-rotation-random 40

79. resnet18-rotation-standard 40

80. resnet18-rotation-worst10 30

81. resnet18-rotation-worst10 40

82. resnet18 lpf2

83. resnet18 lpf3

84. resnet18 lpf5

85. resnet18 ssl

86. resnet18 swsl

87. resnet34

88. resnet34 lpf2

89. resnet34 lpf3

90. resnet34 lpf5

91. resnet50

92. resnet50 adv-train-free

93. resnet50 augmix

94. resnet50 aws baseline

95. resnet50 cutmix

96. resnet50 cutout

97. resnet50 deepaugment

98. resnet50 deepaugment augmix

99. resnet50 feature cutmix

100. resnet50 l2 eps3 robust

101. resnet50 linf eps4 robust

102. resnet50 linf eps8 robust

103. resnet50 lpf2

104. resnet50 lpf3

105. resnet50 lpf5

106. resnet50 mixup

107. resnet50 ssl

108. resnet50 swsl

109. resnet50 trained on SIN

110. resnet50 trained on SIN and IN

111. resnet50 trained on SIN and IN then finetuned on IN

112. resnet50 with brightness aws

113. resnet50 with contrast aws

114. resnet50 with defocus blur aws

115. resnet50 with fog aws

116. resnet50 with frost aws

117. resnet50 with gaussian noise aws

118. resnet50 with greyscale aws

119. resnet50 with jpeg compression aws

120. resnet50 with motion blur aws

121. resnet50 with pixelate aws

122. resnet50 with saturate aws

123. resnet50 with spatter aws

124. resnet50 with zoom blur aws

125. resnext101 32x16d ssl

126. resnext101 32x4d

127. resnext101 32x4d ssl

128. resnext101 32x4d swsl

129. resnext101 32x8d

130. resnext101 32x8d ssl

131. resnext101 32x8d swsl

132. resnext101 64x4d

133. resnext50 32x4d

134. resnext50 32x4d ssl

135. resnext50 32x4d swsl

136. se resnet101

137. se resnet152

138. se resnet50

139. se resnext101 32x4d

140. se resnext50 32x4d

141. senet154

142. shufflenet v2 x0 5

143. shufflenet v2 x1 0

144. squeezenet1 0

145. squeezenet1 1

146. vgg11

147. vgg11 bn

148. vgg13

149. vgg13 bn

150. vgg16

151. vgg16 bn

152. vgg16 bn lpf2

153. vgg16 bn lpf3

154. vgg16 bn lpf5

155. vgg16 lpf2

156. vgg16 lpf3

157. vgg16 lpf5

158. vgg19

159. vgg19 bn

160. wide resnet101 2

161. xception

162. resnet50 imagenet subsample 1 of 16 batch64 original images

163. resnet50 imagenet subsample 1 of 2 batch64 original images

164. resnet50 imagenet subsample 1 of 32 batch64 original images

165. resnet50 imagenet subsample 1 of 8 batch64 original images

166. resnet50 with gaussian noise contrast motion blur jpeg compression aws

167. resnet50 imagenet 100percent batch64 original images
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18 Limitations and Future Directions

Although showcasing very promising results in enhancing the efficiency of evaluating Lifelong
Benchmarks, S&S faces certain key limitations: (1) One-Step Process: Currently, our
approach is restricted to one-step sample ranking and model evaluation, whereas ideal lifelong
evaluation would need simultaneous optimization of these steps. (2) Ranking Imprecision:
Our error decomposition analysis in the Appendix suggests that the ordering of samples while
evaluating new models is the bottleneck in reducing prediction errors. Generalizable sample
ordering is a complex task, with potential biases and a lack of representation across diverse
scenarios. (3) Identifying Difficult Samples: Finding and labeling challenging examples is
an essential task for lifelong benchmarks, which is not investigated completely in this work.
Studying adversarial sample selection approaches with lifelong benchmarking is a promising
direction.
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